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Multi-view X-ray Image Synthesis with Multiple Domain
Disentanglement from CT Scans

Anonymous Authors
ABSTRACT
X-ray images play a vital role in the intraoperative processes due
to their high resolution and fast imaging speed and greatly pro-
mote the subsequent segmentation, registration and reconstruc-
tion. However, over-dosed X-rays superimpose potential risks to
human health to some extent. Data-driven algorithms from volume
scans to X-ray images are restricted by the scarcity of paired X-ray
and volume data. Existing methods are mainly realized by mod-
elling the whole X-ray imaging procedure. In this study, we pro-
pose a learning-based approach termed CT2X-GAN to synthesize
the X-ray images in an end-to-end manner using the content and
style disentanglement from three different image domains. Our
method decouples the anatomical structure information from CT
scans and style information from unpaired real X-ray images/ dig-
ital reconstructed radiography (DRR) images via a series of decou-
pling encoders. Additionally, we introduce a novel consistency reg-
ularization term to improve the stylistic resemblance between syn-
thesized X-ray images and real X-ray images. Meanwhile, we also
impose a supervised process by computing the similarity of com-
puted real DRR and synthesized DRR images. We further develop a
pose attentionmodule to fully strengthen the comprehensive infor-
mation in the decoupled content code from CT scans, facilitating
high-quality multi-view image synthesis in the lower 2D space. Ex-
tensive experiments were conducted on the publicly available CT-
Spine1K dataset and achieved 97.8350, 0.0842 and 3.0938 in terms of
FID, KID and defined user-scored X-ray similarity, respectively. In
comparison with 3D-aware methods (𝜋-GAN, EG3D), CT2X-GAN
is superior in improving the synthesis quality and realistic to the
real X-ray images.

CCS CONCEPTS
• Computing methodologies→ Appearance and texture rep-
resentations.

KEYWORDS
Generative Adversarial Networks, Image Synthesis, X-ray, Style
Disentanglement, Multi-domains
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1 INTRODUCTION
Due to the high resolution and rapid imaging speed, X-ray im-
ages are commonly utilized for visualizing the internal anatomi-
cal structures of the human body and are regarded as the golden
standard for disease diagnosis and treatment. In the X-ray imag-
ing processes, according to the different attenuation coefficients,
organs and tissues present various grey distributions[34, 37, 38].
However, the commonly used mono-plane imaging system can
only capture the X-ray image from a single view each time. Due to
the projecting principle, much spatial information has been lost in
the X-ray images and repeated or multiple imaging procedures are
further needed to visualize the rich and comprehensive informa-
tion of human structures[29, 32]. In such processes, excessive doses
of X-rays pose unavoidable potential risks to the human body. Be-
sides these, X-ray images play a vital role in the segmentation[6,
45], registration[43, 50], reconstruction [15, 22, 24] and synthesis
[26]. Along with the explosive development of deep learning, large
amounts of X-ray image databases are needed to extensively im-
prove the performance of the above researches[4, 42]. Hence, syn-
thesizing X-ray images from volume data is desperately needed.
In the synthesizing process of X-ray images, attenuation coeffi-
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Figure 1: Illustration of the difference between the tradi-
tional and proposed pipeline of X-ray image synthesis from
3D volume scans.

cients of different parts and interaction between X-rays and struc-
tures both need to be accurately modelled. Digital reconstructed
radiography (DRR) is a common solution to tackle the problem
by computing the attenuation coefficients and modifying the ray-
casting approach[13]. However, DRR is highly dependent on the
accuracy of each structure segmentation which reduces the gen-
eralization ability. Besides, particle numerical models are also es-
sential to simulate the interaction between X-rays and structures
which further increases the difficulty and complexity of imaging

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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procedure[39, 41]. Hence, improving the reality of synthesized X-
ray images still faces great challenges.

In this study, we propose a novel and practical task termed CT-
to-X-ray (CT2X) synthesis, aiming to generate high-quality and re-
alistic X-ray images frommultiple view angles. The goal is to learn
the intricate mapping relationship from CT scans to X-ray images.
As depicted in Figure 1, the CT scan is directly fed into the gen-
erator to synthesize X-ray images, instead of modelling the com-
plicated processes including segmentation, ray-casting, and post-
processing in traditional methods. To reach this purpose, CT2X-
GAN is realized from the perspectives of style decoupling and pose
perception.

To achieve style decoupling, we propose amultiple domain style
decoupling encoder, which is capable of decoupling anatomy struc-
ture and texture style from 2D X-ray images. To guide the style
decoupling encoder in learning content commonalities and style
differences across multiple domains, we introduce a novel consis-
tency regularization term to constrain the training process. Addi-
tionally, zero loss is introduced to minimize the similarity of style
features among reference images from different domains, ensur-
ing the style decoupling encoder focuses on domain-independent
style features. For pose perception, we propose a CT encoder incor-
porating a pose attention module (PAM), enabling the multi-view
consistency of X-ray images from multiple view angles using 2D
networks.

In summary, our contributions can be summarized as fourfold:

• A novel pipeline is proposed for end-to-end X-ray image
synthesis fromCT scans without modelling the whole X-ray
imaging procedure.

• A style decoupling encoder is introduced to extract style fea-
tures from real X-ray images, relieving the difficulty of col-
lecting paired CT scans and X-ray images.

• A novel regularizationmethod is developed by utilizing con-
sistency and zero loss to improve style accuracy, improving
the structural consistency in multi-views and style decou-
pling capabilities.

• A PAM is designed to calculate attention based on the pro-
jection of the target pose, enabling the network to improve
the perception ability of structural content at multiple view
angles.

2 RELATEDWORKS
2.1 Traditional X-ray Image Synthesis
The synthesis of X-ray images from volume data aims to obtain re-
alistic X-ray images with consistent structures and styles, thereby
reducing patient exposure to X-ray radiation.Mainstreammethods
are reached by modelling X-ray imaging procedures to generate
DRRs [13]. Early research primarily employed ray-casting for syn-
thesizing X-ray images [25]. More sophisticated methods explored
the Monte Carlo (MC) [2, 11] method to accurately simulate the
interaction between X-ray particles and tissue organs. Li et al. [27]
devised an adaptive MC volume Rendering algorithm, partitioning
the volume into multiple sub-domains for sampling, thus acceler-
ating the MC simulation.

2.2 Learning-based X-ray Image synthesis
Recent advancements in deep learning have significantly promoted
X-ray image synthesis performance. Methods such as DeepDRR
[30] utilize convolutional neural networks for tissue segmentation
in CT scans, alongside ray-casting and MC methods to compute
tissue absorption rates. Gopalakrishnan et al. [40] accelerated the
synthesis of DRRs by reformulating the ray-casting algorithm as
a series of vectorized tensor operations, facilitating DRRs interop-
erable with gradient-based optimization and deep learning frame-
works. It is noteworthy that existing methods heavily rely on the
segmentation results from the CT scans. Fixed absorption coeffi-
cients are assigned to different structures to calculate X-ray beam
attenuation rates. Recent advancements in X-ray projections syn-
thesis have revealed that deep learning models trained on simu-
lated DRRs struggle to generalize to actual X-ray images [30, 44].
However, recent progress in image translation has demonstrated
that utilizing condition features extracted from representation learn-
ingmodels canmarkedly reduce the disparity between synthesized
DRRs and real X-ray images [13]. Inspired by this, our model di-
verges from traditional approaches to modelling of imaging proce-
dures. Instead, it employs style-based generative models, offering
a robust approach for disentangled synthesis, thus improving the
performance and image quality of X-ray synthesis.

2.3 GAN-based Image synthesis
In recent years, generative adversarial networks (GANs) have achie-
ved remarkable success in image synthesis [46], image translation
[18], and image editing [1]. Building upon progressive GAN [19],
Karras et al. proposed StyleGAN [20], which enhanced the quality
of the generated image and allowed the network to decouple dif-
ferent features, providing a more controllable synthesis strategy.
StyleGAN2 [21] redesigned the instance normalization scheme to
remove the water droplet-like artefacts existing in StyleGAN, lead-
ing to higher-quality outputs. Some methods have attempted to
control generated images by exploring the latent space of GANs
[10, 33, 36]. Despite their remarkable process, most deviations of
GANs still concentrate on data augmentation in medical imaging,
with limited research conducted on synthesizing cross-dimension
medical images [17]. One of the primary challenges inhibitingGANs
from the CT2X task is the synthesis of multi-view results, as GANs
have limited awareness of pose information [17, 28].

Recently, there has been a trend to incorporate 3D representa-
tions into GANs, enabling them to capture pose information in 3D
space [28]. Such approaches, known as 3D-aware GANs, facilitate
multi-view image synthesis. Methods that introduced explicit 3D
representations, such as tree-GAN [48], MeshGAN [9], and SDF-
StyleGAN [49], are capable of synthesizing the 3D structure of the
target object, which allows them to explicitly define poses in 3D
space. However, the use of explicit 3D representations has con-
strained their resolution. 𝜋-GAN [8] and EG3D [7] introduced ra-
diance fields to endow networks with the capability of pose aware-
ness. Nonetheless, the high computational cost of stochastic sam-
pling required for radiance fields introduces training complexity
and may lead to noise [23]. In contrast, our approach aims to im-
prove the capability of the network to perceive spatial poses by
involving the projections at the target view angles.
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3 METHODS
3.1 Problem Definition
The purpose of X-ray image synthesis is to predict the X-ray im-
age at any arbitrary view angle from the 3D CT scan. Let us de-
note the input CT scan with 𝑉 ∈ R𝐻×𝑊 ×𝐷 , the X-ray image for
styles with 𝐼𝑋 ∈ R𝐻×𝑊 , the referenced DRR for structures with
𝐼𝐷𝑅𝑅 ∈ R𝐻×𝑊 .𝐻 ,𝑊 and𝐷 represent the height, width and depth,
respectively. 𝑝 ∈ R1×25 represents the camera pose of the target
view angle. Hence, A mapping function from CT scan to X-ray im-
ages can be expressed as follows:

𝑓 (𝑉 , 𝑝, 𝐼𝑋 ) → 𝐼𝑋,𝑝 ∈ R𝐻×𝑊 (1)

In this study, two main challenges in X-ray image synthesis
will be tackled: (1) How to conduct end-to-end synthesis using un-
paired CT andX-ray data? (2) How to realize X-ray image synthesis
from multiple view angles? To address them, we train the network
using images from three domains, including CT scans, X-ray im-
ages, and DRR images. In Section 3.3, we utilize the CT encoder to
extract anatomical information from CT data, while the disentan-
gled encoder processes X-ray images to extract X-ray style features.
Our generator seamlessly integrates unpaired information for syn-
thesis. Moreover, we leverage the style features extracted from
DRRs to produce style reconstructed syntheses and hence provide
supervision.The integration of information from three domains en-
ables the tackling of end-to-end training with unpaired data. Addi-
tionally, a consistency regularization is employed in Section 3.4 to
further constrain the training of the decoupling encoder, ensuring
comprehensive extraction of domain-specific style information. A
PAM is introduced to focus the content code on the target view an-
gle, facilitating multi-view synthesis, as depicted in section 3.5. In
Section 3.6, we employ a pose-aware adversarial training strategy
by feeding the corresponding DRRs into the discriminator, further
improving the quality of multi-view synthesis.

3.2 Overview of CT2X-GAN
CT2X-GAN synthesizes multi-view X-ray images by incorporat-
ing images from three domains: CT scans𝑉 , X-ray images 𝐼𝑋 , and
DRRs 𝐼𝐷𝑅𝑅 as inputs during training, as depicted in Figure 2. The
CT scan is employed to compute the CT content code 𝑓𝐶𝑇𝑐 through
a CT encoder 𝐸𝐶𝑇 , whereas the X-ray image is sent to a style de-
coupling encoder, denoted as 𝐸𝑠𝑡𝑦 , to extract the X-ray style code
𝑓 𝑋𝑠𝑡𝑦 and X-ray content code 𝑓 𝑋𝑐 . The CT content code and X-ray
style code are then fed into distinct layers of the generator 𝐺 to
conduct the X-ray image synthesis 𝐼𝑋 . The synthesized X-ray re-
sults lack corresponding ground truth (GT). To provide supervision
to the network training, we utilize the DeepDRR [30] framework
to generate target view angle DRRs 𝐼𝐷𝑅𝑅 from CT scans, which
also serve as the GT DRRs. These DRR images are then sent into
the style decoupling encoder to obtain DRR style code 𝑓 𝐷𝑅𝑅

𝑠𝑡𝑦 and
DRR content code 𝑓 𝐷𝑅𝑅

𝑐 . Forwarding the DRR style code and the
CT content code into the generator produces a DRR stylized im-
age 𝐼𝐷𝑅𝑅 . Reconstruction loss can then be computed between the
reconstructed and the GTDRR for supervision. A consistency regu-
larization is next introduced to constrain the training and improve
the disentanglement by minimizing the discrepancy between the

style code and content code between the real and synthesized im-
ages. Furthermore, to improve the perception of CT content code
to the information of the target pose 𝑝 , a PAM is utilized to modify
the CT content code 𝑓 𝑤

+
𝑐 by the maximum intensity projection at

the target pose.

3.3 Style Decoupling Encoder
To address the challenge of limited paired CT and X-ray data, we
propose a style decoupling encoder 𝐸𝑠𝑡𝑦 to separate images into
content and style code. This allows the generator to control the
style feature in the synthesized images. Specifically, for X-ray ref-
erence images 𝐼𝑋 , the style decoupling encoder consists of two
branches, including an X-ray style branch and a content branch.
The two branches separate the X-ray image into style code 𝑓 𝑋𝑠𝑡𝑦
and content code 𝑓 𝑋𝑐 as follows:

𝑓 𝑋𝑠𝑡𝑦 = 𝐸𝑠𝑋𝑠𝑡𝑦 (𝐼𝑋 ) (2)

𝑓 𝑋𝑐 = 𝐸𝑐𝑠𝑡𝑦 (𝐼𝑋 ) (3)

where 𝐸𝑠𝑋𝑠𝑡𝑦 and 𝐸𝑐𝑠𝑡𝑦 denote the X-ray style branch and content
branch of the style decoupling encoder, respectively.

The X-ray style code 𝑓 𝑋𝑠𝑡𝑦 describes the low-level style and in-
tensity information of the X-ray image, while the modified con-
tent code 𝑓 𝑤+

𝑐 contains the high-level anatomical information. The
generator𝐺 synthesizes the X-ray images by combining the X-ray
style code with the content code as follows:

𝐼𝑋 = 𝐺 (𝑓 𝑤+
𝑐 , 𝑓 𝑋𝑠 ) (4)

To provide auxiliary supervision to the network training, we
employ the DRRs 𝐼𝐷𝑅𝑅 computed from the input CT scan as the
GT. The reconstructed images 𝐼𝐷𝑅𝑅 synthesized by the style code
from such DRRs and the content code from CT scans should be
consistent with 𝐼𝐷𝑅𝑅 . To realize this, we introduce a DRR style
branch into the style decoupling encoder to be distinct from the X-
ray style branch, thus enabling the style decoupling encoder. The
style decoupling encoder is utilized to extract style code 𝑓 𝐷𝑅𝑅

𝑠𝑡𝑦 and
content code 𝑓 𝐷𝑅𝑅

𝑐 from DRRs as follows:

𝑓 𝐷𝑅𝑅
𝑠𝑡𝑦 = 𝐸𝑠𝐷𝑅𝑅

𝑠𝑡𝑦 (𝐼𝐷𝑅𝑅) (5)

𝑓 𝐷𝑅𝑅
𝑐 = 𝐸𝑐𝑠𝑡𝑦 (𝐼𝐷𝑅𝑅) (6)

where 𝐸𝑠𝐷𝑅𝑅
𝑠𝑡𝑦 denotes the DRR style branch of the style decoupling

encoder.
The reconstructed DRRs 𝐼𝐷𝑅𝑅 can be obtained by feeding the

DRR style code and the modified CT content code into the genera-
tor:

𝐼𝐷𝑅𝑅 = 𝐺 (𝑓 𝑤+
𝑐 , 𝑓 𝐷𝑅𝑅

𝑠 ) (7)
To improve the preservation of anatomical structures and im-

prove the quality of image synthesis, we compute the supervised
reconstruction loss between the reconstructed DRRs 𝐼𝐷𝑅𝑅 and GT
DRRs 𝐼𝐷𝑅𝑅 as follows:

L𝑟𝑒𝑐 = 𝜆𝑚𝑎𝑒L𝑚𝑎𝑒 (𝐼𝐷𝑅𝑅, 𝐼𝐷𝑅𝑅)
+ 𝜆𝑙𝑝𝑖𝑝𝑠L𝑙𝑝𝑖𝑝𝑠 (𝐼𝐷𝑅𝑅, 𝐼𝐷𝑅𝑅)

(8)

Here, L𝑚𝑎𝑒 is the mean absolute error (mae) loss, L𝑙𝑝𝑖𝑝𝑠 denotes
the learned perceptual image patch similarity (lpips) [47]. 𝜆𝑚𝑎𝑒 and
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Figure 2: An illustration of the proposed CT2X-GAN. ACT encoder 𝐸𝐶𝑇 extracts the content code from the input CT scan𝑉 .The
style decoupling encoder 𝐸𝑠𝑡𝑦 extracts a style code 𝑓 𝑋𝑠𝑡𝑦 from the input X-ray image 𝐼𝑋 . The generator 𝐺 incorporates both the
style code and content code to generate the X-ray synthesis result 𝐼𝑋 . We also employ the style decoupling encoder to extract a
DRR style code 𝑓 𝐷𝑅𝑅

𝑠𝑡𝑦 from the DRR and use it to synthesize a stylized reconstructed DRR 𝐼𝐷𝑅𝑅 , providing auxiliary constraint
to the training. A consistency regularization term is calculated to improve domain-specific style extraction. Additionally, we
employ a pose attention module to accentuate features with the target view angle based on the corresponding projection.

𝜆𝑙𝑝𝑖𝑝𝑠 are the hyperparameters controlling the weight of the loss
items.

Style
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Synthesized DRR 
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Figure 3: An illustration of consistency regularization. 𝑓 𝑋𝑠
and 𝑓 𝐷𝑅𝑅

𝑠 represent the style code extracted from X-ray and
DRR images. 𝑓 �̂�𝑠 and 𝑓

ˆ𝐷𝑅𝑅
𝑠 are the style features of syn-

thesised results using X-ray and DRR, respectively. 𝑓 �̂�𝑐 and
𝑓

ˆ𝐷𝑅𝑅
𝑐 share the same contents.

3.4 Consistency Regularization
In decoupling the style information, it is challenging and unstable
to supervise and train the decoupling encoder due to the absence
of paired X-ray images. Hence, to extract domain-specific style fea-
tures, we propose a novel consistency regularization approach by

combining disentanglement learning and consistency to constrain
the decoupling encoder. To ensure that the synthesized images ob-
tain style information only from the style code while preserving
the original structure, the decoupling encoder should thoroughly
disentangle style and content information from the style image as
much as possible. This implies that style branches 𝐸𝑠∗𝑠𝑡𝑦 should ex-
tract all essential style information, while structural information
can only be extracted by content branch 𝐸𝑐𝑠𝑡𝑦 . We compel the net-
work to extract consistent style codes from the generated image 𝐼∗
and input style image 𝐼∗, simultaneously ensuring consistency of
content codes 𝑓 �̂�𝑐 and 𝑓

ˆ𝐷𝑅𝑅
𝑐 .Therefore, we formulate the following

consistency constraints:

L𝑐𝑜𝑛𝑠𝑖𝑠 = 𝜆𝑐𝑐L𝑐𝑐 + 𝜆𝑠𝑐L𝑠𝑐 (9)

L𝑐𝑐 = | |𝐸𝑐𝑠𝑡𝑦 (𝐼𝑋 ) − 𝐸𝑐𝑠𝑡𝑦 (𝐼𝐷𝑅𝑅) | |2 (10)

L𝑠𝑐 = | |𝐸𝑠𝑋𝑠𝑡𝑦 (𝐼𝑋 ) − 𝐸𝑠𝑋𝑠𝑡𝑦 (𝐼𝑋 ) | |2
+ ||𝐸𝑠𝐷𝑅𝑅

𝑠𝑡𝑦 (𝐼𝐷𝑅𝑅) − 𝐸𝑠𝐷𝑅𝑅
𝑠𝑡𝑦 (𝐼𝐷𝑅𝑅) | |2

(11)

where L𝑐𝑐 describes the content consistency and L𝑠𝑐 represents
style consistency. 𝜆𝑐𝑐 and 𝜆𝑠𝑐 control the weight of the regulariza-
tion term.

For the purpose of ensuring that the style encoders can thor-
oughly disentangle domain-specific style information, we incor-
porate zero loss [3] as an auxiliary constraint during training. As
discussed in Section 3.3, we have designed two domain-specific
style branches within the decoupling encoder: one for capturing
features of X-ray style and the other for capturing DRR style fea-
tures. Ideally, the X-ray branch should extract appearance features
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specific to the real X-ray images, while the DRR branch should ex-
tract appearance features specific to the DRRs. Therefore, when a
style reference image is inputted into the corresponding branch
that does not pertain to the domain, the objective is to minimize
the errors extracted by the style encoder.

L0 = | |𝐸𝑠𝑋𝑠𝑡𝑦 (𝐼𝐷𝑅𝑅) | |1 + ||𝐸𝑠𝐷𝑅𝑅
𝑠𝑡𝑦 (𝐼𝑋 ) | |1 (12)

To ensure that each branch extracts style-specific features effec-
tively, the extracted style information should be zero when the in-
put style image belongs to a different domain.

3.5 Pose Attention Module
While CT scans contain rich spatial information in 3D space, en-
coding it into latent space can incur notable information loss. Fully
exploiting the 3D inherent in CT scans can lead to a more accurate
anatomical structure in the synthesis. Therefore, we introduce a
PAM, which is capable of accentuating distribution information of
a specific view angle in the CT code 𝑓𝐶𝑇𝑐 , thereby obtaining an
modified content code 𝑓 𝑤

+
𝑐 .

Given that the CT scan encompasses comprehensive anatomi-
cal information about the human body, the information within the
generated X-ray image at a specific view angle should encompass
the position, tissue size and morphology of anatomical structures
that appeared in the CT scans.Thus, we can project the CT scans to
the imaging plane of a target view angle and utilize the projection
as auxiliary information to modify the content code through at-
tention mechanisms. Initially, we encode the input CT scan𝑉 into
a CT code 𝑓𝐶𝑇𝑐 using an encoder. Next, the camera parameters 𝑝
are fed into a multi-layer perceptron (MLP) and concatenated with
𝑓𝐶𝑇𝑐 as conditional input. Subsequently, the conditional informa-
tion is merged with the CT code using an MLP and denoted as Q.
We then rotate the input volume 𝑉 in 3D space to align with the
target pose 𝑝 for maximum intensity projection. The resulting pro-
jection is encoded via an MLP and utilized as K and V. Thus, the
PAM can be represented as follows:

𝑃𝐴𝑀 = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (Q · K𝑇
𝜏

)V (13)

Q = 𝐶𝑜𝑛𝑐𝑎𝑡 (𝐸𝐶𝑇 (𝑉 ), 𝑀𝐿𝑃 (𝑝)) (14)

K = V = 𝑀𝐿𝑃 (𝑃𝑟𝑜 𝑗 (𝑅𝑜𝑡 (𝑉 , 𝑝))) (15)

where𝐶𝑜𝑛𝑐𝑎𝑡 refers to the concatenation, 𝑅𝑜𝑡 denotes the 3D rota-
tion operation, 𝑃𝑟𝑜 𝑗 represents the maximum intensity projection
and 𝜏 is a small-valued constant preventing the extreme magni-
tude.

Overall, our proposed PAM enhances the generator capability
of robust multi-view synthesis. By intensifying specific pose fea-
tures, the PAM facilitates high-quality multi-view synthesis, em-
powering the 2D network with enhanced 3D perceptual capabili-
ties without the need for 3D representations in the network.

3.6 Loss Function
Pose-aware adversarial training. To further promote pose con-

sistency between the pose of generated X-ray image 𝐼𝑋 and the tar-
get pose 𝑝 , we integrate pose information into the adversarial train-
ing process. This integration enables the model to learn both the

anatomical features and positional characteristics essential for pre-
cise multi-view image synthesis. Conditioning the synthesis pro-
cess on the specified camera pose enables the model to effectively
capture geometric details and orientation of the target anatomy,
yielding synthesized images with increased fidelity and realism.
The overall quality of the generated X-ray images can be improved,
facilitating more accurate and clinically relevant interpretations.
We formulate the pose-aware adversarial loss as follows:

L𝑔𝑎𝑛
𝑎𝑑𝑣

= E𝑣∼𝑉 ,𝑥∼𝐼𝑋 ,𝜙∼𝑝 [−𝐷 (𝐺 (𝑣, 𝑥, 𝜙))] (16)

L𝑑𝑖𝑠
𝑎𝑑𝑣 = E𝑣∼𝑉 ,𝑥∼𝐼𝑋 ,𝜙∼𝑝 [𝐷 (𝐺 (𝑣, 𝑥, 𝜙))]

+ E𝑥∼𝐼𝐷𝑅𝑅 [−𝐷 (𝑥) + 𝜆𝑅1 |∇𝐷 (𝑥) |2]
(17)

where𝑉 is the distribution of CT scans. 𝐼𝑋 and 𝐼𝐷𝑅𝑅 are the distri-
butions of X-ray and DRR images. During training, the synthesis
requires a pose 𝜙 sampling from the pose distribution 𝑝 . ∇(·) is
the 𝑅1 loss following [31] to stable the training process. 𝜆𝑅1 is the
balancing weights.

Final loss. The final losses for training the generator and the
discriminator are then defined as:

L𝑔𝑎𝑛
𝑡𝑜𝑡𝑎𝑙

= 𝜆𝑎𝑑𝑣L
𝑔𝑎𝑛
𝑎𝑑𝑣

+ L𝑟𝑒𝑐 + L𝑐𝑜𝑛𝑠𝑖𝑠 + 𝜆0L0 (18)

L𝑑𝑖𝑠
𝑡𝑜𝑡𝑎𝑙 = 𝜆𝑎𝑑𝑣L𝑑𝑖𝑠

𝑎𝑑𝑣 (19)
where 𝜆𝑎𝑑𝑣 and 𝜆0 are weights balancing the terms.

4 EXPERIMENTS
To evaluate the proposed method, we conduct experiments using a
publicly available dataset [12]. As there are no prior studies explor-
ing the end-to-end solutions in X-ray image synthesis from volume
data, we benchmark our proposed method against the state-of-the-
art (SOTA) 3D-aware GANs, including 𝜋-GAN [8] and EG3D [7].
The experimental settings are presented in Section 4.1. The evalu-
ation of the proposed method and the ablation study are included
in Section 4.2 and Section 4.3, respectively.

4.1 Experimental Settings
Implementation Details. For the CT encoder, we comprise an

input layer, three downsampling layers and a latent layer. Each
layer comprises two 3D convolutions (Conv3D) followed by Batch-
Norm (BN) and activated by LeakyReLU with a slope of 0.2. After
the latent layer of the CT encoder, a transformation layer flattens
the output feature map into a 1D vector. AdaIN [16] is employed
to form the synthesis layer of our generator. The style decoupling
encoder 𝐸𝑠𝑡𝑦 includes seven 2D convolution (Conv2D) layers in
each of its two style branches. Before reaching the final layer, fea-
tures are aggregated into a feature map through adaptive average
pooling.Themap is then passed through the final Con2D layer and
activated by Tanh.The generator comprises a total of fourteen syn-
thesis layers. These layers are sequentially numbered based on the
resolution increasing of intermediate feature maps. Layers one to
eight are designated as the content layers, primarily responsible for
generating anatomical structures of the X-ray image. Conversely,
the ninth to fourteenth layers, characterized by higher resolutions,
serve as fine layers for injecting style information. The framework
is trained with a batch size of 16 on a single NVIDIA RTX A6000
GPU with 48 GB of GPU memory. The proposed method utilizes
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the Adam optimizer with a learning rate of 0.0025 and is trained
for 100 epochs.

Dataset. Due to the lack of public datasets for our task, we con-
struct the dataset to train our model. Specifically, public dataset
CTSpline1K[12] includes 807 spine CT scans and is regarded as our
CT data source. The scans are resampled to a resolution 1 × 1 × 1
mm3 and reshaped into 128× 128× 128. Multi-view DRRs are gen-
erated from the CTSpine1K dataset. We utilize the DeepDRR [30]
framework to generate DRRs. Considering the clinical emphasis
on horizontal camera angles in C-arm imaging, we fix the camera
angle at 0◦ vertically and project the CT from −90◦ to 90◦ horizon-
tally at intervals of 30◦ to create the DRR dataset. The parameters
for DeepDRR are set as follows: step size of 0.1, spectral intensity of
60KV_AL35, photon count of 1, 000, 000, source-to-object distance
(SOD) of 1, 020 mm, and source-to-detector distance (SDD) of 530
mm. As for the X-ray images, a total of 373 real X-ray images are
collected in the anterior-posterior (AP) and lateral (Lat) views from
186 patients.

Baselines. Currently, there are no available methods for the
CT2X synthesis to serve as baselines. Hence, we selected SOTA
3D-aware image generation methods for comparison. 𝜋-GAN [8]
generates multi-view images from view-consistent radiance fields
based on volumetric rendering. EG3D [7] introduces a dedicated
neural render for tri-plane hybrid 3D representation to generate
high-qualitymulti-view images, enabling unsupervisedmulti-view
synthesis. Both methods produce high-quality multi-view consis-
tent images, which is particularly crucial for X-ray synthesis tasks
[35]. These methods are not originally designed for the CT2X task
and thus cannot directly process CT data. To bridge this gap and
conduct a unfair comparison, we utilize the same CT encoder as
our method to encode the CT scan into a latent code. The latent
code can then be sent into 𝜋-GAN and EG3D and generate the X-
ray results. The learning rate and number of epochs are also set to
0.0025 and 100, respectively.

EvaluationMetrics. Weevaluated and compared the proposed
method with regard to the metrics of image similarity and synthe-
sis quality, respectively. For image similarity, we utilize LPIPS[47],
which compares the semantic similarity between the generated
images with reference images at a perceptual level through a pre-
trained deep network. For assessing the synthesis quality, we uti-
lize the commonly used Frechet inception distance (FID) metric
[14], which evaluates the distribution similarity by comparing ref-
erence and synthesized image distributions. Additionally, for eval-
uating the consistency with human visual perception, we employ
the kernel inception distance (KID) metric [5] to assess the visual
quality of synthesized images.

4.2 Experimental Results
Qualitative Comparisons. Figure 4 illustrates the qualitative

comparison results with the baseline methods. From the figure,
we can discern several noteworthy observations. Firstly, for im-
age synthesis methods using 3D-aware networks, whether employ-
ing implicit-based (𝜋-GAN) or hybrid-based (EG3D) 3D represen-
tations, difficulties arise in maintaining the accuracy of anatomi-
cal structures despite their ability to generate multi-view images.

Furthermore, both 𝜋-GAN and EG3D are unable to perform style-
decoupling injection and can only utilize DRRs as target images
to train the model, limiting them to generating results close to the
DRR domain. In contrast, our method enhances feature informa-
tion associated with the target pose in the content code through
the incorporation of PAM. This enables multi-view image synthe-
sis based on the corresponding view angle projection. Moreover,
the style decoupling encoder extracts style features from X-ray
images, facilitating the synthesis of results more closely resem-
bling real X-ray images. In summary, our approach yields supe-
rior quality and clearer anatomical structures, making them more
time-efficient and clinically applicable.

Table 1: Quantitative comparison with the state-of-the-art
synthesis methods.

Method FID ↓ KID ↓ LPIPS ↓
𝜋-GAN 277.3511 0.3131 0.4681
EG3D 224.3884 0.2535 0.2970
Ours 97.8350 0.0842 0.2366

Quantitative Comparisons. Table 1 presents the FID, KID and
LPIPS values of our method and the SOTA methods, respectively.
As can be seen from the table, the proposed method achieves the
highest FID and KID scores, demonstrating that CT2X-GAN ef-
fectively captures the anatomical structure from the 3D CT scan
and utilizes it to synthesize high-quality X-ray images. Besides,
our method achieves the highest LPIPS for perceptual-level eval-
uation. This indicates that CT2X-GAN can successfully inject the
style information of real X-ray images, corroborating the practical-
ity of our approach. In summary, CT2X-GAN both achieves high
anatomical structure fidelity and is realistic of the synthesized X-
ray images.

4.3 Ablation Study
To understand the role of each component in CT2X-GAN, we con-
duct a series of ablation studies. Table 2 presents the quantitative
results under all configurations, while Figure 5 illustrates the visu-
alization examples of the outcomes.

Table 2:Quantitative evaluation of ablation studies.

Method FID ↓ KID ↓ LPIPS ↓
w/o 𝐸𝑠𝑡𝑦 160.0366 0.1736 0.3678
w/o PAM 156.5380 0.1715 0.3371

w/o L𝑐𝑜𝑛𝑠𝑖𝑠 141.6687 0.1419 0.2966
Ours 97.8350 0.0842 0.2366

Effect of Style Decoupling Encoder. Referring to the first row
of Table 2 and the first column of Figure 5, we verify the effective-
ness of the style decoupling encoder. Removal of the decoupling
encoder results in generated images resembling DRR with signif-
icant differences from X-ray images. Additionally, by comparing
the first and last columns of Figure 5, it is evident that the style de-
coupling encoder introduces style disentanglement, enabling the
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Figure 4:Qualitative comparison between 𝜋-GAN, EG3D and ours at a resolution of 256 ∗ 256.

generator to combine structural information from CT scans with
style information from reference X-ray images.This can effectively
make the reduced internal brightness and enhanced contrast in the
skeletal parts of the generated results, as shown in the last column
of Figure 5.

Effect of Pose Attention Module. From the second row of Ta-
ble 2, we validate the effectiveness of PAM. It can be found that
introducing PAM enhances the network awareness of pose infor-
mation, resulting in better-synthesized X-ray images frommultiple
view angles. Results in Figure 5 show that the boundaries between
skeletal and soft tissue parts become blurry. This indicates that
PAM not only preserves the 3D spatial information in CT scans
but also further pays more attention to anatomical structure infor-
mation during the encoding process, further enhancing the quality
of synthesized X-ray images.

Effect of Consistency Regularization. In this ablation study,
we validate the effectiveness of the consistency regularization term.
As shown in the third row of Table 2, removing style and content
consistency regularization during training greatly harms the syn-
thesis ability of our CT2X-GAN. The right two columns of Figure
5 demonstrate the results before and after introducing consistency
regularization. It can be concluded the introduction of consistency
regularization during training ensures the decoupling encoder. It

w/o 𝓛𝒄𝒐𝒏𝒔𝒊𝒔 Oursw/o PAMw/o 𝑬𝒔𝒕𝒚

Figure 5:Qualitative ablation study for proposed modules.

avoids encoding anatomical information from the style reference
images into the style code without affecting the final synthesis
quality. The results indicate the ability of our proposed method
to inject style while preserving anatomical structures.

4.4 Style Disentanglement Evaluation
X-ray Style Synthesis. To confirm the decoupling ability of

the proposed style encoder, we evaluate the results given different
style reference images for the same input CT scan. As depicted in
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Figure 6, using style images from the same domain yields similar
results, while using style images from different domains notably
affects the style and intensity of the synthesized results.

X-ray

Image 1

Style

Image

CT

Scan

Figure 6: Visual results for disentanglement module. From
left to right: the different stylized results of the same input
CT. From top to bottom: the results using different CT scans
and the same reference style image.

DRR Style Reconstruction. To quantitatively assess the style
disentanglement capability of CT2X-GAN,we extract theDRR style
information and incorporate it into the generator. The CT2X-GAN
can generate high-quality reconstructed DRR images, as shown
in Figure 7. In terms of quantitative metrics, we opted for struc-
tural similarity index measure (SSIM) and peak signal-to-noise ra-
tio (PSNR). SSIM is employed to assess the structural accuracy of
generated results in amanner of perceptual-level comparison, while
PSNR provides ameasure of the synthesis quality. It is noted that 𝜋-
GAN and EG3D do not have the capability for style injection and
are trained directly on DRR images. In such a way, their predic-
tions are deemed suitable for use solely as reconstruction results.
The quantitative results are presented in Table 3. It can be seen that
our method outperforms others in all metrics, encompassing both
SSIM and PSNR. This suggests that style disentanglement not only
achieves stylized synthesis but also improves the network repre-
sentation of anatomical information in CT data, reflecting anatom-
ical structures more accurately.

Table 3:Quantitative evaluation results for DRR style recon-
struction.

Method PSNR ↑ SSIM ↑
𝜋-GAN 11.6527 0.2251
EG3D 15.0620 0.5046
Ours 23.5093 0.7013

DRR

Reconstructed 

DRR

Patient 1 Patient 2 Patient 3 Patient 4

Figure 7: Visual results for DRR style reconstruction.

Table 4: Results of user studies on the synthesis results of
different models. The X-ray similarity indicates the resem-
blance of the synthesis obtained by each method to real X-
ray images.

Method DRR 𝜋-GAN EG3D Ours
X-ray Similarity 2.6403 1.6406 1.7656 3.0938

4.5 User Study
We run a user study by randomly selecting 20 instances from the
synthesized images and inviting 47 users to score them. Specifi-
cally, the participants are required to rate the synthesized images
produced by variousmethods on a scale of 1-5, where higher scores
signify greater resemblance to actual X-ray images. Subsequently,
we compute the average score as the X-ray image similarity mea-
sure. The results are depicted in Table 4. The table reveals that the
images synthesized by 𝜋-GAN and EG3D are notably distorted, as
users predominantly perceive them to deviate substantially from
authentic X-ray data. While superior to the 3D-aware methods,
the DRRs still fall short compared to our method, which further
demonstrates that our approach yields results more closely resem-
bling to real X-ray images.

5 DISCUSSION
Conclusion. This study introduces a baseline method for multi-

view X-ray image synthesis from CT scans. Our objective is to
train a model that integrates content information with style fea-
tures from unpaired CT and X-ray data in an end-to-end manner.
This is accomplished by employing a novel decoupling learning
method and consistency constraints. In addition, our method en-
courages the model to fully exploit the abundant spatial informa-
tion included in CT scans through the PAM module. Compared
to existing multi-view synthesis methods including 𝜋-GAN and
EG3D, our approach can obtain multi-view X-ray results much
more realistic.

Limitations and future work. Considering our method en-
deavours to tackle the challenge of limited paired data through
disentanglement, it is inevitable leading to the sacrifice of anatom-
ical information. Additionally, our method lacks distance aware-
ness, resulting in scale distortion. To enhance the versatility and
applicability of the synthesis process across diverse scenarios, in-
vestigating methods to perceive distances is needed and also will
be our future work.
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