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ABSTRACT

Large neural networks are typically trained for a fixed computational budget,
creating a rigid trade-off between performance and efficiency that is ill-suited for
deployment in resource-constrained or dynamic environments. Existing approaches
to this problem present a difficult choice: training a discrete collection of specialist
models is computationally prohibitive, while dynamic methods like slimmable
networks often lack the flexibility to be applied to large, pre-trained foundation
models. In this work, we propose Nested Subspace Networks (NSNs), a novel
architectural paradigm that enables a single model to be dynamically and granularly
adjusted across a continuous spectrum of compute budgets at inference time. The
core of our approach is to re-parameterize linear layers to satisfy a nested subspace
property, such that the function computed at a given rank is a strict subspace of
the function at any higher rank. We show that this entire hierarchy of models can
be optimized jointly via an uncertainty-aware objective that learns to balance the
contributions of different ranks based on their intrinsic difficulty. We demonstrate
empirically that NSNs can be surgically applied to pre-trained LLMs and unlock
a smooth and predictable compute-performance frontier. For example, a single
NSN-adapted model can achieve a 50% reduction in inference FLOPs with only
a 5 percentage point loss in accuracy. Our findings establish NSNs as a powerful
framework for creating the next generation of adaptive foundation models.

1 INTRODUCTION

Motivation. When we deploy deep learning-based systems in practice, there is a trade-off between
two properties: how good the model is (performance) and how expensive it is to run (compute).
Typically, the larger the model, the better the performance. When using such models at inference
(deployment) time, we may want to choose, on-the-fly, how “expensive“ vs “fast“ a model should
be. For instance, we may prefer (i) cheaper models for easier questions in language models; (ii)
lower-compute models on phones when battery levels drop; or (iii) more expensive models for safety-
critical requests such as medical diagnosis. In this paper, we consider exactly this problem—how to
build a single network that can flexibly trade off performance and inference cost at test time.

Current approaches. Most popular approaches fall into two main categories. On the one hand,
conventional approaches operate by creating smaller, static artifacts from a larger pre-trained model
(Cheng et al., 2017), using techniques like network pruning (Han et al., 2015b; Blalock et al., 2020) or
knowledge distillation (Gou et al., 2021). More recently, parameter-efficient fine-tuning methods like
Low-Rank Adaptation (LoRA) (Hu et al., 2022) have gained popularity for adapting large models,
but these also produce a static, low-rank adaptation for a fixed budget. In theory, this approach yields
highly optimized models for a specific computational target. In practice, however, this strategy suffers
from its static nature; creating a model for a new budget requires repeating the entire, often costly,
compression pipeline (Zhu & Gupta, 2017), and it fails to provide the granular, on-the-fly adaptability
needed for dynamic environments.

On the other hand, recent methods using dynamic neural networks (Han et al., 2021) operate by
designing architectures that can be adjusted at inference time, such as slimmable networks that can
drop channels (Yu et al., 2018; Li et al., 2021) or layers (Wu et al., 2018). In theory, these approaches
more readily take advantage of a single set of weights to serve multiple budgets. In practice, however,
this strategy often comes at the price of much more challenging, specialized training schemes that

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Trainable adapter

Output

Model 
Architecture

Input

Vanilla MLP
LoRA Fine-tuning 

(and variants)
Nested Subspace 

Networks

Rank-trainable layersFrozen weightsTrainable weights

Trainable Input/output Frozen

Figure 1: Illustration of Nested Subspace Networks. NSNs convert linear layers into rank-trainable
layers which enable dynamic control over the computational cost (FLOPs) of a forward pass. Left:
Standard MLP layers that are composed of trainable weights. Middle: LoRA fine-tuning which
have frozen weights and trainable adapters. Right: Nested Subspace Networks replace each linear
layer with a single pair of shared factor matrices (A,B) defining a rank-trainable layer. The effective
weight at rank r, Wr = BrAr, is obtained by using only the first r rows of A and first r columns of
B. Different operating points (different ranks) therefore correspond to using different prefixes of the
same (A,B) This allows for the construction of a compute-performance Pareto frontier at inference
time.

are typically applied from scratch (Cai et al., 2019). This makes them difficult to apply to the vast
ecosystem of existing, pre-trained foundation models, which represent the vast majority of trained
and used models today. Further, many of these techniques—with some notable exceptions (Yu &
Huang, 2019)—offer only a coarse, discrete set of operating points rather than a smooth, continuous
trade-off (Teerapittayanon et al., 2016; Yu et al., 2018).

Three Desiderata Can we develop a better approach? Building on the discussion above, we contend
that a good solution to the dynamic inference problem should satisfy the following three desiderata.

• D1: Instant Adaptability. Instantly trade-off compute and performance at test-time without any
additional overhead or expensive fine-tuning procedures in a single neural architecture.

• D2: Post-Hoc Applicability. Have the architectural generality to be applied to any pre-trained
foundation model and be widely applicable for many classes of models.

• D3: Granularity. It should provide a smooth, continuous spectrum of operating points along the
compute-performance Pareto frontier, not just a few discrete, pre-determined choices.

In this work, we present an effective method that satisfies these criteria and introduces a new paradigm
of flexible model deployment. Our contributions are three-fold.

�
Contributions. First, we introduce Nested Subspace Networks (NSNs), a novel architec-
ture that represents a continuous hierarchy of models within a single set of weights, and
we propose a practical uncertainty-aware training objective that makes this hierarchy
learnable (Sec. 2). Second, we provide theoretical guarantees for granular budget control,
showing that our method induces a smooth and predictable performance-compute fron-
tier, even for budgets not explicitly seen during training (Sec. 3). Third, we demonstrate
the broad utility and effectiveness of NSNs through comprehensive experiments (Sec. 4),
including the surgical adaptation of large pre-trained language models, and show that a
single adaptive network can match the performance of multiple specialist models.

2 NESTED SUBSPACE NETWORKS

Preliminaries. Consider a standard feed-forward neural network. A standard linear layer computes
the affine transformation f(x) = Wx + b, where x ∈ Rdin is the input vector, the weight matrix is
W ∈ Rdout×din , and the bias b ∈ Rdout . The number of parameters in W scales with the product of the
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input and output dimensions which becomes a large computational and memory bottleneck. This
motivates the need for efficient parametrizations.

Low-rank factorization has become a popular approach to mitigating the quadartic cost (Hu et al.,
2022), where the full-rank matrix W is approximated with two smaller matrices W = BA, where
A ∈ RR×din and B ∈ Rdout×R. Here, R ≪ min(din, dout) is a maximum rank. The transformation
becomes f(x) = (BA)x + b = B(Ax) + b.

2.1 THE NESTED SUBSPACE ARCHITECTURE

NSNs are a class of neural network architectures designed for parameter efficiency and dynamic,
post-training adjustment of model capacity. The core principle is to re-parameterize a linear layer
with a sequence of low-rank approximations {Wr}Rr=1 that form a nested hierarchy, such that the
image of each approximation is a subspace of the next. The architecture is built on the principle of
low-rank factorization which we extend to overcome its static limitations and make it applicable to
a wide variety of network architectures. Concretely, unlike slimmable networks (Yu et al., 2018),
which vary channel width and therefore change intermediate tensor shapes, NSNs only vary the rank
of a shared low-rank factorization, so all input–output dimensions of each layer remain fixed and
the architecture can be inserted into pre-trained transformers and LLMs without modifying their
interfaces or normalization layers.

Reducing FLOPs. The low-rank factorization reduces the model’s active parameter count and,
consequently, its required floating-point operations (FLOPs). This yields a reduction when r is below
the break-even point: 2r(din + dout) < 2dindout, which defines the break-even rank as dindout

din+dout
.

Definition 1 (Nested Subspace Network). A Nested Subspace Network (NSN) is a neural
network architecture that incorporates one or more NSN layers. An NSN layer is a linear
transformation parameterized by a pair of factor matrices, A ∈ RR×din and B ∈ Rdout×R, where R
is a fixed maximum rank. For a rank r ∈ {1, . . . , R}, the effective weight matrix Wr ∈ Rdout×din

is constructed from the submatrices Ar (the first r rows of A) and Br (the first r columns of B).
This is expressed as a sum of the rank-1 outer products, i.e. Wr := BrAr =

∑r
i=1 biai where

ai ∈ R1×din is the i-th row of A and bi ∈ Rdout×1 is the i-th column of B.

Note that there is a single pair of factor matrices (A,B) for an NSN layer, and changing the rank r
only changes how many of their rows/columns are used to form Wr, not the underlying parameters.
Appendix D.1 provides an intuitive, worked-out example with a simple matrix. NSNs are a flexible
class of models that can operate on model architecture as long as it comprises linear layers. Therefore,
it is applicable to models of different sizes, architectures, purposes, with varying inductive biases, etc.
A central feature of NSNs is that it naturally gives rise to a fundamental property that we exploit in
this work: the nested subspace property.

Definition 2 (Nested Subspace Property). The family of weight matrices {Wr}Rr=1 generated
by an NSN layer satisfies the nested subspace property if the image of the rank-r transformation
is a subspace of the image of the rank-(r + 1) transformation for all 1 ≤ r < R:

Im(Wr) ⊆ Im(Wr+1) ∀r ∈ {1, . . . , R− 1}

This implies the existence of a filtration of vector spaces: Im(W1) ⊆ Im(W2) ⊆ · · · ⊆ Im(WR).

What does this property mean in practice? NSN layers parametrize an entire hierarchy of models. In
this hierarchy, due to the nested subspace property, the function class realized by a rank-r model is a
strict subset of the function class of a rank-(r + 1) model. Therefore, with the right training scheme,
we can choose “which network” we want to employ by deciding on the rank.

However, this approach raises an immediate issue: how can we train a model that learns a hierarchy of
nested sub-models? A naive approach would be to parametrize the model via low-rank factorization,
select a highest rank, train it on the highest rank, and at test time truncate it to the desired rank r.
While this technically satisfies the nested subspace property, there is no inductive bias to make the
models operate along the compute-efficiency Pareto frontier (see Fig 2, implementation details can be
found in Appendix B.1.) An alternative approach could be to train simultaneously at different ranks
and sum cross entropies within each rank. However, such a naive approach suffers from at least three
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main issues: (i) it does not take into account the intrinsic difficulty of learning a lower rank model
(harder) versus a higher rank model (easier); (ii) It results in training instability resulting from large
losses in low-rank models; (iii) It is computationally prohibitive to train at all possible ranks. In the
next section, we propose an uncertainty-aware training procedure that resolves these challenges for
training NSNs.

�
Takeaway. NSNs create a hierarchy of models within a single network using the nested
subspace property. The key challenge is training one set of weights to be optimal across
this entire hierarchy simultaneously.

2.2 TRAINING WITH MULTI-RANK UNCERTAINTY
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Figure 2: Comparison of native-rank training
and rank truncation for an MLP on CIFAR-
10. The plot compares the accuracy of individually
training a model for each specific rank (Native rank
training) versus training a single model at a high
rank (64) and truncating it to lower ranks at test
time (Rank-64 training). The significant perfor-
mance gap demonstrates that naively truncating a
high-rank model results in poor performance.

Our central goal is to learn a single parametriza-
tion that simultaneously yields optimal perfor-
mance for all sub-models. We posit that the
failure of naive approaches stems from the differ-
ences in intrinsic difficulty of learning different
ranks (Sec. 2.1). Therefore, we treat the opti-
mization of each sub-model at different ranks
as a multi-task learning problem with varying
difficulty levels.

What properties should this optimization ob-
jective satisfy? We seek a weighting mecha-
nism that (i) automatically adapts the relative im-
portance of ranks without per-rank hyperparame-
ter tuning, (ii) is invariant to arbitrary rescalings
of the factorization W = BA, (iii) guarantees
positive weights, and (iv) is cheap enough to
apply inside every NSN layer and on every train-
ing step. One way to reframe the “difficulty” of
a problem is by quantifying the aleatoric uncer-
tainty of each task and weighting each task in
proportion to that uncertainty (Kendall et al., 2018). We model the aleatoric uncertainty by introduc-
ing learnable variance parameters σ2

k for each rank k. This variance is assumed to be heteroskedastic
across ranks (i.e., σ2

k ̸= σ2
j for k ̸= j) but homoskedastic within a rank (i.e., constant for all inputs).

Modeling assumption. We consider the classification case (the regression case is analogous).
Following Kendall et al. (2018), we use the standard uncertainty-weighted surrogate objective in
which each rank’s cross-entropy is weighted by a learnable scale and regularized by a corresponding
log-term. Concretely, for rank k we use the per-rank contribution:

1

2σ2
k

LCE(k) + log σk, (1)

which serves purely as a weighting-and-regularization surrogate for balancing tasks in classification
(i.e., it is not interpreted as a probabilistic likelihood over LCE).

Formulating the uncertainty-weighted training objective. During training, we sample an anchor
rank R̃ ≤ R—the maximum rank used at training time—and a variant rank r < R̃. Assuming
independent uncertainty parameters across ranks, the total objective for a training step is the sum of
the two surrogate terms:(

1

2σ2
R̃

LCE(R̃) + log σR̃

)
+

(
1

2σ2
r

LCE(r) + log σr

)
. (2)

We reparameterize the variance by learning its logarithm sk = log(σ2
k) and drop the constant factor

1
2 (Kendall et al., 2018). This results in our final training objective, a function of the shared weights
A and B (which define the model weights) and the learnable log-variances:

Ltotal(A,B, sR̃, sr) =
(
exp(−sR̃)LCE(R̃) + sR̃

)
+
(
exp(−sr)LCE(r) + sr

)
. (3)
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Algorithm 1 Multi-rank uncertainty-weighted training for NSNs (anchor at maximal rank)

Require: Dataset D, maximal rank R (anchor), trainable ranks K ⊆ {1, . . . , R}, NSN fθ(X; r),
log-variances {sk = log σ2

k}k∈K, cross-entropy loss CE, optimizer Opt
1: Initialize θ and sk ← 0 for all k ∈ K
2: for each minibatch (X,Y ) ∼ D do
3: Sample variant rank r ∼ Uniform(K \ {R})
4: Compute anchor logits ZR ← fθ(X;R), anchor loss LR ← CE(ZR, Y )
5: Compute variant logits Zr ← fθ(X; r), variant loss Lr ← CE(Zr, Y )
6: Lanchor ← exp(−sR)LR + sR, Lvariant ← exp(−sr)Lr + sr, Ltotal ← Lanchor + Lvariant
7: Opt.zero_grad(); backpropagate Ltotal w.r.t. θ and {sk}; Opt.step()
8: end for

Why are the exponentials useful in this equation? It’s useful to reason about this from three
different perspectives. First, the exponentials are useful because the reparameterization wk = e−sk

ensures strictly positive weights and produces a strictly convex objective in sk. This is useful, since it
provides stable gradient updates. Second, this formulation yields a closed-form optimum w⋆

k = 1/Lk.
This is useful because we (i) become scale invariant and (ii) have gradient balancing across ranks
of different difficulty. Third, this is directly tied to building surrogates that are based on Gaussian
regression likelihood for classification settings which are easy to optimize (Kendall et al., 2018).
More details in Appendix D.6.

Insights on the formulated objective. The uncertainty-weighted surrogate implicitly performs
gradient balancing across ranks, since the effective contribution of each term scales with exp(−sk).
This connects our objective to established approaches for multi-task optimization that seek Pareto-
stationary solutions by equilibrating task gradients (Sener & Koltun, 2018), as well as to adaptive
weighting schemes such as GradNorm (Chen et al., 2018) and Dynamic Weight Averaging (Liu et al.,
2019). This satisfies the required optimization properties (see Appendix D.2 for more discussion)
and promotes the well-behaved performance frontier we analyze in Sec. 4.3. The full algorithm is
presented in Algorithm 1.

In practice, the inclusion of an anchor rank significantly stabilizes training and helps to learn a
better final higher-rank model. Furthermore, we find that introducing a curriculum-learning-based
sampling strategy for the variant ranks substantially improves downstream results relative to uniform
sampling. Algorithm 4 summarizes the full training procedure. Each iteration evaluates the model at
the maximal anchor rank and at a sampled variant rank, combines their losses through rank-specific
uncertainty weights, and updates both the shared parameters and the log-variances. This mechanism
jointly optimizes all submodels and stabilizes learning across heterogeneous ranks.

�
Takeaway. We formalize the joint optimization of different ranks by learning rank-specific
homoskedastic variance via a standard uncertainty-weighted surrogate.

2.3 INTERPRETING LOG VARIANCES AS A PROXY FOR RANK EXPRESSIVENESS
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Figure 3: Learned log-variances dur-
ing training with the multi-rank uncer-
tainty objective on CIFAR-10 dataset.
We train a single model with an anchor
and variant ranks and find that higher
ranks have lower task-dependent uncer-
tainty during training.

What has this formulation achieved? Now, the learned log
variances modulate the influence of each rank’s loss contri-
bution to the objective. High log-variance promotes gradi-
ent attenuation by scaling the cross-entropy loss from high-
variance ranks. Low log-variance amplifies the penalty
loss for cross-entropy losses by increasing its magnitude.
In fact, we can directly quantify the gradient contributions
based on the loss as:

∇wLtotal = exp(−sR̃)∇wLCE(R̃)︸ ︷︷ ︸
Anchor Contribution

+ exp(−sr)∇wLCE(r)︸ ︷︷ ︸
Variant Contribution

5
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This mechanism allows the learned log-variances to serve as an emergent proxy for the effective
expressiveness of each rank-specific model. It follows that higher ranks, which possess greater
representational capacity, should learn lower corresponding variances. As we demonstrate empirically,
this is precisely the behavior we observe in our experiments (Fig. 3).

3 PERFORMANCE INTERPOLATION BETWEEN RANKS

A central claim of our work is that NSNs provide granular control over the compute-performance
trade-off. This implies not only strong performance at a discrete set of trained ranks but also reliable
behavior at interpolated ranks that were not explicitly part of the optimization objective. In the
absence of theoretical guarantees, one might expect performance to be unpredictable or even collapse
between these well-trained points. In this section, we provide the formal underpinnings for the
smooth and well-behaved nature of the performance-compute frontier induced by NSNs. We begin
by introducing a mild assumption on the structure of the learned weights, from which we derive a
formal bound on the interpolation error.

To formalize the notion of a smooth frontier, we must first characterize the structure that our multi-rank
uncertainty training (Section 2.2) imposes on the parameterization. We posit that the optimization
encourages a natural ordering of basis vectors by importance.

Assumption 1 (Rank-1 Component Energy Decay). The training procedure yields a parameteri-
zation where the norms of the rank-1 component vectors are monotonically non-increasing with
their index. For any indices i, j such that 1 ≤ i < j ≤ R̃:

∥aj∥ ≤ ∥ai∥ and ∥bj∥ ≤ ∥bi∥

Our training objective motivates this assumption, since it naturally encourages the model to allocate
the most salient information to the lowest-indexed basis vectors, as they must be utilized by all nested
sub-models. We confirm this assumption empirically (Appendix C.4) and show this is not satisfied in
regular training regimes (Appendix C.5).

By extending this result from the model’s output to its expected loss, and assuming a standard
regularity condition on the loss function, we can establish a bound on the difference in expected
performance between any two ranks.

Proposition 1 (Bound on Interpolation Error). Let the task loss function L(f(x; r), y) be LL-
Lipschitz continuous with respect to its first argument. Let E(r) = E(x,y)[L(f(x; r), y)] be the
expected error at rank r. For any ranks r1 < rint < R, the difference in expected error is bounded
by:

|E(rint)− E(r1)| ≤ C

rint∑
i=r1+1

∥bi∥ ∥ai∥

where C = LL · E[∥x∥] is a task-dependent constant.

Proof in Appendix D.3. This result provides a formal guarantee that the variation in model perfor-
mance is controlled by the cumulative energy of the intermediate basis vectors. This is important
because it justifies the use of NSNs for reliable control across a continuous spectrum of computational
budgets. We empirically evaluate this claim in Sec. 4.3.

�
Takeaway. With a mild decay assumption on the learned rank-1 components, we
can bound the performance change between ranks which ensures that the com-
pute–performance trade-off remains smooth and predictable even for untrained ranks.

4 EXPERIMENTAL EVALUATION

4.1 EVALUATING NSN PERFORMANCE

The primary goal of this experiment is to determine whether a single NSN, trained with our multi-
rank uncertainty objective, can match the performance of multiple, specialized models that are

6
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individually trained for fixed computational budgets. We focus on MLPs because they represent a
natural benchmark for the expressive capacity for each parameter budget. We do not focus on LoRA
adapters as a baseline because they do not alter the FLOP cost or active parameter count of a network.
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Figure 4: Test accuracy comparison between
a single NSN evaluated at different ranks (or-
ange) and a series of individually trained MLPs
with equivalent FLOPs (blue). The single NSN
effectively matches the performance of multiple
specialized models, validating its ability to learn a
hierarchy of optimal sub-networks.

Setup. We conduct our evaluation on an im-
age classification task using a standard multi-
layer perceptron (MLP) architecture. For each
computational budget, corresponding to rank
r ∈ {1, 2, . . . , 64}, we train a separate, stan-
dard MLP from scratch whose layers are sized
to match the FLOPs of an NSN layer at that spe-
cific rank on features extracted from CIFAR-10
(Base MLP). Concretely, the dataset is CIFAR-
10 throughout but we first map each image to a
fixed feature representation using an ImageNet-
pretrained backbone and then train only a small
classifier on top of these frozen features (more
details in Appendix B.3. This collection of indi-
vidually optimized models represents an empiri-
cal Pareto frontier for the compute-performance
trade-off. We then train a single NSN model using the defined objective.

Results. The results are presented in Fig. 4. We show that our single, dynamically adjustable
NSN achieves performance that is highly competitive with the series of individually trained baseline
networks across all tested computational budgets. Therefore, a single NSN can be deployed and
dynamically configured at test time to occupy various points on the compute-performance curve.

4.2 ABLATION STUDIES

To better understand the mechanisms behind our proposed training strategy, we conduct a series
of ablation studies. Our goal is to isolate the contribution of the core components of our objective
function and to validate our design choices against plausible alternatives. We compare several training
variations, evaluating their impact not only on the highest-rank model but, more importantly, on the
average performance of the resulting lower-rank and interpolated sub-models.

Setup. We use the same dataset and setup as in Sec. 4.1. We assess each method on three metrics:
(i) the final test accuracy of the highest-rank (anchor) model; (ii) the average accuracy across all
in-distribution (ID) sub-ranks evaluated during training; and (iii) the average accuracy across out-of-
distribution (OOD) interpolated ranks not explicitly seen during training. All three variants—Logits
Regularization, Residual Orthogonality, and Hidden Regularization—are implemented as independent
ablations, each adding exactly one regularizer on top of the same anchor/variant “Two CEs” training
setup, and they are never used concurrently. Details are in Appendix B.2. The results are summarized
in Table 1.

Results. Our analysis in Table 1 shows that the key to effective sub-model performance is the joint
optimization of an anchor and a variant rank ("Two CEs"). This simple objective acts as an implicit
regularizer. In contrast, we found that adding explicit regularization terms on top of our proposed
objective was either redundant or detrimental. This supports our claim that the joint optimization of
multiple ranks is a sufficient mechanism for learning NSNs.

4.3 EVALUATING INTERPOLATED RANKS

We now empirically validate the theoretical guarantees for smooth interpolation presented in Sec. 3.
We ask whether our method yields robust performance even at ranks that were not explicitly part of
the optimization process, thereby satisfying our desideratum for granular budget control (Sec 1).

Setup. To investigate this, we analyze the performance of models trained with the various objective
functions from our ablation study. We train a single model using each objective, which involves a
sparse sampling of ranks. We then evaluate the resulting model not only on the anchor rank but also
across a wide spectrum of intermediate, interpolated ranks to assess the stability and smoothness of
the learned performance curve.

7
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Table 1: Ablation study of different training objectives. Our core Two CEs formulation (highlighted)
dramatically improves the performance of lower-rank (ID) and interpolated (OOD) sub-models. R̃
denotes the anchor rank and r the variant rank. Performance is reported as mean ± std. dev.

Method Key Formulation Highest Test Acc Avg. ID Acc Avg. OOD Acc

Baselines
CE Only (Anchor) LCE(R̃) 0.87 ± 0.00 0.48 ± 0.00 0.57 ± 0.00
One CE + Hard Ortho. +

∥∥AAT − I
∥∥2

F
0.87 ± 0.00 0.42 ± 0.00 0.50 ± 0.00

Variations on Joint Training
Two CEs LCE(R̃) + LCE(r) 0.88 ± 0.00 0.79 ± 0.00 0.81 ± 0.00

+ Logits Regularization +
∥∥∥logits(R̃)− logits(r)

∥∥∥2

2
0.87 ± 0.00 0.64 ± 0.00 0.64 ± 0.00

+ Residual Orthogonality +
∥∥ArA

T
res

∥∥2

F
0.88 ± 0.00 0.78 ± 0.00 0.80 ± 0.00

+ Hidden Regularization + ∥hR̃ − hr∥22 0.88 ± 0.00 0.79 ± 0.00 0.79 ± 0.00
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Figure 5: Training Dynamics at Interpolated Ranks. Validation accuracy during training for
various objective functions, evaluated at ranks not explicitly optimized for. Our proposed method
maintains stable learning across all ranks, while simpler baselines exhibit instability and performance
collapse.

Results. Our findings show that the choice of training objective is important for achieving stable
interpolation. As illustrated in Figure 5, baseline objectives that do not properly balance the learning
dynamics across ranks often result in unstable or collapsing performance at these intermediate points.
For example, training with a single cross-entropy objective leads to poor generalization at lower
ranks. In contrast, our proposed objective, which jointly trains an anchor and variant rank, produces
stable and monotonically improving accuracy curves across the entire hierarchy of ranks throughout
training.

4.4 APPLICATION TO PRE-TRAINED LLMS

RMSNorm

Temporal 
mixing block

RMSNorm

MLP block

LinearLinear

GeLU

Linear

Rank LinearRank Linear

GeLU

Rank Linear

Before

After

Repeat
N times

Figure 6: Example Surgical Changes to lin-
ear layers only on Gemma-2B. The architec-
ture of Gemma-2B. All MLP blocks contain
three linear layers with a GeLU activation
function. We surgically replace all linear lay-
ers with rank-adaptive linear layers, initial-
ized W ≈ BA via SVD-decomposition

We now evaluate the post-hoc applicability of NSNs
to large, pre-trained language models (LLMs).

Adapting Pre-trained Layers. Our procedure for
adapting a pre-trained LLM consists of surgically
replacing the standard linear layers within its MLP
blocks with NSN layers. A naive approach might
be to randomly initialize the NSN factor matrices A
and B. In practice, however, this method discards the
information encoded in the pre-trained weights. To
preserve such information in the pre-trained weights,
we initialize the NSN factor matrices using Singular
Value Decomposition (Appendix D.4).

Setup. We apply this adaptation procedure to four
publicly available LLMs: Pythia-2.8B, GPT-Neo-
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Figure 7: Accuracy vs rank trade-off for pre-trained LLMs with surgically adapted NSN layers.
We can obtain large reduction in computational cost with minimal decreases in performance.

2.7B, Gemma-2B, and Qwen2-0.5B. After replacing and initializing the linear layers in their MLP
blocks as described above, we fine-tune each model on a downstream task. For our primary analysis
with Pythia-2.8B, we use a Natural Language Inference (NLI) benchmark which requires a three-way
classification to determine if a premise entails, contradicts, or is unrelated to a given hypothesis. The
fine-tuning for all models uses the uncertainty-aware objective described in Section 2.2.

Results. Our results demonstrate that NSNs unlock a smooth and predictable compute-performance
frontier for large, pre-trained models. For instance, Pythia-2.8B exhibits a monotonic degradation
in accuracy as the rank—and therefore the operational FLOPs—is reduced (Fig. 15). This granular
control allows for substantial efficiency gains with a modest performance trade-off; for instance, a
50% reduction in computational cost is achieved with only a 5 percentage point drop in accuracy.
We find this behavior is consistent across all four tested language models, where performance drops
smoothly as the matrix rank is decreased. This establishes NSNs as an effective method for post-hoc
adaptation of foundation models to dynamic inference scenarios.

�
Takeaway. NSNs can be surgically applied to large, pre-trained foundation models, which
allows for smooth and predictable compute-performance trade-offs.

5 RELATED WORK

On the one hand, static compression methods aim to create smaller, more efficient, but ultimately
fixed models from a larger pre-trained one. Techniques like network pruning (Han et al., 2015b;
Blalock et al., 2020) and knowledge distillation (Gou et al., 2021) excel at this, producing highly
optimized artifacts for a specific computational target. However, this approach is fundamentally
static; adapting the model to a new computational budget requires repeating the entire, often costly,
compression pipeline, failing to provide the on-the-fly adaptability needed for dynamic environments.

On the other hand, dynamic neural networks (Han et al., 2021) are designed with inference-
time adaptability in mind. Slimmable networks, for instance, allow for channels to be dropped
dynamically to create sub-networks of varying widths (Yu et al., 2018). While these methods offer the
desired adaptability, they typically require specialized and complex training schemes that are applied
from scratch (Cai et al., 2019). This makes them difficult to apply to the vast ecosystem of existing,
pre-trained foundation models. Furthermore, many such techniques offer only a coarse, discrete set
of operating points rather than a smooth, continuous trade-off (Teerapittayanon et al., 2016).

More recently, parameter-efficient fine-tuning (PEFT) methods like Low-Rank Adaptation (LoRA)
(Hu et al., 2022) have become a popular way to efficiently adapt large models. While LoRA also
employs low-rank factorization, its goal is to learn a single, static update for a fixed rank r. It is not
designed to be dynamically adjusted at inference time; changing the computational budget would
require training a new LoRA adapter with a different rank. In contrast, NSNs leverage a nested
low-rank parameterization to enable a single model to be granularly and dynamically adjusted across
an entire spectrum of ranks at test time.

Beyond the themes discussed above, Appendix A provides a broader survey situating NSNs within
several additional research traditions. It outlines how classical flag-manifold methods study nested

9
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Table 3: A comparative analysis against our three desiderata for efficient, adaptable architec-
tures. Recall the three desiderata where we seek a solution that: D1: learns a single, unified Trade-off
Parametrization(1) that allows for instant Test-time adaptability(1); D2: is broadly applicable through
Post-Training Re-parameterization(2) and exhibits Architectural Agnosticism(2) to modify existing
pre-trained models; and D3: provides granular control by generating a Smooth trade-off Frontier(3)

across a continuous spectrum of computational budgets. Our proposed method, Nested Subspace
Networks (NSNs), is the first to satisfy all five criteria.

Method Example Trade-off
Parametrization(1)

Test-time
Adaptability(1)

Post-Training
Re-parameterization(2)

Architectural
Agnosticism(2)

Smooth Trade-off
Frontier(3)

L
oR

A Standard LoRA (Hu et al., 2022) ✗ ✗ ✓ ✓ ✗
DyLoRA (Valipour et al., 2022) ✗ ✓ ✓ ✓ ✓
LoRA-Pruning (Chen et al., 2023) ✗ ✗ ✓ ✓ ✗

O
th

er

Universal Slimmable (Yu & Huang, 2019) ✓ ✓ ✗ ✗ ✓
Once-for-All (OFA) (Cai et al., 2019) ✓ ✓ ✗ ✗ ✓
Iterative Magnitude (Han et al., 2015a) ✗ ✗ ✓ ✓ ✗
Movement Pruning (Sanh et al., 2020) ✗ ✗ ✗ ✓ ✗
Response-Based KD (Hinton et al., 2015) ✗ ✗ ✓ ✓ ✗
Self-Distill. (Early Exit) (Teerapittayanon et al., 2016) ✗ ✓ ✗ ✓ ✗

Nested Subspace Networks Ours ✓ ✓ ✓ ✓ ✓

subspaces from a geometric perspective, contrasting these representation-space approaches with
NSNs’ parameter-space formulation. It also reviews dynamic-inference architectures such as Mat-
Former, Flextron, and LLAMAFLEX, highlighting how these systems rely on structural slicing or
routing rather than the continuous, rank-based hierarchy central to NSNs. Finally, the appendix
connects NSNs to adjacent areas—including other low-rank adaptation, adaptive and robust ML,
and test-time adjustment frameworks—clarifying complementarities and highlighting the distinctm
echanism how NSNs induce order, controllable capacity and enable adaptation to foundation models.

6 DISCUSSION

The dominant paradigm in deploying large models involves creating static artifacts, each trained for a
fixed computational budget. This approach is ill-suited for dynamic environments where resource
constraints can change on-the-fly. Contrary to the view that this requires training a discrete collection
of specialist models—a computationally prohibitive approach—we make a strong case that a single,
well-trained dynamic network can effectively and efficiently navigate this trade-off.

We introduced Nested Subspace Networks (NSNs), a novel architectural paradigm that represents
a continuous hierarchy of models within a single set of weights. We propose a structural design
based on the nested subspace property that has a practical, uncertainty-aware training objective.
We show how anc entire family of models can be optimized jointly. We further demonstrated
that NSNs can be surgically applied post-hoc to large, pre-trained foundation models, unlocking a
smooth and predictable compute-performance frontier without requiring training from scratch. This
paper presents the first-ever approach to dynamically convert any pre-trained foundation model to a
compute-adjustable model with minimal fine-tuning.

Why and how do NSNs work so well? We probe this question in our insights experiments (Sec. C).
Our analysis reveals that NSNs, regularized by their low-rank structure, converge to different local
minima in the loss landscape compared to standard fine-tuning. This means that NSNs find distinct
yet highly effective solutions in the loss landscape that allow the family of nested sub-models to work
well (Sec. C.3). We empirically verified the foundational nested subspace property, confirming that
the vector spaces of lower-rank models are indeed contained within those of higher-rank models, as
intended by the architectural design (Sec. C.2). Furthermore, we attempt to understand what happens
to the network structure as we change the rank of the network. We find that the low-rank constraint
acts as a bottleneck that encourages layers to learn redundant, globally useful functions (Sec. C.1).
As capacity increases with higher ranks, layers diverge, adopting more specialized roles. Currently,
NSNs shrink or augment all layers to the same rank; we think an interesting–and nontrivial– future
work is to develop layer-specific mechanisms for adaptive compute. This requires, however, solving
the difficult problem of correlating problem-specific information with layer-specific representational
capacity, a problem that has so far attracted little attention. Our findings and insights establish NSNs
as a powerful framework for creating the next generation of adaptive foundation models.
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A EXTENDED RELATED WORK

In this section, we discuss related work which is not immediately related to our discussed problem
setup (Sec. 5) yet we find important to cover to better position this work.

Classical flag-manifold literature The flag-manifold literature studies nested susbpaces to guaran-
tee multi-resolution consistenty in representations. Classifcal foundations include Pennec’s formula-
tion of PCA and barycentric subspace analysis on flags, which motivates optimizing over sequences of
projectors rather than a single Grassmann subspace (Pennec, 2018); recent geometric toolkits provide
algorithms and distances for optimization on flag manifolds (Ye et al., 2022; Nguyen, 2022; Zhu &
Shen, 2024; Ye & Lim, 2014). Building on this, Szwagier & Pennec (2025) propose the “flag trick”
which replaces a single projector by an average multilevel projector to enforce nestedness across
dimensions. Parallel work develops flag-centric representations and statistics (Draper et al., 2014;
Mankovich et al., 2022; Ma et al., 2021) and robust principal directions via “flagification” (Mankovich
et al., 2024). Mankovich et al. (2025) introduce a flag decomposition that factorizes hierarchical
datasets into a hierarchy-preserving flat via a block-modified Gram-Schmidt algorithm. The work
presented in this paper is orthogonal to the flag-manifold literature and differs in mechanism, scope,
and purpose.

• In terms of mechanism: instead of optimizing data projections on a flag manifold, NSNs
enforce a parameter-space filtration inside every linear layer, and couple ranks with an
uncertainty-weighted multi-rank objective which yields a smooth compute-performance
frontier.

• In terms of scope, flag-based approaches treat the nested structure as the object of opti-
mization in representation space and are typically applied to moderate-dimensional linear
features, whereas NSNs treat nestedness as an architectural prior that can be injected into
arbitrary deep networks (e.g., transformers, CNNs).

• In terms of purpose: the nature of NSN work is highly practical–we advance the dynamic
inference paradigm by introducing an algorithm that obtains different properties from other
dynamic inference algorithms. We see that the existing flag-based literature can be applied
to enhance our proposed modeling paradigm, but our work does not rely on the explicit
setups within the clssical flag-manifold literature.

Slimmable and Universally Slimmable networks Slimmable (Yu et al., 2018) and universally-
slimmabne networks (Yu & Huang, 2019) train a single model that runs at multiple channel widths,
enabled by “sandwhich“and in-place distillation rules (that this paper shows are unnecessary). In
contrast to slimmable networks, whose behavior between trained widths is controlled only empirically
through regularizers such as the sandwich rule, the nested subspace structure of NSNs lets us bound
the change in expected loss between any two ranks, yielding a theoretically controlled interpolation
between compute budgets. Moreover, universally slimmable networks (Yu & Huang, 2019) require
width-specific normalization statistics and repeated width sampling during training, which makes
them costly and hard to use as post-hoc adapters for large foundation models, whereas NSNs share a
single set of parameters and normalization across all ranks and can be added by a short SVD-based
fine-tuning phase.

Further discussion on dynamic inference via nested/elastic architectures Once-for-all extends
this idea by training a supernet whose sub-networks are specialized post-training (Cai et al., 2019).
For Transformers, MatFormer nests feed-forward blocks to slice width at inference, relies on su-
pernet training and produces a finite sub-model choice set (Devvrit et al., 2024). Flextron (Cai
et al., 2024) converts a pretrained LLM into a nested elastic network and learns routers (static or
input-adaptive) that select heads/neurons per budget, after continued training; it provides many
sub-models but through discrete head/width choices and routing rather than a single operator with
continuous capacity. LLAMAFLEX (Cai et al.) similarly starts from a pretrained LLM and trains a
weight-shared, depth/width-slicible architecture and a Gumbel-Softmax router to “train once, deploy
many”, interpolating between a set of anchor budgets. NSNs, compared to LLAMAFLEX, take a
very different approach: we reparameterize linear layers into nested low-rank subspaces and train
a single hierarchy of ranks, yielding smooth, theoretically bounded performance–compute curves
even at interpolated ranks. Therefore, NSNs are particularly attractive when architecture-agnostic,
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training-efficient, and granular control over compute budgets is required, rather than the router-driven
depth/width slicing emphasized by LLAMAFLEX. Early-exit and dynamic-depth approaches like
BrancyNet(Teerapittayanon et al., 2016), LayerDrop (Fan et al., 2019) or DeeBert (Xin et al., 2020)
cut computation by skipping layers or existing early which changes where computation happens,
not how expressive each linear map is. They also yield discrete exits and require auxiliary heads or
training-time regularization. Another close in spirit approach is SortedNet (Valipour et al., 2023)
which enforces a generalized “sorted” (partly nested) parameter sharing scheme and trains many
discrete sub-models via random sub-model sampling with gradient accummulation. In contrast to all
of these, NSNs re-parameterize each linear layer as a single pair of factors whose first r rank-1 com-
ponents define an exact subspace of the r + 1 model. We show that jointly optimizing ranks with an
uncertainty-weighted two-rank objective gives smooth predictable interpolation across all ranks with
theoretical guarantees, that we can employ SVD initialization to allow post-hoc surgical adaptation to
pre-trained LLMs (without relying on knowledge-distillation, neural architecture searches or other
architecture-specific work), and that this enables clear parameter sharing where the most important
information is naturally ordered in the basis vectors based on the order of the ranks (which we show
in Appendix C.4).

Low-rank adaptation literature A similar but functionally different literature is the low-rank
adaptation and layer-adaptive rank selection literature. LoRA (Hu et al., 2022) and its adaptive variants
modify or fine-tune models in low rank, but they target fixed ranks per deployment; AdaLoRA (Zhang
et al., 2023) reallocates rank across layers during fine-tuning yet still produces a static configuration
at inference. WeLore (JAISWAL et al.) studies why low rank emerges in LLMs (via gradient-Hessian
subspace stabilization), then performs one-shot uniform rank projection and an LRC-focused PEFT
approach. While it offers strong compression and fine-tuning, it chooses a fixed per-layer rank profile
instead of training one model to operate continuously across many ranks at test time. DynaBERT
(Hou et al., 2020) provides dynamic width/depth BERT variants through distillation and importance
re-writing–again discrete structural sub-networks rather than a single operator with nested rank.
Complementary theoretical work analyzes the implicit regularization of overparameterized matrix
factorization for matrix completion, showing that gradient flow traverses a hierarchy of invariant
manifolds and that the limiting solution transitions from minimum nuclear norm to minimum rank
as the connectivity of the observed entries increases (Bai et al., 2024). This is related in spirit to
NSNs—both exploit low-rank factorizations trained by gradient methods—but our approach explicitly
parameterizes a nested rank hierarchy to shape the compute–performance frontier, rather than relying
solely on such connectivity-driven implicit biases. Relative to these lines, NSNs: (i) target rank as the
adaptation axis so the function class at rank r is a strict subset of rank r+1; (ii) train all ranks jointly
with gradient-balancing; (iii) guarantees smooth performance-compute frontiers; (iv) is post-hoc
applicable to pre-trained foundation models; and (v) is a standalone model that adapts all weights
instead of relying on an adapter on top of frozen weights.

Adaptive and robust machine learning methods Our work can be also seen as being related to the
adaptive and robust machine learning literature. Concretely, NSNs provide an adaptavle mechanism
to control performance at test-time. Other such models exist within this area. Work on adapting
machine learning models at test time is rich, both in terms of looking at re-training them (Lu et al.,
2018; Raza et al., 2014; Rabanser et al., 2019; Bayram et al., 2022), detecting errors (Agrahari &
Singh, 2022; Gama et al., 2004; Halstead et al., 2022), using adaptive algorithms (Farid et al., 2013;
Hulten et al., 2001; Dries & Rückert, 2009) or more robust autonomous approaches for hypothesis-
driven adaptation and testing (Rauba et al., 2024a). We find many of these works complementary,
whereby the adaptation approaches might benefit from Nested Subspace Network-type architectures.
However, more research is needed to create mechanisms how to combine NSN-type models with
adaptive ML. For instance, adaptive models could be deployed to select which sub-model to use
at test-time, while hypothesis generation algorithms (Xiong et al., 2024) or context-aware testing
(Rauba et al., 2024b) can be used to operationally decide what is the minimally performant model
required to test a particular set of procedures for cost-sensitive testing. One way to achieve this
could be to select the nested subspace model that best satisfies the required criteria after performing
model auditing across different sub-models (Rauba et al., 2025) or selecting the cheapest sub-model
that still matches the requirements of more expensive models via cascade frameworks (Fanconi &
van der Schaar). Therefore, our work can be easily extended to the adaptive ML literature but does
not directly compete against it.
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B EXPERIMENTAL DETAILS

B.1 DETAILS ON NATIVE-RANK TRAINING VS RANK-TRUNCATION

The experiment presented in Figure 2 aims to contrast two approaches for obtaining models at
various computational budgets: (i) native-rank training and (ii) rank truncation. All experiments
were conducted on the CIFAR-10 dataset using ImageNet embeddings as input to a Multi-Layer
Perceptron (MLP).

Native Rank. For the "Native rank training" baseline, we trained a series of independent specialist
models. Each model corresponds to a specific rank r ∈ {1, 2, ..., 64}. The linear layers of each
MLP were parameterized using a low-rank factorization W = BA, where the inner dimension was
fixed to the target rank r. Every model was trained from scratch for 30 epochs using the same
hyperparameters to represent the empirical Pareto frontier of performance for a given rank.

Rank Truncation. For the "Rank-64 training" comparison, we trained a single model with a
maximum rank of R = 64. At test time, to evaluate performance at a lower rank r < R, we simply
truncated the factor matrices A ∈ RR×din and B ∈ Rdout×R. Specifically, the truncated weight
matrix Wr was constructed using only the first r rows of A and the first r columns of B. This ensures
the nested subspace property is structurally satisfied, but as Figure 2 shows, this naive approach fails
to train the shared parameters to be effective across the hierarchy of ranks.

B.2 IMPLEMENTATION DETAILS FOR THE ABLATIONS IN TABLE 1

For clarity, we summarize how the three ablation variants in Table 1—Logits Regularization, Residual
Orthogonality, and Hidden Regularization—are implemented and how they relate to the core “Two
CEs” objective.

Common setup: anchor / variant ranks and base objective. In all joint-training variants we select
an anchor rank R̃ and a strictly smaller variant rank r from the predefined rank set used throughout the
paper. Evaluating the NSN at a given rank k yields logits f(x; k) and the corresponding cross-entropy
loss

LCE(k) = CE
(
f(x; k), y

)
.

The base objective (Table 1, row “Two CEs”) is

LTwoCE = LCE(R̃) + LCE(r).

In the main experiments of Sec. 2.2 we use the uncertainty-weighted surrogate

Lunc
TwoCE =

(
exp(−sR̃)LCE(R̃) + sR̃

)
+
(
exp(−sr)LCE(r) + sr

)
,

with learned log-variances sR̃ and sr. All ablations keep this structure fixed and differ only by adding
a single extra regularizer. Each row in Table 1 corresponds to a separate training run; we never
activate multiple additional regularizers at once.

Logits Regularization (“+ Logits Regularization”). This variant encourages the logits at ranks R̃
and r to match:

Llogit =
∥∥f(x; R̃)− f(x; r)

∥∥2
2
,

implemented as MSE with the anchor logits treated as a fixed target (no gradient through f(x; R̃)).
Introducing a log-variance slogit, the objective becomes

LTwoCE+Logits = Lunc
TwoCE + 1

2 exp(−slogit)Llogit + 1
2slogit.

This matches the ce_with_consistency branch in the code.

Residual Orthogonality (“+ Residual Orthogonality”). Each NSN layer has basis matrix A ∈
RR×din , where row i represents the i-th rank-1 direction. Given R̃ > r, we decompose

Ar = A1:r,:, Ares = Ar+1:R̃,:.
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We penalize overlap between these subspaces via

Lortho =
∑

NSN layers

∥∥ArA
⊤
res

∥∥2
F
.

With log-variance sortho, the objective is

LTwoCE+ResOrtho = Lunc
TwoCE + exp(−sortho)Lortho + sortho.

This corresponds to the ce_orthogonality implementation.

The baseline “One CE + Hard Ortho.” in Table 1 instead uses only LCE(R̃) together with a global
orthogonality penalty ∥AA⊤ − I∥2F enforcing approximate row-orthonormality (implemented in
ce_orthogonality_hard).

Hidden Regularization (“+ Hidden Regularization”). For each NSN layer we obtain pre-
activation hidden representations at ranks R̃ and r:

h
(ℓ)

R̃
∈ RB×dℓ , h(ℓ)

r ∈ RB×dℓ .

We normalize each along the feature dimension,

ĥ
(ℓ)

R̃
= normalize(h

(ℓ)

R̃
), ĥ(ℓ)

r = normalize(h(ℓ)
r ),

and define a consistency loss
Lfeat =

∑
ℓ

∥∥ĥ(ℓ)

R̃
− ĥ(ℓ)

r

∥∥2
2
.

With log-variance sfeat, the full objective is

LTwoCE+Hidden = Lunc
TwoCE + 1

2 exp(−sfeat)Lfeat + 1
2sfeat.

This matches the ce_with_feature_consistency branch in the code.

Summary. All rows in the “Variations on Joint Training” block share the same NSN architecture
and the same anchor/variant rank selection. The base “Two CEs” loss uses cross-entropies at the two
ranks; each ablation adds exactly one additional regularizer with its own uncertainty weight. Each
variant is trained independently and evaluated separately.

B.3 DETAILS ON CIFAR-10 EMBEDDINGS AND THE MLP SETUP

In Section 4.1 we report results on CIFAR-10 while stating that “inputs are ImageNet last-layer
embeddings.” Concretely, the dataset is CIFAR-10 throughout but we first map each image to a fixed
feature representation using an ImageNet-pretrained backbone and then train only a small classifier
on top of these frozen features.

Backbone feature extractor. We use the torchvision implementation of ResNet-18 with
ImageNet-1K pre-trained weights (ResNet18_Weights.IMAGENET1K_V1) as a fixed feature
extractor. We remove the final classification layer and keep the network up to the global average
pooling stage, yielding a mapping ϕ : R3×32×32 → R512 where ϕ(x) is a 512-dimensional feature
vector. CIFAR-10 images are resized to 224× 224 and normalized with standard ImageNet mean
and variance before being passed through ϕ. For each split (train/test), we precompute and store pairs
(ϕ(xi), yi). The ResNet backbone is kept in evaluation mode and never updated during any of the
NSN experiments; gradients are disabled for all its parameters.

For the Base MLP baselines, both linear layers are standard dense linear transformations. For the
NSN (“Low Rank Layer”) models, both linear layers are implemented as NSN layers (Definition 1),
i.e., they use the nested low-rank factorization with a shared maximum rank R and can be evaluated
at any active rank r ≤ R. No other part of the network (in particular, the ResNet-18 backbone) is
re-parameterized or modified by NSNs. Thus, the CIFAR-10 experiments in Section 4.1 should be
understood as: (i) CIFAR-10 images→ frozen ImageNet-pretrained ResNet-18→ 512-D features,
and (ii) all subsequent trainable layers in the MLP classifier are NSN (or dense) layers as specified in
Table 1.
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C ADDITIONAL EXPERIMENTS

C.1 INTER-LAYER WEIGHT SIMILARITY VS. MATRIX RANK

Objective. This experiment investigates the relationship between the representational capacity of
layers and their functional roles within the network. The core question is whether increasing layer
capacity (i.e., matrix rank) encourages layers to learn more specialized, distinct functions or more
similar, redundant ones. The guiding hypothesis is that a low-rank constraint acts as an informational
bottleneck, forcing layers to learn redundant, globally useful functions, while increasing the rank
enables and encourages functional specialization.

Methodology. For a trained Nested Subspace Network, we analyzed the weight matrices of the
MLP layers at various ranks. For each rank r from 1 to 1024, we reconstructed the effective weight
matrix Wr for each layer. We then computed the pairwise cosine similarity between the weight
matrices of all layers in the network. The average of these pairwise similarities was then plotted
against the matrix rank to observe the overall trend.

Results and Interpretation. The results, shown in Figure 8, confirm the hypothesis. At very low
ranks, the average inter-layer similarity is high, indicating that the network’s layers learn functionally
similar and redundant representations. As the matrix rank and thus the layer capacity increase, the
average cosine similarity between layers steadily decreases, approaching zero at the highest ranks.
This suggests that with greater representational freedom, layers diverge to assume more specialized
roles within the network. The low-rank constraint effectively regularizes the network, forcing layers to
cooperate on learning general features, while higher ranks allow for a more distributed and specialized
division of labor.
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Figure 8: Inter-layer weight similarity as a function of matrix rank. As layer capacity (rank) increases,
the average cosine similarity between layers decreases. This suggests that layers transition from
learning redundant, globally useful functions at low ranks to more specialized roles at high ranks.

C.2 EMPIRICAL VERIFICATION OF THE NESTED SUBSPACE PROPERTY

Objective. The central design of Nested Subspace Networks relies on the nested subspace property,
where the function computed at a given rank is a strict subspace of the function at any higher rank.
This experiment was designed to empirically verify if this theoretical property holds in practice after
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training. The key question is: does the vector space spanned by a lower-rank weight matrix truly lie
inside the vector space of a higher-rank matrix from the same trained layer?

Methodology. To quantify the degree of subspace containment, we used a three-step procedure for
each trained NSN layer:

1. Reconstruct Weights: For a pair of ranks, rsmall and rlarge, we reconstructed their effective
weight matrices, Wrsmall and Wrlarge .

2. Find Orthonormal Bases: We performed Singular Value Decomposition (SVD) on each
weight matrix (Wr = UrΣrV

T
r ) to find an orthonormal basis for its column space. The first

r columns of the resulting Ur matrix form this basis.
3. Calculate Containment Score: We computed a containment score to measure the extent

to which the smaller subspace is contained in the larger one. The score is defined as the
normalized Frobenius norm of the projection of the smaller basis onto the larger basis:

score(rsmall, rlarge) =
1

rsmall
∥UT

rlarge
Ursmall∥2F

A score of 1.0 indicates that the smaller subspace is perfectly contained within the larger
one.

Results and Interpretation. The results are visualized in the heatmap in Figure 9. The upper
triangle of the matrix, where rlarge ≥ rsmall, shows scores that are consistently 1.0 or very close to it.
This empirically confirms that the vector space of a lower-rank model is indeed a nested subspace
of any higher-rank model after training. The lower triangle, where rlarge < rsmall, shows scores
significantly less than 1.0. This asymmetry is expected and acts as a sanity check, confirming that a
higher-dimensional space cannot be fully contained within a lower-dimensional one.

C.3 CONVERGENCE ANALYSIS OF LOW-RANK VS. STANDARD FINE-TUNING

Objective. This experiment investigates whether a model trained with Nested Subspace layers
converges to the same solution in the weight space as a model trained with standard fine-tuning. The
hypothesis is that the two models will find different solutions, as the low-rank structure of NSNs acts
as a form of regularization that guides the optimization process toward a different local minimum.

Methodology. To compare the final learned weights, a standard model was fine-tuned on the task,
and a separate NSN-equipped model was trained using our proposed multi-rank objective. For the
NSN model, the effective weight matrix for each layer was reconstructed at various ranks. We then
computed the cosine similarity between the weight matrix of a layer from the standard fine-tuned
model and the corresponding reconstructed matrix from the NSN model. This comparison was
performed for all MLP layers, which were grouped into early (0-10), middle (11-20), and late (21-31)
stages of the network to observe depth-dependent trends.

Results and Interpretation. As shown in Figure 10, the weight matrices of the NSN model do not
converge to the same solution as the standard fine-tuned model. The cosine similarity increases with
the rank, but even at the highest rank (1024), the similarity is only around 85

This result supports the hypothesis that the nested low-rank structure imposes a regularization effect.
By constraining the possible solutions to lie within pre-defined low-rank subspaces, the training
process is guided to a different local minimum in the loss landscape than standard, unconstrained
fine-tuning. This suggests that NSNs discover a different, yet highly effective, set of parameters for
solving the task.

C.4 VERIFYING ENERGY DECAY ASSUMPTION

To empirically evaluate Assumption 1, we perform an empirical investigation on a chosen language
model and multiple layers within this model. Specifically, we directly inspect the learned basis
vectors of every DynamicLowRankLinear layer in the NSN-adapted GPT-NeoX model (chosen
for convenience).
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Note: Average score across all MLP layers. A score of 1.0 means the low-rank space is fully contained in the larger one.

Figure 9: Heatmap of subspace containment scores between weight matrices of different ranks. The
score measures the extent to which the column space of a lower-rank matrix (rsmall) is contained
within that of a higher-rank matrix (rlarge). A score of 1.0 (dark blue) indicates full containment. The
results empirically validate the foundational nested subspace property of the trained network.

Setup. Each such layer is parameterized as Wr =
∑r

i=1 biai, where the rows of A provide the
ai components and the columns of B provide the bi components. For every layer, we compute
the Euclidean norms ∥ai∥2 and ∥bi∥2 across all rank-1 components i = 1, . . . , R and test whether
these sequences are monotonically non-increasing. This monotonicity captures the “energy decay”
structure posited by Assumption 1, which states that earlier basis components should contain more
salient functional information than later ones. For each layer, we report: the maximum rank R,
whether monotonicity holds (T/F), the number of violations, and the magnitude of the first and last
component norms. This provides a layer-by-layer diagnostic of how strongly the trained model
conforms to the nested subspace ordering implied by our theoretical analysis.

Takeaway. The results reveal that most layers exhibit a clear decaying trend in the norms of their
rank-1 components, even when strict monotonicity is not perfectly satisfied. Violations are typically
small and localized, while the overall decrease between the first and last components remains
substantial. In total, they constitute 0.04% of all basis vector orderings which is extremely negligible;
and we interpret this as noise in the optimization process. This provides strong empirical support for
Assumption 1: the optimization process tends to allocate high-energy, high-importance directions to
early basis indices, enabling the smooth interpolation behavior and predictable compute–performance
trade-offs that NSNs rely on.

To make the picture more precise, we also added a layer-by-layer table reporting how often the
assumption is locally violated. These violations happen occasionally—typically one or two indices
within a layer. We estimate this amounts to only about one percent of all basis vectors. Because they
are sparse and small, and given how consistently (about 99% of all basis vectors) this assumption
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Figure 10: Cosine similarity between weight matrices from a standard fine-tuned model and a Nested
Subspace Network. The similarity increases with rank but never reaches 1.0, indicating that the
low-rank constraint guides the NSN to a different, yet effective, local minimum in the loss landscape.
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(a) Short-horizon energy decay. Mean and standard
deviation of ∥ai∥2 and ∥bi∥2 over the first 24 basis
components, showing the local decay structure across
layers.
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(b) Full-range energy decay. Decay profile across the
entire rank spectrum, illustrating the global monotonic
trend implied by Assumption 1.

Figure 11: Empirical energy decay patterns across NSN layers. Each plot aggregates the norms
of rank-1 components (ai,bi) across all DynamicLowRankLinear layers in the NSN-modified
GPT-NeoX model. The short-range plot highlights early-index behavior, while the full-range plot
captures the complete structural decay. Both views provide complementary evidence supporting the
energy-ordering behaviour predicted by Assumption 1.

holds, we interpret them as noise in the optimization process. them as minor fluctuations introduced
by the optimization dynamics (Table 4).
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Layer R A-mon. A-viol. B-mon. B-viol. Afirst Alast Bfirst

L0 h→4h 1024 F 1 F 2 3.141 1.406 3.141
L0 4h→h 1024 F 2 T 0 2.578 1.188 2.562
L1 h→4h 1024 T 0 T 0 3.922 1.297 3.922
L1 4h→h 1024 T 0 T 0 2.797 1.195 2.781
L2 h→4h 1024 T 0 F 1 3.828 1.336 3.828
L2 4h→h 1024 T 0 T 0 2.969 1.258 2.953
L3 h→4h 1024 F 1 F 2 3.562 1.375 3.547
L3 4h→h 1024 T 0 T 0 2.578 1.234 2.578
L4 h→4h 1024 T 0 T 0 3.797 1.375 3.797
L4 4h→h 1024 T 0 F 1 2.938 1.227 2.938
L5 h→4h 1024 F 1 T 0 3.562 1.375 3.562
L5 4h→h 1024 T 0 F 1 2.609 1.266 2.609
L6 h→4h 1024 F 2 F 1 3.625 1.352 3.625
L6 4h→h 1024 T 0 T 0 2.531 1.281 2.531
L7 h→4h 1024 T 0 F 1 3.672 1.344 3.656
L7 4h→h 1024 T 0 T 0 2.641 1.281 2.641
L8 h→4h 1024 F 1 T 0 3.641 1.344 3.641
L8 4h→h 1024 T 0 T 0 2.531 1.281 2.531
L9 h→4h 1024 F 1 F 3 3.625 1.336 3.625
L9 4h→h 1024 F 1 T 0 2.484 1.273 2.484
L10 h→4h 1024 F 1 F 4 3.562 1.336 3.562
L10 4h→h 1024 F 1 T 0 2.312 1.273 2.312
L11 h→4h 1024 F 1 T 0 3.516 1.336 3.516
L11 4h→h 1024 T 0 T 0 2.312 1.281 2.312
L12 h→4h 1024 T 0 T 0 3.625 1.336 3.625
L12 4h→h 1024 T 0 F 2 2.344 1.289 2.344
L13 h→4h 1024 T 0 T 0 3.641 1.344 3.641
L13 4h→h 1024 T 0 F 1 2.266 1.312 2.266
L14 h→4h 1024 T 0 T 0 3.656 1.344 3.656
L14 4h→h 1024 T 0 T 0 2.266 1.336 2.266
L15 h→4h 1024 T 0 T 0 3.656 1.344 3.656
L15 4h→h 1024 F 1 T 0 2.422 1.344 2.422
L16 h→4h 1024 T 0 T 0 3.672 1.352 3.672
L16 4h→h 1024 T 0 F 1 2.344 1.359 2.344
L17 h→4h 1024 T 0 F 1 3.688 1.352 3.688
L17 4h→h 1024 T 0 F 2 2.375 1.391 2.375
L18 h→4h 1024 F 1 T 0 3.641 1.359 3.641
L18 4h→h 1024 F 1 T 0 2.453 1.414 2.453
L19 h→4h 1024 T 0 T 0 3.594 1.367 3.594
L19 4h→h 1024 T 0 T 0 2.609 1.422 2.625
L20 h→4h 1024 T 0 T 0 3.516 1.383 3.516
L20 4h→h 1024 F 1 F 1 2.828 1.438 2.828
L21 h→4h 1024 T 0 F 1 3.438 1.391 3.438
L21 4h→h 1024 T 0 F 1 2.984 1.453 2.984
L22 h→4h 1024 F 1 T 0 3.422 1.406 3.422
L22 4h→h 1024 T 0 F 1 3.047 1.477 3.047
L23 h→4h 1024 F 1 T 0 3.375 1.422 3.375
L23 4h→h 1024 T 0 F 1 2.734 1.500 2.750
L24 h→4h 1024 T 0 T 0 3.344 1.430 3.344
L24 4h→h 1024 T 0 F 2 2.484 1.516 2.484
L25 h→4h 1024 T 0 F 1 3.344 1.438 3.344
L25 4h→h 1024 T 0 T 0 2.328 1.523 2.328
L26 h→4h 1024 F 1 T 0 3.312 1.438 3.312
L26 4h→h 1024 T 0 F 1 2.234 1.531 2.234
L27 h→4h 1024 T 0 T 0 3.281 1.438 3.281
L28 h→4h 1024 T 0 T 0 3.281 1.438 3.266
L28 4h→h 1024 F 1 T 0 2.391 1.555 2.391
L29 h→4h 1024 F 1 T 0 3.266 1.438 3.266
L29 4h→h 1024 T 0 T 0 2.625 1.555 2.625
L30 h→4h 1024 T 0 T 0 3.297 1.438 3.297
L30 4h→h 1024 T 0 T 0 3.688 1.531 3.688
L31 h→4h 1024 T 0 T 0 3.562 1.422 3.562
L31 4h→h 1024 T 0 T 0 3.688 1.445 3.688

Table 4: Empirical evaluation of Assumption 1 across all DynamicLowRankLinear layers. For
each layer, we compute the norms of the rank-1 components (ai,bi). Columns indicate: maximum
rank R, monotonicity flags for A and B (A-mon., B-mon.), the number of violations (A-viol., B-viol.),
and the norms of the first and last components, which capture the magnitude of decay. This table
quantifies how consistently the trained NSN architecture orders its basis directions by importance.

C.5 ENERGY PROFILES IN STANDARD DENSE MODELS

To complement the analysis in Appendix C.4, we perform the same diagnostic procedure on a standard,
unmodified GPT-NeoX model whose MLP blocks use conventional dense linear transformations.
This comparison isolates whether the energy decay structure observed in NSNs also appears in
ordinary architectures, or whether it is instead a property induced by the NSN reparameterization and
training objective.
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(a) Short-horizon energy profile in a dense model.
Mean and standard deviation of row and column
norms over the first 24 indices for the dense GPT-
NeoX MLP layers. The profiles are essentially flat,
indicating no systematic dependence of weight energy
on index; all weights have comparable energy.
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(b) Full-range energy profile in a dense model. Row-
and column-wise norms across the entire index range
show no clear trend or decay, consistent with an ab-
sence of any ordered structure in the weight energies.
All indices exhibit similar magnitude, confirming that
there is effectively no relationship between index and
energy.

Figure 12: Lack of ordered energy decay in standard dense GPT-NeoX MLP layers. Unlike the
NSN-adapted model, where rank-1 components exhibit a clear energy decay with basis index, the
dense model’s row and column norms are nearly constant across indices. This indicates that the dense
parameterization does not naturally impose an ordering of directions by energy: all weights have
effectively the same energy, and there is no meaningful relationship between index and importance.

Setup. For each dense MLP layer, we take the weight matrix W ∈ Rdout×din and examine its rows
and columns directly, without any factorization. We define

ai = Wi,:, bi = W:,i,

and compute the Euclidean norms ∥ai∥2 and ∥bi∥2 across all row and column indices. This is the
direct analogue of the NSN analysis: if dense models naturally encode more important directions
earlier in their parameterization, we would observe structured energy decay across indices. We
evaluate monotonicity, quantify violations, and compute layer-averaged energy profiles exactly as in
the NSN case. The resulting aggregated profiles are visualized in Figures 12a and 12b.

Findings. Across all layers, the energy profiles are essentially flat: both row norms and column norms
remain nearly constant as a function of index. Unlike the NSN-adapted model, where low-index basis
vectors consistently exhibit higher energy and a clear decay pattern, the dense model displays no
meaningful ordering. Monotonicity is neither present nor expected; the norms fluctuate minimally
and show no global trend. This indicates that in standard dense architectures, parameter indices do
not correspond to any notion of directional importance, and no analogue of Assumption 1 emerges
from training alone.

Takeaway. The absence of any structured energy decay in dense models highlights a key distinction
between NSNs and conventional architectures. Whereas NSNs learn a highly organized hierarchy of
basis directions—with most of the functional energy concentrated in early rank components—dense
models distribute energy uniformly with no discernible ordering. This comparison reinforces that the
nested subspace structure arises from the NSN parameterization and training procedure rather than
from generic properties of large neural networks. Figures 12a and 12b make this contrast explicit:
NSNs exhibit sharp, consistent energy decay, whereas dense models show no relationship between
index and energy at all.

Violation Analysis Setup. To quantify how strongly the dense model violates the energy–ordering
property, we compute violation rates in direct analogy to the NSN analysis. For each MLP layer, we
examine the sequences of row norms and column norms,

ai = Wi,:, bi = W:,i,
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Figure 13: Aggregate violation rate of the energy–decay assumption in NSN and dense models.
Bars show the percentage of adjacent index pairs that violate the monotonic decay condition, aggre-
gated across all MLP layers. The NSN model exhibits extremely low violation rates (0.00% in this
specific run), whereas the dense model shows violation rates that are similar to random orderings
(which would be about 50%).
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Figure 14: Violation rate by transformer block. Violation rates are shown per transformer block for
both NSN (circles) and dense (squares) models, with binomial standard errors. The NSN error rates
are not visible because they are neglibigble (below 0.01% on the graph). The dense model seems
to have a consistent pattern how often the energy decay assumption is violated, yet this violation is
consistently extremely high. This violation makes sense given that nearby transformer blocks should
be correlated. The key takeaway is that regular training schemes do not induce a sufficient ordering
of basis vectors.

and record how often adjacent pairs fail the monotonic condition ∥ai∥2 ≥ ∥ai+1∥2 or ∥bi∥2 ≥
∥bi+1∥2. Each adjacent index yields a binary event (violation or no violation), allowing us to compute
per-layer and per-model violation rates. For a fair comparison to NSNs, we aggregate all adjacent
comparisons across all layers and report both an overall violation rate and a depth-resolved profile
with binomial standard errors.

Takeaway. The violation statistics provide a complementary perspective to the energy profiles
reported earlier. Across all layers and transformer blocks, NSNs demonstrate strikingly consistent
adherence to the energy–decay structure, with only a tiny fraction of adjacent pairs (typically well
below 1%) violating monotonicity. Dense models, by contrast, display no such structure: violation
rates are an order of magnitude larger and show no systematic dependence on depth. Together, these
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results reinforce that the nested subspace ordering is not an incidental artifact of large neural networks
but a direct consequence of the NSN parameterization and training objective, which actively induce a
stable and ordered hierarchy of basis directions.
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C.6 COMPUTATIONAL EFFICIENCY THROUGH SURGICAL REPLACEMENT
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Figure 15: Example Surgical Changes to linear
layers only on Gemma-2B. The architecture of
Gemma-2B. All MLP blocks contain three linear
layers with a GeLU activation function. We surgi-
cally replace all linear layers with rank-adaptive
linear layers, initialized W ≈ BA via SVD-
decomposition

Objective. This analysis demonstrates the
practical computational benefits of surgically re-
placing standard linear layers with rank-adaptive
linear layers in existing transformer architec-
tures. The goal is to quantify the reduction
in floating-point operations (FLOPs) achieved
through low-rank decomposition while main-
taining the nested subspace structure.

Methodology. We performed surgical modifi-
cations to the Gemma-2B architecture by replac-
ing all linear layers within the MLP blocks with
rank-adaptive variants. Each original weight ma-
trix W was decomposed using Singular Value
Decomposition (SVD) to initialize the factorized
form W ≈ BA, where B and A are lower-rank
matrices. The MLP blocks, which contain three
linear layers with GeLU activation functions,
were systematically converted to support mul-
tiple rank configurations while preserving the
original model’s functionality.

Results and Interpretation. The surgical re-
placement approach enables significant compu-
tational savings through reduced matrix oper-
ations. By decomposing the original full-rank
weight matrices into their low-rank approxima-
tions, the number of parameters and corresponding FLOPs are substantially reduced. This modifica-
tion allows for dynamic rank selection during inference, providing a trade-off between computational
efficiency and model capacity without requiring complete retraining of the base model.

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

D ADDITIONAL THEORETICAL INSIGHTS ON NESTED SUBSPACE NETWORKS

D.1 SIMPLE EXAMPLE OF AN NSN LAYER

Example 1 (Toy NSN layer). To make this construction concrete, consider an NSN layer with
din = dout = 2 and maximum rank R = 2. We choose a single pair of factor matrices

A =

[
1 0
0 1

]
, B =

[
1 0
0 1

]
.

For rank r = 1, we use only the first row of A and the first column of B:

A1 = [1 0] , B1 =

[
1
0

]
, W1 = B1A1 =

[
1 0
0 0

]
.

For rank r = 2, we use all rows/columns:

A2 = A, B2 = B, W2 = B2A2 =

[
1 0
0 1

]
.

Thus, the rank-1 and rank-2 effective weights W1 and W2 are both derived from the same factor
matrices (A,B). Adjusting the rank simply changes how many basis vectors are active.

D.2 WHY USE THE UNCERTAINTY-AWARE OBJECTIVE?

NSNs train a hierarchy of rank-truncated submodels inside one set of weights by factorizing each
linear layer W = BA and enforcing a nested-subspace structure across ranks. We view training
across ranks as a multi-task learning problem and propose to use a Kendall-style objective for this.
Empirically, the learned log-variances decrease with rank which we interpret as a proxy for rank
expresiveness. In our ablations, we show that two cross-entropies deliver the required gains across
ranks and adding additional regularization is not productive.

What properties do we look for? We seek a weighting mechanism that (i) automatically adapts
the relative importance of ranks without per-rank hyperparameter tuning, (ii) is invariant to arbitrary
rescalings of the factorization W = BA, (iii) guarantees positive weights, and (iv) is cheap enough to
apply inside every NSN layer and on every training step. The uncertainty-aware objective surrogate
satisfies these requirements: the reparameterization exp(−sk) yields strictly positive, smoothly
varying weights with a strictly convex dependence on sk, so optimization is stable, and because it
operates on loss values rather than gradient norms it is insensitive to the scale ambiguity between A
and B.

What are the benefits of using an uncertainty-aware objective? The uncertainty-aware objective
directly addresses the heterogeneous difficulty of learning different ranks: lower ranks exhibit larger
and noisier cross-entropy losses, which would otherwise dominate or destabilize the optimization if
all ranks were weighted equally. Introducing rank-specific log-variances sk yields effective weights
exp(−sk) that adaptively attenuate gradients from high-uncertainty ranks while the additive sk term
prevents trivial suppression of a task, so the hierarchy is trained jointly but stably in a single objective.
This surrogate empirically leads to well-behaved performance at low ranks and at interpolated ranks
that were never explicitly optimized. In addition, the learned sk form an interpretable diagnostic:
higher ranks consistently converge to lower log-variances than lower ranks (Fig. 3), providing a
quantitative measure of rank expressiveness rather than treating the rank index as a purely architectural
hyperparameter.

Would we use a different mechanism for weighting the ranks? In principle, any multi-task
reweighting scheme could be applied across ranks, even methods such as GradNorm (Chen et al.,
2018), but these alternatives come with trade-offs that are poorly matched to the NSN parameteriza-
tion. For instance, gradient-norm–based methods require choosing a reference layer and repeatedly
computing per-rank norms, and their behavior is sensitive to the arbitrary scaling between A and
B in W = BA, so the induced weights can drift for reasons unrelated to rank difficulty. Moreover,
aggressively equalizing training rates across ranks can over-emphasize very low ranks early in training
and degrade the anchor model, whereas our anchor–variant design intentionally biases optimization
toward a strong high-rank solution while still improving smaller ranks. For these reasons we view
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the uncertainty-aware objective as the most practical default for NSNs, and leave more elaborate,
possibly model-specific weighting schemes as future work rather than as necessary components of
the method.

D.3 PROOF OF PROPOSITION

We seek to demonstrate that the performance of the network at an untrained, interpolated rank
rint remains close to the performance at an explicitly trained rank. This property relies on the
structure induced by the training process. Let the shared, learned weight matrices be A ∈ RR×din

and B ∈ Rdout×R, where R is the maximum rank. Let ai ∈ R1×din be the i-th row vector of A and
bi ∈ Rdout×1 be the i-th column vector of B.
Lemma 1 (Adjacent Rank Perturbation). Let f(x; r) = (

∑r
i=1 biai)x be the output of the linear

layer for an input x at rank r. The perturbation to the output when moving from rank r to r + 1 is
bounded by:

∥f(x; r + 1)− f(x; r)∥ ≤ ∥br+1∥ ∥ar+1∥ ∥x∥

Proof. The change in the weight matrix is Wr+1 −Wr = br+1ar+1. The change in the output is
thus (Wr+1 −Wr)x. Applying the submultiplicative property of matrix and vector norms yields the
result: ∥(br+1ar+1)x∥ ≤ ∥br+1ar+1∥ ∥x∥ ≤ ∥br+1∥ ∥ar+1∥ ∥x∥.

Proposition 2 (Bound on Interpolation Error). Let the task loss function L(f(x; r), y) be LL-
Lipschitz continuous with respect to its first argument. Let E(r) = E(x,y)[L(f(x; r), y)] be the
expected error at rank r. For any ranks r1 < rint < R, the difference in expected error is bounded by:

|E(rint)− E(r1)| ≤ C

rint∑
i=r1+1

∥bi∥ ∥ai∥

where C = LL · E[∥x∥] is a task-dependent constant.

Proof. The total change in the function output between rank r1 and rint can be expressed as a
telescoping sum. By the triangle inequality and Lemma 1:

∥f(x; rint)− f(x; r1)∥ =

∥∥∥∥∥
rint∑

i=r1+1

(f(x; i)− f(x; i− 1))

∥∥∥∥∥
≤

rint∑
i=r1+1

∥f(x; i)− f(x; i− 1)∥

≤

(
rint∑

i=r1+1

∥bi∥ ∥ai∥

)
∥x∥

Due to the Lipschitz continuity of the loss L, the difference in expected error is bounded:

|E(rint)− E(r1)| ≤ LL · E [∥f(x; rint)− f(x; r1)∥]

Substituting the bound on the function perturbation and defining C = LL · E[∥x∥] yields the final
result.

D.4 SVD INITIALIZATION

We propose an initialization strategy based on Singular Value Decomposition that preserves the
original model parameterization at the outset of training. Formally, for a given pre-trained weight
matrix W , we compute its SVD, W = UΣV T , and initialize the factor matrices B ∈ Rdout×R̃ and
A ∈ RR̃×din using the top R̃ singular components: Binit := UR̃

√
ΣR̃ and Ainit :=

√
ΣR̃V

T
R̃

, where
UR̃ and VR̃ contain the first R̃ columns of U and V , and ΣR̃ is the diagonal matrix of the top R̃

singular values. This scheme ensures that at the maximum rank R̃, the NSN layer’s effective weight
matrix, WR̃ = BinitAinit, reconstructs the original pre-trained matrix W either exactly (if R̃ = R) or
with the smallest Frobenius norm (if R̃ < R).
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D.5 TRAINING COST OF NSN

Compared to a standard dense network with weight matrix W ∈ Rdout×din , whose per-step training cost
is proportional to dindout FLOPs, training a Nested Subspace Network (NSN) layer with maximum
training rank R̃ and a sampled variant rank r < R̃ requires per-step FLOPs proportional to (R̃ +
r)(din + dout), because each optimization step performs a forward–backward pass at the anchor rank
R̃ and another at the variant rank r. Using the break-even rank Rbe = dindout

din+dout
, for which a single

low-rank pass matches the dense cost, the pessimistic case r ≈ R̃ ≈ Rbe gives a total of about
2dindout FLOPs per step, i.e., at most roughly twice the cost of training one dense model with the
same input and output dimensions. However, this single NSN training run yields a whole hierarchy of
usable ranks at test time, so if K different computational budgets are needed, the NSN still replaces
K separate dense training runs (total cost ≈ Kdindout) with one run whose cost is only a constant
factor above that of a single dense model, effectively amortizing the training cost over many operating
points.

D.6 ON THE DERIVED FUNCTIONAL FORM OF THE LOSS IN EQUATION

Why did we arrive at the specific functional form in Equation 3 and, concretely, why are we using the
exponential as the coefficient?

We start with our goal: We want a positive weight for each rank–specific loss that adapts during
training but does not collapse to zero or infinity. Let Lk denote the task loss at rank k and define a
positive weight wk > 0. We can write out two equivalent parametrizations which are useful in our
context:

1) Direct optimization over positive weights with a log–barrier

min
wk>0

∑
k

[wkLk − logwk ] .

The term− logwk prevents wk → 0 and yields a unique closed–form optimum in wk for fixed model
parameters. We can reparametrize this equation to yield an equivalent re-parametrization found in the
main body of the paper.

2) Reparameterizing wk = e−sk with sk ∈ R∑
k

[
e−skLk + sk

]
.

This matches Eq. 3 (up to a constant), with sk = log σ2
k.

Why this particular form of the optimization? are a few different ways to think about it.

(a) Positivity and simple optimization The mapping wk = e−sk guarantees wk > 0 for all sk.
Furthermore, the objective is convex in sk for fixed Lk:

∂2

∂s2k

(
e−skLk + sk

)
= e−skLk > 0.

If Lk > 0, then ∂2

∂s2k

(
e−skLk + sk

)
> 0 for all s. This means the function is stricly convex in s. If

Lk = 0, then the loss is sk which is still convex. This convexity is a useful property for gradient
updates and helps to learn the different contributions effectively, as empirically shown in Fig. 3.

(b) Closed–form optimal weights and scale invariance This parametrization allows to obtain
easy closed-form weights. For fixed model parameters,

∂

∂sk

(
e−skLk + sk

)
= −e−skLk + 1.

Setting this to zero gives

e−s⋆k =
1

Lk
, w⋆

k =
1

Lk
.

This gives us two useful properties:
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• Loss–scale invariance: If Lk ← cLk, then s⋆k ← s⋆k + log c while wkLk = 1 remains
unchanged.

• Coarse gradient balancing: At the optimum, the contribution of rank k is

wk∇θLk =
1

Lk
∇θLk,

which prevents dominance by a loss with artificially large scale. This is a particularly useful
property since we expect models with lower ranks to have higher loss due to their (definition-
ally) lower expressivity. Recall that Eq. 3 scales gradients by ∇θLtotal =

∑
k e

−sk ∇θLk.
Therefore, jointly learning sk allows the optimizer to attenuate gradients from noisier ranks
(sk large) and amplify gradients from cleaner ranks (sk small), while the term +sk prevents
collapse e−sk → 0.

(c) Link to heteroskedastic uncertainty We can think of this loss as being directly tied to het-
eroskedsatic uncertainty in the regression case. Concretely, for Gaussian regression noise, the negative
log–likelihood is

1

2σ2
∥residual∥2 + 1

2
log σ2.

Setting sk = log σ2 gives the structure e−sk(·) + sk. Classification lacks a Gaussian residual.
However, it is common in practice to use this as a surrogate objective. Equation 3 acts as a surrogate
for such a Gaussian residual in the classification setting.

D.7 WHY LOG-VARIANCES ARE EMERGENT PROXIES FOR EXPRESIVENESS OF EACH RANK

Are the log-variances free parameters? The log-variances are not free parameters, but they are
trainable parameters. They are not free because in the objective

e−skLCE(k) + sk,

each log-variance sk is coupled to the rank-k loss. This coupling means their values depend directly
on the loss within each model of a given rank. However, we still learn these values during training.

Why does log-variance serve as an emergent proxy? Short answer: This parameter tracks the
residual loss for each rank. Higher residual loss (higher error for a given rank) leads to a higher
learned uncertainty parameter. Thus, it emerges as a proxy for expressiveness: higher residual loss
indicates a less expressive model, and the parameter tracks this loss.

Each rank-model contributes differently to the training objective. For a rank k model, the contribution
is

Lk = e−skLCE(k) + sk,

where sk is the log-variance and LCE(k) is the cross-entropy loss.

After training, at a stationary point where the gradient is zero, we have

∂Lk

∂sk
= −e−skLCE(k) + 1 = 0,

which implies
e−skLCE(k) = 1,

and therefore
sk = logLCE(k).

Thus, up to optimization noise and interactions with other parameters, the learned log-variances track
the scale of the residual loss at that rank.

More expressive vs. less expressive models. A more expressive model can reduce LCE(k) further,
which forces sk to be smaller. A less expressive model is stuck with a higher LCE(k) and therefore
learns a higher sk. Over training, this creates a relationship in which ranks that explain the data well
end up with lower log-variances, while ranks that explain it poorly end up with higher log-variances.
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Algorithm 2 Forward pass of a Nested Subspace Network (NSN) layer

Require: Input vector batch X ∈ RB×din

Require: Factor matrices A ∈ RR×din , B ∈ Rdout×R, bias b ∈ Rdout

Require: Active rank r ∈ {1, . . . , R}
Ensure: Output logits Y ∈ RB×dout

1: Ar ← first r rows of A ▷ Ar ∈ Rr×din

2: Br ← first r columns of B ▷ Br ∈ Rdout×r

3: H ← XA⊤
r ▷ Project inputs to rank-r subspace, H ∈ RB×r

4: Y ← HB⊤
r + 1b⊤ ▷ Map back to output space

5: return Y

Algorithm 3 Forward pass of a Nested Subspace Network

Require: Input batch X
Require: NSN layers {Layerℓ}Lℓ=1, each with (Aℓ, Bℓ, bℓ) and shared max rank R
Require: Active rank r ∈ {1, . . . , R}
Ensure: Output logits Z

1: H ← X
2: for ℓ = 1 to L do
3: H ← NSNLayerForward(H,Aℓ, Bℓ, bℓ, r) ▷ Alg. 2
4: if ℓ < L then
5: H ← ϕ(H) ▷ Apply nonlinearity, e.g. ReLU or GELU
6: end if
7: end for
8: Z ← H ▷ Final logits
9: return Z

E PSEUDOCODE
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Algorithm 4 Multi-rank uncertainty-weighted training for Nested Subspace Networks (anchor at
maximal rank)

Require: Training dataset D = {(xi, yi)}
Require: Maximal rank R and set of trainable ranks K ⊆ {1, . . . , R}
Require: NSN model with parameters θ = {Aℓ, Bℓ, bℓ}Lℓ=1
Require: Rank-specific log-variances {sk}k∈K with sk = log(σ2

k)
Require: Optimizer Opt
Ensure: Trained NSN parameters θ and log-variances {sk}

1: Initialize θ and set sk ← 0 for all k ∈ K
2: for each training step do
3: Sample a minibatch (X,Y ) ∼ D
4: R̃← R ▷ Anchor rank is always the maximal rank
5: Kvar ← {k ∈ K : k < R̃}
6: r ← UniformSample(Kvar) ▷ Variant rank is sampled from lower trainable ranks
7: Set model rank ractive ← R̃
8: ZR̃ ← NSNForward(X, ractive)

9: LCE(R̃)← CrossEntropy(ZR̃, Y )
10: Set model rank ractive ← r
11: Zr ← NSNForward(X, ractive)
12: LCE(r)← CrossEntropy(Zr, Y )

13: sR̃ ← log-variance associated with rank R̃
14: sr ← log-variance associated with rank r
15: Lanchor ← exp(−sR̃)LCE(R̃) + sR̃
16: Lvariant ← exp(−sr)LCE(r) + sr
17: Ltotal ← Lanchor + Lvariant

18: Opt.zero_grad()
19: Backpropagate gradients of Ltotal with respect to θ and {sk}
20: Opt.step()
21: end for

F ON LLM USAGE

The authors have used large language models for three purposes:

• We have used LLMs to aid or polish our writing. This includes rephrasing text, shorterning,
proof-reading for ambuigities or finding mistakes or inconsistencies in notation

• We used LLMs as a supplementary source of finding related work. While we have primarily
performed related work searches via google scholar, we have used the "Deep Research"
functionality to find other related work that we might have missed. This has resulted in us
adding response-based KD and self-distill as related work to the paper.

• We have used LLMs for research ideation early on in the paper. This included brainstorming
ways how to make efficient deep neural networks, what are the properties that such neural
networks should have, among others.

Otherwise, all the ideas presented in the paper are our own. We take full responsibility for any errors
found in the paper.

–
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