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ABSTRACT

Understanding human-object interaction (HOI) in videos represents a fundamen-
tal yet intricate challenge in computer vision, requiring perception and reasoning
across both spatial and temporal domains, espically in multi-person scenes. HOI
encompasses humans, objects, and the interactions that bind them. These three
facets exhibit interconnectedness and exert mutual influence upon one another.
However, contemporary video HOI recognition methods focus on the utilization
of disentangled representations, neglecting their inherent interdependencies. Our
key assertions are two-fold: 1) the three HOI facets are inherently interdependent;
2) each HOI possesses a manifold structure in charge of specific interaction class,
while human and object entities are both influenced by their respective interaction
classes. In light of this, we propose an interaction-centric hypersphere reasoning
model for multi-person video HOI recognition. The design of interaction-centric
hypersphere visualizes the structure bias of HOI introduced into the model, ex-
plicitly directing the learning process towards comprehending the HOI manifold
structures governed by interaction classes. Specifically, we design a context fuser
to learn the interdependencies among humans, objects and interactions. Further-
more, to equip the model with the capacity for temporal reasoning, we introduce
an interaction state reasoner module on top of context fuser. Finally, to depict
the manifold structure of HOIs, we adopt an interaction-centric hypersphere and
compute the probability of each human-object entity belonging to specific inter-
action classes. Consequently, our model unravels the intricacies of HOI manifold
structure and is flexible for both multi-person and single-person scenarios. Em-
pirical results on multi-person video HOI dataset MPHOI-72 indicate that our
method remarkably surpasses state-of-the-art (SOTA) method by more than 22%
F1 score. At the same time, on single-person datasets Bimanual Actions (single-
human two-hand HOI) and CAD-120 (single-human HOI), our method achieves
on par or even better results compared with SOTA methods.

1 INTRODUCTION

Video-based Human-Object Interaction (HOI) recognition aims to identify the interactions occurring
between human and object entities within video frames. Precisely recognizing HOIs in real world
scenarios is essential for a bunch of applications, such as assisting patients by recognizing daily
activities and predicting pedestrian movements to avoid accidents for autonomous vehicles.

Most existing HOI recognition research focus on static images (Zhang et al., 2022; Liu et al., 2022),
with much less attention on video-based HOI recognition. Video-based HOI recognition is more de-
manding than image-based HOI recognition due to the necessity of comprehending complex spatio-
temporal dynamics and reasoning about human and object motions. The complexity is further ex-
acerbated when dealing with multi-person circumstances. In such cases, various human and object
entities mutually influence each other, resulting in intricate interdependencies within the scene. Ad-
ditionally, the three components (human, object and interactions that the entities are involved in)
of HOI exhibit interwind structures, e.g., the possible interactions that can occur within a scene
given a human and an object. However, current video HOI recognition methods (Qiao et al., 2022;
Morais et al., 2021) do not fully explore such inherent structural nature of HOI components. Instead,
they often opt for disentangled representations for each components, which may have suboptimal
representation capabilities.
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To overcome the aforementioned limitations, we introduce an interaction-centric hypersphere ap-
proach for representing video HOIs. This approach leverages the concept of a hypersphere, where
the interaction is located at its center, while the human and object entities involved in that inter-
action are situated on the hypersphere’s surface. We assume that human-object entities belonging
to each interaction class are distributed on their respective hyperspheres, specific to that interaction
class. Each hypersphere represents an HOI manifold structure in charge of a specific interaction
class. In that sense, we introduce HOI structure bias into the model with the help of hypersphere to
visualize that bias, compelling the model to make predictions within the confines of this structure
bias. Consequently, we can depict each HOI as a hyperspherical representation characterized by
a centroid and radius embedding learned from the model. To enhance the awareness of complex
HOI structures in our representations, we introduce the Context Fuser (CF), which encodes both
entity representations and interaction representations. Moreover, to empower our model with the
ability to reason about interaction state transitions across video frames, we propose the Interaction
State Reasoner (ISR) module for generating interaction representations. In addition, we employ
a bidirectional Gated Recurrent Unit (BiGRU) to model temporal dynamics across video frames.
This multi-level representation learning framework not only facilitates effective exploration of the
interdependencies among structured HOI components but also empowers the model with interaction
reasoning capabilities in both spatial and temporal domains.

Concretely, we generate context-rich and reasoning-aware video HOI representations through three
key components: the Context Fuser (CF), Interaction State Reasoner (ISR) and Bidirectional GRU
(BiGRU). The CF module integrates context information from human-object entities and interac-
tions. It comprises three fuser blocks for humans, objects, and interactions. The Object Fuser Block
processes local video frame data, enhancing object features. The Interaction Fuser Block combines
human and object representations with interaction-specific characteristics. Additionally, in multi-
person scenes, the Human Fuser Block captures human representations influenced by others. This
approach fosters comprehensive HOI representations via effective context fusion. To facilitate in-
teraction reasoning, we place the ISR module on top of the context fuser module, yielding entity
representations capable of capturing interaction transition dynamics. These entity representations
are then input into the BiGRU module to model temporal dynamics across video frames, thereby
ensuring a comprehensive understanding of the evolving context and interactions within the video
data. Finally, we determine interaction classes in each frame with the interaction-centric hyper-
sphere, computing the probability of human-object entities belonging to specific interaction classes.

We assess our model’s performance on three video-based HOI datasets: MPHOI-72 (Qiao et al.,
2022) (multi-person), Bimanual Actions (Dreher et al., 2020) and CAD-12 (Koppula et al., 2013b)
(single-person). Our results highlight our model’s superiority in multi-person scenarios, achieving
an impressive over 22% F1 score improvement over the current state-of-the-art (SOTA). In single-
person scenarios, our method delivers on par or even better performance compared to the current
SOTA method. Our major contributions are summarized as follows:

• To represent inherent HOI manifold structures, we propose an interaction-centric hyper-
sphere representation scheme. This scheme explicitly introduce the structure bias of HOI,
elucidating the interdenpendencies among its components.

• To learn context-rich and reasoning-aware entity representations, we introduce context
fuser and interaction state reasoning modules. This enhancement results in entity repre-
sentations that are highly suitable for video-based HOI tasks.

• Extensive experiment results showcase that our method achieves SOTA performance with
a huge improvement of more than 22% F1 score over existing methods in multi-person
scenario. Additionally, our model achieves competitive results in single-person cases com-
pared to SOTA method.

2 RELATED WORKS

HOI detection in images: HOI detection in images aims at understanding interactions in images
between humans and objects. Different methods have been proposed in previous studies. Some
works propose Convolutional Neural Networks (CNN)-based methods which can be further divided
into one-stage methods (Liao et al., 2020; Zhong et al., 2021; Kim et al., 2020) and two-stage
methods (Li et al., 2019; Gao et al., 2020; Wang et al., 2019; Gupta et al., 2019). However, these
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methods usually lack of ability to capture global context information. Recently, Transformer-based
models (Kim et al., 2021; Tamura et al., 2021; Zhang et al., 2022; Iftekhar et al., 2022) became
the main approach for the HOI task. Following the architecture of DETR, these models achieved
superior performance on HOI detection. Moreover, some works also utilize other methods including
graph (Park et al., 2023), interactiveness field (Liu et al., 2022) and compositional prompt tuning
Gao et al. (2022) to get better performance. These various approaches to image HOI provide the
fundamentals for video HOI recognition.

HOI recognition in videos: Video-based HOI recognitions have to deal with both spatial and tem-
poral reasoning. Before the use of neural networks, some early studies formulated this task using
the Markov model (Koppula et al., 2013b) to utilize temporal cues. In Nagarajan et al. (2019), HOI
hotspots in videos are learned in a novel approach, with two networks trained jointly to capture
spatial regions where actions happen. Recent works have used Recurrent Neural Networks (RNN)
combined with Graph Neural Networks (GNN) (Qi et al., 2018; Qiao et al., 2022; Morais et al.,
2021; Sunkesula et al., 2020) to predict human-object relations in videos. Inspired by ViT (Dosovit-
skiy et al., 2020), some works also propose Transformer-based methods to reason spatial relations
better (Tu et al., 2022). However, RNN-based models usually require complex training strategies or
long training time in order to achieve the best performance. Moreover, when multiple persons are
involved in an activity jointly, these methods lack the ability to model their collaboration, resulting
in poor performance when the interactions are performed by multiple persons.

Hyperspheres for class representation: Hyperspheres have been demonstrated to be an effective
approach to model class representation (Mettes et al., 2019; Deng et al., 2022). Geometrical mod-
eling strategy has been proposed in Deng et al. (2022), where the effectiveness has been confirmed.
This approach proves advantageous for capturing and representing enriched class-level information,
particularly well-suited for creating measurements in Euclidean space. Consequently, it is naturally
adaptable to structured prediction tasks.

3 MOTIVATION

Video HOI recognition task involves identifying both the human and object entities engaged in an
interaction across a sequence of video frames. This task encompasses spatial and temporal aspects,
as it requires understanding the relationships between humans, objects, and their interactions over
time. However, current methods for video HOI recognition often neglect this crucial dependency
structure, resulting in the separation of learned representations associated with humans, objects, and
their interactions, ultimately compromising their representational accuracy. To address this issue,
we propose a novel approach, introducing HOI structure bias into our model and visualize the bias
with interaction-centric hypersphere. Additionally, we introduce a context fuser and an interaction
state reasoner in our model to facilitate the learning of context-rich and reasoning-aware entity
representations.

4 METHOD

4.1 PROBLEM FORMULATION

For a video dataset V , given a video clip V ∈ V containing T video frames {v1, ..., vT }, video HOI
recognition aims to predict the temporal segmentation of interactions between human and object
entities across all the video frames. Formally, we aim to learn an HOI recognition model M that
outputs the segmentation of human’s sub-activity {sn}Nn=1 in each frame, where N is the number
of human sub-activity segments. Each segment sn is represented as an interval from its start time
tn to end time tn+1: sn = [tn, tn+1). The start and end time of each segment are determined
from interaction probability prediction {ut}Tt=1 of each frame, where ut ∈ RK , K is the number of
possible interaction classes.

4.2 MODEL DESIGN

In the following section, we introduce our interaction-centric hypersphere reasoning model for video
HOI recognition in detail. As shown in Fig. 1, our major idea is to construct a hypersphere to
represent each HOI in the scene. For each hypersphere, the interaction locates at the center of the
hypersphsere, while the corresponding human-object entity belongs to that interaction locates at the
surface of the hypersphere. We construct Context Fuser (CF) module to learn context-rich human-
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Figure 1: Model Overview. Each video frame is applied with a backbone for feature extraction.
Subsequently, a context fuser and interaction state reasoner is employed for learning interaction
representations zI and human-object entity representations {ẑtE}Tt=1. Bidirectional GRU is further
utilized to model temporal dynamics across video frames. The final predicted interaction probability
{ut}Tt=1 is computed from the interaction-centric hypersphere.

object entity representations. For the aim of enabling model with reasoning ability over interaction
state transitions, we propose Interaction State Reasoner (ISR) to reason on whether the current
interaction will be continued or stopped. To model the temporal dynamics of HOI in videos, we
update human-object entity representations {ẑtE}Tt=1 along the temporal domain with bidirectional
GRU (BiGRU). Finally, predicted interaction class probability ut of each frame is computed from
the interaction-centric hypersphere.

4.2.1 CONTEXT FUSER

For a sequence of video frames {vt}Tt=1, we follow 2G-GCN (Qiao et al., 2022) to extract feature
of humans and objects from backbone network. The extracted human features zH ∈ Rd contain
both bounding box information and skeleton keypoint information, where d indicates the feature
dimension. Object features zO ∈ Rd contain only bounding box information.

We design a context fuser (CF) module shown in Fig. 2 to generate human-object entity representa-
tions {ztE}Tt=1 based on human, object and contextual information. In multi-person circumstances,
CF contains object fuser block, interaction fuser block and human fuser block sequentially. First,
we design an object fuser block to incorporate object representations in local temporal regions into
current object representations, generating learned object representation ẑO1

and ẑO2
:

ẑO1
= FFN(SA(Q = ztO1

;K,V = zt̄O1
)+ztO1

), ẑO2
= FFN(SA(Q = ztO2

;K,V = zt̄O2
)+ztO2

),
(1)

where SA indicates self-attention, FFN is feed forward network, ztO1
∈ Rd and ztO2

∈ Rd are the
initial object features, while zt̄O1

∈ R20d and zt̄O2
∈ R20d are stacked object features from a local

time window, t̄ ∈ [t−10, t+10). Subsequently, for all the K possible interactions {Ii}Ki=1 as shown
in Fig. 2, each interaction class Ii is prompted as a sentence s =“The human is [interact]ing
in the scene.”, where [interact] indicates the specific interaction class. Then the sentence is
applied with the text encoder (FT ) of large-scale vision-language model CLIP (Radford et al., 2021)
to initialize the interaction feature zI = FT (s) ∈ Rd. We also generate context feature zC ∈ Rd

to represent the semantic information of each frame. Specifically, we extract frame caption ci from
video frame i(i = 1, ..., T ) with BLIP (Li et al., 2022) model and apply the caption with CLIP
model to extract text embedding. In order to adapt the human (zH1 , zH2 ) features, object (zO1 , zO2 )
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Figure 2: Context fuser. In multi-person scenario (left), the context fuser consists of object fuser
block, interaction fuser block and human fuser block. In single-person case (right), only object fuser
block and interaction fuser block are employed.

features and context feature (zC) to the specific interaction feature zI , we construct an interaction
fuser block that contains a cross-attention (CA) module followed by a Feed Forward Network (FFN),
generating interaction-aware human features (z′H1

∈ Rd, z′H2
∈ Rd), object features (z′O1

∈ Rd,
z′O2

∈ Rd) and context feature (z′C ∈ Rd). Furthermore, to model the influence between the two
humans in multi-person scenarios, we construct a human fuser block, featuring the same architecture
with interaction fuser block. For the first human (Human1), the updated human feature ẑH1

∈ Rd is
generated as:

ẑH1
= FFN(CA(Q = SA(z′H1

);K,V = z′H2
) + SA(z′H1

)). (2)

Human2 feature ẑH2 ∈ Rd is generated in the same way as Eq. 2. Finally, the human-object entity
representation zE1 ∈ Rd of Human1 is computed by max-pooling operation over all the d dimen-
sions of the four representations shown in Eq. 3:

zE1
= MaxPool(ẑH1

, z′O1
, z′O2

, z′C). (3)

The human-object entity representation zE2 ∈ Rd of Human2 is computed with similar approach as
Eq. 3. The CF module for single-person cases are similar with multi-person, except that the human
fuser block is removed and there is only one human feature as query to be fed into the interaction
fuser block.

4.2.2 INTERACTION STATE REASONER

To augment the model’s ability in interaction state transition reasoning, we introduce an Interaction
State Reasoner (ISR) module following CF module. ISR module explicitly empowers the model to
determine whether the current interaction should persist or transit to another interaction. Specifi-
cally, as shown in Fig. 3, at each time t, the two possible states state1 and state2 represent “con-
tinue” or “stop” of an interaction, respectively. Each state is prompted as one sentence, where
s1 =“This interaction is going to continue.” and s2=“This interaction
is going to stop and change to another interaction.”. Then the embeddings
of the two states zstate1 and zstate2 are generated from CLIP (Radford et al., 2021) text encoder FT :
zstate1 = FT (s1) ∈ Rd, zstate2 = FT (s2) ∈ Rd. Interaction state embeddings zstate1 and zstate2
are further fed to a reasoner block (shown in Fig. 3) together with the interaction embedding zt

Î
∈ Rd

at time t, generating state-informed interaction embeddings ẑstate1 and ẑstate2 . The reasoner block
contains a FFN and a State Interpolation (SI) module. The SI module generates the weights ω1, ω2

for the two interaction states in the following approach:

ω1, ω2 = Softmax(FFN(ztE) · [z⊤state1 , z
⊤
state2 ]), (4)
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where ⊤ indicates transpose operation. Subsequently, the final human-object entity representation
ẑtE ∈ Rd at time t is generated by interpolate over the current entity representation ztE at time t and
the entity representation zt−1

E at time t− 1:

ẑtE = ω1 · zt−1
E + ω2 · ztE . (5)

Consequently, the generated human-object entity representation ẑtE is able to reason on the possible
future interaction state transitions.

4.2.3 INTERACTION-CENTRIC HYPERSPHERE

With the above generated human-object entity representation ẑtE and interaction representation zI ,
we need to calculate the probability of a human-object entity E categorizing into the interaction

Figure 3: Interaction
State Reasoner. ⊙ indi-
cates inner product.

class Ii. To that end, we design an interaction-centric hypersphere with
interaction at the center of hypersphere and human-object entity at its
surface. This hypersphere design models the manifold structure of HOI,
which is in charge of the specific interaction class. Concretely, we em-
ploy a hyperspherical measurement:

U(E, Ii) =
exp(−[||zIi − ẑE ||2 − λ]+)

ΣK
j=1exp(−[||zIj − ẑE ||2 − λ]+)

, (6)

where zIi and zIj indicate the interaction representations of interaction
class i and j, respectively. ẑE denotes the human-object entity repre-
sentation. [s]+ ≜ max(0, s). λ indicates the radius of the hypersphere,
which is set to be a constant in our model. The higher value of U(E, Ii)
suggests that the human and object entity E is more likely to be catego-
rized into Ii.

4.3 LEARNING OBJECTIVE

The learning objective of our model contains two parts: (i) focal loss Lcls for interaction classifi-
cation; (ii) interaction feature loss Lfea that controls the smoothness of interaction features in local
region.
Focal loss Lcls: We employ focal loss (Lin et al., 2017) for interaction classification, mitigating the
interaction class imbalance problem on model performance. For each video frame vi(i = 1, ..., T ),
our model predicts the probability ŷi ∈ RK of all the interaction classes. The corresponding ground-
truth of interaction class yi ∈ RK is a binary vector. For each intraction class k, the focal loss Lk

cls

is formulated as: Lk
cls = −(1 − pk)

γ log(pk), where γ is a hyperparameter to control the focusing
extent, pk is defined as: {pk = ŷki , if yki = 1; pk = 1 − ŷki , otherwise}. Subsequently, the focal
loss Lcls of each video frame is obtained by combining the focal loss of each individual interaction
class k: Lcls = ΣK

k=1Lk
cls.

Interaction feature loss Lfea: We introduce interaction feature loss Lfea to control the temporal
smoothness of interaction features. Our model outputs the feature of each human-object entity E
in each frame. Inspired by Chopra et al. (2005), in order to improve the continuity, we minimize
the feature distance in the same segment and maximize the distance between different segments for
each subject. Denote ut

E as whether the interaction will continue or change to another action for
entity E at time t. ut

E = 1 indicates the interaction will stop and change to another action at time t
for entity E and ut

E = 0 otherwise. We minimize

Lfea =
1

2
ΣT−1

t=0 [(1− ut
E)(||ztE − zt+1

E ||2)2 + ut
E(max(L− ||ztE − zt+1

E ||2), 0)2], (7)

where L is a threshold that controls the minimal feature distance when interaction will change. In
total, the overall loss is written as:

L = Lcls + αLfea, (8)
where α is a hyperparameter to control the weight of each loss.

4.3.1 MODEL INFERENCE

During model inference, we compute the interaction probability ŷi ∈ RK for each video frame. The
interaction class a with the highest probability is chosen as the predicted interaction for that frame:
a = argmax

i
ŷi.
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5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets: We evaluate our method on MPHOI-72, Bimanual Actions, and CAD-120 datasets, each
representing multi-person collaboration, one person with two hands and a single hand respectively.
(I) MPHOI-72 dataset is proposed in Qiao et al. (2022), which consists of multiple humans and
objects in the scene. The dataset comprises 72 videos featuring 3 human subjects and 6 objects.
Within each video, 2 individuals are paired to engage in 3 distinct activities, encompassing a total
of 13 sub-activities, while utilizing 2 to 4 objects
(II) Bimanual Actions dataset (Dreher et al., 2020) is the first HOI dataset to include two hands for
subjects to perform interactions which is common in reality. There are 540 videos with one person
performing activities with both hands. There are 6 subjects performing 9 different activities with 10
repetitions. There are a total of 14 action labels assigned to each hand, and entity-level annotations
are provided on a per-frame basis within the video.
(III) CAD-120 dataset (Koppula et al., 2013a) is popular for HOI recognition. It contains 120 videos
with 10 activities performed by 4 participants. There are 10 human sub-activities labeled per frame.
Evalutaion Metric: We report F1@k metric (Lea et al., 2017) with thresholds k = 10%, 25%,
and 50%. Compared to frame-based metrics which evaluate prediction on every single frame, this
metric could measure prediction continuity in action segments because it views each predicted action
segment as correct only when it has the Interaction over Union (IoU) with the corresponding ground
truth over the threshold k.

5.2 IMPLEMENTATION DETAILS

In the experiment, we use three layers of context fuser for Bimanual and two for CAD-120 and
MPHOI. The features of humans and objects are extracted from Qiao et al. (2022) and their di-
mension is mapped to 768, 256, and 512 for MPHOI, Bimanual, and CAD-120 respectively. More
details can be found in appendix.

5.3 QUANTITATIVE RESULTS

Multi-person HOI recognition The quantitative results of joined segmentation and label recogni-
tion of sub-activity on MPHOI-72 in Tab. 1 show the performance of our method in multi-person
HOI circumstance. Our method outperforms SOTA method 2G-GCN (Qiao et al., 2022) by a large
margin in all the three evaluation metrics. For F1@10, F1@25 and F1@50 scores, our method sur-
passes 2G-GCN 23.0%, 23.7% and 22.5%, respectively. The significant improvement achieved by
our method indicates that the human fuser block in the CF module effectively improves the context-
aware human representation learning under multi-person scenarios.

Single-person HOI recognition We show the quantitative results for single-person HOI recognition
in Tab. 2 and Tab. 3, which are performed on CAD-120 and Bimanual Actions datasets, respectivey.
Results in Tab. 2 show that our method performs slightly better on CAD-120 dataset compared to
SOTA method 2G-GCN, with around 1% improvement over 2G-GCN on all the three metrics. For
the Bimanual Actions dataset, our method performs as good as 2G-GCN in F1@10 while achieves
0.9% and 5.0% higher than 2G-GCN in F1@25 and F1@50 score, respectively. These results indi-
cate that our method achieves generally on par or even better performance on single-person video
HOI recognition task.
5.4 ABLATION STUDY

In this section , we ablate the CF module and the ISR module for validating the effectiveness of
these proposed components. As shown in Tab. 1, removing CF module results in more than 20% F1

score drop of the three metrics in MPHOI-72 dataset, indicating the essential improvement of CF
module in learning context-rich representations. Visualization results of temporal segmentation of
interactions in Fig. 5 indicates that removing CF module results in incorrect interaction predictions
in both humans (highlighted in red in Fig. 5). Similarly, in CAD-120 and Bimanual Actions datsets,
deleting CF module also results in massive F1 score drop. The visualization results in Fig. 6 suggests
an incorrect prediction segment when removing CF module.

Furthermore, we ablate hypersphere by replacing it with Euclidean distance, where λ = 0 in Eq. 6.
Results in Tab. 1, 2 and 3 indicate that utilizing Euclidean distance results in at least 7%, 10% and
3% F1 scores drop in MPHOI, CAD-120 and Bimanual Actions dataset, respectively. Therefore,
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Table 1: The results of joined segmentation and label recognition of sub-activity on MPHOI-72.
∆CF: removing context fuser module; ∆ISR: removing interaction state reasoner module; ∆Lfea:
removing interaction feature loss; λ = 0: employing Euclidean distance; ∆CLIP+BLIP: removing
CLIP and BLIP models. The improvements of our method over current SOTA method is highlighted
with upward arrows.

Model F1@10 F1@25 F1@50
ASSIGN (Morais et al., 2021) 59.1± 12.1 51.0± 16.7 33.2± 14.0
2G-GCN (Qiao et al., 2022) 68.6± 10.4 60.8± 10.3 45.2± 6.5
Ours 91.6± 0.9(↑ 23.0) 84.5± 2.6(↑ 23.7) 67.7± 2.2(↑ 22.5)
Ours (∆CF) 65.8± 12.4 57.6± 14.0 39.2± 12.6
Ours (∆ISR) 80.1± 5.5 73.0± 8.2 55.6± 6.1
Ours (∆Lfea) 73.5± 15.7 69.7± 13.3 48.8± 13.0
Ours (λ = 0) 81.2± 0.7 74.8± 4.2 53.2± 0.3
Ours (∆CLIP+BLIP) 80.0± 6.7 73.0± 9.9 55.6± 7.4
Ours (Traditional Classifier) 84.6± 7.2 74.7± 10.5 54.6± 13.7

Table 2: The results of joined segmentation and label recognition of sub-activity on CAD-120. The
notations are the same with Tab. 1.

Model F1@10 F1@25 F1@50
rCRF (Sener & Saxena, 2015) 65.6± 3.2 61.5± 4.1 47.1± 4.3
Independent BiRNN (Qiao et al., 2022) 70.2± 5.5 64.1± 5.3 48.9± 6.8
ATCRF (Koppula & Saxena, 2015) 72.0± 2.8 68.9± 3.6 53.5± 4.3
Relational BiRNN (Qiao et al., 2022) 79.2± 2.5 75.2± 3.5 62.5± 5.5
ASSIGN (Morais et al., 2021) 88.0± 1.8 84.8± 3.0 73.8± 5.8
2G-GCN (Qiao et al., 2022) 89.5± 1.6 87.1± 1.8 76.2± 2.8
Ours 90.7± 2.9(↑ 1.2) 88.1± 2.8(↑ 1.0) 77.6± 4.7(↑ 1.4)
Ours (∆CF) 81.1± 4.0 77.0± 4.8 65.2± 5.6
Ours (∆ISR) 88.5± 3.7 85.5± 3.6 73.9± 5.7
Ours (∆Lfea) 89.3± 1.9 85.6± 2.1 75.9± 4.4
Ours (λ = 0) 72.0± 4.4 65.0± 6.9 48.6± 6.3
Ours (∆CLIP+BLIP) 89.4± 2.3 85.5± 3.9 74.9± 5.7
Ours (Traditional Classifier) 79.5± 11.0 73.9± 11.4 56.6± 12.5

Figure 4: Visualization of interaction-centric hyperspheres, the learned interaction representations
(large points locate at the center of hyperspheres) and human-object entity representations (small
points surrounding the hyperspheres) in embedding space. Selected frame samples are shown for
each interaction-centric hypersphere.

we conclude that Euclidean distance do not introduce HOI structure priors, ignoring valuable struc-
ture information of HOI for guiding predictions. Subsequently, we ablate CLIP and BLIP models
by randomly initialize interaction features and context features. Results in Tab. 1, 2 and 3 indicate
that removing CLIP and BLIP models results in some drop of model performance, but is still on
par with or better than SOTA methods. Thus, it is the intricately designed structure of our model
that substantiates the substantial enhancement in performance. Finally, we ablate the interaciton-
centric hypersphere by replacing it with a traditional classifier constructed with multi-layer percep-
tron (MLP). The outcomes, as presented in Tab. 1, 2 and 3, reveal a notable decline of over 7%
in the F1 score within the MPHOI dataset when employing the traditional classifier. Likewise, in
the CAD-120 dataset, the traditional classifier results in a substantial decrease of more than 11%in
the F1 score. Additionally, within the Bimanual Actions dataset, the traditional classifier induces a
decline exceeding 2% in the F1 score. These findings unanimously underscore the efficacy of the
structural bias introduced by the hypersphere module.
5.5 QUALITATIVE RESULTS

We show some visualization results on MPHOI in Fig 7 to compare our method with SOTA method
2G-GCN. The red highlighted boxes indicate that 2G-GCN tend to generate unreasonable interaction
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Table 3: The results of joined segmentation and label recognition of sub-activity on Bimanual Ac-
tions. The notations are the same with Tab. 1.

Model F1@10 F1@25 F1@50
Dreher et al. (Dreher et al., 2020) 40.6± 7.2 34.8± 7.1 22.2± 5.7
Independet BiRNN (Qiao et al., 2022) 74.7± 7.0 72.0± 7.0 61.8± 7.3
Relational BiRNN (Qiao et al., 2022) 77.7± 3.9 75.0± 4.2 64.8± 5.3
ASSIGN (Morais et al., 2021) 84.0± 2.0 81.2± 2.0 68.5± 3.3
2G-GCN (Qiao et al., 2022) 85.0± 2.2 82.0± 2.6 69.2± 3.1
Ours 85.0± 2.5 82.9± 2.9(↑ 0.9) 74.2± 4.3(↑ 5.0)
Ours (∆CF) 82.5± 5.0 80.5± 5.5 71.1± 7.0
Ours (∆ISR) 84.1± 2.3 81.8± 2.8 73.0± 3.7
Ours (∆Lfea) 84.5± 4.6 82.0± 5.2 71.8± 6.9
Ours (λ = 0) 76.7± 5.2 74.3± 6.0 65.2± 6.3
Ours (∆CLIP+BLIP) 84.3± 1.4 81.8± 1.8 73.2± 2.7
Ours (Traditional Classifier) 82.0± 3.6 79.8± 4.1 71.0± 5.6

Figure 5: Qualitative ablation study results on MPHOI-72 dataset. Major prediction errors are
highlighted in red dashed boxes.

Figure 6: Qualitative ablation study results on CAD-120 dataset. Major prediction errors are
highlighted in red dashed boxes.

Figure 7: Visualization results on MPHOI-72 dataset. Major prediction errors are highlighted in
red dashed boxes.

Figure 8: Visualization results on CAD-120 dataset. Major prediction errors are highlighted in
red dashed boxes.

predictions, while our method generates more reasonable interaction predictions. The visualization
results in Fig. 8 show similar prediction pattern where 2G-GCN predicted some unreasonable short
segments (highlighted in red boxes) while our method predicts more accurately. We also visualize
the interaction-centric hypersphere, the learned interaction representations and the human-object
entity representations in embedding space in Fig. 4. Results in Fig. 4 show that human-object entity
representations (small dots in Fig. 4) belonging to the specific interaction class locates near the
surface of the corresponding hypersphere. These results suggest that our model successfully model
the manifold structure of HOI.

6 CONCLUSION

In this work, we propose an interaction-centric hypersphere reasoning network for multi-person
video HOI recognition. Specifically, we represent HOI components with an interaction-centric hy-
persphere for class representation. We further propose a context fuser and an interaction state rea-
soner to learn context-rich and reasoning-aware entity representation. Experiment results show that
our method outperforms SOTA method by more than 22% F1 score in multi-person scenarios, and
achieves competitive results on single-person cases compared to SOTA methods.
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