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ABSTRACT

Recent AI-generated videos (e.g., Veo3) are growing increasingly realistic and
indistinguishable from real videos. Current existing detectors usually rely on ar-
tifacts present in earlier or inferior generations, resulting in poor generalization
to the newly published generators. To address the challenge of newly generated
videos, we propose a novel dataset, AIDetection, for the AI-generated video de-
tection task. The proposed AIDetection dataset contains 39,298 real and 19,731
generated videos from 27 diverse sources, specifically designed to evaluate cross-
generator generalization under out-of-distribution settings. For the real videos,
the motion of moving objects and the background show clear distinctions. Based
on this observation, in this paper, we introduce a novel Multiscale Spatiotem-
poral motion-aware modeling Transformer framework (MSTformer) for the AI-
generated video detection task, which learns motion-aware discriminative repre-
sentations from both local and global viewpoints. Specifically, a novel motion-
aware spatiotemporal downsampling mechanism is designed to capture local mo-
tion discrepancies between real and generated videos. Further, to prevent the dis-
criminative cues from being weakened, we also employ a cross-scale semantic
contrastive learning mechanism implemented on multiscale spatiotemporal fea-
tures, enabling the model to maintain the global discriminative ability. Extensive
experiments on three benchmark datasets (i.e. AIDetection, GVF, and GenVideo)
demonstrate that MSTformer achieves superior cross-domain generalization per-
formance, especially on the OOD setting.

1 INTRODUCTION

At present, the content of AI-generated videos from Emu (Girdhar et al., 2023) to Veo3 (DeepMind,
2025) is becoming increasingly high-quality, especially with advancements in diffusion technology,
e.g., Stable Video Diffusion (Ho et al., 2022b). How to correctly distinguish whether a video is AI-
generated or real plays an important role in numerous fields, for example, protecting the intellectual
property rights and copyrights of videos, artificial intelligence security, and so on.

AI-generated videos usually exhibit coherent actions, natural camera movements, and convincing
physical effects (Sun et al., 2025) , which bring us huge challenges. In addition, the AI generation
technology tends to constantly evolve, and detectable artifacts are rapidly diminishing. Existing
detectors primarily rely on visual artifacts from low-quality generations, which fail to generalize to
high-quality videos. In the meantime, most advanced commercial generators remain closed-source,
which poses a critical challenge: how can we design a detector that learns intrinsic differences be-
tween AI-generated and real videos, while ensuring robust generalization across unseen generators
and even more advanced ones in the future?

To address this challenge, we deeply investigate and explore the motion information as the discrimi-
native clue. It is well known that motion dynamics is a fundamental element of videos. As shown in
Fig. 1, by analyzing the dense displacement fields across multiple generators, we observe that gen-
erated videos exhibit motion patterns inconsistent with the physical world. Specifically, objects in
generated videos often share correlated motion with backgrounds or unrelated regions, likely due to
temporal dependencies introduced during generation. In contrast, real videos exhibit localized and
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Veo3

Sora

douyin

HidreamAi

Activity Net

Figure 1: Visualization of Lucas–Kanade (LK) optical flow. Blue, yellow, cyan, and red indicate
upward, downward, leftward, and rightward motion directions, respectively. Brighter colors corre-
spond to higher motion speeds. The active subject in the current frame is outlined in red.

diverse motion, along with clear distinctions between foreground and background dynamics. Simi-
lar observations can also be also found in action recognition tasks that the motion being performed
can evolve much faster than their subject identities, such as clapping, waving, shaking, walking, or
jumping (Feichtenhofer et al., 2019). Observing from the spatial perspective, low-quality genera-
tions may reveal obvious artifacts, but high-quality videos are semantically indistinguishable from
real ones. For the AI-generated videos, there are significant differences about texture and style vari-
ations with different video generators. For the real videos, diverse source material, resolution and
editing types will bring inconsistent styles. Therefore, only make detection based on spatial features
alone will be not enough. These observations motivate us incorporating temporal motion cues into
effective AI-generated video detection.

To capture the underlying dynamic differences between real and generated videos, in this paper, we
propose a novel Multiscale Spatiotemporal motion-aware modeling Transformer framework (MST-
former) for the AI-generated video detection task, which integrates both local and global motion-
aware discriminative representation learning into a unified framework. To accurately capture local
motion variance between the moving object and background, a novel motion-aware spatiotemporal
downsampling mechanism is proposed to learn local motion discrepancies between real and gener-
ated videos. Motivated by the video domain generalization mechanism, we also design a cross-scale
semantic contrastive learning module to enforce consistency across features extracted at different
scales. The contrastive learning can help the model maintaining the global discriminative ability
with the assistance of motion-aware information. In addition, we construct a dedicated dataset,
AIDetection, which contains 19,731 generated videos from 24 sources and 19,298 real videos from
three sources. The main advantage of AIDetection lies in that we introduce unknown or closed-
source video generators to extend the verification of detection generalization. Experiments under
out-of-distribution (OOD) settings on AIDetection validate the effectiveness in addressing the gen-
eralization limitations of existing detectors. The main contributions are summarized as follows:

• We propose a novel Multiscale Spatiotemporal motion-aware modeling Transformer frame-
work (MSTformer) for the AI-generated video detection task, which integrates both lo-
cal and global motion-aware discriminative representation learning into a unified manner.
The fundamental differences in temporal motion relationships between generated and real
videos can assist us in detecting AI-generated videos well.

• A novel motion-aware spatiotemporal downsampling mechanism implemented upon the
temporal sequence is introduced to efficiently capture motion discrepancies between gen-
erated and real videos in the multiscale feature space. And a novel Cross-scale Semantic
Contrastive Learning (CSCL) module is designed to enrich the diversity of the samples and
guide the model learning more clear boundaries and discriminative features.
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• To address the challenge of generalization on unknown or closed-source video generators,
we construct a new AIDetection dataset, specifically for AI-generated video detection, con-
sisting of generated videos from 24 different generators and real videos from three distinct
sources, allowing comprehensive evaluation across multiple OOD testing scenarios.

2 RELATED WORK

2.1 VIDEO GENERATION METHODS

Video generation can be separated into two types, i.e., text-to-video (T2V) and image-to-video (I2V).
I2V aims to generate videos from a static image or an image with auxiliary instructions, and the goal
is to produce plausible motion from initially static content while preserving spatial detail and tem-
poral continuity. T2V directly generates videos from natural language text, which requires not only
visualizing high-level semantic information but also adhering to fine-grained textual constraints.
Prior video generation methods mainly adopt Generative Adversarial Networks (GANs) (Vondrick
et al., 2016) (Aldausari et al., 2022) and autoregressive transformers (Xiong et al., 2024) e.g., Video
Pixel Networks (Kalchbrenner et al., 2017). Video Diffusion Models (VDM) (Ho et al., 2022b)
introduced diffusion models to video generation and produce videos with significantly higher clarity
and temporal consistency compared to GAN-based approaches. Later, Imagen Video (Ho et al.,
2022a) leveraged the powerful pretrained text-to-image generator Imagen and adopted a cascade
diffusion strategy, showing remarkable capability in high-resolution T2V synthesis.

2.2 GENERATED VIDEO DETECTION METHODS

Current research on AI-generated video detection mainly falls into four categories:

(1) Multibranch spatiotemporal networks: A representative algorithm of this line is the two-
stream convolutional networks (Simonyan & Zisserman, 2014), followed by numerous extensions
such as TSN (Wang et al., 2016) and I3D (Carreira & Zisserman, 2017). Bai et al. proposed
AIGVDet, which captures abnormal textures and artifacts in low-quality generated videos. Ji et al.
(2024) proposed DuB3D that jointly models appearance information from video frames and tempo-
ral dynamics across frames. Chang et al. (2024) designed a three-branch expert ensemble model
based on raw frames, optical flow, and depth information.

(2) Spatiotemporal consistency modeling: Ma et al. (2024a) reduced AI-generated video detection
to a two-dimensional problem and proposed DeCoF to disentangle spatial and temporal representa-
tions by mapping frames into a shared feature space. Chen et al. (2024b) introduced DeMamba, a
plug-and-play module designed to enhance the detectors by identifying AI-generated videos through
the analysis of inconsistencies in temporal and spatial dimensions. He et al. (2024) focused on both
local and global temporal defects in generated videos. Kundu et al. (2025) designed UNITE, a
universal network capable of detecting tampered and synthesized videos across diverse scenarios.

(3) Large Multi-Modal Models: MM-Det (Song et al., 2024) constructed a MMFR to detect
forgery traces across different diffusion-generated videos. BusterX (Wen et al., 2025) treated AI-
generated video detection as a visual reasoning task, which is built on the pretrained Qwen2.5-VL-
7B (Razavi et al., 2019).

(4) Methods with Diffusion Reconstruction Error: Liu et al. (2024) adapted approaches from
AI-generated image forensics and proposed DIVID, a video detection algorithm based on Diffu-
sion Reconstruction Error (DIRE) (Wang et al., 2023). Vahdati et al. (2024) suggests that video
generators leave unique traces that image-level detectors cannot capture.

However, a practical challenge for AI-generated video detection is that most high-quality generators
are proprietary and closed-source, leaving researchers with limited knowledge of their internal de-
sign. As our focus is on improving generalization in detecting videos from unseen generators, we
restrict our review to the essential background and do not delve further into generation methods.
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Figure 2: Overall pipeline of our proposed MSTformer method.

3 METHOD-MSTFORMER

3.1 FRAMEWORK OVERVIEW

As shown in Fig. 2, the proposed Multiscale Spatiotemporal motion-aware modeling Transformer
framework (MSTformer) contains two core modules, i.e., a Motion-aware SpatioTemporal Down-
sampling (MSTD) module and a Cross-scale Semantic Contrastive Learning (CSCL) module. MST-
former adopts the MViTv2 (Li et al., 2022) as the backbone and it contains multiple stages with
different resolutions. While we start with high-resolution inputs, the model progressively abstracts
attention features through multiscale spatiotemporal downsampling. While we input a video, the
input video will be mapped into four distinct scales, forming a multiscale feature pyramid, i.e.,
{x0,x1,x2,x3}. Then, the MSTD module is implemented at the end of each stage, and CSCL
mechanisms is implemented on different stages.

3.2 MOTION-AWARE SPATIOTEMPORAL DOWNSAMPLING MODULE

Prior work in video classification has explored and verified the important role of spatial or tem-
poral features in constructing useful representations. In real videos, object motion dynamics and
background dynamics should have clear distinctions. Analogously, the motion cues of AI-generated
videos should also meet the requirements. Motivated by this observation, we integrate the motion
dynamics into discriminative learning for AI-generated video detection. Multiscale feature represen-
tation has been proven that it can to help improve the classification ability, for example, Improved
Pooling Attention in MViTv2 (Li et al., 2022) shows its strong potential for building multiscale
representations. We follow this basic setting and design the motion-aware spatiotemporal down-
sampling module to capture motion discrepancies between real and generated videos at different
temporal scales. Specifically, we employ 3D convolutions to downsample both the temporal and
spatial dimensions of features from the previous layer, as shown in Fig. 2(a).

Concretely, for the attention input at stage i, denoted as xi ∈ RL×D, the sequence frame length is
L(L = T ×H ×W ) with dimension D. We first project xi linearly into queries qi ∈ RL×D, keys
ki ∈ RL×D, and values vi ∈ RL×D. Before downsampling, we first reshape qi, ki, vi into spatial
tensors of shape T ×H ×W ×D, and then apply 3D convolutions separately to obtain:

q̂i+1 = STDSqi(qi), k̂i+1 = STDSki(ki), v̂i+1 = STDSvi(vi),
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where STDSqi , STDSki
, STDSvi denote spatiotemporal downsampling with 3D convolution oper-

ations. The convolution kernels and strides vary across downsampling stages, thereby producing
outputs with different spatiotemporal scales. After downsampling, the results are reshaped back
into sequences qi+1, ki+1, vi+1 and processed with attention computation consistent with MViTv2,
including spatiotemporal relative position embeddings and residual pooling connections. The rel-
ative position embedding e(rel) is computed by dot product between the current queries qi+1 and
dimension-adjusted embeddings from the original input. The procedure can be represented as:

Attni+1 = Softmax

(
(qi+1k

T
i+1 + e(rel))
√
d

)
vi+1, (1)

e(rel) = qi+1 · rt + qi+1 · rh + qi+1 · rw, (2)
xi+1 = Attni+1 + qi+1. (3)

Through the spatiotemporal downsampling step, local spatiotemporal correlations from shallow lay-
ers are preserved through successive downsampling stages. At deeper layers with a larger spatiotem-
poral receptive field, these local cues are fused with global relations, which helps the model better
learn the differences in motion patterns between real and generated videos. In addition, the spa-
tiotemporal downsampling along T not only reduces the computational cost and spatial complexity
of attention but also improves the model’s sensitivity to both global and local motion changes.

3.3 CROSS-SCALE SEMANTIC CONTRASTIVE LEARNING MODULE

For the AI-generated video detection task, another challenge is how to define the boundary of dis-
crimination between the real and AI-generated videos. The goal of the supervised contrastive learn-
ing (Khosla et al., 2020) mechanism lies that features from the same class should be pulled closer,
while those from different classes should be pushed apart in the embedding space. That is, the fea-
ture embedding similarity of two AI-generated videos should be higher than the feature embedding
similarity of one AI-generated video and a real video. In addition, the number of samples in the sam-
ple set used in contrastive learning should be large enough to guide the feature learning. Therefore,
we propose a novel Cross-scale Semantic Contrastive Learning (CSCL) module to enrich the diver-
sity of the samples and guide the model learning more clear boundaries and discriminative features,
as shown in Fig.2(b).

Specifically, the CSCL module is implemented on the last three stages of the pyramid. To enlarge
the number of samples, we introduce the cross-scale features to enrich the sample set. The main rea-
son lies in the fact that the feature representations of a video come from different scales should be
semantically consistent. Based on this useful clue, we sample two blocks at each scale and randomly
select one block. Then, we choose two different scales to feed into the supervised contrastive learn-
ing module. Specifically, the CSCL module is implemented on three different paired stages, i.e.,
{x1,x2}, {x2,x3}, and {x1,x3}. Here, we use the paired stage {x1,x2} as an example explana-
tion and the two attention scale features are denoted as {x′

1, x
′

2} ∈ RL×D. To ensure comparability
across scales, the lower-dimensional features x

′

2 are first projected into the same dimension as x
′

1 via
an attention mapping module. The sampled scale features serve as dimension-aligned contrastive
groups. Although the features come from different stages, they originate from the same mini-batch
of input data, which provides the basis for supervised contrastive learning. The supervised con-
trastive loss is defined as:

Lsup =

N∑
i=1

−1

|Pi|
∑
p∈Pi

log
exp(sim(hi, hp)/τ)∑N
j=1 exp(sim(hi, hj)/τ)

, (4)

where hi denotes the feature vector of sample i, sim(hi, hp) is the cosine similarity between two
vectors, Pi = {p | yp = yi, p ̸= i} is the set of indices of samples from the same class as i, |Pi|
is its cardinality, N is the batch size, and τ is a temperature parameter. The final loss combines the
cross-entropy loss LCE and the supervised contrastive loss across three groups:

L = LCE + λ
(
Lsup
1 + Lsup

2 + Lsup
3

)
. (5)
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Through the CSCL optimization, the model will be tend to learn class-discriminative features via
the cross-scale consistency regularization.

4 AIDETECTION DATASET

Organization: To address the challenge of emerging new video generators, we propose a novel
AIDetection dataset for the AI-generated video detection task. Table 1 presents the key differ-
ences between AIDetection and existing AI-generated video detection datasets. The main advantage
of AIDetection lies in simultaneously providing a large number of generated videos from diverse
sources and including the latest generation methods, which involve more sophisticated and hetero-
geneous mechanisms. This design makes it possible to evaluate the generalization performance of
detectors trained on earlier generation models against the most recent ones. In addition, our collected
real videos better match the content and style of videos in current online environments.

Table 1: Comparison of benchmark datasets for AI-generated video detection.
Datasets Scale Latest model Video sources (Gen./Real)

GVD (Bai et al., 2024) 11k Sora (2024.2) 11/2
GVF (Ma et al., 2024a) 2.8k Veo (2024.5) 8/2
GenVideo (Chen et al., 2024b) 2271k Sora (2024.2) 24/3
GenVidBench (Ni et al., 2025) 143k Mora (2024.3) 8/2
AIDetection 39k Hailuo (2025.6) 24/3

The generated videos in AIDetection are partly sourced from the GVD (Bai et al., 2024) and Gen-
Video (Chen et al., 2024b) datasets to construct a subset for our benchmark. Moreover, they are
explicitly separated into I2V and T2V generation paradigms. Another portion of AIDetection comes
from seven commercial generators (AI, 2024b; OpenAI, 2024; HiDream.ai, 2024; Jianying, 2024;
AI, 2024a; WanTeam et al., 2025; KlingAI, 2024; PixVerse, 2024), where we collected publicly
available demos from their official websites as well as user-uploaded community videos. Unlike the
former category, these are mature commercial products that have undergone multiple iterations over
several years and provide powerful customization capabilities. For example, Kling v1.6 not only
supports traditional I2V and T2V modes, but also introduces functionalities such as first–last frame
control, multi-image references, trajectory guidance, and multimodal editing on top of existing gen-
erations to replace or remove elements within a video. A portion of the real videos is sampled from
the public action recognition datasets ActivityNet (Caba Heilbron et al., 2015) and Kinetics (Kay
et al., 2017). Another portion is collected from publicly available popular videos on the Douyin
short video platform. This design allows the AIDetection dataset to better simulate the distribution
of real scenarios for video authentication, thereby making evaluation results more reliable.

OOD Setting: Given the specificity of AI-generated video detection, only detectors that general-
ize to arbitrary unseen generators or sources are meaningful. Following the domain generalization
paradigm, we split videos by generator type or source: the source domain and target domain cor-
respond to distinct sources used for training and testing, respectively. Domain shift arises from
differences in generative texture characteristics, video quality, and semantic content. The exact
training/test counts used in our evaluations are shown in the Appendix, which realistically simulates
the need to discriminate a large number of unknown sources from a limited set of known ones.

5 EXPERIMENTS

Experimental Setting: In the preprocessing stage, we uniformly sample 16 frames from each raw
video at equal temporal intervals. Each sampled frame is resized such that the shorter side is 256
pixels, followed by a random crop to a spatial resolution of 224 × 224. We then apply common
data augmentation strategies, including RandAugment and Random Erasing. Our experiments are
implemented with the mmaction2 framework. The backbone adopts the “mvit-small” architecture,
initialized with pretrained MViTv2 weights on Kinetics-400. Training is performed with a batch
size of 16. For the supervised contrastive loss, the temperature parameter is set to τ = 0.1 and the
weighting coefficient λ = 0.1. We use the AdamW optimizer with an initial learning rate of 1.6 ×
10−4, momentum parameters (β1, β2) = (0.9, 0.999), and weight decay of 0.05. All experiments
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are conducted on 2 × NVIDIA A800 80G GPUs.The learning rate is linearly warmed up from 1/10
of the base value during the first 20 epochs, and after that it is decayed with cosine annealing to
1/100 of the base value over the remaining epochs.

Evaluations: To comprehensively evaluate the generalization ability of the model when facing un-
seen generators and unknown real video sources, we conduct experiments on three datasets, i.e.,
AIDetection, GVF (Ma et al., 2024a) and GenVideo (Chen et al., 2024b). Since the distributions
are highly imbalanced across different sources, evaluating each generator individually would result
in unstable distributions caused by varying sample sizes. Therefore, instead of following the orig-
inal per-generator evaluation, we treat all test samples for evaluation. Although this change makes
it difficult to compare our results directly with those of other methods, it provides a more realistic
assessment of generalization to completely unknown distributions. Five metrics are used for eval-
uation, i.e., ACC(%), Precision(%), Recall(%), F1(%), and Average Precision (AP). The accuracy
calculation is based on a threshold value of 0.5.

Specifically, for the GVF dataset, we use 867 videos from each of ModelScopeT2V, Show1,
Text2Video-zero, and ZeroScope, together with 867 real videos from MSR-VTT and MSVD as
the training set. The test set includes videos from eight additional generators such as Pika and Sora,
along with 97 real videos from MSR-VTT and MSVD. For the GenVideo dataset, due to its very
large training set, we sample 18,405 generated videos from 10 generators and 19,806 real videos
from 2 sources, which together account for about 1.7% of the entire dataset. The test set includes
all 8,588 generated videos from 10 generators and 10,000 real videos from 1 source. For the one-
to-many setting, we train on a single generator (OpenSora, Pika, or SEINE) with 2,572, 3,000, and
2,500 videos, respectively.

5.1 QUANTITATIVE EVALUATION

To comprehensively evaluate the generalization performance of our model when facing unseen gen-
erators and unknown real video sources, we conduct experiments on the AIDetection, GVF, and
subsets of the GenVideo datasets. Our experimental settings on GenVideo and GVF differ from
those in their original papers, making direct comparisons with the reported results infeasible. The
detailed differences are provided in the Appendix. Table 2 presents the results when training with
all available videos from the three datasets. MSTformer can achieve the best performance.

Table 2: Performance comparisons on three benchmark datasets.
Dataset Model ACC Precision Recall F1 AP

AIDetection
UniFormerv2-B-(Li et al., 2023) 86.13 80.92 94.56 87.21 95.30
MViTv2-S (Li et al., 2022) 75.96 75.09 77.69 76.37 87.13
MSTformer 91.31 93.10 89.23 91.12 97.08

GenVideo
UniFormerv2-B-(Li et al., 2023) 85.09 84.38 82.33 83.34 90.33
MViTv2-S (Li et al., 2022) 78.24 94.43 55.24 69.70 89.74
MSTformer 94.32 97.06 90.19 93.50 98.50

GVF MSTformer 91.38 93.59 96.88 95.20 98.55

We further provide the detailed results of each generator to verify the effectiveness and balance of
the proposed method. As shown in Table 3, eight advanced generators included in AIDetection are
reported. To ensure the reliability of the results, the test samples here only consist of generated
videos from the corresponding sources, excluding real videos. Therefore, we only report ACC(%)
as the evaluation metric. These results provide strong evidence that MSTformer can efficiently
generalize to multiple unseen video sources even with limited training data.

Table 3: Detailed ACC (%) comparison on 8 advanced generators from the AIDetection dataset.
Model Kling PixVerse Vidu Jimeng Hailuo Wan Sora Hidream Avg.
MViTv2-S 94.33 88.03 75.45 45.00 65.57 87.41 71.74 81.79 81.79
MSTformer 97.38 95.87 89.70 80.33 86.53 96.53 68.60 86.26 86.26
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Analysis of one-to-many evaluation: Moreover, we test the effectiveness of one-to-many evalua-
tion setting according to the original advice of the GenVideo and GVF datasets. In Tables 4 and 5,
we provide results trained on videos from a single generator to simulate more extreme generalization
scenarios. Compared to training with multiple sources, the generalization performance drops signif-
icantly due to the limited diversity of motion patterns available for learning. Nevertheless, except in
cases with very large inter-class differences, MSTformer still maintains competitive performance in
most scenarios.

Table 4: One-to-many evaluation results of MSTformer on the GVF dataset.
Training set Text2Video-zero Show1 ModelScope ZeroScope Gen2 Pika Sora Veo Avg.
Text2Video-zero 100.0 17.53 17.53 13.40 8.25 14.43 60.42 21.43 21.43
Show1 4.12 96.91 78.35 73.20 96.91 89.69 22.92 85.71 85.71
ModelScope 2.06 84.54 95.88 94.85 97.94 89.69 35.42 64.29 64.29
ZeroScope 69.07 70.10 87.63 100.0 94.85 74.23 56.25 92.86 92.86

Full training set 100.0 100.0 96.91 98.97 98.97 94.85 75.00 92.86 92.86

Table 5: Comparison of different methods on One-to-many testing results in the GenVideo dataset.
Training set Model Sora MorphStudio Gen2 HotShot Lavie Show1 MoonValley Crafter ModelScope WildScrape Avg.

OpenSora
UniFormerV2-B 21.43 67.14 73.77 79.14 77.57 71.86 85.46 74.32 47.71 49.84 64.82
MSTformer 19.64 71.57 95.29 94.00 83.93 86.43 93.93 88.63 65.86 75.24 77.45

Pika
UniFormerV2-B 39.29 61.86 80.12 44.29 57.07 53.29 86.90 75.54 43.29 52.56 59.42
MSTformer 14.29 69.86 97.25 92.71 76.64 85.43 91.37 86.84 53.29 65.37 73.31

SEINE
UniFormerV2-B 41.07 84.71 89.57 84.43 74.29 65.57 91.21 91.13 65.00 56.87 74.39
MSTformer 28.57 70.57 93.55 91.57 83.71 81.00 76.29 89.06 76.29 62.78 75.34

Full Set
UniFormerV2-B 30.36 82.43 90.80 82.71 78.43 78.00 95.37 92.42 73.71 57.99 76.22
MSTformer 26.79 88.86 98.62 83.71 87.14 92.29 98.24 97.57 82.14 74.92 83.03

We can also find that MSTformer is consistently robust across heterogeneous OOD tasks: in AIDe-
tection, the test set is far more diverse than the training set; in GenVideo one-to-many evaluation,
the training set covers only one generator and is smaller than the test set. In both cases, MSTformer
maintains strong performance, indicating effective generalization from limited sources to unseen,
higher-diversity videos. Performance on GVF is relatively lower, likely due to small and highly
imbalanced test subsets, which may introduce estimation bias.

5.2 ABLATION STUDY

Ablation Study on MSTD and CSCL. To directly verify the effect of introducing motion-aware
spatiotemporal downsampling (MSTD) and cross-scale semantic contrastive learning (CSCL) on
model generalization, we design a challenging out-of-distribution (OOD) task and conduct an abla-
tion study on the baseline method MViTv2. The training set only contains three types of generated
videos (SEINE, Lavie, and OpenSora) and two subsets of real-video datasets (ActivityNet and Ki-
netics), consisting of 6,800 video samples in total. The test set includes 4,222 videos sampled from
all other generators and real videos from Douyin. To ensure fairness, we keep almost all training pa-
rameters and strategies identical to the baseline video classification tasks, and train the model from
scratch. Data augmentation and cropping strategies are also kept consistent. For frame sampling,
we follow the default setting of MViTv2, which uniformly samples 16 frames with a fixed interval
of 4 to form continuous video clips.

The ablation results are shown in Table 6. After adding the motion-aware spatiotemporal downsam-
pling (MSTD) mechanism, the recall score shows a significant improvement on the test set, which
increases from 46.56% to 66.81%. The main improvement demonstrates that video temporal cues
can effectively reduce misjudgment where the model tends to predict all videos as real under com-
plex spatial semantics, thereby enhancing generalization. It also indicates that motion semantics
along the temporal dimension play a crucial role in distinguishing generated videos from real ones.
If we further employ the cross-scale semantic contrastive learning (CSCL) module, the performance
will be enhanced. Since the CSCL module introduces the motion-aware features across different
scales, it can not only alleviate the confusion over different video semantic representations but also
prevent the model’s performance on real-video discrimination from degrading. We also analyze the
effect of the temperature parameter τ in the contrastive loss of CSCL. If we set τ as a very small
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value (e.g., 0.07), the model training causes it to diverge, with the loss quickly becoming NaN. This
is because a small τ excessively amplifies the logits in the softmax function, leading to numerical
overflow in the exponential operation and extremely large gradients, which destabilize optimiza-
tion. In contrast, moderate values of τ (e.g., 0.1–0.2) achieve a balance between discrimination and
stability, yielding the best performance in our experiments.

Table 6: Ablation results on baseline MViTv2. MST-DS: Motion-aware Spatiotemporal Downsam-
ple, MST-CL: Cross-scale Semantic Contrastive Learning.

Method MSTD CSCL ACC Precision Recall F1

MViTv2 – – 69.56 86.23 46.56 60.47
MViTv2 ✓ – 75.27 80.43 66.81 72.99
MViTv2 ✓ (λ = 0.2, τ = 0.1) 78.33 89.60 64.10 74.73
MViTv2 ✓ (λ = 0.1, τ = 0.2) 77.77 90.29 62.24 73.69
MViTv2 ✓ (λ = 0.1, τ = 0.1) 77.83 85.17 67.39 75.24

The effect of Sampling Frames: Because video lengths are various, the number of frames needed
to sample from the original video naturally affects the performance of classifiers. Therefore, we
conduct an ablation study on the sampling length of MSTformer when training and testing on the
AIDetection dataset under OOD settings, as shown in Fig. 3. The results show that increasing the
number of sampled frames yields a clear improvement in terms of multiple metric scores. This
indicates that the model benefits from capturing richer and more robust motion patterns from longer
temporal sequences, which demonstrates both its ability to fully exploit temporal and motion cues
as well as its potential when more computational resources are available.

Figure 3: Impact of frame sampling and batch sizes on AIDetection OOD results

The effect of Batch Sizes: Supervised contrastive learning is inevitably influenced by the number
of positive and negative samples within each minibatch. As shown in Fig. 3, MSTformer does not
show significant performance differences under varying batch sizes. However, a large batch size
will bring more computational burden, hence we choose 16 as the batchsize for further training. It
is worth mentioning that our proposed cross-scale contrastive group can provide sufficient positive
and negative samples even if the batch size is small, this design help the contrastive learning can
converge to a steady state.

6 CONCLUSION

In this paper, we address the poor generalization of existing detectors to high-quality AI-generated
videos by identifying intrinsic motion-pattern discrepancies in the generative process. Building on
this insight, we construct AIDetection, a dataset tailored to realistic deployment scenarios. We
propose a novel lightweight detector MSTformer, that (i) employs motion-aware spatiotemporal
downsampling to capture local motion differences between the AI-generated and real videos, and (ii)
introduces cross-scale semantic contrastive learning to enforce cross-scale feature consistency and
mitigate motion-cue confusion. Experiments show that MSTformer is robust under OOD settings
across AIDetection, GVF, and GenVideo. We hope this work shifts the community’s focus from
brittle spatial artifacts toward motion-centric principles for AI-generated video detection.

9
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A APPENDIX

A.1 AI-GENERATED VIDEO DETECTION BENCHMARKS

To address this emerging challenge, several datasets and evaluation benchmarks dedicated to AI-
generated video detection have been proposed. Bai et al. (2024) introduced the Generated Video
Dataset (GVD), which contains 11,618 generated video samples collected from 11 mainstream mod-
els. The dataset is divided into two categories, text-to-video (T2V) and image-to-video (I2V). It
covers diverse scenarios such as human activities, natural environments, and object motion. Ma
et al. (2024a) constructed GVF, the first public benchmark dataset for generated video detection.
GVF consists of 964 real videos sampled from MSVD (Chen & Dolan, 2011) and MSR-VTT (Xu
et al., 2016), and their corresponding prompts and generated counterpart videos using four differ-
ent models: Text2Video-zero, ModelScopeT2V, ZeroScope, and SHOW-1. To mitigate the lack of
large-scale, high-quality datasets for this field, Chen et al. (2024b) released GenVideo, the first
million-scale dataset for AI-generated video detection. It categorizes data by generator type, with
training videos generated by 10 models along with real videos from Kinetics-400 (Kay et al., 2017)
and Youku-mPLIG (Xu et al., 2023), while the test set includes videos from another 10 generators
and real videos from MSR-VTT (Xu et al., 2017). Based on this design, the authors proposed cross-
generator classification tasks and degraded video classification tasks to evaluate generalization and
robustness. More recently, Ni et al. (2025) introduced GenVidBench, a benchmark of over 100,000
videos. Similar to GenVideo, it partitions training and test sets by generator categories. In addi-
tion, GenVidBench separates training and testing splits according to prompts or input images, and
introduces cross-source real/fake classification tasks to evaluate the ability of detectors to generalize
without relying on generator-specific cues.

A.2 AIDETECTION DATASET

As next-generation generators rapidly improve, we construct AIDetection to train detectors and
evaluate OOD generalization to unseen sources. All video sources and related information are sum-
marized in Table 7.

The generated videos in AIDetection are partly sourced from the GVD (Bai et al., 2024) and Gen-
Video (Chen et al., 2024b) datasets, where we sampled specific categories (Ma et al., 2024b; AI,
2023a; Labs, 2023; AI, 2023b; Studio, 2023; Kondratyuk et al., 2024; Girdhar et al., 2023; Chen
et al., 2024a; Wang et al., 2025; Zheng et al., 2024; Xing et al., 2024; Blattmann et al., 2023; Chen
et al., 2023) to construct a subset for our benchmark. These videos employ generation technolo-
gies popular between 2023 and 2024, including both autoregressive and diffusion-based models.
They cover a wide range of semantic contents and styles, such as realistic humans and animals,
static scenes or objects, cartoon characters, and even surreal artistic imagery. Moreover, they are
explicitly separated into I2V and T2V generation paradigms.

Another portion of AIDetection comes from seven commercial generators (AI, 2024b; OpenAI,
2024; HiDream.ai, 2024; Jianying, 2024; AI, 2024a; WanTeam et al., 2025; KlingAI, 2024; Pix-
Verse, 2024), where we collected publicly available demos from their official websites as well as
user-uploaded community videos. Unlike the former category, these are mature commercial prod-
ucts that have undergone multiple iterations over several years and provide powerful customization
capabilities. For example, Kling v1.6 not only supports traditional I2V and T2V modes, but also
introduces functionalities such as first–last frame control, multi-image references, trajectory guid-
ance, and multimodal editing on top of existing generations to replace or remove elements within a
video. Such advanced features result in greater diversity of generation strategies, making it difficult
to trace back the exact generation pipeline (labeled as “Unknown” in the Task column of Table 7).
Including this type of video not only enriches the diversity of the training data but also ensures that
evaluation scenarios are better aligned with real-world social media applications. The distribution
of the main semantic content in these generated videos is shown in the fig 4.

A portion of the real videos is sampled from the public action recognition datasets ActivityNet
(Caba Heilbron et al., 2015) and Kinetics (Kay et al., 2017), which cover hundreds of complex hu-
man activity categories and represent the majority of real human-centered actions. Another portion
is collected from publicly available popular videos on the Douyin short video platform. We carefully
removed samples that may contain AI-generated manipulations or that were stitched from static im-
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Figure 4: Distribution of the main semantic content in generated videos.

ages. The Douyin videos include diverse types of real-world content such as news reports, movie
clips, and documentaries, and their subjects extend beyond human activities to animals, objects, and
natural scenes. This design allows the AIDetection dataset to better simulate the distribution of real
scenarios for video authentication, thereby making evaluation results more reliable.

OOD Setting: Classical machine learning typically assumes that the source and target domains
are i.i.d. In practice, however, domain shift leads to OOD scenarios. Domain generalization (DG)
aims to learn solely from source-domain data and generalize to unseen target domains (Yao et al.,
2021; Lin et al., 2023). Given the specificity of AI-generated video detection, only detectors that
generalize to arbitrary unseen generators or sources are meaningful.

Following the DG paradigm, we split videos by generator type or source: the source domain and
target domain correspond to distinct sources used for training and testing, respectively. Domain shift
arises from differences in generative texture characteristics, video quality, and semantic content.
The exact training/test counts used in our evaluations (Section 5.1 are reported in Table 7, which
realistically simulates the need to discriminate a large number of unknown sources from a limited
set of known ones. Thanks to its diverse generator coverage, AIDetection supports flexible sampling
via label files to construct both OOD and in-domain tasks, enabling training and evaluation from
multiple perspectives—one of the dataset’s key advantages.

A.2.1 VISUALIZATION OF AIDETECTION DATASET

Fig. 5–12 shows visualizations of 8 categories of advanced generated videos included in the AIDe-
tection dataset.

A.3 ADDITIONAL INFERENCE RESULTS

To further validate the generalization capability of MSTformer, we present inference results on a
subset of generated and real videos in Fig 13. Some of these videos are sampled from the AIDetec-
tion dataset, while others are obtained from publicly available videos on different media platforms.
In the figures, we annotate the authenticity of each video, its source, and the probabilities of being
classified as generated or real videos, denoted as [pgenerated, preal].
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Figure 5: Hailuo generated samples visualization.

Figure 6: Jimeng generated samples visualization.

Figure 7: Kling generated samples visualization.

Figure 8: PixVerse generated samples visualization.
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Figure 9: Sora generated samples visualization.s

Figure 10: Wan generated samples visualization.

Figure 11: Vide generated samples visualization.

Figure 12: Hidream generated samples visualization.
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Table 7: Overview of all video sources in the AIDetection dataset
Type Task Source Resolution Fps Length Quantity Training set Testing set

Generated

T2V

Latte 256×256 8 2s 1000 – 300
Moonvalley 1184×672 16 5s 1000 – 300
Pika Variable 24 3s 1000 – 300
NeverEnds Variable 8–10 2–4s 1000 – 300
MorphStudio 1024×576 8 2s 700 – 300
VideoPoet Variable 8 2–16s 120 – 100
Emu 512×512 16 4s 900 – 300
VideoCrafter 1024×576 8 2s 1500 – 300
Lavie 512×320 8–24 2s 1400 1400 –
OpenSora 256×256 8 2s 1000 1000 –

I2V

DynamicCrafter 1024×576 8 2s 1000 – 300
Moonvalley Variable 16–50 1–3s 1000 – 300
Pika Variable 8–24 3s 1000 – 300
SVD 1024×576 7 3s 1000 – 300
SEINE 1024×576 8 2s 1000 1000 –
NeverEnds Variable 10 3s 1000 1000 –

Unknown

Vidu Variable 16–120 2–74s 505 – 300
Sora Variable 30 3–60s 605 – 300
Hidream Variable 16–32 3–12s 313 – 300
Jimeng Variable 8–60 2–90s 300 – 300
Hailuo Variable 24–30 5–106s 334 – 300
Wan Variable 25–30 4–8s 548 – 300
Kling Variable 24–30 5–10s 917 800 –
PixVerse Variable 15–60 3–28s 702 700 –

Real –
ActivityNet Variable 6–30 3–15s 2299 2000 –
Kinetics Variable 30 1–10s 1000 4000 –
Douyin Variable 10–60 4–240s 6999 – 5200

Generated by Runaway Gen3

[0.9294, 0.0706]

Generated by Veo3

[0.9980, 0.0019 ]

[0.8129, 0.1871]

Generated by Sora

Generated by Grok Video

[0.9974, 0.0026]

Generated by Vidu

[0.6558, 0.3441]

Generated by Hailuo

[0.9477 0.0523]

[0.9970, 0.0030]

Generated by Kling

[0.9979 0.0021]

Generated by Wan

Generated by PixVerse

[0.9943 0.0057]

[0.0083, 0.9917] [0.4058, 0.5942] [0.0089, 0.9911]

Real video from Douyin.com Real video from Douyin.comReal video from Bilibili.com

Figure 13: Inference results of MSTformer on diverse generated and real videos.

The stride is defined as the total number of frames divided by 16. This ensures that the input frames
cover the entire temporal span of the video.Finally, we normalize the pixel values using channel-wise
mean [114.75, 114.75, 114.75] and standard deviation [57.375, 57.375, 57.375].
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B LLM USAGE STATEMENT

In preparing this manuscript, we employed a large language model (LLM) solely for language pol-
ishing and minor grammatical improvements. The LLM was not used for research ideation, data
analysis, experimental design, or content generation. All technical content, methodologies, and
conclusions are the sole responsibility of the authors.
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