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ABSTRACT

We examine the hypothesis that the concept of symmetry augmentation is funda-
mentally linked to learning. Our focus in this study is on the augmentation of sym-
metry embedded in 1-dimensional time series (1D-TS). Motivated by the duality
between 1D-TS and networks, we augment the symmetry by converting 1D-TS
into three 2-dimensional representations: temporal correlation (GAF), transition
dynamics (MTF), and recurrent events (RP). This conversion does not require a
priori knowledge of the types of symmetries hidden in the 1D-TS. We then ex-
ploit the equivariance property of CNNs to learn the hidden symmetries in the
augmented 2-dimensional data. We show that such conversion only increases the
amount of symmetry, which may lead to more efficient learning. Specifically, we
prove that a direct sum based augmentation will never decrease the amount of
symmetry. We also attempt to measure the amount of symmetry in the original
1D-TS and augmented representations using the notion of persistent homology,
which reveals symmetry increase after augmentation quantitatively. We present
empirical studies to confirm our findings using two cases: reinforcement learning
for financial portfolio management and classification with the CBF data set. Both
cases demonstrate significant improvements in learning efficiency.

1 INTRODUCTION

One-dimensional time series (1D-TS) representations do not expose the co-occurent events and the
latent states of the data (Prado, 1998) in a way that machine learning can easily recognize. For finan-
cial data, there are patterns at various scales that can be learned to improve performance. For ECG
data, we want to identify the fundamental physical heart problems that are represented indirectly in
the ECG data. Our approach is to find richer alternate representations to improve time series pattern
identification for more efficient and effective machine learning methods by transforming 1D-TS data
into 2-dimensional feature sets. This will provide a richer representation of the data and opens up the
opportunity to apply a different set of algorithms adapted from computer vision such as Convolution
Neural Networks (CNNs).

Physics defines a symmetry of a physical system as a physical or mathematical feature of the system
(observed or intrinsic) that is preserved under some transformation. According to Noether’s first
theorem (Noether & Tavel, 2018; Byers, 1996), a symmetry preserving transformation results in
the invariance of some quantity. According to the Nobel Prize-winning physicist Philip Warren
Anderson “by symmetry, we mean the existence of different viewpoints from which the system
appears the same. It is only slightly overstating the case to say that physics is the study of symmetry.”
(Anderson, 1972). It is important to understand that symmetries are a super-set of correlations
and a more general concept. Correlation captures dependencies which are an extrinsic property
of dynamical systems, while symmetry is related to transformations that leave a dynamical system
invariant. Detection of an invariant property (e.g. translational) indicates that a related intrinsic
property is conserved (e.g. momentum). Our paper aims to track the intrinsic (hidden) features of
dynamical systems by leveraging the invariance property of CNNs and not the extrinsic features
such as correlations which can simply be computed separately and taken as a feature into any ML
system or by using recurrent neural networks (RNNs).

We identified financial portfolio management as a case study where we have multiple 1D-TS as input
and we expect that more symmetries will emerge through augmentation. (Fischer, 2018; Aboussalah
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& Lee, 2020; Aboussalah et al., 2020) summarize the state-of-the-art RL models in finance. Based
on the work of Aboussalah et al. (2020), which indicated that policy-based RL works better than
value-based RL, we studied two policy-based RL algorithms, namely deterministic policy gradient
(DPG) and proximal policy optimization (PPO), to assess the benefits of our time series augmenta-
tion to RL. To explore the generality of our approach, we selected the CBF time series classification
(Saito, 1994; Kadous, 1999) as another case study. We studied convolution neural networks with
fully connected layers to assess the benefits of our symmetry augmentation on a traditional time
series classification problem.

In summary, the contributions of our work are as follows:

• We provide a mathematical analysis of symmetry and show how augmentation can benefit
learning. In particular, we prove that a direct sum based augmentation will never decrease
the amount of symmetry.

• We leverage the translational invariance property of CNNs to learn hidden spatio-temporal
symmetries created by our augmented representation that improves the learning.

• We develop an empirical measure of the amount of symmetry in our time series augmenta-
tions using computational Homology.

• We present empirical studies to confirm our findings.

2 RELATED WORK

Learning Symmetry from CNN. Cohen & Welling (2016) presented Group Equivariant Convo-
lutional Neural Networks (G-CNNs), a generalization of convolutional neural networks (CNNs)
that decreases sample complexity by making the most of symmetries. G-CNNs make use of G-
convolutions, a new kind of layer that enjoys a significantly higher degree of weight sharing com-
pared to common convolution layers. G-convolutions typically increase the expressive capacity of
the network, but the number of parameters is not increased. They used translation, rotation, and
reflection symmetries to achieve exceptional results on rotated MNIST and CIFAR10. Cohen &
Welling (2016) addresses the concept of groups of symmetries using CNNs in supervised learning
for static data while our work uses dynamic data.

Learning Symmetry from Interactions. Higgins et al. (2018) proposed Symmetry-Based Dis-
entangled Representation Learning (SBDRL), where they discuss how translation, rotation, color
change symmetries can be used to disentangle features and therefore make them learnable. Caselles-
Dupré et al. (2019) expanded on their work and proposed linear and nonlinear SB-disentangled rep-
resentations learned through interactions with the environment. This work points to the applicability
of RL as used in our work.

Augmentation for RL. Laskin et al. (2020) presented Reinforcement Learning with Augmented
Data (RAD) module which can augment most RL algorithms. They have demonstrated that aug-
mentations such as random translate, random convolutions, crop, patch cutout, amplitude scale, and
color jitter can enable simple RL algorithms to outperform complex advanced methods on stan-
dard benchmarks. Kostrikov et al. (2020) presented a data augmentation method that can be ap-
plied to conventional model-free reinforcement learning (RL) algorithms, enabling learning directly
from pixels minus the need for pre-training or auxiliary losses. The inclusion of this augmenta-
tion method, improves performance substantially, enabling a Soft Actor-Critic (SAC) agent to reach
advanced functioning capability on the DeepMind control suite, outperforming model-based meth-
ods and contrastive learning. Laskin et al. (2020) and Kostrikov et al. (2020) show the benefit of
RL-augmentation using CNNs for static data but do not connect to symmetries and do not handle
dynamic data.

Our work uniquely connects time series, symmetries, CNNs, RL and augmentation, in realistic noisy
dynamical environments using a rigorous mathematical foundation.
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3 HIGH DIMENSIONAL STATE SPACE AUGMENTATION

3.1 MAPPING SYMMETRIES FROM THE WORLD STATE TO THE AGENT

Let’s consider a generator process Ξ : W → O (Fig. 1a). W , the world state, includes all the
characteristics of the physical system and O is what we measure from the world state (e.g. 1D-TS),
therefore depends on the measure being used. Let’s also consider an embedding process Ψ : O → V
from observations O to an agent’s latent representation V .
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Figure 1: Mapping symmetries from the world state to the agent.

By construction, the mapping Ψ ◦ Ξ in (Fig. 1a) is surjective, which means that a potential loss of
information such as symmetry of the system is possible when moving from W to V . The recur-
rence Poincaré theorem guarantees the existence of such symmetries in dynamical systems (Katok
& Hasselblatt, 1995).

The set of all symmetries of any object forms a group. A representation of a group G on a finite
dimensional vector space V is sometimes referred to as the homomorphism of groups from the group
of symmetries of the world state G to GL(V), which is the group of symmetries of the latent space
V . We aim to find a corresponding action “�”: G × V −→ V so that the symmetry structure ofW
is transferred into V . However in practice, for a given Φ : W → V , there is no guarantee that we
can find a compatible action ”�” G × V → V (Fig. 1b) because we do not know a priori the hidden
symmetries. The only remaining solution to transfer as many symmetries from the world stateW to
the latent space V would be to augment the symmetries of O through a new mapping Ψ̃ (Fig. 1c).
In order to augment the amount of symmetries of O, let’s assume we are given some mappings
that we call augmentations Ψi with i ∈ {1, . . . , N} and N the total number of augmentations.
Whether or not these individual augmentations carry symmetries, our main focus is on the way to
combine them into a single representation scheme so that the resulting representation will be only
better or in the worst case the same as the original 1D-TS representation in terms of the amount of
symmetry information. While others have utilized augmentations in ML, we are the first to provide
a mathematical explanation that identifies symmetries as a significant factor behind the benefits of
augmentations in ML.

Theorem 3.1 (Monotonicity of direct sum based representation) Let G be the group of symme-
tries acting on the world state W and A a discrete subgroup of G. For any i ∈ {1, . . . , n}, let’s
consider Ψi to be the map (augmentation) that takes x ∈ O and returns its image in its correspond-
ing augmented vector space Vi. Given a set of Ψi, the resulting mapping Ψ̃n:

Ψ̃n
.
=

n⊕
i=1

Ψi : O −−−→ O
n⊕
i=1

Vi ∼= Ṽn, (1)

associated with its corresponding representation

ρ̃n : A ⊂ G −→ GL(Ṽn), (2)

is non-decreasing in total symmetry as n increases independent of the quality of the Ψi augmenta-
tions being used.
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The theorem guarantees that we can create as many augmentations as we want and, even if some of
them do not expose symmetries, we can safely combine them to achieve the benefits of those that do
expose symmetries. The proof is provided in Appendix B.

Corollary 3.1 (Preservation of symmetries) The group of symmetries of Ṽn is larger than the
group of symmetries of O and we write: GL(O) ⊆ GL(Ṽn).

The implication of this corollary is that even if the augmentation does not expose more symmetries,
ML performance would not be worse than with non-augmented 1D-TS.

3.2 THREE AUGMENTATIONS USING DUALITY BETWEEN TIME SERIES AND GRAPHS

To test our framework, we have developed an approach for transforming 1D-TS into multiple 2D
feature sets using the duality between time series and graphs (Campanharo et al., 2011). Our liter-
ature search found three distinct TS-to-Network maps, namely the Recurrence Plots (RP) (Marwan
et al., 2002), the Gramian Angular Field (GAF), and the Markov Transition Field (MTF) (Wang &
Oates, 2015). We choose to use all three maps because they show different topological properties
and different dynamic regimes. Therefore, we are testing our framework with n = 3 in Theorem
3.1. Fig. 2a shows a 1D-TS from our financial portfolio management case study and Fig. 2b, 2c, 2d
show three augmentations: GAF, MTF, and RP.

(a) 1D-TS (AMT) (b) GAF (AMT) (c) MTF (AMT) (d) RP (AMT)

Figure 2: Three augmentations corresponding to the American Tower Corp. (AMT) 1D-TS.

GAF is the graph obtained from a 1D-TS in which the vertices correspond to the value of the TS at
each time point, and the arcs between different vertices represent the temporal correlation between
them (Wang & Oates, 2015). It uses the Gram matrix to compute the linear dependence of a set of
vectors in the inner product space. Since the inner product in the 1D-TS space does not allow us
to separate the signal from Gaussian noise, we add a new dimension in order to take advantage of
geometric relationships. Wang & Oates (2015) define a polar coordinate system where the value of
the TS is the angle and time is the radius. The advantages of this mapping are that the encoding is
bijective, and it preserves temporal dependency through the radius coordinate. The transformation
to polar coordinates allows us to compute the Gram matrix (GAF image). The GAF image (Fig. 2b)
represents temporal correlations that are not exposed in the 1D-TS representation. The pixels in the
main diagonal from top left to bottom right represent the values of the 1D-TS, while the non-diagonal
elements represent the temporal correlation between each state in polar coordinates. The color of
the pixels of the main diagonal indicates a general upward trend like the 1D-TS representation. The
off-diagonal red areas represent low correlation, the green areas represent high correlation, and the
yellow areas represent uncorrelated states.

MTF extends the framework proposed by (Campanharo et al., 2011) for encoding dynamical transi-
tion statistics by depicting the Markov transition probabilities sequentially to conserve information
in the time domain. The chief idea of MTF is to construct the Markov matrix using quantile bins after
the discretization of the 1D-TS and encoding the dynamic transition probabilities in a quasi-Gram
adjacency matrix (Wang & Oates, 2015). This matrix (MTF image) encodes the dynamic transition
probability by counting transitions between adjoining quantile bins in the same way as a first-order
Markov chain along the time axis. The MTF image (Fig. 2c) represents the transition probabili-
ties for a discretized time series. Yellow and green areas indicate a high probability of transitions
between two different states of the 1D-TS. Blue represents low transition probability. The yellow
and green areas are mainly concentrated along the diagonal which corresponds to the self-transition
probabilities of the 1D-TS. Having a non-zero probability transition of landing in a state that is not
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exactly on the main diagonal allows us to explore, in a natural way, other dynamic transitions which
could help improve generalization.

RP (Fig. 2d) is a plot showing, for each moment i in time, the times at which a phase space trajec-
tory visits roughly the same area in the phase space. We track the recurrence of similar events by
recording the states that remain approximately ε-close to each other. Once a state enters a ball of
ε-radius centred on a given state, we say that we have detected a recurrence and we mark it with a
point as shown in Fig. 2d. The image is mostly yellow because there are only a few sparsely located
recurring events represented by the non yellow dots due to the non stationary character of the 1D-TS.

3.3 QUANTIFYING SYMMETRY WITH PERSISTENT HOMOLOGY

Homology is the study of topological invariant properties and symmetry is associated with invariant
properties of dynamical systems. Therefore, we looked to homology for tools to help character-
ize symmetries. Persistent homology (PH) (Afra & Gunnar, 2004; Gunnar, 2009; Edelsbrunner &
Harer, 2010) characterized by persistence diagrams (PDs) computes topological features that are
more likely to represent true intrinsic characteristics of the relationships between the data points.
PD captures the persistence of these homology-based features across multiple scales. We generated
PDs of the 2D augmentations and compared them to the PD generated from the 1D-TS (Fig. 3a,
3b, 3c, 3d). The x-axis represents the low value of a feature and the y-axis its high value. The
range of each axis is bounded by the range of the 1D-TS values. Each dot represents a feature and
higher values identify more topologically invariant features (persistent symmetries). Features that
are less persistent occur close to the diagonal and are typically considered to be noise, while the
most persistent features occur at a greater distance from the diagonal.

(a) PD 1D-TS (AMT) (b) PD GAF (AMT) (c) PD MTF (AMT) (d) PD RP (AMT)

Figure 3: Persistence diagrams (PDs) of the 1D-TS and the three augmentations corresponding to
the American Tower Corp. (AMT).

Table 1: Feature invariance

Stock Persistence of features

1D GAF MTF RP

AMT 0.610 2.192 8.135 20.736
AXP 0.239 1.877 6.387 20.248
BA 0.639 3.334 7.528 18.708

CVX 0.314 2.125 5.599 22.248
JNJ 0.659 4.423 7.754 18.220
KO 1.080 1.567 9.167 22.226

MCD 1.049 1.330 7.768 17.691
MSFT 1.439 2.117 4.284 19.416

T 0.659 3.216 4.237 19.026
WMT 0.599 1.72 8.915 18.248

Average 0.7287 2.3901 6.9774 19.6767

All four of the PDs show the 0-dimensional (0D) homology
based features (H0) as blue dots. In our setting, the H0 topo-
logical features are the connected components that correspond
to connections between local minima and maxima (critical
points) of the 1D-TS. The x-coordinate of the blue dots is
the global minimum of the 1D-TS. Fig. 3d includes 1D ho-
mology based features (H1) as orange dots. The RP augmen-
tation is a richer representation of the 1D-TS and therefore
gives rise to a PD with more persistent H0 (blue) and H1
(orange) features. H0 is sufficient to capture the linear na-
ture of the off-diagonal components in GAF and MTF (tem-
poral correlation and first-order dynamical transitions) but it
is not suitable for non linear topological features such as in
RP (recurrent states). Therefore, H1 is required to represent
these higher dimensional topological features built upon the
H0 connected components. These H1 features capture recur-
rent events and their x-axis values are not constrained to the global minimum like the H0 features.
In table 1, the first column shows the stocks from our financial portfolio management case study.
The other columns show the maximum values for the PDs. The maximum PD values for the aug-
mentations are much higher than the maximum PDs for the original 1D-TS indicating features with
more persistence and therefore with more symmetries.
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4 EXPERIMENTS

4.1 SYMMETRY-BASED AUGMENTATION FOR REINFORCEMENT LEARNING

In this section, we experimentally demonstrate the benefits of our methodology which can be used
in conjunction with any TS-RL module. We are considering portfolio management as a case study to
demonstrate the benefit of augmenting TS-RL. Our RL models are trained and tested on a portfolio
consisting of ten selected stocks. To promote diversification of the portfolio, these stocks were
selected from different sectors of S&P 500 so that they are uncorrelated as much as possible as
shown in (Fig. 10) in appendix D.

In our experiments, the investment de-
cisions are made daily and each ele-
ment in the input signal χt represents
the daily return. The training section
covers 200 trading days (∼ 11 months)
and the testing section covers 10 (∼ 2
weeks). We performed 5 iterations, slid-
ing the windows two weeks each time.
The plots in Fig. 5 and Fig. 6 show the
cumulative return from the last sliding
window iteration for training and test-
ing. We use the translational invari-
ance property of CNNs in order to better
learn spatio-temporal symmetries of the
underlying assets in our portfolio. We
built two CNN-based RL architecture
designs: CNN with and without dense
layers Fig. 4.

max
θ

T∑
t=1

γtRt #Loss

s.t. Rt = ln
(
〈at−1, rt〉 − c

m∑
i=1

| ai,t − ai,t−1 |
)

#Reward

at = softmax(W (4)h3 + b(4)) #Portfolio vector
weights @ time-step t

h3 = ReLU(W (3)h2 + b(3)) #Dense layer

h2 = ReLU(W (2)Φt + b(2)) #Dense layer

Φt = Conv(K(1) ∗ χt + b(1)) #Symmetry extraction

(3)

where {(K(1), b(1)),W (2), b(2)) . . . , (W (4), b(4))} rep-
resent the parameters of the policy network and χt the
input financial time series signal. In the reward func-
tion, we used the typical transaction costs c = 0.25%
for portfolio trades.
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Figure 4: Deep RL architecture design handles multiple inputs and produces two RL policies (with
and without dense layers).

Figure 5: Sample efficiency gains due to symmetry augmentations.

Symmetry and sample efficiency. To illustrate the sample efficiency of the combination of aug-
mentations, we show in Fig. 5 the training results using the original 1D-TS data and a set of 2D
augmentations. The numerical results for the best DPG model are shown in table 2 and complete re-
sults are summarized in tables 6, 7, 8 and 9 (appendix D.5). The plots show that each augmentation
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Figure 6: Testing demonstrates generalization with potential overfitting.

increases the cumulative return and the combination increases it further. Since the average value
corresponding to the MTF augmentation is quite close to that of GAF+MTF, this leads us to believe
that the symmetry information from MTF allowed the most symmetry transfer to the agent when
the two augmentations are combined together. The maximum values reached in a single trading day
are positively correlated with the cumulative returns and the average values as well. The minimum
values show that it is possible for the RL agents to lose money below the initial capital of 1 unit
allocated at the beginning of the training period. All augmentations demonstrate better convergence
and hence improved sample efficiency.

Table 2: Summary of results of the best DPG model with various augmentations.

Agent performance Cumulative
return

Average
value

STD
value

Max
value

Min
value

dpg dense 1D-TS 3.0473 2.3418 0.9230 4.0716 1.0
dpg dense GAF 3.4016 2.3762 1.0052 4.4262 1.0
dpg dense MTF 3.6808 2.5853 1.1141 4.7137 1.0
dpg dense GAF+MTF 3.9046 2.6046 1.1462 4.9305 1.0

Generalization. To illustrate the generalization capacity of the augmented RL models, we show
in Fig. 6 the testing results for the original data (1D-TS) and the performance of two different RL
architectures (with and without dense layers) when using all three augmentations. The numerical
results are summarized in tables 10, 11, 12 and 13 (appendix D.6). The plots show that when the
three augmentations are used in combination, they are accompanied by an increase in the cumulative
return for both training and testing. The use of dense layers results in better cumulative returns and
mostly better average values. The maximum values reached in a single trading day are positively
correlated with the cumulative returns and the use of dense layers. The minimum value is usually
the starting value of 1 but in some cases dips lower indicating a loss of portfolio value. Both RL
methods with symmetry augmentation demonstrate generalization but the dense layers method also
shows potential overfitting.

4.2 SYMMETRY-BASED AUGMENTATION FOR SUPERVISED LEARNING

The CBF dataset (Saito, 1994; Kadous, 1999) is a synthetic 1D-TS dataset with three classes of
patterns having Cylinder, Bell, and Funnel shapes plus added noise. Each sample has 128 points
and the size and the offset of the shapes vary. Example data and their augmentations are shown in
Fig. 7. There are 30 training samples and 900 testing samples. The limited training data makes it
challenging to generalize learning but allows us to demonstrate the benefit of symmetry augmenta-
tion. Fig. 7 shows the CNN architecture with convolution and dense layers used for training. The
details of the architecture are provided in table 5 (Appendix D.4).

We conducted ten trials. Table 3 shows the average test accuracy and the persistence of H0 features
(PDs). Complete results are in table 14 (Appendix E). For this dataset, RP has the highest accu-
racy and the highest H0 persistence feature score. GAF was ranked second in accuracy and in H0

persistence feature score. The combinations significantly improved the accuracy compared to the
individual augmentations. Fig.8 a-b shows the training and testing loss for 100 epochs for one trial.
Fig.8 c-d shows the training and testing accuracy. The top 3 methods all include RP augmentation.
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Figure 7: CNN architecture design handles CBF 1D-TS and their augmentations.

Table 3: Test accuracy with CBF symmetry incremental augmentation

Test accuracy RP MTF GAF RP+MTF RP+GAF MTF+GAF RP+MTF+GAF

Average 0.7681 0.4686 0.5891 0.8313 0.8574 0.6282 0.9112

Persistence of H0 features 1D GAF MTF RP

Average 0.2561 4.1304 1.5723 20.2854

(a) Train loss (b) Test loss (c) Train accuracy (d) Test accurary

Figure 8: CBF training and testing performance with symmetry augmentation.

Note that RP was the best augmentation for both datasets but GAF was second for the CBF and
MTF was second for financial portfolio management. Intuitively, the state transition probability
encoded in MTF is better for capturing the dynamics of financial markets while the angular temporal
correlation in GAF is better for shape classification.

5 CONCLUSION AND FUTURE WORK

We hypothesize that the concept of symmetry augmentation is fundamentally linked to learning.
We augmented 1D-TS data using three methods designed to expose symmetries. We exploited the
invariance property of CNNs to learn hidden symmetries in the augmented data. We proved that
by using a direct sum based representation we can maintain at least the same amount of symmetry
information regardless of the quality of the augmentations being used. Our results with RL and
supervised learning show the benefit of symmetry augmentation. Because this approach operates
on the input data, it is invariant to the choice of any ML algorithm. As future work, we would
like to investigate tensor product representations that could be useful in the multidimensional-TS
cases where richer and mixed symmetries could potentially emerge. We also would like to explore
approaches for designing augmentations to maximize symmetry exposure. Finally, we would like to
study the utility of symmetry augmentation for transfer learning.
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