
Architecture and System Support for Transformer Models (ASSYST), ISCA, 2023

Towards A Reconfigurable Systolic Array with
Multi-Level Packing for Transformers

Tiandong Zhao∗, Siyuan Miao∗, Jialin Cao†, Shaoqiang Lu§, Jun Qiu‡, Xiao Shi‡, Kun Wang†, Lei He∗§
∗University of California, Los Angeles. zhaotiandong@ucla.edu

†Fudan University, China. wangk@fudan.edu.cn
‡Southeast University, China. xshi@seu.edu.cn

§Eastern Institute of Technology, China. he@eias.ac.cn

Abstract—Transformer-based models has achieved remarkable
success in extensive tasks for natural language processing. To
handle the variable-length sentences in human language, prior
works suffer from low hardware efficiency due to either the shape
mismatch between fixed-shape PEs (processing elements) and
variable-shape workloads with data parallelism or large bubbles
with pipeline parallelism. This ongoing work proposes a hybrid
parallelism mixed with data parallelism for linear operators and
pipeline parallelism for the attention. We develop a reconfig-
urable systolic array with multi-level packing to improve hard-
ware efficiency. First, linear operators for different inputs can
be packed along the array columns to improve spatial efficiency.
Meanwhile, to boost temporal efficiency, we develop a head-
level pipeline for attention with different stages packed on the
array. We further skip the redundant computation in the masked
attention by packing the computation of two heads along time.
Packing decisions are explored with a dynamic programming
based algorithm to maximize the overall throughput. Applied to
GPT, our FPGA design has achieved 1.16× higher normalized
throughput and 1.94× better runtime MAC utilization over the
state-of-the-art GPU performance for variable-length sequences
from MRPC, RTE and SQuADv2 datasets.

I. INTRODUCTION

Transformer-based models have achieved remarkable tri-
umphs in a wide range of deep learning tasks for natural
language processing, such as machine translation [21], text
classification [4] and generation [18], [19]. The extensive
success is attributed to the task-agnostic model architecture
with increasing number of encoder and decoder layers, and
vocabulary size for better quality on various tasks. Such a
trend, along with the unlimited text length that these language
models need to handle, results in huge amounts of compu-
tation and parameters. The full GPT-3 [2] holds 175 billion
parameters and requires 3.14× 1023 floating-point operations
(FLOPS) for training, which would cost over $4.6M using
a Tesla V100 cloud instance for a single training run. The
progressively higher computational demand calls for the need
to exploit the efficiency of these models on devices.

The acceleration approaches in prior works fall into two
paradigms. One approach exploits the intra-operator data
parallelism (Fig.1a) in an operator-by-operator basis. [16]
optimizes the operator partitioning for Transformer inference
on TPUv4 [9]. [7], [10] boost GPU performance with tensor
cores, while [3], [23] lay focus on the memory optimiza-
tions on GPU. [24]–[26], [29] develop specialized processing

Fig. 1. Execution timeline for different parallel approaches. (a)Intra-operator
data parallelism. (b)Sub-layer pipeline parallelism. (c) Hybrid parallelism. The
time length of each block is only for illustration.

elements (PEs) for different operators. Padding arises from
variable-length inputs in a batch due to the fact that popular
deep learning frameworks [1], [14] can only handle rectangular
shapes. The padded zeros thus introduce excessive overhead
in both computation and memory. [6], [27] reduce the padding
redundancy by reordering inputs during pre-processing, while
[28] eliminates padding for linear blocks and fused attention
on GPU by offsetting the variable-length inputs in memory.
These works suffer from low efficiency either spatially from
the mismatch between fixed-shape PEs and variable-shape
workload, or temporally from non-overlapped memory access
latency, especially in data-parallel fused attention.

Another approach resorts to the inter-operator pipeline par-
allelism (Fig.1b) where consecutive operators are assigned to
different PEs. [5], [8], [12], [13] accelerate training of deep
learning models with micro-batch layer pipeline. [15] con-
structs a sequence-wise sub-layer pipeline with approximated
attention and feed-forward network. Since the computation of
attention and linear blocks are at least linear complexity with

1

zhaotiandong@ucla.edu
wangk@fudan.edu.cn
xshi@seu.edu.cn
he@eias.ac.cn

regard to the variable input length, pipeline parallelism at sub-
layer level could inevitably result in severe pipeline bubbles
for large length variance across input sequences.

We have two key observations on the GPU performance
of Transformer-based models with intra-operator data paral-
lelism. First, the attention suffers from both low temporal and
spatial efficiency even for a fused kernel, indicating that the
attention could potentially benefit more from inter-operator
pipeline parallelism rather than intra-operator data parallelism.
Second, the highly-optimized linear blocks only obtain 70%
temporal efficiency and 25% spatial efficiency. Besides the
shape mismatch, it is also limited by the capacity of shared
memory and registers due to the fact that data parallelism leads
to data replication, meaning less data reuse.

To address the above problems, we propose a hybrid paral-
lelism (Fig.1c), data parallelism for linear blocks and pipeline
parallelism for attention. The latter is finer-grained than sub-
layer level to reduce pipeline bubbles. However, challenges
arise in the architecture support for the hybrid parallelism.
On one hand, inter-operator pipeline parallelism needs to split
the PEs for pipeline stages. The shape mismatch can also be
alleviated with the split along with workload decomposition.
On the other hand, intra-operator data parallelism needs to
unify the PEs and registers to maximize the data reuse. To meet
the both requirements, we propose a runtime reconfigurable
systolic array (RSA), where PEs across columns can work
either together for a single operator or separately for multiple
operators. Specifically, the RSA can be split for different input
tokens in linear operators, or for different pipeline stages in
the attention. We use column packing for this column-wise
reconfigurable working pattern. Moreover, the masking in the
decoder, which preserves the auto-regressive property to pre-
vent leftward information in the flow, brings 50% redundancy
in attention, especially for long sequences, but is neglected
in prior works. We further propose mask packing to skip the
redundant computation between two heads assigned to the
same RSA columns.

Our contributions are summarized as follows:
• We develop a reconfigurable systolic array for hybrid

parallelism, data parallelism for linear blocks and pipeline
parallelism for attention, to improve the hardware effi-
ciency of Transformer-based models.

• We propose a two-level packing, column packing and
mask packing, to boost efficiency spatially and temporally
for variable-length inputs. Packing decisions are explored
with a dynamic programming based algorithm to maxi-
mize the overall throughput.

• Applied to GPT, our design on U200 FPGA shows
1.16× higher normalized throughput and 1.94× better
runtime MAC utilization over the state-of-the-art GPU
performance for variable-length input sequences from
MRPC, RTE and SQuADv2 datasets.

In the following sections, we will first describe details of
column packing and mask packing in Section II and then
propose RSA architecture in Section III. Then we will explore
the column packing decisions for hybrid parallelism in Section

IV.Section V and Section VI present experiment results and
conclusions.

II. METHOD

A. Column Packing

1) Pack Linear Blocks: We exploit the intra-operator data
parallelism for each linear operator, namely a M×N×K ma-
trix multiplication(MM), where M ,N ,K stand for input rows,
output columns and hidden size. We have some observations
on the MM shapes in a Transformer-based model. For a
variable-length input, M is equal to input sequence length
L. Whether N and K are variable varies across different
MMs. In the first case, which is also the most common case
in the linear blocks of Transformer-based models, N and K
are fixed as a multiple of head size dh. The second case
includes the two MMs in the attention with variable N or
K, where the shapes are L×L×dh and L×dh×L. The shape
mismatch between fixed-shape PEs and variable-shape MMs
leads to low efficiency. Rather than suffering from multi-
dimensional shape mismatch between PE and MM, we map
the fixed shapes to the RSA rows and variable shapes to
the RSA columns and temporal dimension so that the shape
mismatch can be maximally alleviated by column packing. To
be more specific, for a MM with variable-length inputs, we
pack N from different input sequences along RSA columns
to maximize the spatial efficiency. We also take advantage
of split-k, as described in [10], to partially unroll the K
dimension to balance the parallel workloads along columns
for temporal efficiency.

2) Pack Attention: We propose a coarse-grained head-level
pipeline for the attention with six stages, including KQ load,
MM KQT , V load, softmax, MM SV T and final save. The
two MMs are packed along RSA columns during the pipeline,
where the former has variable N and the latter has variable K.
Since two different variable dimensions are mapped to RSA
columns, weight stationary and output stationary dataflow are
respectively required. Moreover, the number of heads to run
per stage is worth study. More heads to pack in a MM stage
leads to better spatial efficiency locally within the stage, but
potentially results in worse global efficiency, since the larger
pipeline granularity brings more bubbles. The pipeline stage
partition will be discussed more in Section IV.

B. Mask Packing

Each token only needs the computation results from its
preceding tokens in the input sequence, but do not need
those after. A Transformer decoder masks out the unnecessary
ones to preserve the auto-regressive property. To eliminate
the masking redundancy in softmax(mask(KQT))V T , we
propose mask packing as in Fig.2d. Rather than applying
masking after the full computation of two KQT s, we skip
the redundant computation and only generate a packed result
matrix S. We use S as packed layout for the following softmax
and SV T for memory efficiency. So PEs need to handle
KQT and SV T with fixed and variable reduction length,

2

Fig. 2. (a) System diagram. (b) Circuit diagram of a RSA PE and its coupled shift registers. The input data path and buffer switch can be configured
for packing. (c) RSA is split to halves in different dataflows for column packing. (d) Mask packing. We show an example where we skip the redundant
computation for KQT from two heads.

respectively, and the softmax module needs to handle vectors
in the packed layout.

III. HARDWARE ARCHITECTURE DESIGN

To provide the underlying architecture for the column
packing and mask packing, we develop a RSA along with
arbiter networks and a nonlinear vector module (NVM), as
shown in Fig.2b.

We develop a two-dimensional systolic array with PEs and
coupled shift registers. Fig.2b shows the circuit diagram of
a RSA PE, which has three-level reconfigurablity from the
control signals (gray). First, use reg row configures the RSA
split along columns by selecting the input data path to the mul-
tiplier. If it is set to 1, the multiplier will take the value stored
in the row register (orange) as input via the reconfigurable
data path (blue) rather than the forwarded value from the left
PE, where the two neighboring PEs can thus work separate
workloads. Second, the coupled shift register is for input
buffering and its buffer switch can be configured for mask
packing. Third, use forward psum configures the dataflow
for a RSA. If it is set to 1, PE uses the partial sum forwarded
from upper PE and thus enables weight stationary dataflow.
Otherwise, the accumulation will be performed locally as
output stationary dataflow. The reconfigurable dataflow is for
the two MMs in attention with variable N and K respectively
so that they can be packed along RSA columns.

We use two arbiter networks for the interconnection between
RSA and on-chip buffers to meet different communication
patterns under column packing. For a MM where K dimension
is partially unrolled across columns, we need to collectively
reduce the partial sums from multiple columns. For the atten-
tion pipeline, the result of the first MM computed on a RSA
partition is written to on-chip buffers and then fed to another
RSA partition. These two patterns are realized by the arbiter
networks. Moreover, to handle the packed layout for mask
packing, our NVM takes advantage of a configurable reduction

tree proposed in [17] for maximum and sum reduction with
arbitrary length in softmax.

IV. SCHEDULING

A. Column Packing for A Single Operator

We first discuss the column packing decisions for a MM
with variable-length inputs in the shape Li×N×K. Li is the
length of the ith input in a batch. Mapping N and partial
K to the spatial column dimension and Li to the temporal
dimension, we enumerate all combinations of N values and
K factors to find the pair with maximal spatial efficiency.
For example, we are mapping a MM with N=4 and K=8
to a RSA with 16 columns and 4 rows. To maximize spatial
efficiency, we unroll K=8 along 2 columns besides 4 rows.
Still, only 8 columns (N=4×2, 2 is K’s column unroll factor)
are used. So we split RSA to two partitions, each holding 8
columns and serving part of Li along the time. We then split
the Li to two parts to balance the workload packed along
columns.

B. Column Packing for Attention Pipeline

For the attention pipeline at head level, we aim to split head
sequences H={hij}, where i is the sequence index in a batch
and j is the head index, to multiple stages, while minimizing
the overall latency. Within each stage, intra-operator column
packing in Section IV-A is applied. Mask packing is also
applied to each MM. We formulate the pipeline stage partition
as a dynamic programming problem. Its optimal sub-structure
is listed in Eq.1. p is a bit vector, where 1 means the kth head
in H is packed with its last preceding head and 0 means no
packing. The stage partition can be inferred from p with simple
union-and-find method. Column packing is constrained by the
on-chip memory capacity. Mmax is the maximally allowed
on-chip memory pressure and Mk is the memory pressure of
kth head. Iterating the hk in H, we find the maximal overall
throughput T with the head packed to last preceding head to
one stage or not. If hk is packed, bookkeeping p[k]=1, Mk is

3

on hold when exploring the column packing decision for next
head. Otherwise, we check the packing of next head at a new
stage with Mmax. The optimal stage partition will maximally
reduce the pipeline bubbles.

T(k, p,M) = max

{
T(k − 1, p[k] = 1,M −Mk)|M > Mk

T(k − 1, p[k] = 0,Mmax)
(1)

V. EXPERIMENT RESULTS

A. Evaluation Setting

We implement our accelerator on Xilinx U200 FPGA with
RSA in 4 rows and 1024 columns, NVM in 32 vector length,
and four DDR4. The latency in cycle count for the evaluation
below is collected through RTL-level simulation with Xilinx
Vivado Suite.

We benchmark our design with 6 different settings on input
sequence length. The first three are constructed with fixed-
length inputs in length 64, 512, 2048 in batch size 8. The
other three collect variable-length inputs from MRPC, RTE
and SQuADv2 [20] test sets, respectively, and then packed
in batches with size 8. Three datasets have 14/40, 54/240,
167/791 for average/maximal sequence length. The former
two datasets are from GLUE [22] benchmark suite with
representative length in small and medium length, while the
latter covers more long length. We run these datasets on a
small GPT-3 for evaluation. The model includes 12 layers,
768 embedding size, 12 heads and 64 head size.

B. Performance with Step-wise Optimization

We apply step-wise evaluation to show the effect of hybrid
parallelism with column packing and mask packing. Intra-
operator Data Parallel runs the model on RSA with intra-
operator data parallelism in operator-by-operator basis. Layer
Pipeline runs a two-stage layer pipeline parallelism, where the
RSA is split to halves and each runs a Transformer layer for
different sequences. The other three applies hybrid parallelism
incrementally with different packing methods.

Fig. 3 shows the impact of step-wise optimization on GPT.
One can find that Layer Pipeline is limited by off-chip memory
bandwidth on a single device and thus performs worse for
longer sequences. The hybrid parallelism is effective in all
cases with 1.17× higher throughput on average than intra-
operator data parallelism, while column packing and mask

Fig. 3. GPT performance on RSA with step-wise optimization.

packing bring 1.21× and 1.26× performance boost respec-
tively. Column packing gets more benefits for short sequences,
such as fixed 64, MRPC and RTE, with better spatial effi-
ciency. Mask packing benefits more for long sequences, which
brings additional 30% for fixed 2048, but is marginal for other
cases. This is because the computation of attention grows
quadratically with sequence length and the attention takes 50%
of total computation for fixed 2048, while it takes less than
10% for fixed 64.

C. End-to-End Performance

Table I compares our performance with other works on GPU
and FPGA on GPT. Batch size 8 is used for all cases. We
evaluate GPU performance with [28], which is the state-of-the-
art GPU work for variable-length inputs. [15] is optimized for
variable-length inputs on FPGA, but does not include detailed
throughput for each dataset. [11] only reports performance for
fixed-length inputs, which is also the case for other FPGA
works. So we compare the performance for fixed 128 length
inputs with [11] and that for variable-length inputs with [28]
on three datasets. The throughput is normalized in MAC
units and 16-bit precision. Our design outperforms GPU and
FPGA works by 1.16× and 2.11× on normalized throughput,
respectively, across fixed-length and variable-length inputs.
The advantage comes from the better efficiency due to the
column packing and mask packing on our RSA, which shows
1.94× and 1.18× better MAC efficiency over GPU and FPGA
works. This observation exhibits the advantage of our RSA
architecture over others for Transformer-based models with
variable-length inputs.

Input Sequence Fixed 128 MRPC RTE SQuADv2
Platform [28] [11] Ours [28] Ours [28] Ours [28] Ours
Device A100 GPU ZCU102 FPGA U200 FPGA A100 GPU U200 FPGA A100 GPU U200 FPGA A100 GPU U200 FPGA
Precision FP16 INT8 INT16 FP16 INT16 FP16 INT16 FP16 INT16
Frequency(MHz) 1095 214 200 1095 200 1095 200 1095 200
Tensor Core/DSP 432 3287 4160 432 4160 432 4160 432 4160
Runtime Utilization 0.60 0.79 0.93 0.21 0.66 0.34 0.70 0.54 0.75(FLOPS/MAC)
Normalized Throughput 0.16 0.09 0.19 0.11 0.13 0.10 0.14 0.14 0.15(GFLOPS/MAC)

TABLE I
COMPARE END-TO-END PERFORMANCE WITH GPU AND OTHER FPGA WORKS.

4

VI. CONCLUSION

We propose a hybrid parallelism for Transformer-based
models with variable-length inputs, specifically data paral-
lelism for linear operators and pipeline parallelism for at-
tention. To make it happen, we develop a reconfigurable
systolic array with multi-level packing. First, for a single
linear operator, we pack the computation of different input
sequences along the array columns for spatial efficiency.
Second, to improve the temporal efficiency of the attention
block, we develop a head-level pipeline with stages packed
along the array columns. Moreover, we develop mask packing
to skip the redundant computation that are masked out by
Transformer decoder masking. Column packing decisions are
explored with a dynamic programming based algorithm to
maximize the overall throughput. Applied to GPT, our design
on Xilinx U200 FPGA outperforms state-of-the-art GPU work
for variable-length inputs by 1.16× in normalized throughput
and 1.94× in runtime MAC utilization across MRPC, RTE
and SQuADv2 datasets.

REFERENCES

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: a system for large-
scale machine learning.” in Osdi, vol. 16, no. 2016. Savannah, GA,
USA, 2016, pp. 265–283.

[2] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language mod-
els are few-shot learners,” Advances in neural information processing
systems, vol. 33, pp. 1877–1901, 2020.

[3] T. Dao, D. Y. Fu, S. Ermon, A. Rudra, and C. Ré, “Flashattention: Fast
and memory-efficient exact attention with io-awareness,” arXiv preprint
arXiv:2205.14135, 2022.

[4] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[5] S. Fan, Y. Rong, C. Meng, Z. Cao, S. Wang, Z. Zheng, C. Wu, G. Long,
J. Yang, L. Xia et al., “Dapple: A pipelined data parallel approach
for training large models,” in Proceedings of the 26th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, 2021,
pp. 431–445.

[6] J. Fang, Y. Yu, C. Zhao, and J. Zhou, “TurboTransformers: An Efficient
GPU Serving System for Transformer Models,” ser. PPoPP ’21. New
York, NY, USA: Association for Computing Machinery, 2021, p.
389–402. [Online]. Available: https://doi.org/10.1145/3437801.3441578

[7] S. Feng, B. Hou, H. Jin, W. Lin, J. Shao, R. Lai, Z. Ye, L. Zheng,
C. H. Yu, Y. Yu et al., “Tensorir: An abstraction for automatic tensorized
program optimization,” in Proceedings of the 28th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 2, 2023, pp. 804–817.

[8] Y. Huang, Y. Cheng, A. Bapna, O. Firat, D. Chen, M. Chen, H. Lee,
J. Ngiam, Q. V. Le, Y. Wu et al., “Gpipe: Efficient training of giant neu-
ral networks using pipeline parallelism,” Advances in neural information
processing systems, vol. 32, 2019.

[9] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers et al., “In-datacenter
performance analysis of a tensor processing unit,” in Proceedings of the
44th annual international symposium on computer architecture, 2017,
pp. 1–12.

[10] A. Kerr, D. Merrill, J. Demouth, and J. Tran, “Cutlass: Fast linear algebra
in cuda c++,” NVIDIA Developer Blog, 2017.

[11] Z. Liu, G. Li, and J. Cheng, “Hardware acceleration of fully quantized
bert for efficient natural language processing,” in 2021 Design, Automa-
tion & Test in Europe Conference & Exhibition (DATE). IEEE, 2021,
pp. 513–516.

[12] D. Narayanan, A. Harlap, A. Phanishayee, V. Seshadri, N. R. Devanur,
G. R. Ganger, P. B. Gibbons, and M. Zaharia, “Pipedream: Generalized
pipeline parallelism for dnn training,” in Proceedings of the 27th ACM
Symposium on Operating Systems Principles, 2019, pp. 1–15.

[13] D. Narayanan, A. Phanishayee, K. Shi, X. Chen, and M. Zaharia,
“Memory-efficient pipeline-parallel dnn training,” in International Con-
ference on Machine Learning. PMLR, 2021, pp. 7937–7947.

[14] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An
imperative style, high-performance deep learning library,” Advances in
neural information processing systems, vol. 32, 2019.

[15] H. Peng, S. Huang, S. Chen, B. Li, T. Geng, A. Li, W. Jiang, W. Wen,
J. Bi, H. Liu, and C. Ding, “A Length Adaptive Algorithm-Hardware
Co-Design of Transformer on FPGA through Sparse Attention and
Dynamic Pipelining,” in Proceedings of the 59th ACM/IEEE Design
Automation Conference, ser. DAC ’22. New York, NY, USA:
Association for Computing Machinery, 2022, p. 1135–1140. [Online].
Available: https://doi.org/10.1145/3489517.3530585

[16] R. Pope, S. Douglas, A. Chowdhery, J. Devlin, J. Bradbury, A. Lev-
skaya, J. Heek, K. Xiao, S. Agrawal, and J. Dean, “Efficiently scaling
transformer inference,” arXiv preprint arXiv:2211.05102, 2022.

[17] E. Qin, A. Samajdar, H. Kwon, V. Nadella, S. Srinivasan, D. Das,
B. Kaul, and T. Krishna, “SIGMA: A Sparse and Irregular GEMM Ac-
celerator with Flexible Interconnects for DNN Training,” in 2020 IEEE
International Symposium on High Performance Computer Architecture
(HPCA), 2020, pp. 58–70.

[18] A. Radford, K. Narasimhan, T. Salimans, I. Sutskever et al., “Improving
language understanding by generative pre-training,” 2018.

[19] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever et al.,
“Language models are unsupervised multitask learners,” OpenAI blog,
vol. 1, no. 8, p. 9, 2019.

[20] P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang, “Squad: 100,000+
questions for machine comprehension of text,” arXiv preprint
arXiv:1606.05250, 2016.

[21] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.

[22] A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. R. Bowman,
“GLUE: A multi-task benchmark and analysis platform for natural
language understanding,” arXiv preprint arXiv:1804.07461, 2018.

[23] X. Wang, Y. Xiong, X. Qian, Y. Wei, L. Li, and M. Wang, “Lightseq2:
Accelerated training for transformer-based models on gpus,” arXiv
preprint arXiv:2110.05722, 2021.

[24] Y. Yu, C. Wu, T. Zhao, K. Wang, and L. He, “Opu: An fpga-based
overlay processor for convolutional neural networks,” IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 28, no. 1, pp. 35–
47, 2019.

[25] Y. Yu, T. Zhao, K. Wang, and L. He, “Light-opu: An fpga-based
overlay processor for lightweight convolutional neural networks,” in
Proceedings of the 2020 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, 2020, pp. 122–132.

[26] Y. Yu, T. Zhao, M. Wang, K. Wang, and L. He, “Uni-opu: An fpga-based
uniform accelerator for convolutional and transposed convolutional
networks,” IEEE transactions on very large scale integration (VLSI)
systems, vol. 28, no. 7, pp. 1545–1556, 2020.

[27] J. Zeng, M. Li, Z. Wu, J. Liu, Y. Liu, D. Yu, and Y. Ma, “Boosting
Distributed Training Performance of the Unpadded BERT Model,” arXiv
preprint arXiv:2208.08124, 2022.

[28] Y. Zhai, C. Jiang, L. Wang, X. Jia, S. Zhang, Z. Chen, X. Liu, and
Y. Zhu, “ByteTransformer: A High-Performance Transformer Boosted
for Variable-Length Inputs,” 2023.

[29] T. Zhao, Y. Yu, K. Wang, and L. He, “Heterogeneous dual-core overlay
processor for light-weight cnns,” in 2021 IEEE 29th Annual Interna-
tional Symposium on Field-Programmable Custom Computing Machines
(FCCM). IEEE, 2021, pp. 264–264.

5

https://doi.org/10.1145/3437801.3441578
https://doi.org/10.1145/3489517.3530585

	Introduction
	Method
	Column Packing
	Pack Linear Blocks
	Pack Attention

	Mask Packing

	Hardware Architecture Design
	Scheduling
	Column Packing for A Single Operator
	Column Packing for Attention Pipeline

	Experiment Results
	Evaluation Setting
	Performance with Step-wise Optimization
	End-to-End Performance

	Conclusion
	References

