
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TRAINING MULTI-LAYER TRANSFORMERS IN AL-
MOST LINEAR TIME

Anonymous authors
Paper under double-blind review

ABSTRACT

The computational complexity of the self-attention mechanism in popular trans-
former architectures poses significant challenges for training and inference, and
becomes the bottleneck for long inputs. Is it possible to significantly reduce the
quadratic time complexity of computing the gradients in multi-layer transformer
models? This paper proves that a novel fast approximation method can calculate
the gradients in almost linear time n1+o(1) where n is the input sequence length,
while it maintains a polynomially small approximation error 1/poly(n) across
the entire model. Our theory holds for general loss functions and when the multi-
layer transformer model contains many practical sub-modules, such as residual
connection, causal mask, and multi-head attention. We further validate our ap-
proach through numerical experiments, demonstrating both its high approxima-
tion fidelity and substantial speedups in practice. By improving the efficiency of
gradient computation, we hope that this work will facilitate more effective training
and deployment of long-context language models based on our theoretical results.

1 INTRODUCTION

Large Language Models (LLMs), such as ChatGPT (Schulman et al., 2022), GPT-4 (Achiam et al.,
2023), Claude 3.5 (Anthropic, 2024), Llama 3.1 (Llama Team, 2024), DeepSeek R1 (Guo et al.,
2025) and others, have demonstrated immense potential to enhance various aspects of our daily lives,
e.g., conversation AI (Liu et al., 2024), AI agent (Xi et al., 2023; Chen et al., 2024c), search AI (Ope-
nAI, 2024), AI assistant (Mahmood et al., 2023; Zhang et al., 2023) and many so on. One of LLMs’
most emergent abilities is working with long-context information, a format crucial for recording
material such as academic papers, official reports, legal documents, and so on. LLMs have proven
adept at tackling long-context tasks, including Retrieval Augmented Generation (RAG) (Lewis et al.,
2020; Gao et al., 2023d), zero-shot summarization (Liu et al., 2023; Zhang et al., 2024c), and main-
taining very long-term conversations (Xu et al., 2021b; 2022), and so on. This proficiency has
necessitated the development of long-context modeling capabilities within LLMs.

The self-attention mechanism is crucial for the success of LLMs since LLMs are mainly based
on Transformer architecture, whose key module is attention. In attention computation, we will
compute the attention score between each pair of tokens, which is the complexity bottleneck during
long context training and inference. In detail, we need to spend O(n2d) running time for each
self-attention block, which is quadratic in n, where n is the length of the context input and d is the
hidden feature dimension of the model. For example, LLaMA 3.1 405B (Llama Team, 2024), one
of the cutting-edge LLMs, supports n =128k and d = 4096, while taking 30.84M GPU training
hours, which underscores the need for more efficient training processes for such extensive context
models. Given the extensive context lengths of LLMs, this quadratic time complexity results in
critical challenges: (i) a marked decrease in training efficiency (He et al., 2023; Lv et al., 2023); and
(ii) significant energy usage, which in turn contributes to higher carbon dioxide emissions (Samsi
et al., 2023; Stojkovic et al., 2024).

One seminal work (Alman & Song, 2023) showed that the self-attention inference can be approxi-
mated in almost linear time. However, this result is for the inference time (forward pass), but does
not address the main challenge, which is the expensive computation in the training time (backward
pass). In this work, we address this main challenge by proving that the gradient computation in the

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

back-propagation of self-attention can be approximated in almost linear time. This suggests we may
be able to save the substantial resources required for training LLMs.

1.1 KEY BACKGROUND

We first introduce some basic background, starting with defining the softmax function and the self-
attention module.
Definition 1.1 (Softmax). Let z ∈ Rn. We define Softmax : Rn → Rn satisfying

Softmax(z) := exp(z)/⟨exp(z),1n⟩.

Here, we apply exp to a vector entry-wise.
Definition 1.2 (Self-attention module). Let X ∈ Rn×d denote the input sequence, where n is the
number of input tokens and d is the hidden dimension size. Let WQ,WK ,WV ∈ Rd×d be the query,
key and value weight matrix. The self-attention function Attn(X) with weights is:

Attn(X) = Softmax(XWQW
⊤
KX⊤/d) ·XWV .

where Softmax is applied to each row of its input matrix. The attention can be re-written as:

Attn(X) = f(X) ·XWV ,

where (1) A := exp(XWQW
⊤
KX⊤/d) ∈ Rn×n and exp is applied element-wise, (2) D :=

diag(A1n) ∈ Rn×n, and (3) f(X) := D−1A ∈ Rn×n is the attention matrix.

In contemporary LLMs, the architecture typically incorporates multiple layers of attention. Conse-
quently, in order to design a fast training algorithm for the entire model, it is imperative to examine
self-attention within the multi-layer transformer structure formally defined as follows.
Definition 1.3 (Multi-layer transformer). Let m denote the number of transformer layers in the
model. Let X be the input sequence. Let gi denote components other than self-attention in the i-th
transformer layer, and assume its forward and backward computations can be run in time linear in
its input sequence length. Let Attni denote the self-attention module in the i-th transformer layer
with weights WQi

,WKi
,WVi

(see also Definition 1.2). We define an m-layer transformer as

Fm(X) := gm ◦ Attnm ◦ gm−1 ◦ Attnm−1 ◦ · · · ◦ g1 ◦ Attn1 ◦ g0(X),

where ◦ denotes function composition.

In Definition 1.3, the gi includes the layer norm, MLP, residual connection, dropout, positional
encoding, multi-head concatenation, and other operations. All forward and backward computations
of these practical modules can be run in linear time with respect to n. Thus, in this work, we mainly
focus on the acceleration of the self-attention module. Specifically, as shown in Definition 1.2,
the n × n attention matrix f(X) dominates the computational complexity, introducing a quadratic
bottleneck. In the exact computation case, if the attention matrix is full rank, no acceleration is
possible. However, by compromising negligible accuracy, designing a fast sub-quadratic algorithm
becomes feasible. Fortunately, by employing the polynomial kernel approximation method from
(Aggarwal & Alman, 2022), we can approximate the attention matrix and achieve an almost linear
time n1+o(1) algorithm, effectively breaking the quadratic bottleneck.

1.2 OUR CONTRIBUTIONS

We now state our main result as follows:
Theorem 1.4 (Main result, informal version of Theorem 3.2). Let n be the number of tokens and
d the hidden dimension size. We assume d = O(log n) and each number in matrices can be writ-
ten using O(log n) bits. Assume the number of layers m is constant. There exists an algorithm
(Algorithm 1) that can compute the gradient of multi-layer self-attention (see also Definition 1.3)
in almost linear time n1+o(1), where the approximation error of the algorithm that computes the
gradient of the entire model can be bounded by 1/ poly(n).

Our assumption is mild when the context length n is large, as the feature dimension d is usually
regarded as a constant, which is also used in (Aggarwal & Alman, 2022); similarly, the number of

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

layers is usually much smaller than n and regarded as a constant. Our results indicate that large
language models (LLMs) can be trained in almost linear time n1+o(1) and maintain a robust ap-
proximation guarantee, while the traditional way takes Ω(n2) time. This advancement is realized
through the application of polynomial kernel approximation (Alman & Song, 2023; 2024a). To be
more specific, by leveraging the inherent sparsity within the dense attention matrix, we perform
efficient low-rank approximation, thereby significantly accelerating the computation of the dense
matrices. Our framework is applicable to general loss functions, making it universally applicable.
Furthermore, our analysis holds when the multi-layer transformer model contains many practical
sub-modules, such as residual connection, causal mask, and multi-head attention (Section 5).

Numerous studies, including FlashAttention (Dao et al., 2022; Dao, 2023; Shah et al., 2024), quan-
tization techniques (Hu et al., 2024a; Lin et al., 2024), and sparsity approaches (Han et al., 2024; Ma
et al., 2024a), have empirically focused on accelerating attention mechanisms. However, theoreti-
cally, these methods are still constrained by quadratic time complexity. In this study, we introduce an
innovative acceleration technique (Algorithm 1) that effectively overcomes this quadratic bottleneck,
backed by solid theoretical foundations (Theorem 3.2). Moreover, this new method is designed to be
seamlessly integrated with existing approaches to further enhance their performance (see Section 5).

Our contributions are as follows:

• We introduce a fast computation method that allows the gradient of each self-attention layer
to be approximated in almost linear time n1+o(1) with 1/ poly(n) error, where n is the input
sequence length, breaking the quadratic time complexity bottleneck (Theorem 3.1).

• We extend our single-layer results to module-wise gradient computation so that our Algo-
rithm 1 approximates gradient computation in m · n1+o(1) time for m-layer transformer.
Importantly, the approximation of the gradient diverges from the exact gradient by an error
of 1/ poly(n) across the entire model (Theorem 3.2).

• Additionally, our analysis holds for the multi-layer transformer model contains residual
connection, casual mask, and multi-head attention. Our results can be applied to any
gradient-based algorithm, e.g., training, full fine-tuning, prompt-tuning, and so on (Sec-
tion 5).

Roadmap. Our paper is organized as follows. Section 2 provides essential concepts and key def-
initions across the whole paper. Section 3 presents our primary findings, where we articulate our
novel algorithm that is capable of calculating gradients across the entire model in almost linear time.
In Section 4, we explain the techniques we employ, including low-rank approximation, techniques
for accelerating the computation of gradients, and an analysis of the approximation error. Section 5
provides various extensions of our algorithm. Lastly, we conclude this paper in Section 6.

2 PRELIMINARY

2.1 LOSS FUNCTION

The loss function is the optimization objective in the training of LLMs, and we define it as follows.
Definition 2.1 (Loss function L(X)). For some input matrix X ∈ Rn×d, we define the one-unit dif-
ferentiable loss function ℓ(X)j,k : Rn×d → R, for any j ∈ [n], k ∈ [d], and assume differentiability.
Furthermore, we define the overall loss function L(X), such that L(X) =

∑n
j=1

∑d
k=1 ℓ(X)j,k.

Remark 2.2. Typically, the most widely used loss function in the LLM training procedure is the
cross-entropy loss function, which can also be viewed as a summation of one unit loss function as in
Definition 2.1. The output matrix of the multi-layer transformer needs to pass an additional linear
layer to map the hidden dimension d to the vocabulary size dvoc. Assuming dvoc is a constant,
the weight matrix dimensions for this additional MLP layer are d × dvoc. The probability tensor
Ypred ∈ Rn×dvoc is the final output. We denote the ground truth as Ygt ∈ Rn×dvoc corresponding to
Ypred. According to the cross-entropy loss definition, the formula is expressed as

Lcross−entropy(X) = −
n∑

j=1

dvoc∑
k=1

(Ygt)j,k log((Ypred)j,k).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

where the summation iterates over all elements. The ground truth (Ygt)j,k = 1 for the correct class
and 0 otherwise.

2.2 CLOSED FORMS OF GRADIENT COMPONENTS

In training large language models (LLMs), updating the model necessitates computing the gradient
of weights for every layer. Consequently, it becomes essential to derive the closed-form expressions
for all corresponding gradient components with respect to the weights of the query, key, and value
matrices in the transformer model. We first define some intermediate variables before detailing these
gradient components in each self-attention transformer layer.
Definition 2.3 (Intermediate variables Ti). Let m denote the number of transformer layers in the
model. Let m-layer self-attention transformer as defined in Definition 1.3. Let d denote the hidden
dimension. Let n denote the sequence length. Let X ∈ Rn×d be the input sentence. Let gi denote
components other than self-attention in the i-th transformer layer. Let Attni denote the self-attention
module in the i-th transformer layer (see also Definition 1.2).

For i ∈ {0, 1, 2, · · · ,m}, we define Ti(X) ∈ Rn×d be the intermediate variable (hidden states)
output by i-th layer self-attention transformer. Namely, we have

Ti(X) =

{
g0(X), i = 0;

(gi ◦ Attni)(Ti−1(X)), i ∈ [m].

Here, we use ◦ to denote function composition.

Then, we are ready to introduce the closed forms of the three gradient components in a single self-
attention transformer layer. Notably, according to the chain rule, the gradient of the k-th transformer
layer in LLMs depends on the gradient components from the (k + 1)-th transformer layer. The gra-
dient can be calculated for every transformer layer by combining the upstream and local gradients.
The closed forms of the gradients for each layer in multi-layer transformers are formalized in the
following lemma (Lemma 2.4).
Lemma 2.4 (Closed form of gradient components, informal version of Lemma C.4). Let L(X)
as defined in Definition 2.1, and the m-layer transformer defined as in Definition 1.3. Let
WQi

,WKi
,WVi

∈ Rd×d denote the attention weight in the i-th attention. Let Ti(X) denote
the intermediate variable output by i-th self-attention transformer layer (see Definition 2.3). Let
Gi ∈ Rn×d denote the gradient matrix resulting from the application of the chain rule up to the
function gi, i.e., Gi =

dL(X)
dAttni(Ti−1(X)) . For j ∈ [n], k ∈ [d], let Gi(j, k) denote the (j, k)-th entry of

Gi, let dAttni(Ti−1(X))j,k
dTi−1(X) ∈ Rn×d denote the gradient of (j, k)-th entry of Attni(Ti−1(X)). Then,

we can show that

• Part 1. dL(X)
dTi−1(X) =

∑n
j=1

∑d
k=1 Gi(j, k) · dAttni(Ti−1(X))j,k

dTi−1(X) .

• Part 2. Let W∗i
be WQi

,WKi
or WVi

, then

dL(X)

dW∗i

=

n∑
j=1

d∑
k=1

Gi(j, k) ·
dAttni(Ti−1(X))j,k

dW∗i

.

Our main results are based on the above closed forms of four gradient components.

3 MAIN RESULTS

In this section, we present our main findings. In Section 3.1, we delineate the computational ef-
ficiency of our gradient calculation methods in each single layer. Section 3.2 introduces our main
theorem (Theorem 3.2) for multi-layer transformer by integrating the preceding results and provid-
ing our main algorithm (Algorithm 1). Section 3.3 discusses how we transcend the previous works.

3.1 FAST COMPUTING FOR SINGLE LAYER

In the case of single-layer attention, we provide our theorem that states the three gradient compo-
nents can be calculated in almost linear time with negligible error.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Theorem 3.1 (Single-layer gradient approximation). We assume d = O(log n) and each num-
ber in matrices can be written using O(log n) bits. Let L(X) be defined as Definition 2.1. Sup-
pose we have a single-layer self-attention transformer model (m = 1 in Definition 1.3). Assume
∥X∥∞, ∥WQW

⊤
K∥∞, ∥WV ∥∞ ≤ poly(n). We can approximate one-layer self-attention for three

gradient components, i.e. dL(X)
dX , dL(X)

dWQW⊤
K

and dL(X)
dWV

, in n1+o(1) time with 1/ poly(n) error.

Proof. We finish the proof by combining Lemma 4.1, 4.2 and 4.3.

Next, we present the formal algorithm for our method, detailed in Algorithm 1. Our algorithm
comprises two primary functions: SINGLEGRAD, which computes the gradient for a single trans-
former layer (Line 12), and MULTIGRAD, which calculates the gradient across an m-layer trans-
former (Line 26). SINGLEGRAD function computes each gradient component using the techniques
described in the Appendix and subsequently integrates these approximated components into the gra-
dients for Ti, WQiW

⊤
Ki

, and WVi . MULTIGRAD function iterates through each layer, leveraging the
gradient for Ti from preceding layer to compute the gradients in the current layer.

Algorithm 1 Almost Linear Time (ALT) Multi-layer Transformer Gradient Approximation

1: datastructure ALTGRAD ▷ Theorem 3.1 and 3.2
2: members
3: n ∈ R: the length of input sequence
4: d ∈ R: the hidden dimension
5: m ∈ R: the number of transformer layers
6: L(X) ∈ R: the loss function ▷ Definition 2.1
7: Ti ∈ Rn×d: the output of i-th transformer layer
8: Attni ∈ Rn×d: the output that pass i-th attention layer
9: WQi

,WKi
,WVi

∈ Rd×d : the weight matrices in i-th transformer layer
10: end members
11:
12: procedure SINGLEGRAD(dL(X)

dTi
) ▷ Theorem 3.1

13: Compute Gi =
dL(X)
dAttni

via Lemma 4.4 ▷ n1+o(1) time

14: Compute D̃6, D̃7, D̃8, D̃2, D̃4 via Lemma E.5, E.6, E.8, E.10 ▷ n1+o(1) time
15: /* Approximate dL(X)

dTi−1
, Lemma 4.1 */

16: g̃t ← D̃6 + D̃7 + D̃8 + D̃2 + D̃4 ▷ n1+o(1) time
17: /* Approximate dL(X)

dWQi
W⊤

Ki

, Lemma 4.2 */

18: Construct U3, V3 via Lemma 4.2 ▷ n1+o(1) time
19: g̃w ← (T⊤

i−1U3) · (V ⊤
3 Ti−1) ▷ n1+o(1) time

20: /* Approximate dL(X)
dWVi

, Lemma 4.3 */

21: Construct U1, V1 via Lemma C.13 ▷ n1+o(1) time
22: g̃v ← (T⊤

i−1U1) · (V ⊤
1 Gi) ▷ n1+o(1) time

23: return g̃t, g̃w, g̃v ▷ g̃t is the approximated dL(X)
dTi−1

for back-propagation
24: end procedure
25:
26: procedure MULTIGRAD(L(X)) ▷ Theorem 3.2
27: Compute dL(X)

dTm
▷ O(nd) time

28: g̃t ← dL(X)
dTm

29: for i = m→ 1 do
30: g̃t, g̃w, g̃v ← SINGLEGRAD (g̃t)
31: Optimize WQi

,WKi
via g̃w using optimizer

32: Optimize WVi
via g̃v using optimizer

33: end for
34: end procedure
35: end datastructure

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

3.2 FAST COMPUTING FOR MULTI-LAYER TRANSFORMERS

Based on the results demonstrated in previous sections, we are ready to introduce our main result:
the gradients of the whole transformer model can be approximated in almost linear time.

Theorem 3.2 (Main result, formal version of Theorem 1.4). Let m denote the number of transformer
layers. Assume the number of layers m is constant. We assume d = O(log n) and each number in
matrices can be written using O(log n) bits. We can show that, for any i ∈ [m], all the gradient
components (see also Lemma 2.4) of the i-th layer can be computed by Algorithm 1 in almost linear
time n1+o(1), and approximation error of the algorithm that computes the gradient of the entire m
layer transformer model can be bounded by 1/ poly(n).

Proof. We prove the theorem by directly combining Theorem 3.1 and Lemma 4.5.

Theorem 3.2 demonstrates that, during the training of a multi-layer transformer model, at each
training iteration, the gradient computation for the weight matrices of each layer can be performed
in almost linear time n1+o(1). This result supports the feasibility of fast training for any transformer-
based large language models (LLMs). Algorithm 1 highlights the significance of the gradient with
respect to the intermediate variables Ti(X). Due to the application of the chain rule in gradient
computation, the gradient of Ti(X) is indispensable for determining the gradients of the weight
matrices WQi ,WKi and WVi at the i-th layer. Consequently, by iteratively computing the gradient
for Ti(X), we systematically propagate the gradient through to the initial transformer layer.

3.3 BEYOND THE PREVIOUS WORK

Our algorithm exhibits significant advancements over two seminal prior studies, (Alman & Song,
2023) and (Alman & Song, 2024a). In (Alman & Song, 2023), the authors proposed an almost linear
time algorithm for computing the forward process of the attention mechanism. In contrast, (Alman
& Song, 2024a) introduced an almost linear time algorithm for the backward of attention mecha-
nism. However, (Alman & Song, 2024a) has the following limitations: (i) only computing gradients
for a single layer of the attention mechanism, which cannot extend to multiple layers; (ii) com-
puting gradients only for the weight matrix WQi

,WKi
(as defined in Definition 1.2), but ignore

other crucial components such as the MLP layer following attention computation and the activation
function.

In our work, we have the following improvements beyond previous work: (i) we enable almost linear
time gradient computation across an entire transformer layer, incorporating both the MLP layer and
the activation function; (ii) we extend the gradient calculation to include not only WQi

,WKi
but

also Ti(X) and WVi
. These advancements collectively demonstrate a substantial leap forward from

the methodologies in (Alman & Song, 2023) and (Alman & Song, 2024a).

4 TECHNICAL OVERVIEW

The main new challenge for our setting is the gradient with respect to the intermediate variables Ti,
which previous work (Alman & Song, 2024a) on a single layer does not require. However, it is an
essential component for multi-layer gradient computation. The gradient computation w.r.t. Ti are
not the same as that for the gradient w.r.t. WQi ,WKi ,WVi in a single layer. We give more details in
Section 4.2.

In this section, we provide a brief overview of the proof techniques used throughout this paper.

4.1 LOW-RANK APPROXIMATION FOR ATTENTION MATRIX

In this section, we delve into the crucial techniques behind our work: the low-rank approximation
of the attention matrix, which is achieved through the polynomial method (Alman et al., 2020; Ag-
garwal & Alman, 2022). Drawing inspiration from (Alman & Song, 2023), the intuition of this
approximation lies in the fact that the attention matrix f(X) ∈ Rn×n (as defined in Definition 1.2),
also referred to as the similarity matrix in attention mechanism, can be effectively approximated by

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

low-rank matrices U1, V1 ∈ Rn×k1 , where k1 = no(1). The naive method for calculating the atten-
tion matrix f(X) has a time complexity of O(n2), whereas the input data X ∈ Rn×d contains only
d · n = n1+o(1) entries. This discrepancy suggests the potential of using low-rank representations
of f(X) to design a fast algorithm.

An example of how to use the low-rank representations is the attention forward. First, note that
approximating f(X) alone does not lead to a fast algorithm since U1V

⊤
1 still requires n × n en-

tries. But by using the structure of the attention Attn(X) := f(X)V where V = XWV , we can
do it faster. By expressing f(X) as U1V

⊤
1 , the attention forward becomes U1︸︷︷︸

n×k1

V ⊤
1︸︷︷︸

k1×n

V︸︷︷︸
n×d

. It is

well known that different multiplication sequences can require dramatically different numbers of
operations, so the order of matrix multiplications matters, which is indeed the case here. We first
perform V ⊤

1 V ∈ Rk1×d and this cost O(k1nd) = n1+o(1) time. Then we can compute U1V
⊤
1 V

within O(nk1d) = n1+o(1) time.

This method significantly reduces the computation time of the attention forward from O(n2) to
almost linear time, n1+o(1). Driven by this technique and analyzing the close forms of the gradients,
we extend the acceleration to the gradient of the entire model.

4.2 ACCELERATING GRADIENT COMPUTATION OF Ti(X)

Based on the low-rank approximation method mentioned in Section 4.1, we compute the gradient
of L(X) with respect to the intermediate variable Ti(X), which denotes the output of the i-th trans-
former layer. This computation is critical because, thanks to the chain rule, it enables us to calculate
gradients for other gradient components.

Extending to general loss functions. According to the findings in (Deng et al.,
2023b), the gradient dL(X)

dTi(X) can be decomposed into five components, namely
C2(X), C4(X), C6(X), C7(X), C8(X), as detailed in Lemma D.1. In this work, we introduce
a comprehensive analysis framework (Definition 2.1) and we have demonstrated its applicability
to the cross-entropy loss (Remark 2.2). Consequently, by utilizing this generalized analysis
framework, we extend the notation L(X) to include a wide range of general loss functions.

Accelerating the gradient computation. A crucial aspect of speeding up gradient computation
for the entire multi-layer transformer model involves accelerating the calculation of gradients with
respect to the intermediate variables Ti(X). The main challenge lies in the fact that comput-
ing the gradient of Ti(X) requires calculating the gradients for other components within a trans-
former layer, including the residual connection, multi-head attention, and causal attention mask
(see Section 5). We have conducted an extensive analysis of these components within the trans-
former layer (see Section I, J, and K) and demonstrated that, through the application of low-rank
approximation techniques, the gradient dL(X)

dTi(X) can be computed in almost linear time n1+o(1)

(Lemma 4.1). In particular, we apply the low-rank approximation technique on the five terms
C2(X), C4(X), C6(X), C7(X), C8(X) respectively, demonstrating that each term can be computed
in almost linear time, n1+o(1), as shown in Section E. Then, we aggregate those terms, as described
in Section E.6. Since all five terms are n × d matrices, the summation of these terms takes O(nd)
time. We then conclude that for any single-layer transformer, the gradient computation with respect
to the input can be performed in almost linear time n1+o(1), as stated in Lemma 4.1.

The statement made for a single transformer layer can be readily generalized to any layer within an
m-layer transformer model. For instance, consider the intermediate variables Ti(X) and Ti−1(X)

(as defined in Definition 2.3), where Ti(X) = (gi ◦ Attni)(Ti−1(X)). Given the gradient dL(X)
dTi(X) ,

as established in the previous paragraph, we compute the gradient with respect to Ti−1(X), namely
dL(X)

dTi−1(X) , in almost linear time n1+o(1). For a multi-layer transformer model, the above process
can be conducted recursively. Thus, we can compute the gradient of the loss function L(X) on any
Ti(X) in almost linear time n1+o(1).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Lemma 4.1 (Fast computation for dL(X)
dTi(X) , informal version of Lemma E.11). Let L(X) be de-

fined as Definition 2.1. Let m denote the number of self-attention transformer layers (see Defini-
tion 1.3). Let Ti(X) denote the intermediate variable output by i-th self-attention transformer layer
(see Definition 2.3). We show that dL(X)

dTi(X) can be approximated in n1+o(1) time, with 1/ poly(n)

approximation error.

Proof sketch. In Lemmas E.3, E.5, E.6, E.8, and E.10, we have delineated several essential gra-
dient components, D6, D7, D8, D2, D4 ∈ Rn×d. We have established that these components can
be computed in almost linear time n1+o(1), with the approximation error bounded by ϵ/ poly(n).
Moreover, Lemma D.9 illustrates that the gradient w.r.t. Ti can be expressed as the sum of these
gradient components. That is, dL(X)

dTi−1(X) =
∑

i∈{2,4,6,7,8} Di. Given that the computational com-
plexity of the summation operation is O(nd), the aggregate time complexity for approximating the
gradient dL(X)

dTi−1(X) with g̃t remains n1+o(1). For the approximation error, by setting ϵ to 1/ poly(n),
we ensure that the error of the gradient approximation g̃t is also 1/poly(n).

4.3 ACCELERATING GRADIENT COMPUTATION OF Wi AND WVi

Let Wi := WQi
W⊤

Ki
, with WQi

and WKi
representing the query and key weight matrices, respec-

tively, the gradients of Wi and WVi
represent all trainable weight matrices in a transformer layer.

Consequently, by determining the gradients for Wi and WVi
across each layer, we achieve almost

linear time gradient back-propagation throughout multi-layer transformer models.

Fast gradient computation. The prior study in (Alman & Song, 2024a) demonstrated that the
gradient of Wi can be computed in almost linear time. We extend their findings by adapting their
approach to accommodate general loss function L(X) (as defined in Definition 2.1) and further
generalize their results to include the gradient computation for both Wi and WVi

in each transformer
layer (Lemma 4.2 and 4.3).

Lemma 4.2 (Fast computation for dL(X)
dWi

, informal version of Lemma F.5). Let L(X) be defined as
Definition 2.1, and m be the number of self-attention transformer layers (Definition 1.3). For any
i ∈ [m], let Wi = WQi

W⊤
Ki

,WVi
∈ Rd×d denote the attention weight in the i-th transformer layer.

We show that dL(X)
dWi

can be approximated in n1+o(1) time, with 1/poly(n) approximation error.

Lemma 4.3 (Fast computation for dL(X)
dWVi

, informal version of Lemma G.4). Let L(X) be defined
as Definition 2.1, and m be the number of self-attention transformer layers (Definition 1.3). For any
i ∈ [m], let Wi = WQi

W⊤
Ki

,WVi
∈ Rd×d denote the attention weight in the i-th transformer layer.

We show that dL(X)
dWVi

can be approximated in n1+o(1) time, with 1/poly(n) approximation error.

4.4 ACCELERATING GRADIENT COMPUTATION FOR MULTI-LAYER TRANSFORMERS

In this section, our focus turns to extending the single-layer transformer result from the previous
section to a multi-layer transformer.

Running time analysis. We derive the closed-form gradient for the non-attention components
within a transformer layer gi (Definition 1.3). With the closed-form gradient of gi established in
Lemma H.1, we then demonstrate in Lemma 4.4 that the gradient computation for gi can also be
achieved in n1+o(1) time. Given that the number of layers m is constant and the computation time
for gradients on each layer is n1+o(1), we iteratively repeat this procedure for m times. Therefore,
the overall running time for computing gradients across the entire model is m · n1+o(1) = n1+o(1).
Lemma 4.4 (Computation time for Gi, informal version of Lemma H.2). Let Ti(X) be defined as
Definition 2.3, i.e. Ti(X) = (gi ◦ Attni)(Ti−1(X)). Let Gi ∈ Rn×d denote the gradient matrix
resulting from the application of the chain rule up to the function gi, i.e., Gi = dL(X)

dAttni(Ti−1(X)) .

Assume we already have dL(X)
dTi(X) . Assuming for any Z ∈ Rn×d, we have gi(Z) ∈ Rn×d, and

gi(Z) = ϕ(Z · Wg), where Wg ∈ Rd×d and ϕ : R → R denotes any element-wise activation
function. Let ϕ′ denote the derivative of ϕ. Then, we show that Gi can be computed in n1+o(1) time.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Error propagation analysis. Here, we consider the approximation error. The approximation error
originates from the low-rank approximation of the attention matrix, as detailed in Lemma C.13. As
discussed in previous sections, the approximation error in each layer can be bounded by 1/ poly(n).
Then, we only need to focus on how error propagates in different layers.

We first prove that our 1/poly(n) approximation error statement holds for one layer transformer, as
evidenced in Lemma H.3. Subsequently, through mathematical induction and leveraging the results
of error propagation over the gradient of gi, we show that the approximation error can be bounded
by 1/poly(n) for any m-layer transformer (Lemma 4.5), where m is considered as constant.
Lemma 4.5 (Multi-layer transformer gradient approximation, informal version of Lemma H.4). Let
L(X) be defined as Definition 2.1. Let X be defined as Definition 1.2. Suppose we have a m-
layer transformer (see Definition 1.3). Then, for any i ∈ [m], we can show that: (i) Running time:
Our algorithm can approximate dL(X)

dTi−1(X) , dL(X)
dWi

, and dL(X)
dWVi

in n1+o(1) time; (ii) Error bound:
The approximation of the entire transformer model can be bounded by 1/poly(n). Namely, our
algorithm output g̃ satisfies ∥g̃ − dL(X)

dX ∥∞ ≤ 1/ poly(n).

The rate of error accumulation in a transformer with m layers grows exponentially as nm. Namely,
the error increases from 1/ poly(n) to nm/poly(n). Nevertheless, because m is a constant and the
polynomial poly(n) has a high degree, the total error remains insignificant in practical scenarios.

5 EXTENSIONS

Multi-head attention and residual connections. Multi-head attention and residual connections
are important components in attention mechanisms. These components were not involved in our ini-
tial analysis for simplicity. Incorporating them into our algorithm is straightforward. This suggests
that our algorithm can be readily adapted to more practical transformer models. The detailed analy-
sis for incorporating residual connection can be found in Section J and Lemma J.3. For the synergy
with multi-head attention, we provide comprehensive analysis in Section K and Lemma K.2.

Causal attention mask. The causal attention mask is critical to prevent transformers from “cheat-
ing” during training by ensuring future information is not used. The full-rank characteristic of the
causal attention mask poses challenges for low-rank approximations. Nevertheless, we have iden-
tified a method to accelerate the computation of causal masked attention by exploiting its inherent
properties, showing almost linear time complexity. A comprehensive explanation is provided in
Section B.3. More detailed analysis can be found in Section I and Lemma I.7 and I.8.

Prompt tuning. Prompt tuning is a prevalent approach in parameter-efficient fine-tuning (PEFT),
which requires the calculation of gradients on input data X . Given our algorithm can compute
gradients for intermediate variables Ti in almost linear time, we can adapt this acceleration to the
gradient for the input data X , thus enhancing the efficiency of the prompt tuning process. Additional
details are provided in Section B.5.

Synergy with system-level attention acceleration. Many contemporary works focus on system-
level acceleration of attention mechanisms, often by leveraging caching and mitigating I/O bottle-
necks. Our algorithm has the potential to integrate with such advancements. By combining our
theoretical improvements in computation time (from O(n2) to n1+o(1)) with system-level optimiza-
tions, the overall efficiency of attention mechanism computation may improve further. We leave the
implementation of our method on GPU as future work. More details can be found in Section B.4.

6 CONCLUSION

In this work, we proposed a novel algorithm (Algorithm 1), which can approximately train a multi-
layer transformer model in almost linear time, introducing only a small error. Importantly, our
algorithm is designed to be compatible with general loss functions, practical sub-modules (residual
connection, casual mask, multi-head attention), and general gradient-based algorithms. It may be
seamlessly integrated with other system-level acceleration techniques. With experimental support,
we believe our finding is able to accelerate the training of LLMs in practice.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHIC STATEMENT

This paper does not involve human subjects, personally identifiable data, or sensitive applications.
We do not foresee direct ethical risks. We follow the ICLR Code of Ethics and affirm that all aspects
of this research comply with the principles of fairness, transparency, and integrity.

REPRODUCIBILITY STATEMENT

We ensure reproducibility of our theoretical results by including all formal assumptions, definitions,
and complete proofs in the appendix. The main text states each theorem clearly and refers to the
detailed proofs. No external data or software is required.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Amol Aggarwal and Josh Alman. Optimal-degree polynomial approximations for exponentials and
gaussian kernel density estimation. In Proceedings of the 37th Computational Complexity Con-
ference, pp. 1–23, 2022.

Josh Alman and Zhao Song. Fast attention requires bounded entries. Advances in Neural Information
Processing Systems, 36, 2023.

Josh Alman and Zhao Song. The fine-grained complexity of gradient computation for training large
language models. arXiv preprint arXiv:2402.04497, 2024a.

Josh Alman and Zhao Song. How to capture higher-order correlations? generalizing matrix soft-
max attention to kronecker computation. In The Twelfth International Conference on Learning
Representations, 2024b.

Josh Alman, Timothy Chu, Aaron Schild, and Zhao Song. Algorithms and hardness for linear
algebra on geometric graphs. In 2020 IEEE 61st Annual Symposium on Foundations of Computer
Science (FOCS), pp. 541–552. IEEE, 2020.

Anthropic. The claude 3 model family: Opus, sonnet, haiku, 2024. URL https://www-cdn.
anthropic.com.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

Rouzbeh Behnia, Mohammadreza Reza Ebrahimi, Jason Pacheco, and Balaji Padmanabhan. Ew-
tune: A framework for privately fine-tuning large language models with differential privacy. In
2022 IEEE International Conference on Data Mining Workshops (ICDMW), pp. 560–566. IEEE,
2022.

Jan van den Brand, Zhao Song, and Tianyi Zhou. Algorithm and hardness for dynamic attention
maintenance in large language models. arXiv preprint arXiv:2304.02207, 2023.

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D Lee, Deming Chen, and Tri
Dao. Medusa: Simple llm inference acceleration framework with multiple decoding heads. arXiv
preprint arXiv:2401.10774, 2024.

Shang Chai, Liansheng Zhuang, and Fengying Yan. Layoutdm: Transformer-based diffusion model
for layout generation. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 18349–18358, 2023.

Beidi Chen, Zichang Liu, Binghui Peng, Zhaozhuo Xu, Jonathan Lingjie Li, Tri Dao, Zhao Song,
Anshumali Shrivastava, and Christopher Re. Mongoose: A learnable lsh framework for efficient
neural network training. In International Conference on Learning Representations, 2020.

10

https://www-cdn.anthropic.com
https://www-cdn.anthropic.com

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Bo Chen, Xiaoyu Li, Yingyu Liang, Zhenmei Shi, and Zhao Song. Bypassing the exponential de-
pendency: Looped transformers efficiently learn in-context by multi-step gradient descent, 2024a.

Bo Chen, Yingyu Liang, Zhizhou Sha, Zhenmei Shi, and Zhao Song. Hsr-enhanced sparse attention
acceleration. arXiv preprint arXiv:2410.10165, 2024b.

Shouyuan Chen, Sherman Wong, Liangjian Chen, and Yuandong Tian. Extending context window
of large language models via positional interpolation. arXiv preprint arXiv:2306.15595, 2023.

Weize Chen, Ziming You, Ran Li, Yitong Guan, Chen Qian, Chenyang Zhao, Cheng Yang, Ruobing
Xie, Zhiyuan Liu, and Maosong Sun. Internet of agents: Weaving a web of heterogeneous agents
for collaborative intelligence. arXiv preprint arXiv:2407.07061, 2024c.

Timothy Chu, Zhao Song, and Chiwun Yang. How to protect copyright data in optimization of large
language models? arXiv preprint arXiv:2308.12247, 2023.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691, 2023.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. Advances in Neural Information Processing Systems,
35:16344–16359, 2022.

Yichuan Deng, Sridhar Mahadevan, and Zhao Song. Randomized and deterministic attention sparsi-
fication algorithms for over-parameterized feature dimension. arXiv preprint arXiv:2304.04397,
2023a.

Yichuan Deng, Zhao Song, Shenghao Xie, and Chiwun Yang. Unmasking transformers: A theoret-
ical approach to data recovery via attention weights. arXiv preprint arXiv:2310.12462, 2023b.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for
high-resolution image synthesis. In Forty-first International Conference on Machine Learning,
2024.

Quentin Fournier, Gaétan Marceau Caron, and Daniel Aloise. A practical survey on faster and
lighter transformers. ACM Computing Surveys, 55(14s):1–40, 2023.

Elias Frantar and Dan Alistarh. Optimal brain compression: A framework for accurate post-training
quantization and pruning. Advances in Neural Information Processing Systems, 35:4475–4488,
2022.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in
one-shot. In International Conference on Machine Learning, pp. 10323–10337. PMLR, 2023.

Yeqi Gao, Sridhar Mahadevan, and Zhao Song. An over-parameterized exponential regression.
arXiv preprint arXiv:2303.16504, 2023a.

Yeqi Gao, Zhao Song, and Xin Yang. Differentially private attention computation. arXiv preprint
arXiv:2305.04701, 2023b.

Yeqi Gao, Zhao Song, Xin Yang, and Ruizhe Zhang. Fast quantum algorithm for attention compu-
tation. arXiv preprint arXiv:2307.08045, 2023c.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, and
Haofen Wang. Retrieval-augmented generation for large language models: A survey. arXiv
preprint arXiv:2312.10997, 2023d.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Kamal Gupta, Justin Lazarow, Alessandro Achille, Larry S Davis, Vijay Mahadevan, and Abhinav
Shrivastava. Layouttransformer: Layout generation and completion with self-attention. In Pro-
ceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1004–1014, 2021.

Insu Han, Rajesh Jayaram, Amin Karbasi, Vahab Mirrokni, David Woodruff, and Amir Zandieh.
Hyperattention: Long-context attention in near-linear time. In The Twelfth International Confer-
ence on Learning Representations, 2024.

Nan He, Hanyu Lai, Chenyang Zhao, Zirui Cheng, Junting Pan, Ruoyu Qin, Ruofan Lu, Rui Lu,
Yunchen Zhang, Gangming Zhao, et al. Teacherlm: Teaching to fish rather than giving the fish,
language modeling likewise. arXiv preprint arXiv:2310.19019, 2023.

Jerry Yao-Chieh Hu, Donglin Yang, Dennis Wu, Chenwei Xu, Bo-Yu Chen, and Han Liu. On sparse
modern hopfield model. In Thirty-seventh Conference on Neural Information Processing Systems
(NeurIPS), 2023.

Jerry Yao-Chieh Hu, Pei-Hsuan Chang, Haozheng Luo, Hong-Yu Chen, Weijian Li, Wei-Po Wang,
and Han Liu. Outlier-efficient hopfield layers for large transformer-based models. In Forty-first
International Conference on Machine Learning (ICML), 2024a.

Jerry Yao-Chieh Hu, Bo-Yu Chen, Dennis Wu, Feng Ruan, and Han Liu. Nonparametric modern
hopfield models. arXiv preprint arXiv:2404.03900, 2024b.

Jerry Yao-Chieh Hu, Thomas Lin, Zhao Song, and Han Liu. On computational limits of modern
hopfield models: A fine-grained complexity analysis. In Forty-first International Conference on
Machine Learning (ICML), 2024c.

Jerry Yao-Chieh Hu, Maojiang Su, En-Jui Kuo, Zhao Song, and Han Liu. Computational limits
of low-rank adaptation (lora) for transformer-based models. arXiv preprint arXiv:2406.03136,
2024d.

Jerry Yao-Chieh Hu, Dennis Wu, and Han Liu. Provably optimal memory capacity for modern hop-
field models: Tight analysis for transformer-compatible dense associative memories. In Advances
in Neural Information Processing Systems (NeurIPS), volume 37, 2024e.

Jerry Yao-Chieh Hu, Weimin Wu, Zhao Song, and Han Liu. On statistical rates and provably efficient
criteria of latent diffusion transformers (dits). arXiv preprint arXiv:2407.01079, 2024f.

Itay Hubara, Brian Chmiel, Moshe Island, Ron Banner, Joseph Naor, and Daniel Soudry. Accel-
erated sparse neural training: A provable and efficient method to find n: m transposable masks.
Advances in neural information processing systems, 34:21099–21111, 2021.

Tian Jin, Michael Carbin, Dan Roy, Jonathan Frankle, and Gintare Karolina Dziugaite. Pruning’s
effect on generalization through the lens of training and regularization. Advances in Neural In-
formation Processing Systems, 35:37947–37961, 2022.

Praneeth Kacham, Vahab Mirrokni, and Peilin Zhong. Polysketchformer: Fast transformers via
sketches for polynomial kernels. arXiv preprint arXiv:2310.01655, 2023.

Feyza Duman Keles, Pruthuvi Mahesakya Wijewardena, and Chinmay Hegde. On the computational
complexity of self-attention. In International Conference on Algorithmic Learning Theory, pp.
597–619. PMLR, 2023.

Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. arXiv
preprint arXiv:2001.04451, 2020.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Pro-
cessing, pp. 3045–3059, 2021.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding. In International Conference on Machine Learning, pp. 19274–19286. PMLR, 2023.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented genera-
tion for knowledge-intensive nlp tasks. Advances in Neural Information Processing Systems, 33:
9459–9474, 2020.

Chenyang Li, Yingyu Liang, Zhenmei Shi, Zhao Song, and Tianyi Zhou. Fourier circuits in neu-
ral networks: Unlocking the potential of large language models in mathematical reasoning and
modular arithmetic. arXiv preprint arXiv:2402.09469, 2024a.

Tianle Li, Ge Zhang, Quy Duc Do, Xiang Yue, and Wenhu Chen. Long-context llms struggle with
long in-context learning. arXiv preprint arXiv:2404.02060, 2024b.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the
11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers),
pp. 4582–4597, 2021.

Xiaoyu Li, Yingyu Liang, Zhenmei Shi, and Zhao Song. A tighter complexity analysis of sparsegpt.
arXiv preprint arXiv:2408.12151, 2024c.

Xiaoyu Li, Yingyu Liang, Zhenmei Shi, Zhao Song, and Junwei Yu. Fast john ellipsoid computation
with differential privacy optimization. arXiv preprint arXiv:2408.06395, 2024d.

Xiaoyu Li, Yingyu Liang, Zhenmei Shi, Zhao Song, and Yufa Zhou. Fine-grained attention i/o
complexity: Comprehensive analysis for backward passes. arXiv preprint arXiv:2410.09397,
2024e.

Xiaoyu Li, Zhao Song, and Junwei Yu. Quantum speedups for approximating the john ellipsoid.
arXiv preprint arXiv:2408.14018, 2024f.

Yanghao Li, Hanzi Mao, Ross Girshick, and Kaiming He. Exploring plain vision transformer back-
bones for object detection. In European conference on computer vision, pp. 280–296. Springer,
2022.

Yuchen Li, Yuanzhi Li, and Andrej Risteski. How do transformers learn topic structure: Towards a
mechanistic understanding. In International Conference on Machine Learning, pp. 19689–19729.
PMLR, 2023a.

Zhihang Li, Zhao Song, and Tianyi Zhou. Solving regularized exp, cosh and sinh regression prob-
lems. arXiv preprint arXiv:2303.15725, 2023b.

Zhihang Li, Zhao Song, Weixin Wang, Junze Yin, and Zheng Yu. How to inverting the leverage
score distribution? arXiv preprint arXiv:2404.13785, 2024g.

Yingyu Liang, Heshan Liu, Zhenmei Shi, Zhao Song, and Junze Yin. Conv-basis: A new
paradigm for efficient attention inference and gradient computation in transformers. arXiv
preprint arXiv:2405.05219, 2024a.

Yingyu Liang, Jiangxuan Long, Zhenmei Shi, Zhao Song, and Yufa Zhou. Beyond linear approxi-
mations: A novel pruning approach for attention matrix, 2024b.

Yingyu Liang, Zhizhou Sha, Zhenmei Shi, and Zhao Song. Differential privacy mechanisms in
neural tangent kernel regression. arXiv preprint arXiv:2407.13621, 2024c.

Yingyu Liang, Zhizhou Sha, Zhenmei Shi, Zhao Song, and Yufa Zhou. Looped relu mlps may be
all you need as practical programmable computers. arXiv preprint arXiv:2410.09375, 2024d.

Yingyu Liang, Zhenmei Shi, Zhao Song, and Chiwun Yang. Toward infinite-long prefix in trans-
former. arXiv preprint arXiv:2406.14036, 2024e.

Yingyu Liang, Zhenmei Shi, Zhao Song, and Yufa Zhou. Unraveling the smoothness properties of
diffusion models: A gaussian mixture perspective. arXiv preprint arXiv:2405.16418, 2024f.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Yingyu Liang, Zhenmei Shi, Zhao Song, and Yufa Zhou. Differential privacy of cross-attention with
provable guarantee. arXiv preprint arXiv:2407.14717, 2024g.

Yingyu Liang, Zhenmei Shi, Zhao Song, and Yufa Zhou. Tensor attention training: Provably effi-
cient learning of higher-order transformers. arXiv preprint arXiv:2405.16411, 2024h.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization for
on-device llm compression and acceleration. Proceedings of Machine Learning and Systems, 6:
87–100, 2024.

Na Liu, Liangyu Chen, Xiaoyu Tian, Wei Zou, Kaijiang Chen, and Ming Cui. From llm to conversa-
tional agent: A memory enhanced architecture with fine-tuning of large language models. arXiv
preprint arXiv:2401.02777, 2024.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Tam, Zhengxiao Du, Zhilin Yang, and Jie Tang. P-tuning:
Prompt tuning can be comparable to fine-tuning across scales and tasks. In Proceedings of the
60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers).
Association for Computational Linguistics, 2022.

Yixin Liu, Kejian Shi, Katherine S He, Longtian Ye, Alexander R Fabbri, Pengfei Liu, Dragomir
Radev, and Arman Cohan. On learning to summarize with large language models as references.
arXiv preprint arXiv:2305.14239, 2023.

AI @ Meta Llama Team. The llama 3 herd of models. arXiv preprint arXiv:2407.21783, 2024.

Minh-Thang Luong, Hieu Pham, and Christopher D Manning. Effective approaches to attention-
based neural machine translation. arXiv preprint arXiv:1508.04025, 2015.

Kai Lv, Yuqing Yang, Tengxiao Liu, Qinghui Gao, Qipeng Guo, and Xipeng Qiu. Full parameter
fine-tuning for large language models with limited resources. arXiv preprint arXiv:2306.09782,
2023.

Da Ma, Lu Chen, Pengyu Wang, Hongshen Xu, Hanqi Li, Liangtai Sun, Su Zhu, Shuai Fan, and Kai
Yu. Sparsity-accelerated training for large language models. arXiv preprint arXiv:2406.01392,
2024a.

Nanye Ma, Mark Goldstein, Michael S Albergo, Nicholas M Boffi, Eric Vanden-Eijnden, and Sain-
ing Xie. Sit: Exploring flow and diffusion-based generative models with scalable interpolant
transformers. arXiv preprint arXiv:2401.08740, 2024b.

Amama Mahmood, Junxiang Wang, Bingsheng Yao, Dakuo Wang, and Chien-Ming Huang. Llm-
powered conversational voice assistants: Interaction patterns, opportunities, challenges, and de-
sign guidelines. arXiv preprint arXiv:2309.13879, 2023.

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh Hajishirzi, and Luke
Zettlemoyer. Rethinking the role of demonstrations: What makes in-context learning work? In
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pp.
11048–11064, 2022.

Jesse Mu, Xiang Li, and Noah Goodman. Learning to compress prompts with gist tokens. Advances
in Neural Information Processing Systems, 36, 2024.

OpenAI. Searchgpt, 2024. URL https://openai.com/index/searchgpt-prototype.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 4195–4205, 2023.

Lianke Qin, Saayan Mitra, Zhao Song, Yuanyuan Yang, and Tianyi Zhou. Fast heavy inner product
identification between weights and inputs in neural network training. In 2023 IEEE International
Conference on Big Data (BigData), pp. 128–133. IEEE, 2023a.

Lianke Qin, Zhao Song, and Baocheng Sun. Is solving graph neural tangent kernel equivalent to
training graph neural network? arXiv preprint arXiv:2309.07452, 2023b.

14

https://openai.com/index/searchgpt-prototype

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Lianke Qin, Zhao Song, Lichen Zhang, and Danyang Zhuo. An online and unified algorithm for
projection matrix vector multiplication with application to empirical risk minimization. In In-
ternational Conference on Artificial Intelligence and Statistics (AISTATS), pp. 101–156. PMLR,
2023c.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. OpenAI blog, 2019.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Siddharth Samsi, Dan Zhao, Joseph McDonald, Baolin Li, Adam Michaleas, Michael Jones,
William Bergeron, Jeremy Kepner, Devesh Tiwari, and Vijay Gadepally. From words to watts:
Benchmarking the energy costs of large language model inference. In 2023 IEEE High Perfor-
mance Extreme Computing Conference (HPEC), pp. 1–9. IEEE, 2023.

John Schulman, Barret Zoph, Christina Kim, Jacob Hilton, Jacob Menick, Jiayi Weng, Juan Fe-
lipe Ceron Uribe, Liam Fedus, Luke Metz, Michael Pokorny, et al. Chatgpt: Optimizing language
models for dialogue. OpenAI blog, 2(4), 2022.

Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, and Tri Dao.
Flashattention-3: Fast and accurate attention with asynchrony and low-precision. arXiv preprint
arXiv:2407.08608, 2024.

Weiyan Shi, Ryan Shea, Si Chen, Chiyuan Zhang, Ruoxi Jia, and Zhou Yu. Just fine-tune twice:
Selective differential privacy for large language models. In Proceedings of the 2022 Conference
on Empirical Methods in Natural Language Processing, pp. 6327–6340, 2022.

Zhenmei Shi, Yifei Ming, Xuan-Phi Nguyen, Yingyu Liang, and Shafiq Joty. Discovering the gems
in early layers: Accelerating long-context llms with 1000x input token reduction. arXiv preprint
arXiv:2409.17422, 2024a.

Zhenmei Shi, Junyi Wei, Zhuoyan Xu, and Yingyu Liang. Why larger language models do in-context
learning differently? arXiv preprint arXiv:2405.19592, 2024b.

Tanmay Singh, Harshvardhan Aditya, Vijay K Madisetti, and Arshdeep Bahga. Whispered tuning:
Data privacy preservation in fine-tuning llms through differential privacy. Journal of Software
Engineering and Applications, 17(1):1–22, 2024.

Charlie Snell, Ruiqi Zhong, Dan Klein, and Jacob Steinhardt. Approximating how single head
attention learns. arXiv preprint arXiv:2103.07601, 2021.

Zhao Song and Chiwun Yang. An automatic learning rate schedule algorithm for achieving faster
convergence and steeper descent. arXiv preprint arXiv:2310.11291, 2023.

Zhao Song, Xin Yang, Yuanyuan Yang, and Lichen Zhang. Sketching meets differential privacy:
fast algorithm for dynamic kronecker projection maintenance. In International Conference on
Machine Learning (ICML), pp. 32418–32462. PMLR, 2023a.

Zhao Song, Mingquan Ye, and Lichen Zhang. Streaming semidefinite programs: O(
√
n) passes,

small space and fast runtime. arXiv preprint arXiv:2309.05135, 2023b.

Mitchell Stern, Noam Shazeer, and Jakob Uszkoreit. Blockwise parallel decoding for deep autore-
gressive models. Advances in Neural Information Processing Systems, 31, 2018.

Jovan Stojkovic, Esha Choukse, Chaojie Zhang, Inigo Goiri, and Josep Torrellas. Towards
greener llms: Bringing energy-efficiency to the forefront of llm inference. arXiv preprint
arXiv:2403.20306, 2024.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning approach
for large language models. In The Twelfth International Conference on Learning Representations,
2024.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Szymon Tworkowski, Konrad Staniszewski, Mikołaj Pacek, Yuhuai Wu, Henryk Michalewski, and
Piotr Miłoś. Focused transformer: Contrastive training for context scaling. Advances in Neural
Information Processing Systems, 36, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Vijay Viswanathan, Chenyang Zhao, Amanda Bertsch, Tongshuang Wu, and Graham Neubig.
Prompt2model: Generating deployable models from natural language instructions. arXiv preprint
arXiv:2308.12261, 2023.

Jiayu Wang, Yifei Ming, Zhenmei Shi, Vibhav Vineet, Xin Wang, and Neel Joshi. Is a picture worth
a thousand words? delving into spatial reasoning for vision language models. arXiv preprint
arXiv:2406.14852, 2024a.

Yilin Wang, Zeyuan Chen, Liangjun Zhong, Zheng Ding, Zhizhou Sha, and Zhuowen Tu. Dolfin:
Diffusion layout transformers without autoencoder. arXiv preprint arXiv:2310.16305, 2023a.

Yilin Wang, Haiyang Xu, Xiang Zhang, Zeyuan Chen, Zhizhou Sha, Zirui Wang, and Zhuowen Tu.
Omnicontrolnet: Dual-stage integration for conditional image generation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7436–7448, 2024b.

Yuntao Wang, Zirui Cheng, Xin Yi, Yan Kong, Xueyang Wang, Xuhai Xu, Yukang Yan, Chun Yu,
Shwetak Patel, and Yuanchun Shi. Modeling the trade-off of privacy preservation and activity
recognition on low-resolution images. In Proceedings of the 2023 CHI Conference on Human
Factors in Computing Systems, pp. 1–15, 2023b.

Zirui Wang, Zhizhou Sha, Zheng Ding, Yilin Wang, and Zhuowen Tu. Tokencompose: Grounding
diffusion with token-level supervision. arXiv preprint arXiv:2312.03626, 2023c.

Dennis Wu, Jerry Yao-Chieh Hu, Teng-Yun Hsiao, and Han Liu. Uniform memory retrieval with
larger capacity for modern hopfield models. In Forty-first International Conference on Machine
Learning (ICML), 2024a.

Dennis Wu, Jerry Yao-Chieh Hu, Weijian Li, Bo-Yu Chen, and Han Liu. STanhop: Sparse tan-
dem hopfield model for memory-enhanced time series prediction. In The Twelfth International
Conference on Learning Representations (ICLR), 2024b.

Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen Ding, Boyang Hong, Ming Zhang, Junzhe
Wang, Senjie Jin, Enyu Zhou, et al. The rise and potential of large language model based agents:
A survey. arXiv preprint arXiv:2309.07864, 2023.

Chaojun Xiao, Zhengyan Zhang, Chenyang Song, Dazhi Jiang, Feng Yao, Xu Han, Xiaozhi Wang,
Shuo Wang, Yufei Huang, Guanyu Lin, et al. Configurable foundation models: Building llms
from a modular perspective. arXiv preprint arXiv:2409.02877, 2024.

Chenwei Xu, Yu-Chao Huang, Jerry Yao-Chieh Hu, Weijian Li, Ammar Gilani, Hsi-Sheng Goan,
and Han Liu. Bishop: Bi-directional cellular learning for tabular data with generalized sparse
modern hopfield model. In Forty-first International Conference on Machine Learning (ICML),
2024a.

Hu Xu, Gargi Ghosh, Po-Yao Huang, Prahal Arora, Masoumeh Aminzadeh, Christoph Feichten-
hofer, Florian Metze, and Luke Zettlemoyer. Vlm: Task-agnostic video-language model pre-
training for video understanding. arXiv preprint arXiv:2105.09996, 2021a.

Jing Xu, Arthur Szlam, and Jason Weston. Beyond goldfish memory: Long-term open-domain
conversation. arXiv preprint arXiv:2107.07567, 2021b.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Xinchao Xu, Zhibin Gou, Wenquan Wu, Zheng-Yu Niu, Hua Wu, Haifeng Wang, and Shihang
Wang. Long time no see! open-domain conversation with long-term persona memory. arXiv
preprint arXiv:2203.05797, 2022.

Zhuoyan Xu, Zhenmei Shi, and Yingyu Liang. Do large language models have compositional abil-
ity? an investigation into limitations and scalability. In ICLR 2024 Workshop on Mathematical
and Empirical Understanding of Foundation Models, 2024b.

Amir Zandieh, Insu Han, Majid Daliri, and Amin Karbasi. Kdeformer: Accelerating transformers
via kernel density estimation. In International Conference on Machine Learning, pp. 40605–
40623. PMLR, 2023.

Bowen Zhang, Zhi Tian, Quan Tang, Xiangxiang Chu, Xiaolin Wei, Chunhua Shen, et al. Segvit: Se-
mantic segmentation with plain vision transformers. Advances in Neural Information Processing
Systems, 35:4971–4982, 2022.

Jieyu Zhang, Ranjay Krishna, Ahmed H Awadallah, and Chi Wang. Ecoassistant: Using llm assistant
more affordably and accurately. arXiv preprint arXiv:2310.03046, 2023.

Jingyi Zhang, Jiaxing Huang, Sheng Jin, and Shijian Lu. Vision-language models for vision tasks:
A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024a.

Jingzhao Zhang, Sai Praneeth Karimireddy, Andreas Veit, Seungyeon Kim, Sashank Reddi, Sanjiv
Kumar, and Suvrit Sra. Why are adaptive methods good for attention models? Advances in
Neural Information Processing Systems, 33:15383–15393, 2020.

Michael Zhang, Kush Bhatia, Hermann Kumbong, and Christopher Ré. The hedgehog & the por-
cupine: Expressive linear attentions with softmax mimicry. arXiv preprint arXiv:2402.04347,
2024b.

Tianyi Zhang, Faisal Ladhak, Esin Durmus, Percy Liang, Kathleen McKeown, and Tatsunori B
Hashimoto. Benchmarking large language models for news summarization. Transactions of the
Association for Computational Linguistics, 12:39–57, 2024c.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Appendix
Roadmap. In Section A, we provide related works of this paper. In Section B, we provide a
detailed discussion about several potential extensions of our framework. In Section C, we introduce
basic notations and concepts used in our paper, along with the low-rank approximation technique
introduced in (Alman & Song, 2023) and (Alman & Song, 2024a). In Section D, we provide details
about how we integrate the gradient of Ti(X) into matrix form. In Section E, we explain how
to apply the low-rank approximation technique to accelerate the computation for the gradient on
Ti(X). In Section F, we extend the result of (Alman & Song, 2024a) to arbitrary loss functions
and accelerate the computation of gradient on W via the low-rank approximation technique. In
Section G, we calculate the gradient on WV and accelerate the computation of the gradient on WV .
In Section H, with the help of math induction, we analyze the time complexity and the approximation
error across the entire model. In Section I, we discuss how our framework can expand to an attention
mechanism with a causal attention mask. In Section J, we provide details about how to integrate our
framework with attention mechanism with the residual connection. In Section K, we argue that,
with the addition of multi-head attention, our algorithm can still achieve almost linear time gradient
computation. In Section ??, we discuss the limitation of this work. Finally, in Section ??, we provide
a discussion about potential societal impact of this work.

A RELATED WORK

Long-context modeling in LLMs. As LLMs grow in size and capability, in-context learning
(ICL) (Min et al., 2022; Shi et al., 2024b; Xu et al., 2024b; Chen et al., 2024a) has become a pre-
ferred method for directing these models to perform a variety of tasks, as opposed to the resource-
intensive process of fine-tuning. Nonetheless, research has indicated that longer prompts can impair
LLMs’ performance due to the limitation on maximum sequence length during pre-training (Li
et al., 2024b). Consequently, extending the maximum sequence length during pre-training and fine-
tuning stages is imperative. Enhancing training efficiency is crucial given the prevalent use of the
Transformer architecture in LLMs, which incurs a quadratic computational cost relative to sequence
length. Addressing this challenge, some studies have explored continued fine-tuning of LLMs with
extended context lengths (Tworkowski et al., 2024), while others have experimented with the in-
terpolation and extrapolation capabilities of positional embedding (Chen et al., 2023). (Shi et al.,
2024a) handles long context by compressing the input tokens. However, these approaches have not
fundamentally addressed the core issue: the quadratic computational cost associated with sequence
length in the attention mechanism (Keles et al., 2023; Fournier et al., 2023). In this study, we delve
into accelerating the attention mechanism, thereby addressing the long-context modeling issue at its
essence.

Attention acceleration. Attention mechanism has faced criticism due to its quadratic time com-
plexity with respect to context length, a concern exacerbated by the increasing length in modern
large language models (LLMs) such as GPT-4 (Achiam et al., 2023), Claude 3.5 (Anthropic, 2024),
Llama 3.1 (Touvron et al., 2023; Llama Team, 2024), etc. Nevertheless, this limitation can be cir-
cumvented by employing polynomial kernel approximation techniques (Aggarwal & Alman, 2022),
which enable the derivation of a low-rank representation of the attention matrix. This innovation
significantly accelerates both the training and inference processes of a single attention layer, achiev-
ing almost linear time complexity (Alman & Song, 2023; 2024a), while our work supports both
training and inference for any multi-layer transformer. The foundational concept underpinning the
work of (Alman & Song, 2023; 2024a) is the extension of the notion that polynomials can effectively
approximate exponential functions to the domain of matrices. Given that each entry of the attention
matrix is activated by a softmax function, the author of (Alman & Song, 2023) proposed the use
of a polynomial matrix to approximate the softmax-activated attention matrix. Additionally, they
demonstrated that this polynomial matrix can be factorized into the product of two low-rank ma-
trices. By strategically reordering the sequence of matrix multiplications, these low-rank matrices
are employed to diminish the computational complexity of the attention mechanism’s forward pass
to almost linear time. For more details, please refer to Section 3 in (Alman & Song, 2023). Fur-
thermore, this approach can be extended to higher-order attention mechanisms, i.e., tensor attention
(Alman & Song, 2024b; Liang et al., 2024h). Moreover, there are other theoretical approaches. For
instance, (Liang et al., 2024a) introduces the conv-basis method to accelerate attention computation.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

(Han et al., 2024) proposes a near-linear time algorithm under the assumptions of uniform softmax
column norms and sparsity.

Attention mechanism. Attention mechanisms, including self-attention and cross-attention, are
pivotal techniques employed in state-of-the-art neural networks. Since it was introduced in (Vaswani
et al., 2017), it has gained widespread adoption across various domains. In particular, it is integral
to decoder-only LLMs (Radford et al., 2019) and the Vision Transformer (ViT) architecture (Doso-
vitskiy et al., 2020). The former has been instrumental in the remarkable success of LLMs, while
the latter has significantly advanced the field of computer vision, encompassing applications such
as image generation (Rombach et al., 2022; Wang et al., 2023c; 2024b), detection (Li et al., 2022),
segmentation (Zhang et al., 2022), and layout generation (Gupta et al., 2021; Chai et al., 2023; Wang
et al., 2023a). Moreover, attention mechanism can be integrated into multi-modal models (Xu et al.,
2021a; Zhang et al., 2024a; Liang et al., 2024h; Wang et al., 2024a), math reasoning (Li et al.,
2024a), diffusion models (Peebles & Xie, 2023; Liang et al., 2024f; Hu et al., 2024f; Esser et al.,
2024; Ma et al., 2024b; Li et al., 2024g), differential privacy (Behnia et al., 2022; Shi et al., 2022;
Wang et al., 2023b; Liang et al., 2024g; Singh et al., 2024; Chu et al., 2023; Liang et al., 2024c; Li
et al., 2024d; Song et al., 2023a) and many other techniques (Liang et al., 2024d; Li et al., 2024f;
Qin et al., 2023a;b;c; Song et al., 2023b; Xiao et al., 2024; Viswanathan et al., 2023).

Attention theory. (Bahdanau et al., 2014) introduced attention mechanisms in NLP, enhancing
encoder-decoder architecture with variable-length vectors to improve machine translation. Build-
ing on this, (Luong et al., 2015) developed local and global attention variants, further refining NLP
tasks. Recent Large Language Model research has focused extensively on attention computation
(Deng et al., 2023a; Alman & Song, 2023; Zandieh et al., 2023). Studies by (Zandieh et al., 2023;
Chen et al., 2020; Kitaev et al., 2020) use Locality Sensitive Hashing for attention approximation,
with (Zandieh et al., 2023) offering efficient dot-product attention. (Brand et al., 2023) and (Alman
& Song, 2023) explore static and dynamic attention calculations, while (Li et al., 2023b) investi-
gates hyperbolic regression regularization. (Deng et al., 2023a) proposes algorithms for reducing
attention matrix dimensionality in LLMs. Attention has also been examined from optimization and
convergence perspectives (Li et al., 2023a; Gao et al., 2023a; Snell et al., 2021; Zhang et al., 2020),
investigating word co-occurrence learning (Li et al., 2023a), regression problems with exponential
activation functions (Gao et al., 2023a), attention mechanism evolution during training (Snell et al.,
2021), and the impact of heavy-tailed noise on stochastic gradient descent (Zhang et al., 2020).
Theoretical explorations of attention variants include quantum attention (Gao et al., 2023c), tensor
attention (Alman & Song, 2024b; Liang et al., 2024h), and differentially private attention (Liang
et al., 2024g; Gao et al., 2023b; Liang et al., 2024c).

More methods for model acceleration. Various techniques have been developed for model
acceleration. One approach involves modifying model architectures to enable faster inference,
such as Mamba (Gu & Dao, 2023), Linearizing Transformers (Zhang et al., 2024b), PolySketch-
Former (Kacham et al., 2023), and the Hopfield Model (Hu et al., 2024b;a; Wu et al., 2024a; Xu
et al., 2024a; Hu et al., 2024c; Wu et al., 2024b; Hu et al., 2023; 2024e) and so on. Another line
of work is to prune the weights in a neural network to reduce running time and memory consump-
tion (Hubara et al., 2021; Jin et al., 2022; Frantar & Alistarh, 2022; 2023; Sun et al., 2024; Li et al.,
2024c; Liang et al., 2024b). In addition, specific techniques have been developed to accelerate LLM
generation (Chen et al., 2024b;a; Song & Yang, 2023; Li et al., 2024e).

B DISCUSSION AND EXTENSION DETAILS

In Section B.1, we argue that our framework can easily adapt to the multi-head attention mechanism.
In Section B.2, we introduce how to integrate residual connection to our framework. In Section B.3,
we detail the integration of the causal attention mask into our algorithm. In Section B.4, we discuss
the possibility of the synergy between our theoretical side attention acceleration and the existing
system-level attention acceleration mechanism. In Section B.5, we show how to expedite prompt
tuning using our results.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

B.1 MULTI-HEAD ATTENTION

The multi-head attention mechanism was first introduced by (Vaswani et al., 2017). This innovation
allows a token to simultaneously attend to multiple positions within the same layer, thereby enriching
the model’s capacity for capturing various dependencies. However, this enhanced capability comes
with an increase in the size of the attention matrix f(X) from 1 × n × n to h × n × n, where
h is the number of attention heads. To mitigate the computational burden, each head’s vector is
derived by splitting the original vector, reducing the dimensionality of each head to dh := d/h. To
summarize, the key distinctions between multi-head and single-head attention are (1) an enlarged
attention matrix f(X) and (2) a reduced dimensionality dh within each attention head.

Enlarged attention matrix. As previously discussed, the attention matrix’s dimensionality in-
creases with the number of heads, h. Despite this expansion, the application of the low-rank approx-
imation technique, as outlined in Section 4.1, ensures that the computation time for the attention
matrix remains almost linear. Specifically, for a constant number of heads h in the multi-head mech-
anism, the time complexity for computing f(X) ∈ Rh×n×n is h · n1+o(1) = n1+o(1).

Reduced dimensionality. Another differentiating factor of multi-head attention is the lower di-
mensionality processed by each head, i.e. dh := d/h, compared the full d in single-head attention.
This reduction ensures that the gradient computation time does not increase with the introduction of
multiple attention heads.

We provide comprehensive analysis of the synergy of our algorithm with multi-head attention in
Section K. We first prove in Lemma K.2, with the addition of multi-head attention, the gradient over
the attention mechanism can be computed in almost linear time. Then, we further prove that for any
multi-layer transformer, with multi-head attention, the gradient can be computed in almost linear
time as well.

B.2 RESIDUAL CONNECTION

Residual connection is a pivotal technique in deep neural network architectures, effectively address-
ing issues such as vanishing and exploding gradients during training process, and facilitating faster
convergence of the model. Residual connection is also integrated into the standard attention mech-
anism. Formally, given the intermediate variable Ti(X) output by the i-th transformer layer as
defined in Definition 2.3, we provide the formal definition of residual connection in Definition J.1
and J.2. Since the residual connection only brings an additional add operation to each component
and with Ti(X) belonging to the space Rn×d, the residual connection introduces only a marginal
computational overhead of O(n · d) per layer. Consequently, the total computational cost for each
layer is O(n · d) + n1+o(1) = n1+o(1). Hence, by intuition, the inclusion of residual connections
does not compromise the overall complexity of our method.

The detailed analysis is provided in Section J, where we first prove in Lemma J.3, that if the gradient
over one structure can be computed in almost linear time, then with the addition of the residual
connection, the gradient can also be computed in almost linear time. Then we use math induction to
extend our result to the entire multi-layer transformer model.

B.3 CAUSAL ATTENTION MASK

In transformer training, attention mask is a crucial component, designed to prevent a given token
from attending to future tokens in the sequence. Causal attention mask is a widely used attention
mask, which is configured as a lower triangular matrix, where elements on or below the main diag-
onal are ones, with all other entries being zeros.

Now we describe how to incorporate this into our algorithm. Let M ∈ {0, 1}n×n represent the
causal attention mask (see Definition I.2). Let f̂(X) := D−1(M ⊙A) where A = exp(XWX⊤/d)
and D := diag((M ⊙ A) · 1n). Lemma I.1 reveals that A has a low-rank representation given by
U0V

⊤
0 . Using Lemma I.3, we know (M ⊙ (U0V

⊤
0)) · v for any vector v ∈ Rn can be computed in

almost linear time.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

To integrate the causal mask into the gradient computation within each transformer layer, we first
find all instances that have the structure of f(X) ·H or (f(X) ⊙ (UV ⊤)) ·H , where H,U, V are
low rank matrices. Then, we replace f(X) with f̂(X) in these instances. More detailed analysis of
causal attention can be found in Section I. To be more specific, we group the gradient components for
Ti,Wi,WVi

into two categories, one for dot product (Lemma I.7), another for Hadamard product
(Lemma I.8). After showing each component can be calculated in almost linear time, the overall
gradient computation remains n1+o(1) time. Thus, our framework can seamlessly accommodate
causal attention masks.

B.4 SYSTEM-LEVEL ATTENTION ACCELERATION

The attention computing acceleration involves a two-pronged strategy that leverages both system-
level improvements (e.g. Flash Attention (Dao et al., 2022; Dao, 2023; Shah et al., 2024)) and the
theoretical time complexity improvements (e.g. our work and (Han et al., 2024)).

Numerous efforts have been made in the literature to accelerate attention calculations at the sys-
tem level. For instance, Flash Attention (Dao et al., 2022; Dao, 2023; Shah et al., 2024) targets
the I/O bottleneck inherent in attention mechanisms. Studies such as block-wise parallel decod-
ing (Stern et al., 2018) focus on implementing parallel decoding within transformer models to en-
hance inference speed. Additionally, recent advancements in the field of speculative decoding, such
as Medusa (Cai et al., 2024), leverage a smaller, more efficient model to generate predictions, with
the larger model only responsible for validating, the smaller model’s outputs (Leviathan et al., 2023).

Despite these innovations, the aforementioned methods do not address the fundamental quadratic
time complexity O(n2) of the attention mechanisms. This presents an opportunity to complement
our low-rank approximation technique, with these system-level optimizations, thereby achieving
an even greater acceleration in attention computation. For instance, we could design an I/O-aware
algorithm for Algorithm 1, similar to the approach taken by Flash Attention, to effectively leverage
GPU acceleration.

To implement our algorithm practically on GPU, we have some coding challenges to fix: (1) we
need to define some new tensor operations in PyTorch, e.g. Eq. (5), Eq. (8); (2) we need to sys-
tematically re-implement some back-propagation function of the current PyTorch function; (3) we
need to implement some CUDA function to run our algorithm in parallel for the casual mask, see
discussion in Section B.3. We may leave this as our future work.

B.5 PROMPT TUNING

Prompt tuning, as introduced by various studies (Li & Liang, 2021; Lester et al., 2021; Liu et al.,
2022; Mu et al., 2024; Hu et al., 2024d; Liang et al., 2024e), has emerged as a parameter-efficient
fine-tuning strategy for large language models (LLMs). Specifically, prompt tuning involves ad-
justing “soft prompts” conditioned on frozen LLMs. This method requires relatively small number
of tuneable parameters compared with fine-tuning the entire LLMs, making it a popular choice for
conserving training resources, including data and computational power.

The analysis reveals that the essence of prompt tuning involves computing gradients with respect to
the soft prompts Xp across the entire model. In both prompt tuning and full fine-tuning, the quadratic
O(n2) computational complexity of gradient calculation remains the same due to the self-attention
mechanism inherent in LLMs.

In this work, leveraging the low-rank approximation technique discussed in Section 4.1, our algo-
rithm (Algorithm 1) efficiently computes gradients on soft prompts Xp over the entire model in
almost linear time. This suggests that our method is universal and can also be applied within tradi-
tional prompt tuning frameworks.

C PRELIMINARY ON GRADIENT CALCULATION

In Section C.1, we list several useful math facts used in the following sections of this paper. In
Section C.2, we provide the close forms of the gradient components. In Section C.3, we introduce
some mathematical definitions to facilitate understanding of gradient calculations. In Section C.4,

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

we list some low rank approximation technique introduced in (Alman & Song, 2023) and (Alman &
Song, 2024a). In Section C.5, we demonstrate that the entries of matrices defined in Section C.3 are
bounded.

Notations. For two vectors x ∈ Rn and y ∈ Rn, we use ⟨x, y⟩ to denote the inner product
between x, y. Namely, ⟨x, y⟩ =

∑n
i=1 xiyi. We use ei to denote a vector where only i-th coordinate

is 1, and other entries are 0. For each a, b ∈ Rn, we use a ⊙ b ∈ Rn to denote the Hardamard
product, i.e. the i-th entry of (a ⊙ b) is aibi for all i ∈ [n]. We use 1n to denote a length-n
vector where all the entries are ones. We use ∥A∥∞ to denote the ℓ∞ norm of a matrix A ∈ Rn×d,
i.e. ∥A∥∞ := maxi∈[n],j∈[d] |Ai,j |. We use poly(n) to denote polynomial time complexity with
respective to n.

C.1 BASIC MATH FACTS

In this section, we provide some useful basic math facts,
Fact C.1. Let x, y, z ∈ Rn. Then we have

• ⟨x⊙ y, z⟩ = x⊤ diag(y)z.

• ⟨x, (y ⊙ z)⟩ = ⟨y, (x⊙ z)⟩ = ⟨z, (y ⊙ x)⟩

• ⟨x, y⟩ = ⟨x⊙ y,1n⟩.

Then, we introduce a classical folklore used for the Hadamard product of two matrices.
Fact C.2 (Folklore, (Alman & Song, 2024a)). Let U1, V1 ∈ Rn×k1 . Let U2, V2 ∈ Rn×k2 . Then we
have

(U1︸︷︷︸
n×k1

V ⊤
1︸︷︷︸

k1×n

)⊙ (U2︸︷︷︸
n×k2

V ⊤
2︸︷︷︸

k2×n

) = (U1 ⊘ U2)︸ ︷︷ ︸
n×k1k2

(V1 ⊘ V2)
⊤︸ ︷︷ ︸

k1k2×n

Here, given U1 ∈ Rn×k1 and U2 ∈ Rn×k2 , the U1 ⊘ U2 ∈ Rn×k1k2 is the row-wise Kronecker
product, i.e., (U1 ⊘ U2)i,l1+(l2−1)k1

:= (U1)i,l1(U2)i,l2 for all i ∈ [n], l1 ∈ [k1] and l2 ∈ [k2].

C.2 CLOSE FORM OF THREE GRADIENT COMPONENTS

We first restate the definition of self-attention, where we denote W := WQW
⊤
K ∈ Rd×d for sim-

plicity.
Definition C.3 (Self-attention module). Let X ∈ Rn×d denote the input sequence, where n is the
number of input tokens and d is the hidden dimension size. Let WV ∈ Rd×d be the value weight
matrix, and let W := WQW

⊤
K ∈ Rd×d be the key-query weight matrix. The self-attention function

Attn(X) with weights W,WV is:

Attn(X) = Softmax(XWX⊤/d) ·X ·WV .

where Softmax is applied to each row of its input matrix. The attention can be re-written as:

Attn(X) = f(X) ·X ·WV ,

where (1) A := exp(XWX⊤/d) ∈ Rn×n and exp is applied element-wise, (2) D := diag(A1n) ∈
Rn×n, and (3) f(X) := D−1A ∈ Rn×n is the attention matrix.

Note that the gradient of WQ and WK can easily be calculated from the gradient of W , i.e.,

dL(X)

dWQ
=

dL(X)

dW
· dW

dWQ

=
dL(X)

dW
·WK

where the first step follows from the chain rule, and the second step follows from basic calculus.

Then, we show how to derive the close form for the gradient components within each layer of a
multi-layer transformer.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Lemma C.4 (Close form of gradient components, formal version of Lemma 2.4). If we have the
below conditions,

• Let L(X) be defined as Definition 2.1.

• Let Wi := WQiW
⊤
Ki
∈ Rd×d be the key-query weight matrix, WVi ∈ Rd×d be the value

weight matrix for the i-th transformer layer.

• Let Ti(X) denote the intermediate variable output by i-th self-attention transformer layer
(see Definition 2.3).

• Let Gi ∈ Rn×d denote the gradient matrix resulting from the application of the chain rule
up to the function gi, i.e., Gi =

dL(X)
dAttni(Ti−1(X)) .

• For i2 ∈ [n], j2 ∈ [d], let Gi(i2, j2) denote the (i2, j2)-th entry of Gi, let
dAttni(Ti−1(X))i2,j2

dTi−1(X) ∈ Rn×d denote the gradient of (i2, j2)-th entry of Attni(Ti−1(X)).

Then, we can show that

• Part 1.

dL(X)

dTi−1(X)
=

n∑
i2=1

d∑
j2=1

Gi(i2, j2) ·
dAttni(Ti−1(X))i2,j2

dTi−1(X)
.

• Part 2.

dL(X)

dWi
=

n∑
i2=1

d∑
j2=1

Gi(i2, j2) ·
dAttni(Ti−1(X))i2,j2

dWi
.

• Part 3.

dL(X)

dWVi

=

n∑
i2=1

d∑
j2=1

Gi(i2, j2) ·
dAttni(Ti−1(X))i2,j2

dWVi

.

Proof. We have

• L(X) ∈ R.

• Attni(Ti−1(X)) ∈ Rn×d, Ti−1(X) ∈ Rn×d.

• Wi ∈ Rd×d,WVi
∈ Rd×d.

Therefore, we have

• dL(X)
dTi−1(X) ∈ Rn×d, dAttni(Ti−1(X))

dTi−1(X) ∈ R(n×d)×(n×d).

• dL(X)
dWi

∈ Rd×d, dAttni(Ti−1(X))
dWi

∈ R(n×d)×(d×d).

• dL(X)
dWVi

∈ Rd×d, dAttni(Ti−1(X))
dWVi

∈ R(n×d)×(d×d).

Then, simply applying chain rule, we can get the final results.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

C.3 BASIC NOTATIONS FOR COMPUTING GRADIENTS

We remark that, in this section, for convenience of computing a closed form for the gradient, we
ignore the 1/d factor in function Softmax. Since it is only a rescaling factor, it won’t affect how we
compute these matrices in general.

Before we move on to compute gradients, we need to define some useful notations.

We begin with introducing the index for a matrix.
Definition C.5 (Simplified notations). For any matrix Z ∈ Rn×d, for i ∈ [n], j ∈ [d], we have
following definitions:

• Let Zi,j︸︷︷︸
scalar

and Z(i, j) denote the (i, j)-th entry of Z.

• Let Zi,∗︸︷︷︸
d×1

and Z(i, ∗) denote the i-th row of Z.

• Let Z∗,j︸︷︷︸
n×1

and Z(∗, j) denote the j-th column of Z.

Then, we define the exponential matrix in the attention mechanism.
Definition C.6 (Exponential function u). If we have the below conditions,

• Let X ∈ Rn×d

• Let W := WQW
⊤
K ∈ Rd×d

We define u(X) ∈ Rn×n as follows

u(X) := exp(XWX⊤)

Then, we introduce the summation vector of the aforementioned exponential matrix.
Definition C.7 (Sum function of softmax α). If we have the below conditions,

• Let X ∈ Rn×d

• Let u(X) be defined as Definition C.6

We define α(X) ∈ Rn as follows

α(X) := u(X) · 1n

Then, with the help of the summation vector, we are ready to normalize the exponential matrix and
get the softmax probability matrix.
Definition C.8 (Softmax probability function f). If we have the below conditions,

• Let X ∈ Rn×d

• Let u(X) ∈ Rn×n be defined as Definition C.6

• Let α(X) ∈ Rn be defined as Definition C.7

We define f(X) ∈ Rn×n as follows

f(X) := diag(α(X))−1u(X)

where we define f(X)⊤j0 ∈ Rn is the j0-th row of f(X).

Besides the probability matrix introduced above, we introduce the value matrix in the following
definition.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Definition C.9 (Value function h). If we have the below conditions,

• Let X ∈ Rn×d

• Let WV ∈ Rd×d

We define h(X) ∈ Rn×d as follows

h(X) = XWV

Then, we introduce s(X) to represent the output of the attention mechanism.
Definition C.10 (Self-attention output s). If we have the below conditions,

• Let f(X) be defined as Definition C.8

• Let h(X) be defined as Definition C.9

We define s(X) ∈ Rn×d as follows

s(X) = f(X)h(X)

Then, we introduce q(X) and p(X) to facilitate the calculation of the gradient on W .
Definition C.11 (Definition of q(X)). If we have the below conditions,

• Let h(X) ∈ Rn×d be defined as in Definition C.9.

• Let Gi ∈ Rn×d denote the gradient matrix resulting from the application of the chain rule
up to the function gi, i.e., Gi =

dL(X)
dAttni(Ti−1(X)) .

• For i2 ∈ [n], j2 ∈ [d], let Gi(i2, j2) denote the (i2, j2)-th entry of Gi.

We define q(X) ∈ Rn×n as

q(X) = Gi︸︷︷︸
n×d

h(X)⊤︸ ︷︷ ︸
d×n

.

where we define q(X)⊤j0 ∈ Rn is the j0-th row of q(X).

Definition C.12 (Definition of p(X), Definition C.5 in (Alman & Song, 2024a)). For every index
j0 ∈ [n], we define p(X)j0 ∈ Rn as

p(X)j0 := (diag(f(X)j0)− f(X)j0f(X)⊤j0)q(X)j0

where we have p(X) ∈ Rn×n and we define p(X)⊤j0 ∈ Rn is the j0-th row of p(X).

Furthermore, we define p1(X) = f(X)⊙q(X) and p2(X) = diag(p1(X) ·1n)f(X). Additionally,
we can calculate p(X) as

p(X) = p1(X)− p2(X)

C.4 LOW RANK REPRESENTATIONS

Using (Alman & Song, 2023)’s polynomial method techniques, we can obtain the following low-
rank representation result.
Lemma C.13 (Low rank representation to f , Section 3 of (Alman & Song, 2023), Lemma D.1
of (Alman & Song, 2024a)). For any R = o(

√
log n), there exists a k1 = no(1) such that: Let

X ∈ Rn×d and W ∈ Rd×d be a square matrix. It holds that ∥XW∥∞ ≤ R, ∥X∥∞ ≤ R,
then there are two matrices U1, V1 ∈ Rn×k1 such that ∥U1V

⊤
1 − f(X)∥∞ ≤ ϵ/poly(n). Here

f(X) = D−1 exp(XWX⊤) (see also Definition C.8) and we define D = diag(exp(XWX⊤)1n)
(see also Definition C.7). Moreover, these matrices U1, V1 can be explicitly constructed in n1+o(1)

time.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

A similar technique can be applied to s(X).

Lemma C.14 (Low rank representation to s). Let d = O(log n). Assume that each number in the
n×d matrices h(X) ∈ Rn×d can be written using O(log n) bits. Let n×d matrix s(X) ∈ Rn×d be
defined as Definition C.10. Then, there are two matrices U1, V1 ∈ Rn×k1 we have ∥U1V

⊤
1 h(X) −

s(X)∥∞ ≤ ϵ/poly(n).

Proof. We can show that

∥U1V
⊤
1 h(X)− s(X)∥∞ = ∥U1V

⊤
1 h(X)− f(X)h(X)∥∞

= ∥(U1V
⊤
1︸ ︷︷ ︸

n×n

− f(X)︸ ︷︷ ︸
n×n

)h(X)︸ ︷︷ ︸
n×d

∥∞

≤ n∥U1V
⊤
1︸ ︷︷ ︸

n×n

− f(X)︸ ︷︷ ︸
n×n

∥∞∥h(X)︸ ︷︷ ︸
n×d

∥∞

≤ n∥U1V
⊤
1︸ ︷︷ ︸

n×n

− f(X)︸ ︷︷ ︸
n×n

∥∞ · poly(n)

≤ ϵ/ poly(n)

where the 1st step is from the choice of s(X), the 2nd step comes from AC − BC = (A − B)C
holds for any matrices A, B, and C, the 3rd step is because of basic linear algebra, the 4th step
is due to each number in h(X) can be written using O(log(n)) bits, the fifth step follows from
∥U1V

⊤
1 − f(X)∥∞ ≤ ϵ/ poly(n).

We can also get a low-rank representation of p1(x) and p2(x).

Lemma C.15 (Low rank representation to p1(X), Lemma D.4 of (Alman & Song, 2024a)). Let
k1 = no(1). Let k2 = no(1). Assume that p1(X) := f(X) ⊙ q(X). Assume U1, V1 ∈ Rn×k1

approximates the f(X) such that ∥U1V
⊤
1 − f(X)∥∞ ≤ ϵ/poly(n). Assume U2, V2 ∈ Rn×k2

approximates the q(X) ∈ Rn×n such that ∥U2V
⊤
2 − q(X)∥∞ ≤ ϵ/ poly(n). Then there are

matrices U3, V3 ∈ Rn×k3 such that ∥U3V
⊤
3 − p1(X)∥∞ ≤ ϵ/ poly(n). The matrices U3, V3 can be

explicitly constructed in n1+o(1) time.

Lemma C.16 (Low rank representation p2(X), Lemma D.5 of (Alman & Song, 2024a)). Let k1 =
no(1). Let k2 = no(1). Let k4 = no(1). Assume that p2(X) is an n× n where j0-th row p2(X)j0 =
f(X)j0f(X)⊤j0q(X)j0 for each j0 ∈ [n]. Assume U1, V1 ∈ Rn×k1 approximates the f(X) such
that ∥U1V

⊤
1 − f(X)∥∞ ≤ ϵ/poly(n). Assume U2, V2 ∈ Rn×k2 approximates the q(X) ∈ Rn×n

such that ∥U2V
⊤
2 − q(X)∥∞ ≤ ϵ/ poly(n). Then there are matrices U4, V4 ∈ Rn×k4 such that

∥U4V
⊤
4 − p2(X)∥∞ ≤ ϵ/ poly(n). The matrices U4, V4 can be explicitly constructed in n1+o(1)

time.

C.5 BOUNDED ENTRIES OF MATRICES

In this section, we provide proof that entries of matrices are bounded.

We begin with the exponential matrix f(X).

Lemma C.17 (Bounded entries of f(X)). If we have the below conditions,

• Let f(X) ∈ Rn×n be defined in Definition C.8.

Then, we can show that

∥f(X)∥∞ ≤ 1

Proof. By Definition C.8, we have

f(X) = diag(α(X))−1u(X)

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

By Definition C.7, we have

α(X) = u(X)1n

Combining above two equations, we have

∥f(X)∥∞ ≤ 1

A similar analysis can be applied to h(X) and s(X) as well.

Lemma C.18 (Bounded entries of h(X)). If we have the below conditions,

• Let X ∈ Rn×d,W,WV ∈ Rd×d be defined in Definition C.3.

• Assuming each entry of X,W,WV can be re represented using O(log(n)) bits.

• Let h(X) ∈ Rn×d be defined in Definition C.9.

Then, we can show that

∥h(X)∥∞ ≤ poly(n)

Proof. By Definition C.9, we have

h(X) := XWV

Then, we have

∥h(X)∥∞ = ∥XWV ∥∞
≤ n∥X∥∞∥WV ∥∞
≤ poly(n)

where the 1st step is from the definition of h(X), the 2nd step comes from basic linear algebra, the
3rd step is because of each entry in X and WV can be represented by O(log(n)) bits.

Lemma C.19 (Bounded entries of s(X)). If we have the below conditions,

• Let X ∈ Rn×d,W,WV ∈ Rd×d be defined in Definition C.3.

• Assuming each entry of X,W,WV can be re represented using O(log(n)) bits.

• Let s(X) ∈ Rn×d be defined in Definition C.10.

Then, we can show that

∥s(X)∥∞ ≤ poly(n)

Proof. By Definition C.10, we have

s(X)︸ ︷︷ ︸
n×d

= f(X)︸ ︷︷ ︸
n×n

h(X)︸ ︷︷ ︸
n×d

Then, we have

∥s(X)∥∞ = ∥f(X)h(X)∥∞
≤ n∥f(X)∥∞∥h(X)∥∞
≤ poly(n)

where the 1st step is from the definition of c(X), the 2nd step comes from basic linear algebra, the
3rd step is because of Lemma C.17, C.18.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

D MATRIX VIEW

In this section, we dive into analyzing the gradient of dL(X)
dTi−1(X) .

In Section D.1, we give the gradient of s(X) with respective to X . In Section D.2, we show the close
form of the gradient on Ti(X) via the chain rule. In Section D.3, we integrate each Ci(X) to its
corresponding matrix term Bi(X). In Section D.4, applying the similar technique used in the previ-
ous section, we integrate the gradient on Ti(X) into its corresponding matrix view. In Section D.5,
we further apply matrix integration on each matrix term in the gradient on Ti(X) calculated in the
previous section. In Section D.6, we give the matrix view of all gradient components.

D.1 GRADIENT OF s(X)

In this section, we give the gradient of s(X) with respective to X .

The results from (Deng et al., 2023b) give the gradient of c(X). By chain rule, the gradient of s(X)
is equivalent to the gradient of c(X) from (Deng et al., 2023b), since c(X) = s(X)−B where B is
a constant matrix.
Lemma D.1 (Gradient of s(X)i0,j0 , Lemma B.16 in (Deng et al., 2023b)). If we have the below
conditions,

• Let s(X) ∈ Rn×d be defined as Definition C.10

Then, we have

• Part 1. For all i0 = i1 ∈ [n], j0, j1 ∈ [d],

ds(X)i0,j0
dXi1,j1

= C1(X) + C2(X) + C3(X) + C4(X) + C5(X)

where we have definitions:

– C1(X) := −s(X)i0,j0 · f(X)i0,i0 · ⟨Wj1,∗, Xi0,∗⟩
– C2(X) := −s(X)i0,j0 · ⟨f(X)i0,∗, XW∗,j1⟩
– C3(X) := f(X)i0,i0 · h(X)i0,j0 · ⟨Wj1,∗, Xi0,∗⟩
– C4(X) := ⟨f(X)i0,∗ ⊙ (XW∗,j1), h(X)∗,j0⟩
– C5(X) := f(X)i0,i0 · (WV)j1,j0

• Part 2. For all i0 ̸= i1 ∈ [n], j0, j1 ∈ [d],

ds(X)i0,j0
dXi1,j1

= C6(X) + C7(X) + C8(X)

where we have definitions:

– C6(X) := −s(X)i0,j0 · f(X)i1,i0 · ⟨Wj1,∗, Xi0,∗⟩
* This is corresponding to C1(X)

– C7(X) := f(X)i1,i0 · h(X)i1,j0 · ⟨Wj1,∗, Xi0,∗⟩
* This is corresponding to C3(X)

– C8(X) := f(X)i1,i0 · (WV)j1,j0

* This is corresponding to C5(X)

D.2 GRADIENT ON Ti(X)

In the Lemma D.2, we use the chain rule to calculate the close form of the gradient on Ti(X).
Lemma D.2 (Gradient for Ti(X)). If we have the below conditions,

• Let Attni be defined as Definition C.3.

• Let Ti(X) ∈ Rn×d be defined as Definition 2.3.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

• Let s(X) be defined as Definition C.10.

• Let Gi ∈ Rn×d denote the gradient matrix resulting from the application of the chain rule
up to the function gi, i.e., Gi =

dL(X)
dAttni(Ti−1(X)) .

• For i2 ∈ [n], j2 ∈ [d], let Gi(i2, j2) denote the (i2, j2)-th entry of Gi.

Then, we can show that, for i1 ∈ [n], j1 ∈ [d], we have

dL(X)

dTi−1(X)i1,j1
=

n∑
i0=1

d∑
j0=1

Gi(i0, j0) ·
ds(X)i0,j0
dXi1,j1

Proof. By Lemma C.4, we have

dL(X)

dTi−1(X)
=

n∑
i2=1

d∑
j2=1

Gi(i2, j2) ·
dAttni(Ti−1(X))i2,j2

dTi−1(X)
.

By Definition C.3 and Definition C.10, we have
Attni(Ti−1(X)) = s(Ti−1(X))

Therefore, by combining above two equations and substituting variable Ti−1(X) = X , we have

dL(X)

dTi−1(X)i1,j1
=

n∑
i0=1

d∑
j0=1

Gi(i0, j0) ·
ds(X)i0,j0
dXi1,j1

D.3 MATRIX VIEW OF C(X)

In this section, we will provide the matrix view of Ci(X) ∈ R, for i ∈ {6, 7, 8, 2, 4}. We will
consider each Ci(X) one by one. We begin with C6(X).
Lemma D.3 (Matrix view of C6(X)). If we have the below conditions,

• Let C6(X, i1, j1) := −s(X)i0,j0 · f(X)i1,i0 · ⟨Wj1,∗, Xi0,∗⟩ be defined as in Lemma D.1.

• We define a matrix B6(X) ∈ Rn×d. For all i1 ∈ [n], j1 ∈ [d], let B6(i1, j1) denote the
(i1, j1)-th entry of B6(X). We define B6(i1, j1) = C6(X, i1, j1).

Then, we can show that
B6(X)︸ ︷︷ ︸
n×d

= −s(X)i0,j0︸ ︷︷ ︸
1×1

f(X)∗,i0︸ ︷︷ ︸
n×1

(W ·Xi0,∗)
⊤︸ ︷︷ ︸

1×d

Proof. We have
C6(X, i1, j1) = − s(X)i0,j0 · f(X)i1,i0 · ⟨Wj1,∗, Xi0,∗⟩

= − s(X)i0,j0 · f(X)i1,i0 ·X⊤
i0,∗Wj1,∗

where the 1st step is from the choice of C6(X), the 2nd step comes from ⟨a, b⟩ = a⊤b holds for any
a, b ∈ Rd.

We have
B6(X)(i1, ∗)︸ ︷︷ ︸

d×1

= − s(X)i0,j0︸ ︷︷ ︸
1×1

f(X)i1,i0︸ ︷︷ ︸
1×1

W︸︷︷︸
d×d

Xi0,∗︸ ︷︷ ︸
d×1

Then, we have
B6(X)︸ ︷︷ ︸
n×d

= −s(X)i0,j0︸ ︷︷ ︸
1×1

f(X)∗,i0︸ ︷︷ ︸
n×1

(W ·Xi0,∗)
⊤︸ ︷︷ ︸

1×d

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

A similar analysis procedure can also be applied on C7(X).
Lemma D.4 (Matrix view of C7(X)). If we have the below conditions,

• Let C7(X, i1, j1) := f(X)i1,i0 · h(X)j0,i1 · ⟨Wj1,∗, Xi0,∗⟩ be defined as in Lemma D.1.

• We define a matrix B7(X) ∈ Rn×d. For all i1 ∈ [n], j1 ∈ [d], let B7(i1, j1) denote the
(i1, j1)-th entry of B7(X). We define B7(i1, j1) = C7(X, i1, j1).

Then, we can show that

B7(X)︸ ︷︷ ︸
n×d

= (f(X)∗,i0 ⊙ h(X)∗,j0)︸ ︷︷ ︸
n×1

· (W ·Xi0,∗)
⊤︸ ︷︷ ︸

1×d

Proof. We have

C7(X, i1, j1) = f(X)i1,i0 · h(X)i1,j0 · ⟨Wj1,∗, Xi0,∗⟩
= f(X)i1,i0 · h(X)i1,j0 ·W⊤

j1,∗Xi0,∗

where the 1st step is from the choice of C7(X), the 2nd step comes from ⟨a, b⟩ = a⊤b holds for any
a, b ∈ Rd.

We have

B7(X)(i1, ∗) = f(X)i1,i0 · h(X)i1,j0 ·W ·Xi0,∗

Then, we have

B7(X)︸ ︷︷ ︸
n×d

= (f(X)∗,i0 ⊙ h(X)∗,j0)︸ ︷︷ ︸
n×1

· (W ·Xi0,∗)
⊤︸ ︷︷ ︸

1×d

Then, we provide an analysis of C8(X).
Lemma D.5 (Matrix view of C8(X)). If we have the below conditions,

• Let C8(X, i1, j1) := f(X)i1,i0 · (WV)j1,j0 be defined as in Lemma D.1.

• We define a matrix B8(X) ∈ Rn×d. For all i1 ∈ [n], j1 ∈ [d], let B8(i1, j1) denote the
(i1, j1)-th entry of B8(X). We define B8(i1, j1) = C8(X, i1, j1).

Then, we can show that

B8(X)︸ ︷︷ ︸
n×d

= f(X)∗,i0︸ ︷︷ ︸
n×1

(WV)
⊤
∗,j0︸ ︷︷ ︸

1×d

Proof. We have

C8(X, i1, j1) = f(X)i1,i0 · (WV)j1,j0

where the 1st step is from the choice of C7(X).

We have

B8(X)(i1, ∗) = f(X)i1,i0 · (WV)∗,j0

Then, we have

B8(X)︸ ︷︷ ︸
n×d

= f(X)∗,i0︸ ︷︷ ︸
n×1

(WV)
⊤
∗,j0︸ ︷︷ ︸

1×d

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Now, we consider C2(X).

Lemma D.6 (Matrix view of C2(X)). If we have the below conditions,

• Let C2(X, j1) := −s(X)i0,j0 · ⟨f(X)i0,∗, XW∗,j1⟩ be defined as in Lemma D.1.

• We define a matrix B2(X) ∈ Rd. For all j1 ∈ [d], the j1-th entry of B2(X) is defined as
C2(X, j1).

Then, we can show that

B2(X)︸ ︷︷ ︸
d×1

= −s(X)i0,j0︸ ︷︷ ︸
1×1

W⊤︸︷︷︸
d×d

X⊤︸︷︷︸
d×n

f(X)i0,∗︸ ︷︷ ︸
n×1

Proof. We have

C2(X, j1) = − s(X)i0,j0 · ⟨f(X)i0,∗, XW∗,j1⟩
= − s(X)i0,j0 · (XW∗,j1)

⊤f(X)i0,∗

= −s(X)i0,j0︸ ︷︷ ︸
1×1

W⊤
∗,j1︸ ︷︷ ︸

1×d

X⊤︸︷︷︸
d×n

f(X)i0,∗︸ ︷︷ ︸
n×1

where the 1st step is from the choice of C2(X), the second step follows from ⟨a, b⟩ = a⊤b, for any
a, b ∈ Rn.

Then, we have

B2(X)︸ ︷︷ ︸
d×1

= −s(X)i0,j0︸ ︷︷ ︸
1×1

W⊤︸︷︷︸
d×d

X⊤︸︷︷︸
d×n

f(X)i0,∗︸ ︷︷ ︸
n×1

Finally, we analyze C4(X), which is the last term we need to compute.

Lemma D.7 (Matrix view of C4(X)). If we have the below conditions,

• Let C4(X, j1) := ⟨f(X)i0,∗ ⊙ (XW∗,j1), h(X)∗,j0⟩ be defined as in Lemma D.1.

• We define a matrix B4(X) ∈ Rd. For all j1 ∈ [d], the j1-th entry of B4(X) is defined as
C4(X, j1).

Then, we can show that

B4(X)︸ ︷︷ ︸
d×1

= W⊤︸︷︷︸
d×d

X⊤︸︷︷︸
d×n

(f(X)i0,∗ ⊙ h(X)∗,j0)︸ ︷︷ ︸
n×1

Proof. We have

C4(X, j1) = ⟨f(X)i0,∗ ⊙ (XW∗,j1), h(X)∗,j0⟩
= ⟨f(X)i0,∗ ⊙ h(X)∗,j0 , (XW∗,j1)⟩
= (XW∗,j1)

⊤(f(X)i0,∗ ⊙ h(X)∗,j0)

where the 1st step is from the choice of C4(X), the 2nd step comes from Fact C.1, and the last step
follows from basic linear algebra.

D.4 MATRIX VIEW OF GRADIENT ON Ti(X)

Since we have got the matrix view of each Ci(X) term in the previous section, we can get the matrix
view of the gradient on Ti(X) in Lemma D.8.

Lemma D.8 (Matrix view of single entry of gradient). If we have the below conditions,

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

• Let s(X) be defined as Definition C.10.

• Let Gi ∈ Rn×d denote the gradient matrix resulting from the application of the chain rule
up to the function gi, i.e., Gi =

dL(X)
dAttni(Ti−1(X)) .

• For i2 ∈ [n], j2 ∈ [d], let Gi(i2, j2) denote the (i2, j2)-th entry of Gi.

• Let B6(X), B7(X), B8(X) ∈ Rn×d be defined in Lemma D.3, Lemma D.4, and
Lemma D.5

• Let B2(X), B4(X) ∈ Rd be defined in Lemma D.6 and Lemma D.7.

For any i0 ∈ [n], j0 ∈ [d], we have

Gi(i0, j0) ·
ds(X)i0,j0

dX
= Gi(i0, j0)︸ ︷︷ ︸

1×1

·(B6(X) +B7(X) +B8(X)︸ ︷︷ ︸
n×d

+ ei0︸︷︷︸
n×1

(B2(X) +B4(X))⊤︸ ︷︷ ︸
1×d

)

Proof. By Lemma D.1, we have

• Part 1. For all i0 = i1 ∈ [n], j0, j1 ∈ [d],

ds(X)i0,j0
dXi1,j1

= C1(X) + C2(X) + C3(X) + C4(X) + C5(X) (1)

• Part 2. For all i0 ̸= i1 ∈ [n], j0, j1 ∈ [d],

ds(X)i0,j0
dXi1,j1

= C6(X) + C7(X) + C8(X) (2)

Since for any i1 ∈ [n], j1 ∈ [d], let Gi(i0, j0) ·
ds(X)i0,j0

dXi1,j1
denote the (i1, j1)-th entry of Gi(i0, j0) ·

ds(X)i0,j0

dX , we consider the following two cases:

• Case 1. The i0-th row of Gi(i0, j0) ·
ds(X)i0,j0

dX .

• Case 2. The other n− 1 rows of Gi(i0, j0) ·
ds(X)i0,j0

dX where i1 ̸= i0.

We first consider Case 1.

Recall that the matrix view of C2(X), C4(X) ∈ R are B2(X), B4(X) ∈ Rd, and the matrix view
of C6(X), C7(X), C8(X) ∈ R are B6(X), B7(X), B8(X) ∈ Rn×d, respectively.

For k ∈ {6, 7, 8}, we use Bk(X)(s, ∗) ∈ Rd to denote the s-th row of Bk(X).

We use (Gi(i0, j0) ·
ds(X)i0,j0

dX)(i0, ∗) ∈ Rd to denote the i0-th row of Gi(i0, j0) ·
ds(X)i0,j0

dX .

Since C6(X), C7(X), C8(X) are the corresponding parts of C1(X), C3(X), C5(X), and by Eq. (1),
then we can have the following

(Gi(i0, j0) ·
ds(X)i0,j0

dX
)(i0, ∗)

= Gi(i0, j0)︸ ︷︷ ︸
1×1

· (B6(X)(i0, ∗) +B7(X)(i0, ∗) +B8(X)(i0, ∗) +B2(X) +B4(X))︸ ︷︷ ︸
d×1

We then consider Case 2.

For k ∈ {6, 7, 8}, we use Bk(X)(̸= s, ∗) ∈ R(n−1)×d to denote the matrix Bk(X) with the s-th
row removed.

Similarly, we use (Gi(i0, j0) ·
ds(X)i0,j0

dX)(̸= i0, ∗) ∈ R(n−1)×d to denote the matrix Gi(i0, j0) ·
ds(X)i0,j0

dX with the i0-th row removed.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

By Eq. (2), we have

(Gi(i0, j0) ·
ds(X)i0,j0

dX
)(̸= i0, ∗) = Gi(i0, j0)︸ ︷︷ ︸

1×1

· (B6(X)(̸= i0, ∗) +B7(X)(̸= i0, ∗) +B8(X)(̸= i0, ∗))︸ ︷︷ ︸
d×(n−1)

Combining Case 1 and Case 2 together, we have

Gi(i0, j0) ·
ds(X)i0,j0

dX
= Gi(i0, j0)︸ ︷︷ ︸

1×1

·(B6(X) +B7(X) +B8(X)︸ ︷︷ ︸
n×d

+ ei0︸︷︷︸
n×1

(B2(X) +B4(X))⊤︸ ︷︷ ︸
1×d

)

Then, we have the matrix view of Ti(X) gradient.
Lemma D.9 (Matrix view of Ti(X) gradient). If we have the below conditions,

• Let L(X) be defined as Definition 2.1.

• Let T (X) be defined as Definition 2.3.

• Let Gi ∈ Rn×d denote the gradient matrix resulting from the application of the chain rule
up to the function gi, i.e., Gi =

dL(X)
dAttni(Ti−1(X)) .

• For i2 ∈ [n], j2 ∈ [d], let Gi(i2, j2) denote the (i2, j2)-th entry of Gi.

• Let B6(X), B7(X), B8(X) ∈ Rn×d be defined in Lemma D.3, Lemma D.4, and
Lemma D.5

• Let B2(X), B4(X) ∈ Rd be defined in Lemma D.6 and Lemma D.7.

Then, we have

dL(X)

dTi−1(X)
=

n∑
i0=1

d∑
j0=1

Gi(i0, j0)︸ ︷︷ ︸
1×1

·(B6(X) +B7(X) +B8(X)︸ ︷︷ ︸
n×d

+ ei0︸︷︷︸
n×1

(B2(X) +B4(X))⊤︸ ︷︷ ︸
1×d

)

Proof. By Lemma D.8, we have

Gi(i0, j0) ·
ds(X)i0,j0

dX
= Gi(i0, j0)︸ ︷︷ ︸

1×1

·(B6(X) +B7(X) +B8(X)︸ ︷︷ ︸
n×d

+ ei0︸︷︷︸
n×1

(B2(X) +B4(X))⊤︸ ︷︷ ︸
1×d

)

Then, by Lemma C.4 we have

dL(X)

dTi−1(X)
=

n∑
i2=1

d∑
j2=1

Gi(i2, j2) ·
dAttni(Ti−1(X))i2,j2

dTi−1(X)
.

After combining the above two equations, we are done.

D.5 MATRIX VIEW OF EACH TERM IN GRADIENT ON Ti(X)

In this subsection, we reduce the double summation to a matrix product for easy and clear analysis.

We first work on the B6 term.
Lemma D.10 (Matrix view of B6(X) term). If we have the below conditions,

• Let B6(X)︸ ︷︷ ︸
n×d

= −s(X)i0,j0︸ ︷︷ ︸
1×1

f(X)∗,i0︸ ︷︷ ︸
n×1

(W ·Xi0,∗)
⊤︸ ︷︷ ︸

1×d

be defined in Lemma D.3.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

• We define z6(X) ∈ Rn×n, which satisfies

z6(X)∗,i0︸ ︷︷ ︸
n×1

= (Gi(i0, ∗)⊤︸ ︷︷ ︸
1×d

s(X)i0,∗︸ ︷︷ ︸
d×1

) f(X)∗,i0︸ ︷︷ ︸
n×1

• Let f(X) ∈ Rn×n be defined in Definition C.8.

• Let W ∈ Rd×d be defined in Definition C.3.

• Let Gi ∈ Rn×d denote the gradient matrix resulting from the application of the chain rule
up to the function gi, i.e., Gi =

dL(X)
dAttni(Ti−1(X)) .

• For i2 ∈ [n], j2 ∈ [d], let Gi(i2, j2) denote the (i2, j2)-th entry of Gi.

Then we have
n∑

i0=1

d∑
j0=1

Gi(i0, j0)︸ ︷︷ ︸
1×1

B6(X)︸ ︷︷ ︸
n×d

= − z6(X)︸ ︷︷ ︸
n×n

X︸︷︷︸
n×d

W⊤︸︷︷︸
d×d

Proof.

n∑
i0=1

d∑
j0=1

Gi(i0, j0)B6(X) = −
n∑

i0=1

d∑
j0=1

Gi(i0, j0)︸ ︷︷ ︸
1×1

s(X)i0,j0︸ ︷︷ ︸
1×1

f(X)∗,i0︸ ︷︷ ︸
n×1

(W ·Xi0,∗)
⊤︸ ︷︷ ︸

1×d

= −
n∑

i0=1

(

d∑
j0=1

Gi(i0, j0)︸ ︷︷ ︸
1×1

s(X)i0,j0︸ ︷︷ ︸
1×1

) f(X)∗,i0︸ ︷︷ ︸
n×1

(W ·Xi0,∗)
⊤︸ ︷︷ ︸

1×d

= −
n∑

i0=1

(Gi(i0, ∗)⊤︸ ︷︷ ︸
1×d

s(X)i0,∗︸ ︷︷ ︸
d×1

) f(X)∗,i0︸ ︷︷ ︸
n×1

(W ·Xi0,∗)
⊤︸ ︷︷ ︸

1×d

= −
n∑

i0=1

(Gi(i0, ∗)⊤︸ ︷︷ ︸
1×d

s(X)i0,∗︸ ︷︷ ︸
d×1

) f(X)∗,i0︸ ︷︷ ︸
n×1

X⊤
i0,∗︸ ︷︷ ︸

1×d

W⊤︸︷︷︸
d×d

where the 1st step is from the choice of B6(X), the 2nd step comes from basic algebra, the 3rd step
is because of a⊤b =

∑d
i=1 ai · bi holds for any a, b ∈ Rd, the 4th step is due to (AB)⊤ = B⊤A⊤

for any matrices A and B.

Recall that we have z6(X)∗,i0︸ ︷︷ ︸
n×1

= (Gi(i0, ∗)⊤︸ ︷︷ ︸
1×d

s(X)i0,∗︸ ︷︷ ︸
d×1

) f(X)∗,i0︸ ︷︷ ︸
n×1

.

Then, we have

−
n∑

i0=1

(Gi(i0, ∗)⊤︸ ︷︷ ︸
1×d

s(X)i0,∗︸ ︷︷ ︸
d×1

) f(X)∗,i0︸ ︷︷ ︸
n×1

X⊤
i0,∗︸ ︷︷ ︸

1×d

W⊤︸︷︷︸
d×d

= −
n∑

i0=1

z6(X)∗,i0︸ ︷︷ ︸
n×1

X⊤
i0,∗︸ ︷︷ ︸

1×d

W⊤︸︷︷︸
d×d

= − z6(X)︸ ︷︷ ︸
n×n

X︸︷︷︸
n×d

W⊤︸︷︷︸
d×d

where the 1st step is from the choice of z6(X), the 2nd step comes from basic linear algebra.

Then, we can get the matrix view of B7(X) term.
Lemma D.11 (Matrix view of B7(X) term). If we have the below conditions,

• Let B7(X)︸ ︷︷ ︸
n×d

= (f(X)∗,i0 ⊙ h(X)∗,j0)︸ ︷︷ ︸
n×1

· (W ·Xi0,∗)
⊤︸ ︷︷ ︸

1×d

be defined in Lemma D.4.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

• We define z7(X) ∈ Rn×n, which satisfies

z7(X)∗,i0︸ ︷︷ ︸
n×1

= f(X)∗,i0︸ ︷︷ ︸
n×1

⊙(h(X)︸ ︷︷ ︸
n×d

Gi(i0, ∗)︸ ︷︷ ︸
d×1

).

• Let X ∈ Rn×d,W ∈ Rd×d be defined in Definition C.3.

• Let Gi ∈ Rn×d denote the gradient matrix resulting from the application of the chain rule
up to the function gi, i.e., Gi =

dL(X)
dAttni(Ti−1(X)) .

• For i2 ∈ [n], j2 ∈ [d], let Gi(i2, j2) denote the (i2, j2)-th entry of Gi.

Then we have
n∑

i0=1

d∑
j0=1

Gi(i0, j0)︸ ︷︷ ︸
1×1

B7(X)︸ ︷︷ ︸
n×d

= z7(X)︸ ︷︷ ︸
n×n

X︸︷︷︸
n×d

W⊤︸︷︷︸
d×d

Proof. We have

n∑
i0=1

d∑
j0=1

Gi(i0, j0)︸ ︷︷ ︸
1×1

B7(X)︸ ︷︷ ︸
n×d

=

n∑
i0=1

d∑
j0=1

Gi(i0, j0)︸ ︷︷ ︸
1×1

(f(X)∗,i0 ⊙ h(X)∗,j0)︸ ︷︷ ︸
n×1

· (W ·Xi0,∗)
⊤︸ ︷︷ ︸

1×d

=

n∑
i0=1

(f(X)∗,i0︸ ︷︷ ︸
n×1

⊙(
d∑

j0=1

Gi(i0, j0)︸ ︷︷ ︸
1×1

h(X)∗,j0︸ ︷︷ ︸
n×1

)) · (W ·Xi0,∗)
⊤︸ ︷︷ ︸

1×d

=

n∑
i0=1

(f(X)∗,i0︸ ︷︷ ︸
n×1

⊙(h(X)︸ ︷︷ ︸
n×d

Gi(i0, ∗)︸ ︷︷ ︸
d×1

)) · (X⊤
i0,∗W

⊤)︸ ︷︷ ︸
1×d

where the 1st step is from the choice of B7(X), the 2nd step comes from basic algebra, the 3rd step
is because of basic linear algebra.

Recall that we have z7(X)∗,i0︸ ︷︷ ︸
n×1

= f(X)∗,i0︸ ︷︷ ︸
n×1

⊙(h(X)︸ ︷︷ ︸
n×d

Gi(i0, ∗)︸ ︷︷ ︸
d×1

).

Then we have
n∑

i0=1

(f(X)∗,i0︸ ︷︷ ︸
n×1

⊙(h(X)︸ ︷︷ ︸
n×d

Gi(i0, ∗)︸ ︷︷ ︸
d×1

)) · (X⊤
i0,∗W

⊤)︸ ︷︷ ︸
1×d

=

n∑
i0=1

z7(X)∗,i0︸ ︷︷ ︸
n×1

X⊤
i0,∗︸ ︷︷ ︸

1×d

W⊤︸︷︷︸
d×d

= z7(X)︸ ︷︷ ︸
n×n

X︸︷︷︸
n×d

W⊤︸︷︷︸
d×d

where the 1st step is from the choice of z7(X), the 2nd step comes from basic linear algebra.

Then, we consider B8(X).
Lemma D.12 (Matrix view of B8(X) term). If we have the below conditions,

• Let B8(X)︸ ︷︷ ︸
n×d

= f(X)∗,i0︸ ︷︷ ︸
n×1

(WV)
⊤
∗,j0︸ ︷︷ ︸

1×d

be defined in Lemma D.5.

• Let Gi ∈ Rn×d denote the gradient matrix resulting from the application of the chain rule
up to the function gi, i.e., Gi =

dL(X)
dAttni(Ti−1(X)) .

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

• For i2 ∈ [n], j2 ∈ [d], let Gi(i2, j2) denote the (i2, j2)-th entry of Gi.

Then we have
n∑

i0=1

d∑
j0=1

Gi(i0, j0)︸ ︷︷ ︸
1×1

B8(X)︸ ︷︷ ︸
n×d

= f(X)︸ ︷︷ ︸
n×n

Gi︸︷︷︸
n×d

W⊤
V︸︷︷︸

d×d

Proof. We have

n∑
i0=1

d∑
j0=1

Gi(i0, j0)︸ ︷︷ ︸
1×1

B8(X)︸ ︷︷ ︸
n×d

=

n∑
i0=1

d∑
j0=1

Gi(i0, j0)︸ ︷︷ ︸
1×1

f(X)∗,i0︸ ︷︷ ︸
n×1

(WV)
⊤
∗,j0︸ ︷︷ ︸

1×d

=

n∑
i0=1

f(X)∗,i0︸ ︷︷ ︸
n×1

(

d∑
j0=1

Gi(i0, j0)︸ ︷︷ ︸
1×1

(WV)
⊤
∗,j0︸ ︷︷ ︸

1×d

)

=
n∑

i0=1

f(X)∗,i0︸ ︷︷ ︸
n×1

Gi(i0, ∗)⊤︸ ︷︷ ︸
1×d

W⊤
V︸︷︷︸

d×d

= f(X)︸ ︷︷ ︸
n×n

Gi︸︷︷︸
n×d

W⊤
V︸︷︷︸

d×d

where the 1st step is from the choice of B8(X), the 2nd step comes from basic algebra, the 3rd step
is because of basic linear algebra, the 4th step is due to basic linear algebra.

Now, we can do the matrix view of B2(X) term.

Lemma D.13 (Matrix view of B2(X) term). If we have the below conditions,

• Let B2(X)︸ ︷︷ ︸
d×1

= −s(X)i0,j0︸ ︷︷ ︸
1×1

W⊤︸︷︷︸
d×d

X⊤︸︷︷︸
d×n

f(X)i0,∗︸ ︷︷ ︸
n×1

be defined in Lemma D.6

• Let Gi ∈ Rn×d denote the gradient matrix resulting from the application of the chain rule
up to the function gi, i.e., Gi =

dL(X)
dAttni(Ti−1(X)) .

• For i2 ∈ [n], j2 ∈ [d], let Gi(i2, j2) denote the (i2, j2)-th entry of Gi.

• We define z2(X) ∈ Rn×n, which satisfies

z2(X)i0,∗︸ ︷︷ ︸
n×1

= (Gi(i0, ∗)⊤︸ ︷︷ ︸
1×d

s(X)i0,∗︸ ︷︷ ︸
d×1

) f(X)i0,∗︸ ︷︷ ︸
n×1

• Let X ∈ Rn×d,W ∈ Rd×d be defined in Definition C.3

Then we have
n∑

i0=1

d∑
j0=1

Gi(i0, j0)︸ ︷︷ ︸
1×1

ei0︸︷︷︸
n×1

B2(X)⊤︸ ︷︷ ︸
1×d

= − z2(X)︸ ︷︷ ︸
n×n

X︸︷︷︸
n×d

W︸︷︷︸
d×d

Proof. We have

n∑
i0=1

d∑
j0=1

Gi(i0, j0)︸ ︷︷ ︸
1×1

ei0︸︷︷︸
n×1

B2(X)⊤︸ ︷︷ ︸
1×d

= −
n∑

i0=1

d∑
j0=1

Gi(i0, j0)︸ ︷︷ ︸
1×1

s(X)i0,j0︸ ︷︷ ︸
1×1

ei0︸︷︷︸
n×1

f(X)⊤i0,∗︸ ︷︷ ︸
1×n

X︸︷︷︸
n×d

W︸︷︷︸
d×d

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

= −
n∑

i0=1

(

d∑
j0=1

Gi(i0, j0)︸ ︷︷ ︸
1×1

s(X)i0,j0︸ ︷︷ ︸
1×1

) ei0︸︷︷︸
n×1

f(X)⊤i0,∗︸ ︷︷ ︸
1×n

X︸︷︷︸
n×d

W︸︷︷︸
d×d

= −
n∑

i0=1

(Gi(i0, ∗)⊤︸ ︷︷ ︸
1×d

s(X)i0,∗︸ ︷︷ ︸
d×1

) ei0︸︷︷︸
n×1

f(X)⊤i0,∗︸ ︷︷ ︸
1×n

X︸︷︷︸
n×d

W︸︷︷︸
d×d

= −
n∑

i0=1

ei0︸︷︷︸
n×1

(Gi(i0, ∗)⊤︸ ︷︷ ︸
1×d

s(X)i0,∗︸ ︷︷ ︸
d×1

) f(X)⊤i0,∗︸ ︷︷ ︸
1×n

X︸︷︷︸
n×d

W︸︷︷︸
d×d

where the 1st step is from the choice of B2(X), the 2nd step comes from basic algebra, the 3rd step
is because of a⊤b =

∑d
i=1 ai · bi holds for any a, b ∈ Rd, the 4th step is due to (AB)⊤ = B⊤A⊤

holds for any matrix A,B.

Recall that we have z2(X)i0,∗︸ ︷︷ ︸
n×1

= (Gi(i0, ∗)⊤︸ ︷︷ ︸
1×d

s(X)i0,∗︸ ︷︷ ︸
d×1

) f(X)i0,∗︸ ︷︷ ︸
n×1

.

Then, we have

−
n∑

i0=1

ei0︸︷︷︸
n×1

(Gi(i0, ∗)⊤︸ ︷︷ ︸
1×d

s(X)i0,∗︸ ︷︷ ︸
d×1

) f(X)⊤i0,∗︸ ︷︷ ︸
1×n

X︸︷︷︸
n×d

W︸︷︷︸
d×d

= −
n∑

i0=1

ei0︸︷︷︸
n×1

z2(X)⊤i0,∗︸ ︷︷ ︸
1×n

X︸︷︷︸
n×d

W︸︷︷︸
d×d

= − z2(X)︸ ︷︷ ︸
n×n

X︸︷︷︸
n×d

W︸︷︷︸
d×d

where the 1st step is from the choice of z2(X), the 2nd step comes from basic linear algebra.

Finally, we do a similar analysis for the term B4(X). Then, we get all the matrix views we need.
Lemma D.14 (Matrix view of B4(X) term). If we have the below conditions,

• Let B4(X)︸ ︷︷ ︸
d×1

= W⊤︸︷︷︸
d×d

X⊤︸︷︷︸
d×n

(f(X)i0,∗ ⊙ h(X)∗,j0)︸ ︷︷ ︸
n×1

be defined in Lemma D.7.

• Let Gi ∈ Rn×d denote the gradient matrix resulting from the application of the chain rule
up to the function gi, i.e., Gi =

dL(X)
dAttni(Ti−1(X)) .

• For i2 ∈ [n], j2 ∈ [d], let Gi(i2, j2) denote the (i2, j2)-th entry of Gi.

• We define z4(X) ∈ Rn×n, which satisfies

z4(X)i0,∗︸ ︷︷ ︸
n×1

= f(X)i0,∗︸ ︷︷ ︸
n×1

⊙ (h(X)Gi(i0, ∗))︸ ︷︷ ︸
n×1

Then we have
n∑

i0=1

d∑
j0=1

Gi(i0, j0)︸ ︷︷ ︸
1×1

ei0︸︷︷︸
n×1

B4(X)⊤︸ ︷︷ ︸
1×d

= z4(X)︸ ︷︷ ︸
n×n

X︸︷︷︸
n×d

W︸︷︷︸
d×d

Proof. We have

n∑
i0=1

d∑
j0=1

Gi(i0, j0)︸ ︷︷ ︸
1×1

ei0︸︷︷︸
n×1

B4(X)⊤︸ ︷︷ ︸
1×d

=

n∑
i0=1

d∑
j0=1

Gi(i0, j0)︸ ︷︷ ︸
1×1

ei0︸︷︷︸
n×1

(f(X)⊤i0,∗ ⊙ h(X)⊤∗,j0)︸ ︷︷ ︸
1×n

X︸︷︷︸
n×d

W︸︷︷︸
d×d

=

n∑
i0=1

ei0︸︷︷︸
n×1

(f(X)⊤i0,∗︸ ︷︷ ︸
1×n

⊙(
d∑

j0=1

Gi(i0, j0)︸ ︷︷ ︸
1×1

h(X)⊤∗,j0︸ ︷︷ ︸
1×n

)) X︸︷︷︸
n×d

W︸︷︷︸
d×d

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

=

n∑
i0=1

ei0︸︷︷︸
n×1

(f(X)⊤i0,∗︸ ︷︷ ︸
1×n

⊙ (h(X)Gi(i0, ∗))⊤︸ ︷︷ ︸
1×n

) X︸︷︷︸
n×d

W︸︷︷︸
d×d

=

n∑
i0=1

ei0︸︷︷︸
n×1

z4(X)⊤i0,∗︸ ︷︷ ︸
1×n

X︸︷︷︸
n×d

W︸︷︷︸
d×d

= z4(X)︸ ︷︷ ︸
n×n

X︸︷︷︸
n×d

W︸︷︷︸
d×d

where the 1st step is from the choice of B4(X), the 2nd step comes from basic algebra, the 3rd step
is because of basic linear algebra, the 4th step is due to the choice of z4(X), the 5th step follows
from basic linear algebra.

D.6 COMPONENTS OF GRADIENT ON Ti(X)

Definition D.15 (Definition of Dk). If we have the below conditions,

• For k1 ∈ {6, 7, 8}, let Bk1(X) ∈ Rn×d be defined as Lemma D.3, D.4, and D.5, respec-
tively.

• For k2 ∈ {2, 4}, let Bk2
(X) ∈ Rd×1 be defined as Lemma D.6 and D.7, respectively.

• Let Gi ∈ Rn×d denote the gradient matrix resulting from the application of the chain rule
up to the function gi, i.e., Gi =

dL(X)
dAttni(Ti−1(X)) .

We define Dk ∈ Rn×d as follows:

• For k1 ∈ {6, 7, 8}, we define

Dk1 :=

n∑
i0=1

d∑
j0=1

Gi(i0, j0)︸ ︷︷ ︸
1×1

Bk1(X)︸ ︷︷ ︸
n×d

• For k2 ∈ {2, 4}, we define

Dk2
:=

n∑
i0=1

d∑
j0=1

Gi(i0, j0)︸ ︷︷ ︸
1×1

ei0︸︷︷︸
n×1

Bk2
(X)⊤︸ ︷︷ ︸

1×d

Definition D.16 (Definition of K). If we have the below conditions,

• Let s(X) ∈ Rn×d be defined as Definition C.10.

• Let Gi ∈ Rn×d denote the gradient matrix resulting from the application of the chain rule
up to the function gi, i.e., Gi =

dL(X)
dAttni(Ti−1(X)) .

We define K ∈ Rn, where for each i0 ∈ [n], we define

Ki0︸︷︷︸
1×1

= Gi(i0, ∗)⊤︸ ︷︷ ︸
1×d

s(X)i0,∗︸ ︷︷ ︸
d×1

Furthermore, we have

K︸︷︷︸
n×1

= (Gi ⊙ s(X))︸ ︷︷ ︸
n×d

1d︸︷︷︸
d×1

Lemma D.17 (Close form of Dk). If we have the below conditions,

• Let X ∈ Rn×d,W ∈ Rd×d be defined as Definition C.3.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

• For k ∈ {6, 7, 8, 2, 4}, let Dk ∈ Rn×d be defined as Definition D.15.

• For k3 ∈ {6, 7, 2, 4}, let zk3
(X) ∈ Rn×n be defined as Lemma D.10, D.11, D.13, and

D.14, respectively.

• Let K ∈ Rn be defined as Definition D.16.

• We define z6(X) ∈ Rn×n, which satisfies

z6(X)︸ ︷︷ ︸
n×n

= f(X)︸ ︷︷ ︸
n×n

diag(K)︸ ︷︷ ︸
n×n

.

• We define z7(X) ∈ Rn×n, which satisfies

z7(X)︸ ︷︷ ︸
n×n

= f(X)︸ ︷︷ ︸
n×n

⊙(h(X)︸ ︷︷ ︸
n×d

G⊤
i︸︷︷︸

d×n

)

• We define z2(X) ∈ Rn×n, which satisfies

z2(X)︸ ︷︷ ︸
n×n

= diag(K)︸ ︷︷ ︸
n×n

f(X)︸ ︷︷ ︸
n×n

• We define z4(X) ∈ Rn×n, which satisfies

z4(X)︸ ︷︷ ︸
n×n

= f(X)︸ ︷︷ ︸
n×n

⊙(Gi︸︷︷︸
n×d

h(X)⊤︸ ︷︷ ︸
d×n

)

Then, we can show that the close forms of Dk can be written as follows:

• D6 = − z6(X)︸ ︷︷ ︸
n×n

X︸︷︷︸
n×d

W⊤︸︷︷︸
d×d

.

• D7 = z7(X)︸ ︷︷ ︸
n×n

X︸︷︷︸
n×d

W⊤︸︷︷︸
d×d

.

• D8 = f(X)︸ ︷︷ ︸
n×n

Gi︸︷︷︸
n×d

W⊤
V︸︷︷︸

d×d

.

• D2 = − z2(X)︸ ︷︷ ︸
n×n

X︸︷︷︸
n×d

W︸︷︷︸
d×d

.

• D4 = z4(X)︸ ︷︷ ︸
n×n

X︸︷︷︸
n×d

W︸︷︷︸
d×d

.

Proof. We finish the proof by parts.

• By Lemma D.10, we have the close form of D6.

• By Lemma D.11, we have the close form of D7.

• By Lemma D.12, we have the close form of D8.

• By Lemma D.13, we have the close form of D2.

• By Lemma D.14, we have the close form of D4.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

E FAST COMPUTATION FOR GRADIENT ON T (X)

In this section, we give an almost linear time n1+o(1) algorithm for each Bi(X) term. Namely,
we consider B6(X), B7(X), B8(X), B2(X), B4(X) in Section E.1, E.2, E.3, E.4, and E.5, respec-
tively.

E.1 FAST COMPUTATION FOR B6(X) TERM

Before we introduce the almost linear time algorithm for B6(X) term, we need to introduce the
accelerated algorithm for the key component term, z6(X), in Lemma E.2.

We first compute K, which is defined in Definition D.16
Lemma E.1 (Computation time for K). If we have the below conditions,

• Let K ∈ Rn be defined as Definition D.16.

Then, we can show that K can be computed in O(n · d) time.

Proof. Since for each i0 ∈ [n], we have

Ki0︸︷︷︸
1×1

= Gi(i0, ∗)⊤︸ ︷︷ ︸
1×d

s(X)i0,∗︸ ︷︷ ︸
d×1

Then, we have that it takes O(d) time for calculating each entry.

Since there are total n entries in K, the overall computation time for K is O(n · d).

We now compute z6(X).
Lemma E.2 (Fast computation for z6(X)). If we have the below conditions,

• Let X ∈ Rn×d,W,WV ∈ Rd×d be defined in Definition C.3.

• Let Gi ∈ Rn×d denote the gradient matrix resulting from the application of the chain rule
up to the function gi, i.e., Gi =

dL(X)
dAttni(Ti−1(X)) .

• Assuming each entry of X,W,WV , Gi can be re represented using O(log(n)) bits.

• Let z6(X) ∈ Rn×n be defined in Lemma D.10.

Then, for some k6 = no(1), there are matrices U6, V6 ∈ Rn×k6 such that ∥U6V
⊤
6 − z6(X)∥∞ ≤

ϵ/ poly(n). The matrices U6, V6 can be constructed in n1+o(1) time.

Proof. Recall in Lemma D.10, we have define z6(X) satisfying the following equation

z6(X)∗,i0︸ ︷︷ ︸
n×1

= (Gi(i0, ∗)⊤︸ ︷︷ ︸
1×d

s(X)i0,∗︸ ︷︷ ︸
d×1

) f(X)∗,i0︸ ︷︷ ︸
n×1

(3)

Recall that K ∈ Rn has been defined in Definition D.16. By Lemma E.1, we have K can be
computed in O(n · d) time.

We also have

z6(X)︸ ︷︷ ︸
n×n

= f(X)︸ ︷︷ ︸
n×n

diag(K)︸ ︷︷ ︸
n×n

By Lemma C.13, we have U1, V1 ∈ Rn×k1 such that

∥U1V
⊤
1 − f(X)∥∞ ≤ ϵ/ poly(n)

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

Let U6 = U1, V6 = diag(K)V1.

We have V6 = diag(K)︸ ︷︷ ︸
n×n

V1︸︷︷︸
n×k1

can be computed in nk1 time.

The overall running time for constructing U6 and V6 is n1+o(1).

Then, we consider the error bound.

We have

∥U6V
⊤
6 − z6(X)∥∞ = ∥U1V

⊤
1 diag(K)− f(X) diag(K)∥∞

≤ n∥U1V
⊤
1 − f(X)∥∞∥ diag(K)∥∞

≤ n(ϵ/poly(n))∥ diag(K)∥∞
≤ ϵ/ poly(n)

where the 1st step is from the choice of U6, V6, the 2nd step comes from basic linear algebra, the
3rd step is because of Lemma C.13, the 4th step is due to ∥ diag(K)∥∞ ≤ poly(n).

Then, we are ready to introduce the almost linear time algorithm for B6(X) term.
Lemma E.3 (Fast computation for B6(X) term). If we have the below conditions,

• Let X ∈ Rn×d,W,WV ∈ Rd×d be defined in Definition C.3.

• Assuming each entry of X,W,WV , Gi can be re represented using O(log(n)) bits.

• Let B6(X) ∈ Rn×n be defined in Lemma D.3.

• We define D6 ∈ Rn×d, where D6 :=
∑n

i0=1

∑d
j0=1 Gi(i0, j0)B6(X).

• Let Gi ∈ Rn×d denote the gradient matrix resulting from the application of the chain rule
up to the function gi, i.e., Gi =

dL(X)
dAttni(Ti−1(X)) .

• For i2 ∈ [n], j2 ∈ [d], let Gi(i2, j2) denote the (i2, j2)-th entry of Gi.

Then, we can show that, there is an algorithm to approximate D6 in n1+o(1) time, and it can achieve
ϵ/ poly(n) accuracy.

Namely, the algorithm output D̃6 satisfying

∥D6 − D̃6∥∞ ≤ ϵ/poly(n)

Proof. Recall that in Lemma D.10, we have defined z6(X) ∈ Rn×n, which satisfies

z6(X)∗,i0︸ ︷︷ ︸
n×1

= (Gi(i0, ∗)⊤︸ ︷︷ ︸
1×d

s(X)i0,∗︸ ︷︷ ︸
d×1

) f(X)∗,i0︸ ︷︷ ︸
n×1

And, in that Lemma, we also have
n∑

i0=1

d∑
j0=1

Gi(i0, j0)︸ ︷︷ ︸
1×1

B6(X)︸ ︷︷ ︸
n×d

= − z6(X)︸ ︷︷ ︸
n×n

X︸︷︷︸
n×d

W⊤︸︷︷︸
d×d

Let U6, V6 ∈ Rn×k6 be defined as Lemma E.2.

Let z̃6(X) = U6V
⊤
6 .

By Lemma E.2, we have

∥z̃6(X)− z6(X)∥∞ ≤ ϵ/poly(n) (4)

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

Proof of running time.

We compute in the following way:

• Compute V ⊤
6︸︷︷︸

k6×n

X︸︷︷︸
n×d

, which takes n1+o(1) time.

• Compute V ⊤
6 X︸ ︷︷ ︸
k6×d

W⊤︸︷︷︸
d×d

, which takes n1+o(1) time.

• Compute U6︸︷︷︸
n×k6

V ⊤
6 XW⊤︸ ︷︷ ︸
k6×d

, which takes n1+o(1) time.

Therefore, the overall running time is n1+o(1).

Proof of error bound.

We have

∥z̃6(X)XW⊤ − z6(X)XW⊤∥∞ ≤ d · n∥z̃6(X)− z6(X)∥∞∥X∥∞∥W∥∞
≤ d · n(ϵ/poly(n))∥X∥∞∥W∥∞
≤ ϵ/poly(n)

where the 1st step is from basic linear algebra, the 2nd step comes from Eq.(4), the 3rd step is
because of ∥W∥∞ ≤ poly(n) and ∥X∥∞ ≤ poly(n).

E.2 FAST COMPUTATION FOR B7(X) TERM

Similar to the analysis process of B6(X) term, we first provide the almost linear time algorithm for
z7(X), then provide that algorithm for B7(X).
Lemma E.4 (Fast computation for z7(X)). If we have the below conditions,

• Let z7(X) ∈ Rn×n be defined in Lemma D.11.

• By Lemma C.13, let U1, V1 be the low rank approximation of f(X), such that ∥U1V
⊤
1 −

f(X)∥∞ ≤ ϵ/ poly(n).

• Let X ∈ Rn×d,W,WV ∈ Rd×d be defined in Definition C.3.

• Assuming each entry of X,W,WV , Gi can be re represented using O(log(n)) bits.

• Let Gi ∈ Rn×d denote the gradient matrix resulting from the application of the chain rule
up to the function gi, i.e., Gi =

dL(X)
dAttni(Ti−1(X)) .

• For i2 ∈ [n], j2 ∈ [d], let Gi(i2, j2) denote the (i2, j2)-th entry of Gi.

Then, for some k7 = no(1), there are matrices U7, V7 ∈ Rn×k7 such that ∥U7V
⊤
7 − z7(X)∥∞ ≤

ϵ/ poly(n). The matrices U7, V7 can be constructed in n1+o(1) time.

Proof. Recall that in Lemma D.11, we have defined z7(X) ∈ Rn×n, where the i0-th column of
z7(X) satisfies

z7(X)∗,i0︸ ︷︷ ︸
n×1

= f(X)∗,i0︸ ︷︷ ︸
n×1

⊙(h(X)︸ ︷︷ ︸
n×d

Gi(i0, ∗)︸ ︷︷ ︸
d×1

)

which is equivalent to

z7(X)︸ ︷︷ ︸
n×n

= f(X)︸ ︷︷ ︸
n×n

⊙(h(X)︸ ︷︷ ︸
n×d

G⊤
i︸︷︷︸

d×n

)

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

By Lemma C.13, we know f̃(X) := U1V
⊤
1 is a good approximation for f(X).

We choose U7 = U1 ⊘ h(X) and V7 = V1 ⊘Gi, where U7, V7 ∈ Rn×k1d.

Proof of running time.

For U7 = U1 ⊘ h(X), since U1 ∈ Rn×k1 , h(X) ∈ Rn×d, constructing U7 takes O(ndk1) =
O(n1+o(1)) time.

Similarly, constructing V7 takes O(n1+o(1)) time.

Proof of error bound.

Using Fact C.2, we have

∥U7V
⊤
7 − z7(X)∥∞ = ∥U7V

⊤
7 − f(X)⊙ (h(X)G⊤

i)∥∞
= ∥(U1 ⊘ h(X))(V1 ⊘Gi)

⊤ − f(X)⊙ (h(X)G⊤
i)∥∞

= ∥(U1V
⊤
1)⊙ (h(X)G⊤

i)− f(X)⊙ (h(X)G⊤
i)∥∞

= ∥f̃(X)⊙ (h(X)G⊤
i)− f(X)⊙ (h(X)G⊤

i)∥∞
≤ d∥h(X)∥∞∥Gi∥∞ · ϵ/ poly(n)
≤ ϵ/ poly(n) (5)

where the 1st step is from the definition of z7(X), the 2nd step comes from the choice of U7 and V7,
the 3rd step is because of Fact C.2, the 4th step is due to the definition of f̃(X), the 5th step follows
from ∥f̃(X) − f(X)∥∞ ≤ ϵ/ poly(n), the sixth step follows from Lemma C.18 and ∥Gi∥∞ ≤
poly(n).

Then, we can do similarly fast computation for B7 term.
Lemma E.5 (Fast computation for B7(X) term). If we have the below conditions,

• Let B7(X) ∈ Rn×d be defined in Lemma D.4.

• We define D7 ∈ Rn×d, where D7 :=
∑n

i0=1

∑d
j0=1 Gi(i0, j0)B7(X).

• Let X ∈ Rn×d,W,WV ∈ Rd×d, B ∈ Rn×d be defined in Definition C.3.

• Assuming each entry of X,W,WV , Gi can be re represented using O(log(n)) bits.

• Let Gi ∈ Rn×d denote the gradient matrix resulting from the application of the chain rule
up to the function gi, i.e., Gi =

dL(X)
dAttni(Ti−1(X)) .

• For i2 ∈ [n], j2 ∈ [d], let Gi(i2, j2) denote the (i2, j2)-th entry of Gi.

Then, we can show that, there is an algorithm to approximate D7 in n1+o(1) time, and it can achieve
ϵ/ poly(n) accuracy.

Namely, the algorithm output D̃7 satisfies

∥D7 − D̃7∥∞ ≤ ϵ/poly(n)

Proof. In Lemma D.11, we have

n∑
i0=1

d∑
j0=1

Gi(i0, j0)︸ ︷︷ ︸
1×1

B7(X)︸ ︷︷ ︸
n×d

= z7(X)︸ ︷︷ ︸
n×n

X︸︷︷︸
n×d

W⊤︸︷︷︸
d×d

Let U7, V7 ∈ Rn×k7 be defined in Lemma E.4.

Let z̃7(X) := U7V
⊤
7 .

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

By Lemma E.4, we have

∥z̃7(X)− z7(X)∥∞ ≤ ϵ/poly(n) (6)

Proof of running time.

We compute in the following way:

• Compute V ⊤
7︸︷︷︸

k7×n

X︸︷︷︸
n×d

, which takes n1+o(1) time.

• Compute V ⊤
7 X︸ ︷︷ ︸
k7×d

W⊤︸︷︷︸
d×d

, which takes n1+o(1) time.

• Compute U7︸︷︷︸
n×k7

V ⊤
7 XW⊤︸ ︷︷ ︸
k7×d

, which takes n1+o(1) time.

Therefore, the overall running time is n1+o(1).

Proof of error bound.

We have

∥z̃7(X)XW⊤ − z7(X)XW⊤∥∞ ≤ d · n∥z̃7(X)− z7(X)∥∞∥X∥∞∥W∥∞
≤ d · n(ϵ/poly(n))∥X∥∞∥W∥∞
≤ ϵ/poly(n)

where the 1st step is from basic linear algebra, the 2nd step comes from Eq. (6), the 3rd step is
because of ∥W∥∞ ≤ poly(n) and ∥X∥∞ ≤ poly(n).

E.3 FAST COMPUTATION FOR B8(X) TERM

Then, we can do fast computations on B8(X) term.
Lemma E.6 (Fast computation for B8(X) term). If we have the below conditions,

• Let B8(X) ∈ Rn×d be defined in Lemma D.5.

• We define D8 ∈ Rn×d, where D8 :=
∑n

i0=1

∑d
j0=1 Gi(i0, j0)B8(X).

• Let X ∈ Rn×d,W,WV ∈ Rd×d be defined in Definition C.3.

• Assuming each entry of X,W,WV , Gi can be re represented using O(log(n)) bits.

• Let Gi ∈ Rn×d denote the gradient matrix resulting from the application of the chain rule
up to the function gi, i.e., Gi =

dL(X)
dAttni(Ti−1(X)) .

• For i2 ∈ [n], j2 ∈ [d], let Gi(i2, j2) denote the (i2, j2)-th entry of Gi.

Then, we can show that, there is an algorithm to approximate D8 in n1+o(1) time, and it can achieve
ϵ/ poly(n) accuracy.

Namely, the algorithm output D̃8 satisfies

∥D8 − D̃8∥∞ ≤ ϵ/poly(n)

Proof. Recall that in Lemma D.12, we have
n∑

i0=1

d∑
j0=1

Gi(i0, j0)︸ ︷︷ ︸
1×1

B8(X)︸ ︷︷ ︸
n×d

= f(X)︸ ︷︷ ︸
n×n

Gi︸︷︷︸
n×d

W⊤
V︸︷︷︸

d×d

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

Let f̃(X) := U1V
⊤
1 denote the approximation of f(X).

By Lemma C.13, we have

∥f(X)− f̃(X)∥∞ ≤ ϵ/ poly(n) (7)

Proof of running time.

We compute in the following way:

• Compute V ⊤
1︸︷︷︸

k1×n

Gi︸︷︷︸
n×d

, which takes n1+o(1) time.

• Compute V ⊤
1 Gi︸ ︷︷ ︸
k1×d

W⊤
V︸︷︷︸

d×d

, which takes n1+o(1) time.

• Compute U1︸︷︷︸
n×k1

V ⊤
1 GiW

⊤
V︸ ︷︷ ︸

k1×d

, which takes n1+o(1) time.

Therefore, the overall running time is n1+o(1).

Proof of error bound.

We have

∥f̃(X)GiW
⊤
V − f(X)GiW

⊤
V ∥∞

≤ d · n∥f̃(X)− f(X)∥∞∥Gi∥∞∥WV ∥∞
≤ d · n(ϵ/ poly(n))∥Gi∥∞∥WV ∥∞
≤ ϵ/ poly(n)

where the 1st step is from basic linear algebra, the 2nd step comes from Eq.(7), the 3rd step is
because of ∥Gi∥∞ ≤ poly(n) and ∥WV ∥∞ ≤ poly(n).

E.4 FAST COMPUTATION FOR B2(X) TERM

Then, we provide the proof of how to do fast computation on B2(X).

Lemma E.7 (Fast computation for z2(X)). If we have the below conditions,

• Let z2(X) ∈ Rn×n be defined as in Lemma D.13.

• Let X ∈ Rn×d,W,WV ∈ Rd×d be defined in Definition C.3.

• Assuming each entry of X,W,WV , Gi can be re represented using O(log(n)) bits.

• Let Gi ∈ Rn×d denote the gradient matrix resulting from the application of the chain rule
up to the function gi, i.e., Gi =

dL(X)
dAttni(Ti−1(X)) .

• For i2 ∈ [n], j2 ∈ [d], let Gi(i2, j2) denote the (i2, j2)-th entry of Gi.

Then, for some k9 = no(1), there are matrices U9, V9 ∈ Rn×k9 such that ∥U9V
⊤
9 − z2(X)∥∞ ≤

ϵ/ poly(n). The matrices U9, V9 can be constructed in n1+o(1) time.

Proof. Recall that in Lemma D.13, we have defined z2(X) ∈ Rn×n, where the i0-th row of z2(X)
satisfies

z2(X)i0,∗︸ ︷︷ ︸
n×1

= (Gi(i0, ∗)⊤︸ ︷︷ ︸
1×d

s(X)i0,∗︸ ︷︷ ︸
d×1

) f(X)i0,∗︸ ︷︷ ︸
n×1

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2026

Recall that K ∈ Rn has been defined in Definition D.16.

By Lemma E.1, we have K can be computed in O(n · d) time.

We also have

z2(X)︸ ︷︷ ︸
n×n

= diag(K)︸ ︷︷ ︸
n×n

f(X)︸ ︷︷ ︸
n×n

By Lemma C.13, let U1, V1 be the low rank approximation of f(X), such that ∥U1V
⊤
1 −f(X)∥∞ ≤

ϵ/ poly(n).

Let U9 = diag(K)U1, V6 = V1.

We have U9 = diag(K)︸ ︷︷ ︸
n×n

U1︸︷︷︸
n×k1

can be computed in nk1 time.

The overall running time for constructing U9 and V9 is n1+o(1).

Then, we consider the error bound.

We have

∥U9V
⊤
9 − z2(X)∥∞ = ∥diag(K)U1V

⊤
1 − diag(K)f(X)∥∞

≤ n∥U1V
⊤
1 − f(X)∥∞∥ diag(K)∥∞

≤ n(ϵ/poly(n))∥ diag(K)∥∞
≤ ϵ/ poly(n) (8)

where the 1st step is from the choice of U6, V6, the 2nd step comes from basic linear algebra, the
3rd step is because of Lemma C.13, the 4th step is due to ∥ diag(K)∥∞ ≤ poly(n).

Lemma E.8 (Fast computation for B2(X) term). If we have the below conditions,

• Let B2(X) ∈ Rn×d be defined in Lemma D.6.

• We define D2 ∈ Rn×d, where D2 :=
∑n

i0=1

∑d
j0=1 Gi(i0, j0)︸ ︷︷ ︸

1×1

ei0︸︷︷︸
n×1

B2(X)⊤︸ ︷︷ ︸
1×d

.

• Let X ∈ Rd×n,W,WV ∈ Rd×d, B ∈ Rn×d be defined in Definition C.3.

• Assuming each entry of X,W,WV , B,Gi can be re represented using O(log(n)) bits.

• Let Gi ∈ Rn×d denote the gradient matrix resulting from the application of the chain rule
up to the function gi, i.e., Gi =

dL(X)
dAttni(Ti−1(X)) .

• For i2 ∈ [n], j2 ∈ [d], let Gi(i2, j2) denote the (i2, j2)-th entry of Gi.

Then, we can show that, there is an algorithm to approximate D2 in n1+o(1) time, and it can achieve
ϵ/ poly(n) accuracy.

Namely, the algorithm output D̃2 satisfies

∥D2 − D̃2∥∞ ≤ ϵ/poly(n)

Proof. In Lemma D.13, we have

n∑
i0=1

d∑
j0=1

Gi(i0, j0)︸ ︷︷ ︸
1×1

ei0︸︷︷︸
n×1

B2(X)⊤︸ ︷︷ ︸
1×d

= − z2(X)︸ ︷︷ ︸
n×n

X︸︷︷︸
n×d

W︸︷︷︸
d×d

Let U9, V9 ∈ Rn×k9 be defined in Lemma E.7.

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2026

Let z̃2(X) := U9V
⊤
9 .

By Lemma E.7, we have

∥z̃2(X)− z2(X)∥∞ ≤ ϵ/poly(n) (9)

Proof of running time.

We compute in the following way:

• Compute V ⊤
9︸︷︷︸

k9×n

X︸︷︷︸
n×d

, which takes n1+o(1) time.

• Compute V ⊤
9 X︸ ︷︷ ︸
k9×d

W︸︷︷︸
d×d

, which takes n1+o(1) time.

• Compute U9︸︷︷︸
n×k9

V ⊤
9 XW︸ ︷︷ ︸
k9×d

, which takes n1+o(1) time.

Therefore, the overall running time is n1+o(1).

Proof of error bound.

We have

∥z̃2(X)XW − z2(X)XW∥∞ ≤ d · n∥z̃2(X)− z2(X)∥∞∥X∥∞∥W∥∞
≤ d · n(ϵ/ poly(n))∥X∥∞∥W∥∞
≤ ϵ/ poly(n)

where the 1st step is from basic linear algebra, the 2nd step comes from Eq.(9), the 3rd step is
because of ∥W∥∞ ≤ poly(n) and ∥X∥∞ ≤ poly(n).

E.5 FAST COMPUTATION FOR B4(X) TERM

Finally, our analysis shows that we can do fast computations for B4(X) term. After that, we showed
that all terms can be computed quickly.

Lemma E.9 (Fast computation for z4(X)). If we have the below conditions,

• Let z4(X) ∈ Rn×n be defined in Lemma D.14.

• Let X ∈ Rn×d,W,WV ∈ Rd×d be defined in Definition C.3.

• Assuming each entry of X,W,WV , Gi can be re represented using O(log(n)) bits.

• Let Gi ∈ Rn×d denote the gradient matrix resulting from the application of the chain rule
up to the function gi, i.e., Gi =

dL(X)
dAttni(Ti−1(X)) .

• For i2 ∈ [n], j2 ∈ [d], let Gi(i2, j2) denote the (i2, j2)-th entry of Gi.

Then, for some k10 = no(1), there are matrices U10, V10 ∈ Rn×k10 , let z̃4(X) := U10V
⊤
10 , such that

∥z̃4(X)− z4(X)∥∞ ≤ ϵ/poly(n). The matrices U10, V10 can be constructed in n1+o(1) time.

Proof. In Lemma D.14, we have defined z4(X) ∈ Rn×n, where the i0-th column of z4(X) satisfies

z4(X)i0,∗︸ ︷︷ ︸
n×1

= (f(X)i0,∗︸ ︷︷ ︸
n×1

⊙ (h(X)Gi(i0, ∗))︸ ︷︷ ︸
n×1

)

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2026

which is equivalent to

z4(X)︸ ︷︷ ︸
n×n

= (f(X)︸ ︷︷ ︸
n×n

⊙ Gi︸︷︷︸
n×d

h(X)⊤︸ ︷︷ ︸
d×n

)

By Lemma C.13, let U1, V1 be the low rank approximation of f(X), such that ∥U1V
⊤
1 −f(X)∥∞ ≤

ϵ/ poly(n).

We choose U10 = U1 ⊘Gi and V10 = V1 ⊘ h(X), where U10, V10 ∈ Rn×k1d.

Proof of running time.

For U10 = U1⊘Gi, since U1 ∈ Rn×k1 , Gi ∈ Rn×d, constructing U10 takes O(ndk1) = O(n1+o(1))
time.

Similarly, constructing V10 takes O(n1+o(1)) time.

Proof of error bound.

Let f̃(X) := U1V
⊤
1 .

Using Fact C.2, we have

∥z̃4(X)− z4(X)∥∞ = ∥U10V
⊤
10 − f(X)⊙ (Gi · h(X)⊤)∥∞

= ∥(U1 ⊘Gi)(V1 ⊘ h(X))⊤ − f(X)⊙ (Gi · h(X)⊤)∥∞
= ∥(U1V

⊤
1)⊙ (Gi · h(X)⊤)− f(X)⊙ (Gi · h(X)⊤)∥∞

where the 1st step is from the definition of z̃4(X), z4(X), the 2nd step comes from the choice of
U10 and V10, the 3rd step is because of Fact C.2.

∥(U1V
⊤
1)⊙ (Gi · h(X)⊤)− f(X)⊙ (Gi · h(X)⊤)∥∞ = ∥U1V

⊤
1 − f(X)∥∞∥Gi · h(X)⊤∥∞

≤ d · (ϵ/ poly(n))∥h(X)∥∞∥Gi∥∞
≤ ϵ/ poly(n)

where the 1st step is from basic linear algebra, the 2nd step comes from ∥U1V1 − f(X)∥∞ ≤
ϵ/ poly(n), the 3rd step is because of Lemma C.18 and ∥Gi∥∞ ≤ poly(n).

Lemma E.10 (Fast computation for B4(X) term). If we have the below conditions,

• Let B4(X) ∈ Rn×d be defined in Lemma D.7.

• We define D4 ∈ Rn×d, where D4 :=
∑n

i0=1

∑d
j0=1 Gi(i0, j0)︸ ︷︷ ︸

1×1

ei0︸︷︷︸
n×1

B4(X)⊤︸ ︷︷ ︸
1×d

.

• Let X ∈ Rn×d,W,WV ∈ Rd×d be defined in Definition C.3.

• Assuming each entry of X,W,WV , Gi can be re represented using O(log(n)) bits.

• Let Gi ∈ Rn×d denote the gradient matrix resulting from the application of the chain rule
up to the function gi, i.e., Gi =

dL(X)
dAttni(Ti−1(X)) .

• For i2 ∈ [n], j2 ∈ [d], let Gi(i2, j2) denote the (i2, j2)-th entry of Gi.

Then, we can show that, there is an algorithm to approximate D4 in n1+o(1) time, and it can achieve
ϵ/ poly(n) accuracy.

Namely, the algorithm output D̃4 satisfies

∥D4 − D̃4∥∞ ≤ ϵ/poly(n)

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2026

Proof. In Lemma D.14, we have

n∑
i0=1

d∑
j0=1

Gi(i0, j0)︸ ︷︷ ︸
1×1

ei0︸︷︷︸
n×1

B4(X)⊤︸ ︷︷ ︸
1×d

= z4(X)︸ ︷︷ ︸
n×n

X︸︷︷︸
n×d

W︸︷︷︸
d×d

Let z̃4(X) := U10V
⊤
10 .

By Lemma E.9, we have

∥z̃4(X)− z4(X)∥∞ ≤ ϵ/poly(n) (10)

Proof of running time.

We compute in the following way:

• Compute V ⊤
10︸︷︷︸

k10×n

X︸︷︷︸
n×d

, which takes n1+o(1) time.

• Compute V ⊤
10X︸ ︷︷ ︸

k10×d

W︸︷︷︸
d×d

, which takes n1+o(1) time.

• Compute U10︸︷︷︸
n×k10

V ⊤
10XW︸ ︷︷ ︸
k10×d

, which takes n1+o(1) time.

Therefore, the overall running time is n1+o(1).

Proof of error bound.

We have

∥z̃4(X)XW − z4(X)XW∥∞ ≤ d · n∥z̃4(X)− z4(X)∥∞∥X∥∞∥W∥∞
≤ d · n(ϵ/ poly(n))∥X∥∞∥W∥∞
≤ ϵ/ poly(n)

where the 1st step is from basic linear algebra, the 2nd step comes from Eq.(10), the 3rd step is
because of ∥W∥∞ ≤ poly(n) and ∥X∥∞ ≤ poly(n).

E.6 PUTTING EVERYTHING TOGETHER

After we have analyzed each Bi(X) term in the previous section, we put them together in this
section, to analyze the overall running time and error bound of the gradient of L(X) on Ti(X) in
Lemma E.11.

Lemma E.11 (Fast computation for dL(X)
dTi−1(X) , formal version of Lemma 4.1). If we have the below

conditions,

• Let L(X) be defined as Definition 2.1.

• Let m denote the number of self-attention transformer model (see Definition 1.3).

• For any i ∈ [m], let Ti(X) be defined as Definition 2.3.

• Let X ∈ Rn×d,W,WV ∈ Rd×d be defined in Definition C.3.

• Assuming each entry of X,W,WV , Gi can be re represented using O(log(n)) bits.

• Let Gi ∈ Rn×d denote the gradient matrix resulting from the application of the chain rule
up to the function gi, i.e., Gi =

dL(X)
dAttni(Ti−1(X)) .

49

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2026

• Assume Gi can be computed in n1+o(1) time.

We can show that dL(X)
dTi−1(X) can be approximated in n1+o(1) time, with 1/ poly(n) approximation

error. Namely, our algorithm can output g̃t in n1+o(1) time, which satisfies

∥g̃t −
dL(X)

dTi−1(X)
∥∞ ≤ 1/ poly(n)

Proof. By Lemma D.9, we have

dL(X)

dTi−1(X)
=

n∑
i0=1

d∑
j0=1

Gi(i0, j0)︸ ︷︷ ︸
1×1

·(B6(X) +B7(X) +B8(X)︸ ︷︷ ︸
n×d

+ ei0︸︷︷︸
n×1

(B2(X) +B4(X))⊤︸ ︷︷ ︸
1×d

)

=
∑

i∈{2,4,6,7,8}

Di

where the 1st step is from Lemma D.9, the 2nd step comes from the definition of
D6, D7, D8, D2, D4.

Then, by Lemma E.3, E.5, E.6, E.8, E.10, we have D6, D7, D8, D2, D4 ∈ Rn×d can be approxi-
mated in n1+o(1) time, with up to ϵ/ poly(n) error.

Namely, for i ∈ {2, 4, 6, 7, 8}, let D̃i ∈ Rn×d denote the approximated version of D, we have

∥D̃i −D∥∞ ≤ ϵ/ poly(n)

Let g̃t =
∑

i∈{2,4,6,7,8} D̃i.

Proof of running time.

The running time for computing g̃t =
∑

i∈{2,4,6,7,8} D̃i is O(nd).

Therefore, the overall running time for computing g̃t is n1+o(1).

Proof of error bound.

We have

∥g̃t −
dL(X)

dTi−1(X)
∥∞ = ∥

∑
i∈{2,4,6,7,8}

(D̃i −Di)∥∞

≤
∑

i∈{2,4,6,7,8}

∥(D̃i −Di)∥∞

≤ ϵ/poly(n)

where the 1st step is from the definition of g̃t and dL(X)
dTi−1(X) , the 2nd step comes from basic algebra,

the 3rd step is because of ∥D̃i −D∥∞ ≤ ϵ/ poly(n).

Then, choose ϵ = 1/ poly(n), we have

∥g̃t −
dL(X)

dTi−1(X)
∥∞ ≤ 1/ poly(n)

F FAST COMPUTATION FOR GRADIENT ON W

In Section F.1, we introduce some essential notations used in this section. In Section F.2, we offer the
gradient of s(X) on W , which is equivalent to the gradient of the output of the attention mechanism
on W . In Section F.3, we illustrate the gradient of L(X) on W . In Section F.4, we introduce the
almost linear time algorithm for calculating the gradient of L(X) on W , along with the error bound
analysis.

50

2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2026

F.1 KEY CONCEPTS

Definition F.1 (Definition of A, (Alman & Song, 2024a)). Let A1, A2 ∈ Rn×d be two matrices.
Suppose that A = A1 ⊗ A2 ∈ Rn2×d2

. We define Aj0 ∈ Rn×d2

be a n× d2 size sub-block from A.
Note that there are n such sub-blocks.
Remark F.2. Note that the A1, A2 matrices in Definition F.1 is X in our setting. Since in (Alman &
Song, 2024a), they consider a more general setting, where A1, A2 can be difference matrices, while
in our problem, we consider self-attention. Therefore, in our paper, we have A1 = A2 = X .

F.2 GRADIENT OF s(X) ON W

We begin with introducing the close form of the gradient of s(X).

(Alman & Song, 2024a) proved the close form of the gradient of c(X) = s(X)−B with respect to
W for a constant matrix B. By chain rule, this is equivalent to the gradient of s(X) with respect to
W .
Lemma F.3 (Gradient of s(X) on W , Lemma B.1 in (Alman & Song, 2024a)). If we have the below
conditions,

• Let A be defined as Definition F.1. For every i ∈ [d2], define Aj0,i ∈ Rn to be the i-th
column for Aj0 ∈ Rn×d2

.

• Let f(X), h(X), s(X) be defined as Definition C.8, C.9, C.10.

• Let W ∈ Rd×d be defined as Definition C.3. Let w ∈ Rd2

denote the vector representation
of W .

Then, for each i ∈ [d2], we have For each j0 ∈ [n], for every i0 ∈ [d]

ds(X)j0,i0
dwi

= ⟨Aj0,i⊙f(X)j0 , h(X)i0⟩ − ⟨f(X)j0 , h(X)i0⟩ · ⟨Aj0,i, f(X)j0⟩

F.3 GRADIENT OF L(X) ON W

Differing from the ℓ2 loss function used in (Alman & Song, 2024a), our framework supports arbi-
trary loss functions. Therefore, we use Lemma F.4 to illustrate the gradient of L(X) on W .
Lemma F.4 (Gradient of L(X) on W). If we have the below conditions,

• Let L(X) be defined as Definition 2.1.

• Let W ∈ Rd×d, X ∈ Rn×d be Defined as Definition C.3.

• Let p(X) be defined as Definition C.12.

Then, we can show that

dL(X)

dWi
= X⊤ · p(X) ·X

Proof. By Lemma F.3, we have, for each i ∈ [d2], we have For each j0 ∈ [n], for every i0 ∈ [d]

ds(X)j0,i0
dwi

= ⟨Aj0,i︸︷︷︸
n×1

⊙ f(X)j0︸ ︷︷ ︸
n×1

, h(X)i0︸ ︷︷ ︸
n×1

⟩ − ⟨f(X)j0︸ ︷︷ ︸
n×1

, h(X)i0︸ ︷︷ ︸
n×1

⟩ · ⟨Aj0,i︸︷︷︸
n×1

, f(X)j0︸ ︷︷ ︸
n×1

⟩ (11)

By Fact C.1, we have

⟨Aj0,i⊙f(X)j0 , h(X)i0⟩ = A⊤
j0,i diag(f(X)j0)h(X)i0

and

⟨f(X)j0 , h(X)i0⟩ · ⟨f(X)j0 ,Aj0,i⟩ = A⊤
j0,i f(X)j0f(X)⊤j0h(X)i0

51

2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Under review as a conference paper at ICLR 2026

By Eq. (11), for each i ∈ [d2], we have For each j0 ∈ [n], for every i0 ∈ [d], we have

ds(X)j0,i0
dwi

= A⊤
j0,i(diag(f(X)j0)− f(X)j0f(X)⊤j0)h(X)i0

which implies,

ds(X)j0,i0
dW

= A⊤
j0︸︷︷︸

d2×n

(diag(f(X)j0)− f(X)j0f(X)⊤j0)︸ ︷︷ ︸
n×n

h(X)i0︸ ︷︷ ︸
n×1

(12)

By Lemma C.4, for i ∈ [m], we have

dL(X)

dWi
=

n∑
i2=1

d∑
j2=1

Gi(i2, j2) ·
dAttni(Ti−1(X))i2,j2

dWi
. (13)

By the definition of s(X) (Definition C.10), we have

s(X) = Attni(Ti−1(X))

Combining Eq. (12) and Eq. (13), for each i ∈ [m], we have

dL(X)

dWi
=

n∑
j0=1

d∑
i0=1

Gi(j0, i0)︸ ︷︷ ︸
1×1

· A⊤
j0︸︷︷︸

d2×n

(diag(f(X)j0)− f(X)j0f(X)⊤j0)︸ ︷︷ ︸
n×n

h(X)i0︸ ︷︷ ︸
n×1

(14)

Recall that we have defined q(X) in Definition C.11,

q(X)j0 :=

d∑
i0=1

Gi(j0, i0) · h(X)i0 (15)

Recall that p(x)j0 ∈ Rn is define as Definition C.12,

p(x)j0 := (diag(f(x)j0)− f(x)j0f(x)
⊤
j0)q(x)j0 . (16)

Then, we have

dL(X)

dWi
=

n∑
j0=1

d∑
i0=1

Gi(j0, i0)︸ ︷︷ ︸
1×1

· A⊤
j0︸︷︷︸

d2×n

(diag(f(X)j0)− f(X)j0f(X)⊤j0)︸ ︷︷ ︸
n×n

h(X)i0︸ ︷︷ ︸
n×1

=

n∑
j0=1

A⊤
j0︸︷︷︸

d2×n

(diag(f(X)j0)− f(X)j0f(X)⊤j0)︸ ︷︷ ︸
n×n

q(X)j0︸ ︷︷ ︸
n×1

=

n∑
j0=1

A⊤
j0 pj0(X)

= X⊤︸︷︷︸
d×n

p(X)︸ ︷︷ ︸
n×n

X︸︷︷︸
n×d

where the 1st step is from Eq. (14), the 2nd step comes from Eq. (15), the 3rd step is because of
Eq. (16), the 4th step is due to the tensor tricks.

52

2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

Under review as a conference paper at ICLR 2026

F.4 FAST COMPUTATION

Finally, we introduce the almost linear time algorithm and its error analysis of the gradient of L(X)
on W in Lemma F.5.

Lemma F.5 (Fast computation for dL(X)
dWi

). If we have the below conditions,

• Let L(X) be defined as Definition 2.1.

• Let m denote the number of self-attention transformer layers (see Definition 1.3).

• For any i ∈ [m], let Wi = WQi
W⊤

Ki
denote the attention weight in the i-th transformer

layer.

We can show that dL(X)
dWi

can be approximated in n1+o(1) time, with 1/poly(n) approximation error.
Namely, our algorithm can output g̃w in n1+o(1) time, which satisfies

∥g̃w −
dL(X)

dWi
∥∞ ≤ 1/ poly(n)

Proof. Recall by Lemma C.15, C.16, we have defined p1(X), p2(X) ∈ Rn×n.

In those Lemmas, we have p1(X), p2(X) have low rank approximation U3V
⊤
3 and U4V

⊤
4 , respec-

tively.

By the definition of p(X) (Definition C.12), we have

p(X) = p1(X)− p2(X) (17)

Then, by Lemma F.4, we have

dL(X)

dWi
= X⊤p(X)X

= X⊤(p1(X)− p2(X))X

where the 1st step is from Lemma F.4, the 2nd step comes from Eq. (17).

Let p̃1(X), p̃2(X) denote the low rank approximations for p1(X), p2(X), respectively.

Proof of running time. We first compute X⊤p̃1(X)X in following order

• Compute X⊤︸︷︷︸
d×n

U3︸︷︷︸
n×k3

, which takes n1+o(1) time.

• Compute X⊤U3︸ ︷︷ ︸
d×k3

V ⊤
3︸︷︷︸

k3×n

, which takes n1+o(1) time.

• Compute X⊤U3V
⊤
3︸ ︷︷ ︸

d×n

X︸︷︷︸
n×d

, which takes n1+o(1) time.

The overall running time for X⊤p̃1(X)X is n1+o(1).

Similarly, the overall running time for X⊤p̃2(X)X is n1+o(1).

Since X⊤p̃1(X)X,X⊤p̃2(X)X ∈ Rd×d, the computation time for X⊤(p̃1(X) − p̃2(X))X is
O(d2).

Therefore, the overall running time for X⊤(p̃1(X)− p̃2(X))X is n1+o(1).

Proof of error bound.

We consider the error for X⊤p̃1(X)X first.

53

2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915

Under review as a conference paper at ICLR 2026

∥X⊤p̃1(X)X −X⊤p1(X)X∥∞ = ∥X⊤(p̃1(X)− p1(X))X∥∞
≤ n2∥X∥2∞∥p̃1(X)− p1(X)∥∞
≤ n2(ϵ/ poly(n))∥X∥2∞
≤ ϵ/ poly(n) (18)

where the 1st step is from basic algebra, the 2nd step comes from basic linear algebra, the 3rd step
is because of ∥p̃1(X)− p1(X)∥∞ ≤ ϵ/poly(n), the 4th step is due to ∥X∥∞ ≤ poly(n).

Similarly, we can have

∥X⊤p̃2(X)X −X⊤p2(X)X∥∞ ≤ ϵ/ poly(n) (19)

Therefore, we have

∥X⊤p̃(X)X −X⊤p(X)X∥∞
= ∥X⊤p̃1(X)X −X⊤p1(X)X +X⊤p̃2(X)X −X⊤p2(X)X∥∞
≤ ∥X⊤p̃1(X)X −X⊤p1(X)X∥∞ + ∥X⊤p̃2(X)X −X⊤p2(X)X∥∞
≤ (ϵ/ poly(n)) + (ϵ/poly(n))

= ϵ/ poly(n)

where the 1st step is from basic algebra, the 2nd step comes from triangle inequality, the 3rd step is
because of Eq. (18) and Eq. (19), the 4th step is due to basic algebra.

Then, we choose ϵ = 1/ poly(n), we have

∥g̃w −
dL(X)

dWi
∥∞ ≤ 1/ poly(n)

G FAST COMPUTATION FOR GRADIENT ON WV

In Section G.1, we introduce the close form of the gradient of s(X) on WV . In Section G.2, we
provide the close form of the gradient of L(X) on WV . In Section G.3, based on the close form
calculated in the previous section, we introduce the almost linear time algorithm for computing the
gradient of L(X) on WV .

G.1 GRADIENT OF s(X) ON WV

Since s(X) = f(X)h(X), we begin with considering the gradient of h(X) on WV in Lemma G.1.

Lemma G.1 (Gradient of h(X) on WV). If we have the below conditions,

• Let h(X) be defined as Definition C.9.

• Let WV be defined as Definition C.3.

Then, for any i0 ∈ [n], j0 ∈ [d] and any i1, j1 ∈ [d], we have

dh(X)i0,j0
d(WV)i1,j1

=

{
Xi0,i1 j0 = j1
0 j0 ̸= j1

Proof. Since hi0,j0 satisfies

hi0,j0 = X⊤
i0,∗(WV)∗,j0 ,

we have hi0,j0 only depends on (WV)∗,j0 .

54

2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969

Under review as a conference paper at ICLR 2026

Hence, we have, for j0 ̸= j1,

dh(X)i0,j0
d(WV)i1,j1

= 0

For j0 = j1 case, we have

dh(X)i0,j0
d(WV)i1,j0

= Xi0,i1

Combining the result in the previous Lemma and the chain rule, we can have the gradient of s(X)
on WV in Lemma G.2.
Lemma G.2 (Gradient of s(X) on WV). If we have the below conditions,

• Let s(X) be defined as Definition C.10.

• Let WV be defined as Definition C.3.

Then, for any i2 ∈ [n], j2 ∈ [d] and any i1, j1 ∈ [d], we have

• Part 1.
ds(X)i2,j2
d(WV)i1,j1

=

{
f(X)⊤i2,∗X∗,i1 j2 = j1
0 j2 ̸= j1

• Part 2.
ds(X)i2,j2

dWV︸ ︷︷ ︸
d×d

= X⊤︸︷︷︸
d×n

f(X)i2,∗︸ ︷︷ ︸
n×1

e⊤j2︸︷︷︸
1×d

Proof. Proof of Part 1.

By Definition C.10, we have

s(X)i2,j2 := f(X)⊤i2,∗h(X)∗,j2 (20)

Therefore, s(X)i2,j2 is only depends on h(X)∗,j2 , which further means s(X)i2,j2 is only depends
on (WV)∗,j2 .

Hence, for j1 ̸= j2, we have

ds(X)i2,j2
d(WV)i1,j2

= 0

We consider j1 = j2 case.

By, Eq. (20), we can derive that

ds(X)i2,j2
dh(X)i3,j2

= f(X)i2,i3 (21)

By chain rule, we have

ds(X)i2,j2
d(WV)i1,j2

=

d∑
i3=1

ds(X)i2,j2
dh(X)i3,j2

dh(X)i3,j2
d(WV)i1,j2

=

d∑
i3=1

f(X)i2,i3
dh(X)i3,j2
d(WV)i1,j2

55

2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023

Under review as a conference paper at ICLR 2026

=

d∑
i3=1

f(X)i2,i3Xi3,i1

= f(X)⊤i2,∗X∗,i1 (22)

where the 1st step is from chain rule, the 2nd step comes from Eq. (21), the 3rd step is because of
Lemma G.1, the 4th step is due to basic linear algebra.

Proof of Part 2.

By Eq (22), we have

ds(X)i2,j2
d(WV)∗,j2︸ ︷︷ ︸

d×1

= X⊤︸︷︷︸
d×n

f(X)i2,∗︸ ︷︷ ︸
n×1

which implies

ds(X)i2,j2
dWV︸ ︷︷ ︸
d×d

= X⊤︸︷︷︸
d×n

f(X)i2,∗︸ ︷︷ ︸
n×1

e⊤j2︸︷︷︸
1×d

G.2 GRADIENT OF L(X) ON WV

Since we have already got the close form of the gradient of s(X) on WV , we can easily extend it
and get the close form of the gradient of L(X) on WV in Lemma G.3.
Lemma G.3 (Gradient of L(X) on WV). If we have the below conditions,

• Let L(X) be defined as Definition 2.1.

• Let WV be defined as Definition C.3.

Then, we can show that

dL(X)

dWVi︸ ︷︷ ︸
d×d

= X⊤︸︷︷︸
d×n

f(X)︸ ︷︷ ︸
n×n

Gi︸︷︷︸
n×d

Proof. We slightly abuse the notation, using WV to represent Vi in Lemma G.1, G.2.

By Lemma G.2, we have

ds(X)i2,j2
dWV︸ ︷︷ ︸
d×d

= X⊤︸︷︷︸
d×n

f(X)i2,∗︸ ︷︷ ︸
n×1

e⊤j2︸︷︷︸
1×d

(23)

By Lemma C.4, we have

dL(X)

dWVi

=

n∑
i2=1

d∑
j2=1

Gi(i2, j2) ·
dAttni(Ti−1(X))i2,j2

dWVi

. (24)

By Definition C.10 and Definition C.3, we have

s(X) = Attni(Ti−1(X))

Therefore, combining Eq. (23) and Eq. (24), we have

dL(X)

dWVi

56

3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077

Under review as a conference paper at ICLR 2026

=

n∑
i2=1

d∑
j2=1

Gi(i2, j2)︸ ︷︷ ︸
1×1

X⊤︸︷︷︸
d×n

f(X)i2,∗︸ ︷︷ ︸
n×1

e⊤j2︸︷︷︸
1×d

=

n∑
i2=1

X⊤︸︷︷︸
d×n

f(X)i2,∗︸ ︷︷ ︸
n×1

d∑
j2=1

Gi(i2, j2)︸ ︷︷ ︸
1×1

e⊤j2︸︷︷︸
1×d

=

n∑
i2=1

X⊤︸︷︷︸
d×n

f(X)i2,∗︸ ︷︷ ︸
n×1

Gi(i2, ∗)⊤︸ ︷︷ ︸
1×d

= X⊤︸︷︷︸
d×n

f(X)︸ ︷︷ ︸
n×n

Gi︸︷︷︸
n×d

where the 1st step is from Eq. (23) and Eq. (24), the 2nd step comes from basic algebra, the 3rd step
is because of basic linear algebra, the 4th step is due to basic linear algebra.

G.3 FAST COMPUTATION

Finally, we can introduce our almost linear time algorithm for computing the L(X) gradient on WV .

Lemma G.4 (Fast computation for dL(X)
d(WV)i

, formal version of Lemma 4.1). If we have the below
conditions,

• Let L(X) be defined as Definition 2.1.

• Let m denote the number of self-attention transformer layers (see Definition 1.3).

• For any i ∈ [m], let WVi ∈ Rd×d denote the attention weight in the i-th transformer layer.

We can show that dL(X)
dWVi

can be approximated in n1+o(1) time, with 1/poly(n) approximation error.

Namely, our algorithm can output g̃v in n1+o(1) time, which satisfies

∥g̃v −
dL(X)

dWVi

∥∞ ≤ 1/ poly(n)

Proof. Recall in Lemma C.13, U1V
⊤
1 is the low rank approximation of f(X).

Let f̃(X) := U1V
⊤
1 denote the low rank approximation of f(X).

Recall in Lemma G.3, we have

dL(X)

dWVi︸ ︷︷ ︸
d×d

= X⊤︸︷︷︸
d×n

f(X)︸ ︷︷ ︸
n×n

Gi︸︷︷︸
n×d

Proof of running time.

We compute X⊤f̃(X)Gi in following order

• Compute X⊤︸︷︷︸
d×n

· U1︸︷︷︸
n×k1

, which takes n1+o(1) time.

• Compute X⊤ · U1︸ ︷︷ ︸
d×k1

· V ⊤
1︸︷︷︸

k1×n

, which takes n1+o(1) time.

• Compute X⊤ · U1 · V ⊤
1︸ ︷︷ ︸

d×n

· Gi︸︷︷︸
n×d

, which takes d2 · n time.

57

3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131

Under review as a conference paper at ICLR 2026

The overall running time is n1+o(1).

Proof of error bound.

We have
∥X⊤ · f(X) ·Gi −X⊤ · f̃(X) ·Gi∥∞ = ∥X⊤ · (f(X)− f̃(X)) ·Gi∥∞

≤ n2∥X∥∞∥f(X)− f̃(X)∥∞∥Gi∥∞
≤ n2(ϵ/ poly(n))∥X∥∞∥Gi∥∞
≤ ϵ/ poly(n)

where the 1st step is from basic algebra, the 2nd step comes from basic linear algebra, the 3rd
step is because of ∥f(X) − f̃(X)∥∞ ≤ ϵ/ poly(n), the 4th step is due to ∥X∥∞ ≤ poly(n) and
∥Gi∥∞ ≤ poly(n).

Let g̃v = X⊤ · f̃(X) ·Gi.

We choose ϵ = 1/ poly(n). Then, we have

∥g̃v −
dL(X)

dWVi

∥∞ ≤ 1/ poly(n)

H GRADIENT APPROXIMATION FOR ENTIRE MODEL

In Section H.1, we introduce the close form of Gi and argue that Gi can be computed in almost linear
time n1+o(1). In Section H.2, we provide the almost linear time algorithm for gradient computing
on a single-layer transformer. In Section H.3, with the help of math induction, we introduce the
almost linear time algorithm for computing the gradient of the multi-layer transformer, along with
its approximation error.

H.1 COMPUTATION TIME FOR Gi

Here we consider gi in Definition 1.3 as a linear layer with an arbitrary non-linear activation ϕ. Since
gi can be viewed as a composition of an MLP and an activation function, we begin with analyzing
the Ti gradient on Attni.
Lemma H.1 (Gradient of Ti on Attni). If we have the below conditions,

• Let Ti(X) be defined as Definition 2.3.

• Assuming for any Z ∈ Rn×d, we have gi(Z) ∈ Rn×d, and gi(Z) = ϕ(ZWg), where
Wg ∈ Rd×d and ϕ : R → R denotes any element-wise activation function. Let ϕ′ denote
the derivative of ϕ.

• We simplify the notation, using Ti and Attni to represent Ti(X) and Attni(Ti−1(X)),
respectively.

• For any matrix Z ∈ Rn×d, we use Z(i, j) to denote the (i, j)-th entry of Z.

Then, we can show that, for any i4, i5 ∈ [n], j4, j5 ∈ [d],

• Part 1.

dTi(i4, j4)

dAttni(i5, j5)
=


ϕ′(Attni(i4, ∗)⊤Wg(∗, j4))︸ ︷︷ ︸

1×1

Wg(j5, j4)︸ ︷︷ ︸
1×1

i4 = i5

0 i4 ̸= i5

• Part 2.
dTi(i4, j4)

dAttni︸ ︷︷ ︸
n×d

= ϕ′(Attni(i4, ∗)⊤Wg(∗, j4))︸ ︷︷ ︸
1×1

ei4︸︷︷︸
n×1

Wg(∗, j4)⊤︸ ︷︷ ︸
1×d

58

3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185

Under review as a conference paper at ICLR 2026

Proof. Proof of Part 1.

By the definition of Ti (Definition 2.3), for i4 ∈ [d], j4 ∈ [n], we have

Ti(i4, j4) = ϕ(Attni(i4, ∗)⊤Wg(∗, j4))

Therefore, for any i5 ̸= i4, we have

dTi(i4, j4)

dAttni(i5, j5)
= 0

Then, we consider i4 = i5 case.

By basic calculus, we have

dTi(i4, j4)

dAttni(i4, j5)
= ϕ′(Attni(i4, ∗)⊤Wg(∗, j4))︸ ︷︷ ︸

1×1

Wg(j5, j4)︸ ︷︷ ︸
1×1

Combining two equations mentioned above, we have the result for Part 1.

Proof of Part 2.

By result of Part 1, for i5 = i4, we have

dTi(i4, j4)

dAttni(i4, j5)
= ϕ′(Attni(i4, ∗)⊤Wg(∗, j4))︸ ︷︷ ︸

1×1

Wg(j5, j4)︸ ︷︷ ︸
1×1

which implies

dTi(i4, j4)

dAttni(i4, ∗)
= ϕ′(Attni(i4, ∗)⊤Wg(∗, j4))︸ ︷︷ ︸

1×1

Wg(∗, j4)︸ ︷︷ ︸
d×1

By result of Part 1, for i5 ̸= i4, we have

dTi(i4, j4)

dAttni(i5, ∗)
= 0

By basic linear algebra, combining the two equations mentioned above, we have

dTi(i4, j4)

dAttni
= ϕ′(Attni(i4, ∗)⊤Wg(∗, j4))︸ ︷︷ ︸

1×1

ei4︸︷︷︸
n×1

Wg(∗, j4)⊤︸ ︷︷ ︸
1×d

Then, we can argue that the computation for Gi can be done in almost linear time n1+o(1).
Lemma H.2 (Computation time for Gi, formal version of Lemma 4.4). If we have the below con-
ditions,

• Let Gi ∈ Rn×d denote the gradient matrix resulting from the application of the chain rule
up to the function gi, i.e., Gi =

dL(X)
dAttni(Ti−1(X)) .

• Assuming we already have dL(X)
dTi(X) .

• Assuming for any Z ∈ Rn×d, we have gi(Z) ∈ Rn×d, and gi(Z) = ϕ(ZWg), where
Wg ∈ Rd×d and ϕ : R → R denotes any element-wise activation function. Let ϕ′ denote
the derivative of ϕ.

• We simplify the notation, using Ti and Attni to represent Ti(X) and Attni(Ti−1(X)),
respectively.

59

3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239

Under review as a conference paper at ICLR 2026

• For any matrix Z ∈ Rn×d, we use Z(i, j) to denote the (i, j)-th entry of Z.

Then, we can show that Gi can be computed in n1+o(1) time.

Proof. Let gTi := dL(X)
dTi

, and for any i4 ∈ [n], j4 ∈ [d], let gTi(i4, j4) denote the (i4, j4)-th entry
of gTi

.

Similarly, for any i5 ∈ [n], j5 ∈ [d], let Ti(i5, j5) denote the (i5, j5)-th entry of Ti.

We can have

Gi =
dL(X)

dAttni

=
dL(X)

dTi
· dTi

dAttni

= gTi ·
dTi

dAttni

=

n∑
i4=1

d∑
j4=1

gTi
(i4, j4) ·

dTi(i4, j4)

dAttni

where the 1st step is from the definition of Gi, the 2nd step comes from chain rule, the 3rd step is
because of the definition of gTi , the 4th step is due to chain rule.

n∑
i4=1

d∑
j4=1

gTi
(i4, j4) ·

dTi(i4, j4)

dAttni

=

n∑
i4=1

d∑
j4=1

gTi(i4, j4)︸ ︷︷ ︸
1×1

ϕ′(Attni(i4, ∗)⊤Wg(∗, j4))︸ ︷︷ ︸
1×1

ei4︸︷︷︸
n×1

Wg(∗, j4)⊤︸ ︷︷ ︸
1×d

=

n∑
i4=1

ei4︸︷︷︸
n×1

d∑
j4=1

gTi
(i4, j4)︸ ︷︷ ︸
1×1

ϕ′(Attni(i4, ∗)⊤Wg(∗, j4))︸ ︷︷ ︸
1×1

Wg(∗, j4)⊤︸ ︷︷ ︸
1×d

=

n∑
i4=1

ei4︸︷︷︸
n×1

(Wg︸︷︷︸
d×d

(gTi
(i4, ∗)︸ ︷︷ ︸
d×1

⊙ϕ′(Attni(i4, ∗)⊤Wg)︸ ︷︷ ︸
d×1

))⊤

= (gTi
⊙ ϕ′(AttniWg))︸ ︷︷ ︸

n×d

W⊤
g︸︷︷︸

d×d

(25)

where the 1st step is from Lemma H.1, the 2nd step comes from basic algebra, the 3rd step is because
of basic linear algebra, the 4th step is due to basic linear algebra.

By Eq. (25), we have the close form of Gi.

We can compute Gi in the following order

• Compute (gTi
⊙ ϕ′(AttniWg))︸ ︷︷ ︸

n×d

, which takes n · d time.

• Compute (gTi
⊙ ϕ′(AttniWg))︸ ︷︷ ︸

n×d

W⊤
g︸︷︷︸

d×d

, which takes d2 · n time.

Therefore, the overall running time for Gi is n1+o(1).

60

3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293

Under review as a conference paper at ICLR 2026

H.2 FAST COMPUTATION FOR SINGLE-LAYER TRANSFORMER

In this section, we dive into the computation time and approximation error of the gradient of a
single-layer transformer. We demonstrate in the following Lemma that the gradient of a single-
layer transformer can be computed in almost linear time n1+o(1), and its error can be bounded by
1/ poly(n).

Lemma H.3 (Single-layer transformer gradient approximation). If we have the below conditions,

• Let L(X) be defined as Definition 2.1.

• Let X be defined as Definition C.3.

• Let the gradient matrix Gi ∈ Rn×d be defined as Gi =
dL(X)

dAttni(Ti−1(X)) .

• For i2 ∈ [n], j2 ∈ [d], let Gi(i2, j2) denote the (i2, j2)-th entry of Gi.

• Assuming for any Z ∈ Rn×d, we have gi(Z) ∈ Rn×d, and gi(Z) = ϕ(Z ·Wg), where
Wg ∈ Rd×d and ϕ : R → R denotes any element-wise activation function. Let ϕ′ denote
the derivative of ϕ.

• Suppose we have a single-layer transformer (see Definition 1.3).

Then, we can show that,

• Part 1: running time. Our algorithm can approximate dL(X)
dX in n1+o(1) time.

• Part 2: error bound. The approximation error of the single-layer transformer can be
bounded by 1/ poly(n). Namely, our algorithm output g̃1 satisfies

∥g̃1 −
dL(X)

dX
∥∞ ≤ 1/ poly(n)

Proof. By Definition 1.3, a single-layer transformer has following structure:

g1 ◦ Attn1 ◦ g0(X)

By the definition of Gi, we have

G1 =
dL(X)

dAttn1(T0(X))

=
dL(X)

dT1(X)
· dT1(X)

dAttn1(T0(X))
(26)

By Lemma H.2, we have G1 can be computed in n1+o(1) time.

Proof of Part 1: running time.

For less confusion, in this part of the proof, we ignore the approximation error temporarily.

Since we have got G1, we use methods mentioned in Lemma E.11, F.5, G.4 to compute
dL(X)
dT0(X) ,

dL(X)
dW1

, dL(X)
dWV1

, respectively, which takes n1+o(1) time for each.

Then, since we have dL(X)
dT0(X) , again by Lemma H.2, we have dL(X)

dX can be computed in n1+o(1)

time.

Therefore, the overall running time is n1+o(1).

Proof of Part 2: error bound.

Then, we move on to the error bound.

By Lemma H.2 and Eq. (26), there is no approximation error when computing G1.

61

3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347

Under review as a conference paper at ICLR 2026

By Lemma E.11, F.5, G.4, we have there is 1/ poly(n) approximation error on
dL(X)
dT0(X) ,

dL(X)
dW1

, dL(X)
dWV1

, respectively.

Let g̃t0 , g̃w1
, g̃v1 denote the approximation results of dL(X)

dT0(X) ,
dL(X)
dW1

, dL(X)
dWV1

, respectively.

We have

∥g̃t0 −
dL(X)

dT0(X)
∥∞ ≤ 1/ poly(n) (27)

and

∥g̃w1
− dL(X)

dW1
∥∞ ≤ 1/poly(n)

and

∥g̃v1 −
dL(X)

dWV1

∥∞ ≤ 1/ poly(n)

Let G̃0 = g̃t0 ·
dT0(X)

dX denote the approximated version of G0.

We have

∥G̃0 −G0∥∞

= ∥(g̃t0 −
dL(X)

dT0(X)
) · dT0(X)

dX
∥∞

≤ n · d∥g̃t0 −
dL(X)

dT0(X)
∥∞∥

dT0(X)

dX
∥∞

≤ n · d(1/ poly(n))∥dT0(X)

dX
∥∞

≤ 1/ poly(n)

where the 1st step is from the definition of G̃0, the 2nd step comes from basic linear algebra, the 3rd
step is because of Eq. (27), the 4th step is due to each entry can be written by O(log n) bits.

Let g̃1 = G̃0.

Therefore, we have

∥g̃1 −
dL(X)

dX
∥∞ ≤ 1/ poly(n)

H.3 FAST COMPUTATION FOR MULTI-LAYER TRANSFORMER

Since we have already demonstrated that almost linear time gradient computation can be applied to
a single-layer transformer, with the help of math induction, we can easily generalize that result to
the multi-layer transformer. In the following Lemma, we display that the gradient of the multi-layer
transformer can be computed in almost linear time, and its approximation error can be bounded by
1/ poly(n).
Lemma H.4 (Multi-layer transformer gradient approximation, formal version of Lemma 4.5). If we
have the below conditions,

• Let L(X) be defined as Definition 2.1.

• Let X be defined as Definition C.3.

• Let Gi ∈ Rn×d denote the gradient matrix resulting from the application of the chain rule
up to the function gi, i.e., Gi =

dL(X)
dAttni(Ti−1(X)) .

62

3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401

Under review as a conference paper at ICLR 2026

• For i2 ∈ [n], j2 ∈ [d], let Gi(i2, j2) denote the (i2, j2)-th entry of Gi.

• Let gradient components for each layer be computed according to Lemma E.11, F.5, G.4.

• Assuming for any Z ∈ Rn×d, we have gi(Z) ∈ Rn×d, and gi(Z) = ϕ(Z ·Wg), where
Wg ∈ Rd×d and ϕ : R → R denotes any element-wise activation function. Let ϕ′ denote
the derivative of ϕ.

• Suppose we have a m-layer transformer (see Definition 1.3).

Then, we can show that,

• Part 1: running time. Our algorithm can approximate dL(X)
dX in n1+o(1) time.

• Part 2: error bound. The approximation error of the multi-layer transformer can be
bounded by 1/ poly(n). Namely, our algorithm output g̃ satisfies

∥g̃ − dL(X)

dX
∥∞ ≤ 1/ poly(n)

Proof. We use math induction to prove this Lemma.

Step 1: Proof of a single-layer transformer.

Firstly, by Lemma H.3, we have that for one-layer transformer, our conclusion is established.

Step 2: Assumption for k-layer transformer.

Secondly, we assume for any k, for k-layer transformer model, we have

• Our algorithm can approximate dL(X)
dX in n1+o(1) time.

• The approximation error of the k-layer transformer can be bounded by 1/ poly(n). Namely,
our algorithm output g̃ satisfies

∥g̃ − dL(X)

dX
∥∞ ≤ 1/ poly(n)

Step 3: Proof of (k + 1)-layer transformer.

Thirdly, we consider the (k + 1)-layer transformer model.

Without loss of generality, we assume that the additional transformer layer is added at the beginning
of the model.

Namely, let Fk denote a k-layer transformer model. We have

Fk(X) = gk ◦ Attnk ◦ · · · ◦ g1 ◦ Attn1 ◦ g0(X)

Let the (k + 1)-layer transformer model have the following structure:

Fk+1(X) = Fk ◦ Attn ◦ g(X) (28)

Let T0 := g(X).

By assumption, we have

• dL(X)
dAttn(T0)

can be approximated in n1+o(1) time.

• Let g̃k denote the approximated version of dL(X)
dAttn(T0)

. We have

∥g̃k −
dL(X)

dAttn(T0)
∥∞ ≤ 1/ poly(n) (29)

63

3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455

Under review as a conference paper at ICLR 2026

Step 3.1: Proof of the running time for (k + 1)-layer transformer

For less confusion, in this part of the proof, we ignore the approximation error temporarily.

By the assumption, we have dL(X)
dAttn(T0)

can be approximated in n1+o(1) time.

We compute dL(X)
dX in following order:

• Since we already have dL(X)
dAttn(T0)

, by Lemma E.11, the computation time for dL(X)
dT0

is

n1+o(1).

• Since we have dL(X)
dT0

, by Lemma H.2, the computation time for dL(X)
dX is n1+o(1).

Therefore, for (k + 1)-layer transformer, the overall running time for dL(X)
dX is n1+o(1).

Step 3.2: Proof of the error bound for (k + 1)-layer transformer

By Lemma E.11, during the process of solving the approximated version of dL(X)
dg(X) , the approxima-

tion error will not be magnified by more than poly(n).

Let g̃t0 denote the approximated version of dL(X)
dg(X) , we have

∥g̃t0 −
dL(X)

dg(X)
∥∞ ≤ poly(n)∥g̃k −

dL(X)

dT (X)
∥∞

≤ 1/ poly(n) (30)

where the 1st step is from the above statement, the 2nd step comes from Eq. (29), the 3rd step is
because of basic algebra.

Then, we consider

dL(X)

dX
=

dL(X)

dg(X)
· dg(X)

dX
(31)

Recall that we have g̃ = dL(X)
dX . Then, we have

∥g̃ − dL(X)

dX
∥∞ = ∥(g̃t0 −

dL(X)

dg(X)
) · dg(X)

dX
∥∞

≤ n · d∥g̃t0 −
dL(X)

dg(X)
∥∞∥

dg(X)

dX
∥∞

≤ n · d(1/poly(n))∥dg(X)

dX
∥∞

≤ 1/ poly(n)

where the 1st step is from Eq. (31), the 2nd step comes from basic linear algebra, the 3rd step is
because of Eq. (30), the 4th step is due to each entry can be written by O(log n) bits.

Step 4: Use math induction.

So far, with the assumption that our statement holds under k-layer transformer, we have proved that
our statement still holds under (k + 1)-layer transformer.

Therefore, by math induction, our statement holds for any m-layer transformer.

I CAUSAL ATTENTION MASK

This section will discuss how to combine the causal attention mask with our framework. We argue
that even with the causal attention mask, we can also achieve almost linear time gradient computing
for the multi-layer transformer.

64

3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509

Under review as a conference paper at ICLR 2026

In Section I.1, we introduce essential tools from literature to deal with the causal mask added on the
attention matrix. In Section I.2, we show that with the addition of causal mask, our framework can
still achieve almost linear time gradient computation.

I.1 TOOLS FROM PREVIOUS WORK

Firstly, we restate a classical low-rank approximation method in the literature.
Lemma I.1 (Low-rank approximation, (Alman & Song, 2023)). Suppose Q,K ∈ Rn×d, with
∥Q∥∞ ≤ R, and ∥K∥∞ ≤ R. Let A := exp(QK⊤/d) ∈ Rn×n. For accuracy parameter
ϵ ∈ (0, 1), there is a positive integer g bounded above by

g = O
(
max

{ log(1/ϵ)

log(log(1/ϵ)/R)
, R2

})
,

and a positive integer r bounded above by

r ≤
(
2(g + d)

2g

)
such that: There is a matrix Ã ∈ Rn×n that is an (ϵ, r)-approximation of A ∈ Rn×n. Furthermore,
the matrices U0 and V0 defining Ã can be computed in O(n · r) time.

Then, we provide the formal definition for the causal attention mask.
Definition I.2 (Causal attention mask, (Liang et al., 2024a)). We define the causal attention mask
as M ∈ {0, 1}n×n, where Mi,j = 1 if i ≥ j and Mi,j = 0 otherwise.

Algorithm 2 Causal attention mask algorithm, Algorithm 4 in (Liang et al., 2024a)

1: procedure CAUSALMASK(U0 ∈ Rn×k, V0 ∈ Rn×k, v ∈ Rn) ▷ Lemma I.3
2: c0 ← 0k

3: for j = 1→ n do
4: bj ← (V ⊤

0)j︸ ︷︷ ︸
k×1

vj︸︷︷︸
scalar

▷ Let (V ⊤
0)j denote the j-th row of V0 ∈ Rn×k

5: cj ← cj−1︸︷︷︸
k×1

+ bj︸︷︷︸
k×1

6: end for
7: for j = 1→ n do
8: Yj ← ⟨(U⊤

0)j︸ ︷︷ ︸
k×1

, cj︸︷︷︸
k×1

⟩

9: end for
10: return Y ▷ Y ∈ Rn

11: end procedure

In previous work (Liang et al., 2024a), they point out there exists an algorithm (Algorithm 2) that
can calculate low-rank matrices (with the causal attention mask) multiplication with any vector v in
almost linear time. We restate their results in Lemma I.3.
Lemma I.3 (Fast computation for causal attention mask on tensor, (Liang et al., 2024a)). Let M ∈
{0, 1}n×n be a causal attention mask defined in Definition I.2. Let U0, V0 ∈ Rn×k. Let v ∈ Rn.
Then, there exists an algorithm (see Algorithm 2) whose output satisfies that

Y = (M ⊙ (U0V
⊤
0))v,

which takes O(nk) time.

We extend their results to the multiplication of matrix with no(1) columns.
Lemma I.4 (Fast computation for causal attention mask on matrix). If we have the below conditions,

• Let M ∈ {0, 1}n×n be a causal attention mask defined in Definition I.2.

65

3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563

Under review as a conference paper at ICLR 2026

• Let U0, V0 ∈ Rn×k where k = no(1).

• Let H ∈ Rn×kH where kH = no(1).

Then, there exists an algorithm, whose output satisfies that

Z = (M ⊙ (U0V
⊤
0))H,

which takes n1+o(1) time.

Proof. For j ∈ [kH], let H∗,j ∈ Rn denote the j-th column of H .

By Lemma I.3, we can compute (M ⊙ (U0V
⊤
0))H∗,j in O(nk) time.

There are kH columns in total. Therefore, the overall running time is O(nkkH) = O(n · no(1) ·
no(1)) = n1+o(1).

I.2 FAST COMPUTATION WITH CAUSAL MASK

We can easily change all low-rank matrices multiplication to the algorithm mentioned in Lemma I.4.
Then, our framework can support the causal attention mask and still achieves almost linear time
gradient computing for the multi-layer transformer.

The causal mask directly affects the attention matrix, so it’s necessary to define the attention matrix
with the causal mask applied.

Definition I.5. Let M ∈ {0, 1}n×n be a causal attention mask defined in Definition I.2. We define
attention matrix with causal mask as:

f̂(X) := D−1(M ⊙A)

where A := exp(XWX⊤/d) and D := diag((M ⊙A) · 1n).

After analyzing the components of gradients on Ti(X),Wi,WVi in Section E, F and G, we cate-
gorize them into two groups: one involving the dot product and the other involving the Hadamard
product of the attention matrix. Then, we can show f̂(X)H and (f̂(X) ⊙ (UV ⊤))H for low rank
matrices U, V,H can be approximated in almost linear time.

Lemma I.6. If we have the below conditions,

• Let f̂(X) be defined in Definition I.5.

• Let U, V ∈ Rn×k where k = no(1).

• Let H ∈ Rn×kH where kH = no(1).

Then, approximating the following takes n1+o(1) time:

• Part 1. f̂(X)H

• Part 2. (f̂(X)⊙ (UV ⊤))H

Proof. From Definition I.5, we know

f̂(X) := D−1(M ⊙A)

where D := diag((M ⊙A) · 1n).

By Lemma I.1, U0V
⊤
0 is a good approximation for A. Then, we can approximate f̂(X) by:

D−1(M ⊙ (U0V
⊤
0))

where D := diag((M ⊙ (U0V
⊤
0)) · 1n).

66

3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617

Under review as a conference paper at ICLR 2026

Using Lemma I.3, we know (M ⊙ (U0V
⊤
0)) · v for any vector v ∈ Rn can be computed in almost

linear time.

We begin by examining the normalization matrix D−1. Calling Lemma I.3, we compute (M ⊙
(U0V

⊤
0)) ·1n in almost linear time. Then, it takes O(n) time to make (M ⊙ (U0V

⊤
0)) ·1n diagonal.

Given that D is diagonal, its inverse D−1 can be determined in O(n) time. Thus, we can compute
D−1 in almost linear time.

Proof of Part 1. H can be viewed as a combination of kH vectors, each of size n. Calling
Lemma I.4, we can compute (M ⊙ (U0V

⊤
0))H in n1+o(1) time.

Finally, we compute D−1︸︷︷︸
n×n

(M ⊙ (U0V
⊤
0))H︸ ︷︷ ︸

n×kH

, which takes n1+o(1) time since D−1 is diagonal. The

overall gradient computation remains n1+o(1) time.

Proof of Part 2. The proof for this part involves Fact C.2. We can show

((D−1(M ⊙ (U0V
⊤
0)))⊙ (UV ⊤))H = ((M ⊙ (D−1U0V

⊤
0))⊙ (UV ⊤))H

= (M ⊙ ((D−1U0V
⊤
0)⊙ (UV ⊤)))H

= (M ⊙ ((D−1U0)⊘ U)(V0 ⊘ V)⊤)H

where the 1st step is from D(A⊙B) = (DA)⊙B = A⊙ (DB) for diagonal matrix D ∈ Rm×m

and A,B ∈ Rm×n, the 2nd step comes from (A⊙ B)⊙ C = A⊙ (B ⊙ C) for A,B,C ∈ Rm×n,
and the last step follows from Fact C.2.

Let UM := (D−1U0)⊘ U and VM := V0 ⊘ V .

For UM , we compute D−1︸︷︷︸
n×n

U0︸︷︷︸
n×k

which takes nk time. We then compute (D−1U0)︸ ︷︷ ︸
n×k

⊘ U︸︷︷︸
n×k

which

takes O(nk2) time.

For VM , we compute V0︸︷︷︸
n×k

⊘ V︸︷︷︸
n×k

which takes O(nk2) time.

We now have (M ⊙ (UMV ⊤
M)H . Calling Lemma I.4, we finish the proof.

We now prove for gradient components that have dot product.
Lemma I.7 (Components for dot product). If we have the below conditions,

• Let f̂(X) be defined in Definition I.5.

• Let Gi ∈ Rn×d denote the gradient matrix resulting from the application of the chain rule
up to the function gi, i.e., Gi =

dL(X)
dAttni(Ti−1(X)) .

• Let D6 = −f(X) diag(K)XW⊤ be defined in Lemma D.17.

• Let D2 = −diag(K)f(X)XW be defined in Lemma D.17.

• Let D8 = f(X)GiW
⊤
V be defined in Lemma D.17.

• Let gv := X⊤f(X)Gi be the gradient on WVi
and defined in Lemma G.3.

Then, we can show the following can be approximated in almost linear time:

• Part 1. D̂6 = −f̂(X) diag(K)XW⊤

• Part 2. D̂2 = −diag(K)f̂(X)XW

• Part 3. D̂8 = f̂(X)GiW
⊤
V

• Part 4. ĝv := X⊤f̂(X)Gi

67

3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671

Under review as a conference paper at ICLR 2026

Proof. Proof of Part 1. For D̂6, we compute diag(K)︸ ︷︷ ︸
n×n

X︸︷︷︸
n×d

first, which takes nd time.

Then, we compute f̂(X)︸ ︷︷ ︸
n×n

diag(K)X︸ ︷︷ ︸
n×d

using Part 1. of Lemma I.6, which takes n1+o(1) time.

Finally, we compute f̂(X) diag(K)X︸ ︷︷ ︸
n×d

W⊤︸︷︷︸
d×d

, which takes n1+o(1) time.

Proof of Part 2. For D̂2, we compute f̂(X)︸ ︷︷ ︸
n×n

X︸︷︷︸
n×d

using Part 1. of Lemma I.6, which takes n1+o(1)

time.

Then, we compute diag(K)︸ ︷︷ ︸
n×n

f̂(X)X︸ ︷︷ ︸
n×d

, which takes nd time.

After that, we compute diag(K)f̂(X)X︸ ︷︷ ︸
n×d

W︸︷︷︸
d×d

, which takes n1+o(1) time.

Proof of Part 3. For D̂8, we compute in the following steps:

We compute f̂(X)︸ ︷︷ ︸
n×n

Gi︸︷︷︸
n×d

using Part 1. of Lemma I.6, which takes n1+o(1) time.

Then, we compute f̂(X)Gi︸ ︷︷ ︸
n×d

W⊤
V︸︷︷︸

d×d

, which takes n · d2 time.

Proof of Part 4. For ĝv , we compute in the following steps:

We compute f̂(X)︸ ︷︷ ︸
n×n

Gi︸︷︷︸
n×d

using Part 1. of Lemma I.6, which takes n1+o(1) time.

Then, we compute X⊤︸︷︷︸
d×n

f̂(X)Gi︸ ︷︷ ︸
n×d

, which takes n · d2 time.

We then prove for gradient components that have Hadamard product.
Lemma I.8 (Components for Hadamard product). If we have the below conditions,

• Let f̂(X) be defined in Definition I.5.

• Let Gi ∈ Rn×d denote the gradient matrix resulting from the application of the chain rule
up to the function gi, i.e., Gi =

dL(X)
dAttni(Ti−1(X)) .

• Let D7 = (f(X)⊙ (h(X)G⊤
i))XW⊤ be defined in Lemma D.17.

• Let D4 = (f(X)⊙ (Gih(X)⊤))XW be defined in Lemma D.17.

• Let gw := X⊤p(X)X = X⊤(p1(X) − p2(X))X be the gradient on Wi and defined in
Definition C.12 and Lemma F.5 where p1(X) = f(X)⊙ q(X) and p2(X) = diag(p1(X) ·
1n)f(X).

Then, we can show the following can be approximated in almost linear time:

• Part 1. D̂7 = (f̂(X)⊙ (h(X)G⊤
i))XW⊤

• Part 2. D̂4 = (f̂(X)⊙ (Gih(X)⊤))XW

• Part 3. ĝw := X⊤(p̂1(X) − p̂2(X))X where p̂1(X) = f̂(X) ⊙ q(X) and p2(X) =

diag(p̂1(X) · 1n)f̂(X).

68

3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725

Under review as a conference paper at ICLR 2026

Proof. Proof of Part 1. For D̂7, we can compute (f̂(X)⊙ (h(X)G⊤
i))︸ ︷︷ ︸

n×n

X︸︷︷︸
n×d

using Part 2. of

Lemma I.6, which takes n1+o(1) time.

We then compute (f̂(X)⊙ (h(X)G⊤
i))X︸ ︷︷ ︸

n×d

W⊤︸︷︷︸
d×d

, which takes nd2 time.

Proof of Part 2. For D̂7, we can compute (f̂(X)⊙ (Gih(X)⊤))︸ ︷︷ ︸
n×n

X︸︷︷︸
n×d

using Part 2. of Lemma I.6,

which takes n1+o(1) time.

We then compute (f̂(X)⊙ (Gih(X)⊤))X︸ ︷︷ ︸
n×d

W︸︷︷︸
d×d

, which takes nd2 time.

Proof of Part 3. For ĝw, we consider X⊤p̂1(X)X first. Based on Definition C.11, we have p̂1(X) =

f̂(X)⊙ q(X) = f̂(X)⊙ (Gih(X)⊤). We then compute (f̂(X)⊙ (Gih(X)⊤))X using Part 2. of
Lemma I.6, which takes n1+o(1) time. After that, we compute X⊤︸︷︷︸

d×n

(f̂(X)⊙ (Gih(X)⊤))X︸ ︷︷ ︸
n×d

, which

takes nd2 time.

Now we consider X⊤p̂2(X)X . By definition, p̂2(X) = diag(p̂1(X) · 1n)f̂(X). We first com-
pute p̂1(X) · 1n = (f̂(X) ⊙ (Gih(X)⊤)) · 1n using Part 2. of Lemma I.6, which takes
n1+o(1) time. Meanwhile, we compute f̂(X)X using Part 1. of Lemma I.6, which takes
n1+o(1) time. We then have diag(p̂1(X) · 1n)︸ ︷︷ ︸

n×n

f̂(X)X︸ ︷︷ ︸
n×d

, which takes nd time. Finally, we compute

X⊤︸︷︷︸
d×n

diag(p̂1(X) · 1n)f̂(X)X︸ ︷︷ ︸
n×d

, which takes nd2 time.

Together, X⊤p̂1(X)X︸ ︷︷ ︸
d×d

−X⊤p̂2(X)X︸ ︷︷ ︸
d×d

takes d2 time.

Thus, we show that our framework can support causal attention masks.

J RESIDUAL CONNECTION

In this section, we discuss how to adapt our framework to the attention mechanism with the residual
connection.

In Section J.1, we provide a formalized definition of the two residual connections used in the at-
tention mechanism. In Section J.2, we argue that with the addition of the residual connection, the
gradient over the attention mechanism can be computed in almost linear time n1+o(1) and the ap-
proximation error can be bound by 1/ poly(n). In Section J.3, we use math induction to show that
the gradient over the entire transformer with the residual connection can also be computed in almost
linear time n1+o(1).

J.1 KEY CONCEPTS

Recall that in Definition 2.3, we have defined Ti(X) ∈ Rn×d as the intermediate variable output
by the i-th transformer layer. For simplicity, we use Ti to represent Ti(X) in the rest part of this
section. Namely, we have

Ti = (gi ◦ Attni)(Ti−1)

Then, we consider adding the residual connection to our framework. Note that there are two residual
connection operations in one transformer layer. We first define the residual connection over the Attni
in Definition J.1.

69

3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779

Under review as a conference paper at ICLR 2026

Definition J.1 (Residual connection over Attni). If we have the below conditions,

• Let Ti be defined as Definition 2.3.

• Let Attni be defined as Definition C.3.

We define Zi ∈ Rn×d as the output with the residual connection of Attni. Namely, we have

Zi = Ti−1 + Attni(Ti−1)

Then, we consider the second residual connection over the MLP layer gi, where we have the formal
definition for this in Definition J.2.

Definition J.2 (Residual connection over gi). If we have the below conditions,

• Let the multi-layer transformer be defined as Definition 1.3.

• Let the intermediate variable Ti be defined as Definition 2.3.

• Let gi denote the components other than self-attention in the i-th transformer layer.

• Let Zi ∈ Rn×d be defined as Definition J.1.

Then Ti, the output of i-th layer transformer with the residual connection, should have the following
form:

Ti = Zi + gi(Zi)

J.2 ANALYSIS OF THE RESIDUAL CONNECTION

In the previous section, we have defined the two residual connection operations.

In this section, we argue that if the gradient computation can be done in almost linear time without
the residual connection, then with the addition of the residual connection, the gradient computation
can also be completed in almost linear time.

Lemma J.3 (Analysis of the residual connection). If we have the below conditions,

• Let L(X) be defined as Definition 2.1.

• Let YR ∈ Rn×d and XR ∈ Rn×d denote the output and input of the residual connection,
respectively.

• Let H : Rn×d → Rn×d denote some layer in the transformer, such as MLP, Attn, etc.

• Suppose the residual connection can be written as

YR = XR + H(XR).

• Assuming we have dL(X)
dYR

∈ Rn×d, then we can calculate dL(X)
dYR

dH(XR)
dXR

in almost linear
time n1+o(1).

Then, we can show that,

• dL(X)
dXR

can be calculated in almost linear time n1+o(1).

• If dL(X)
dYR

has 1/ poly(n) approximation error, then the approximation error on dL(X)
dXR

is
still 1/ poly(n).

Proof. By the chain rule, we have

dL(X)

dXR
=

dL(X)

dYR

dYR

dXR

70

3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833

Under review as a conference paper at ICLR 2026

=
dL(X)

dYR
(I +

dH(XR)

dXR
)

=
dL(X)

dYR
+

dL(X)

dYR

dH(XR)

dXR
(32)

where the 1st step is from the chain rule, the 2nd step comes from basic calculus, the 3rd step is
because of basic algebra.

By the assumption, we already have dL(X)
dYR

, and dL(X)
dYR

dH(XR)
dXR

can be computed in almost linear
time n1+o(1).

The addition operation between dL(X)
dYR

and dL(X)
dYR

dH(XR)
dXR

takes n · d time.

Therefore, the overall running time for dL(X)
dXR

is n1+o(1).

Then, we consider the approximation error.

By Eq. (32) and basic linear algebra, the approximation error will not be magnified by more than
(n · dpoly(n) + 1). Since (n · dpoly(n) + 1)(1/ poly(n)) = poly(n), the approximation error on
dL(X)
dXR

can be bounded by 1/ poly(n).

J.3 ANALYSIS FOR THE ENTIRE MODEL WITH THE RESIDUAL CONNECTION

In the previous section, we have shown that, with the addition of the residual connection on a single
component, the gradient computation time can still be done in almost linear time. We will apply this
finding to the entire model.

We begin by single layer proof.
Lemma J.4 (Fast gradient computation for single-layer transformer with residual connection). If
we have the below conditions,

• Let L(X) be defined as Definition 2.1.

• Let X ∈ Rn×d be defined as Definition C.3.

• Suppose we have a single-layer transformer (see Definition 1.3).

• Let the residual connection be defined as Definition J.1 and J.2.

Then, we can show that,

• Part 1: running time. Our algorithm can approximate dL(X)
dX in n1+o(1) time.

• Part 2: error bound. The approximation error of the single-layer transformer with the
residual connection can be bounded by 1/poly(n). Namely, our algorithm output g̃r1
satisfies

∥g̃r1 −
dL(X)

dX
∥∞ ≤ 1/ poly(n)

Proof. We use Ti to represent Ti(X) for simplicity. By the definition of Ti (see also Definition 2.3),
we have the following equations

T0 = g0(X)

Follow Definition J.1 and J.2, we have
Z1 = T0 + Attn1(T0)

and
T1 = Z1 + g1(Z1)

Then we calculate the gradient by the following steps:

71

3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887

Under review as a conference paper at ICLR 2026

• Step 1: Calculate dL(X)
dT1

. By the definition of L(X) (see also Definition 2.1), we have
dL(X)
dT1

can be computed in n · d time.

• Step 2: Calculate dL(X)
dZ1

. By Lemma H.2, the assumption in Lemma J.3 is satisfied.

Therefore, we have dL(X)
dZ1

can be computed in almost linear time n1+o(1).

• Step 3: Calculate dL(X)
dT0

. By Lemma E.11, the assumption in Lemma J.3 is satisfied.

Hence, dL(X)
dT0

can be computed in almost linear time. By Lemma E.11, the approximation
error is 1/ poly(n).

• Step 4: Calculate dL(X)
dX . By Lemma H.2, dL(X)

dX can be computed in n1+o(1). The
approximation error is (n · d)(1/ poly(n)) = (1/poly(n)).

To sum up, we can show that the overall running time for dL(X)
dX is n1+o(1) and the approximation

error is 1/ poly(n).

Let g̃r1 be the output of Step 4. Then we are done.

We now prove for multi-layer.

Lemma J.5 (Fast gradient computation for multi-layer transformer with residual connection). If we
have the below conditions,

• Let L(X) be defined as Definition 2.1.

• Let X ∈ Rn×d be defined as Definition C.3.

• Let the residual connection be defined as Definition J.1 and J.2.

• Suppose we have a m-layer transformer (see Definition 1.3).

Then, we can show that,

• Part 1: running time. Our algorithm can approximate dL(X)
dX in n1+o(1) time.

• Part 2: error bound. The approximation error of the m-layer transformer with the resid-
ual connection can be bounded by 1/ poly(n). Namely, our algorithm output g̃r satisfies

∥g̃r −
dL(X)

dX
∥∞ ≤ 1/ poly(n)

Proof. We use math induction in this proof.

Step 1: Proof of a single-layer transformer.

Firstly, by Lemma J.4, we have the statement holds for a single-layer transformer.

Step 2: Assumption for k-layer transformer.

Secondly, we assume for any k, for k-layer transformer model, we have

• Part 1: running time. Our algorithm can approximate dL(X)
dX in O(n1+o(1)) time.

• Part 2: error bound. The approximation error of the k-layer transformer can be bounded
by 1/ poly(n). Namely, our algorithm output g̃ satisfies

∥g̃ − dL(X)

dX
∥∞ ≤ 1/ poly(n)

72

3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941

Under review as a conference paper at ICLR 2026

Step 3: Proof of (k + 1)-layer transformer.

Thirdly, we consider the (k + 1)-layer transformer model.

Let Fk denote a k-layer transformer with the residual connection.

Then, the entire model can be written as

(Fk ◦ g0)(X)

By the definition of Ti, we have

T0 = g0(X)

Then, by definition of Zi (see also Definition J.1), we have

Z1 = T0 + Attn1(T0)

By Definition J.2, we have

T1 = Z1 + g1(Z1)

Without loss of generality, we assume that the additional transformer layer is added at the beginning
of the model. Then, the (k + 1)-layer transformer model has the following structure:

Fk+1(X) = Fk(T1)

By the assumption for k-layer transformer, we have dL(X)
dT1

can be computed in almost linear time
n1+o(1) and the approximation error can be bounded by 1/ poly(n).

We apply similar proof of Lemma J.4, then we can show that, we can compute dL(X)
dX in almost

linear time n1+o(1) and the approximation error can be bounded by 1/poly(n).

K MULTI-HEAD ATTENTION

Following the notation used in Section B.1, we use h to denote the number of heads, and dh = d/h
to denote the dimension of each head.
Definition K.1 (Multi-head attention). If we have the below conditions,

• Let h denote the number of heads.

• Let d denote the hidden dimension. Let dh = d/h denote the dimension of each attention
head.

• Let Q,K, V ∈ Rn×d be defined as Definition C.3.

• Let f(X) be defined as Definition C.8.

• Let s(X) be defined as Definition C.10.

The multi-head attention can be formalized as follows:

• Step 1. Split the hidden dimension d of Q,K, V ∈ Rn×d into h parts. Then, for each
l ∈ [h], we have Ql,Kl, Vl ∈ Rn×dh .

• Step 2. For each l ∈ [h], calculate the attention matrix fl := Softmax(QlK
⊤
l /dh) ∈

Rn×n, and calculate the corresponding attention result sl := flVl ∈ Rn×dh .

• Step 3. Concatenate sl ∈ Rn×dh together, then we have the final multi-head attention
output s ∈ Rn×d.

73

3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995

Under review as a conference paper at ICLR 2026

Then, we dive into the analysis of the gradient computation process over the attention mechanism
with multi-head attention.
Lemma K.2 (Analysis of the multi-head attention). If we have the below conditions,

• Let Attn(X) be defined as Definition C.3.

• Let multi-head attention mechanism be defined as Definition K.1.

• Let Ym, Xm ∈ Rn×d denote the output and input of the multi-head attention, respectively.

Then, we can show that,

• dL(X)
dXm

can be calculated in almost linear time n1+o(1).

• If dL(X)
dYm

has 1/ poly(n) approximation error, then the approximation error on dL(X)
dXm

is
still 1/ poly(n).

Proof. Following the notations used in Definition K.1, for l ∈ [h], we use sl ∈ Rn×dh to denote
the output by each attention head. And we use s ∈ Rn×d to denote the concatenated version of the
output of the multi-head attention.

By the chain rule and the definition of L(X) (see also Definition 2.1), we have
dL(X)

dXm
=

dL(X)

dYm
· dYm

ds

ds

dXm

=
dL(X)

dYm
· dYm

ds

h∑
l=1

dsl
dXm

where the 1st step is from the chain rule, the 2nd step comes from s ∈ Rn×d is the concatenated
version of sl ∈ Rn×dh .

We calculate the gradient in the following steps:

• Step 1: Calculate dL(X)
dYm

. By the definition of L(X) (Definition 2.1), we have that dL(X)
dYm

can be calculated in n · d time.

• Step 2: Calculate dL(X)
dYm

· dYm

ds . Since we already have dL(X)
dYm

, by Lemma H.2, we have
dL(X)
dYm

· dYm

ds can be computed in almost linear time n1+o(1).

• Step 3: Calculate dL(X)
dYm

· dYm

ds

∑h
l=1

dsl
dXm

. For each l ∈ [h], by Lemma E.11, dL(X)
dYm

·
dYm

ds ·
dsl
dXm

can be computed in n1+o(1). Since the number of heads h can be viewed as a
constant here, it takes n1+o(1) time to compute the gradients on h heads.

Therefore, the overall running time for dL(X)
dXm

is n1+o(1).

Then, we consider the error bound.

By assumption, there is 1/ poly(n) approximation error on dL(X)
dYm

. For each l ∈ [h], the approxima-

tion error will not be magnified by more than n2 · d · dh · poly(n) on dL(X)
dYm

· dYm

ds ·
dsl
dXm

.

Then, since there is total h heads, the approximation error on dL(X)
dXm

can be bound by

h · n2 · d · dh · poly(n) · (1/ poly(n)) = 1/ poly(n)

Similar to the proof of Lemma H.3 and H.4, we apply Lemma K.2 to deal with the multi-head
attention in each transformer layer. Then, we can show that dL(X)

dX can be computed in almost linear
time n1+o(1) and the approximation error can be bounded by 1/ poly(n).

74

3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049

Under review as a conference paper at ICLR 2026

LLM USAGE DISCLOSURE

LLMs were used only to polish language, such as grammar and wording. These models did not
contribute to idea creation or writing, and the authors take full responsibility for this paper’s content.

75

	Introduction
	Key Background
	Our Contributions

	Preliminary
	Loss Function
	Closed Forms of Gradient Components

	Main Results
	Fast Computing for Single Layer
	Fast Computing for Multi-Layer Transformers
	Beyond the Previous Work

	Technical Overview
	Low-Rank Approximation for Attention Matrix
	Accelerating Gradient Computation of Ti(X)
	Accelerating Gradient Computation of Wi and WVi
	Accelerating Gradient Computation for Multi-Layer Transformers

	Extensions
	Conclusion
	Related Work
	Discussion and Extension Details
	Multi-head attention
	Residual connection
	Causal attention mask
	System-level attention acceleration
	Prompt tuning

	Preliminary on Gradient Calculation
	Basic math facts
	Close form of three gradient components
	Basic notations for computing gradients
	Low rank representations
	Bounded entries of matrices

	Matrix View
	Gradient of
	Gradient on
	Matrix view of
	Matrix view of gradient on
	Matrix view of each term in gradient on
	Components of gradient on

	Fast Computation for Gradient on
	Fast computation for term
	Fast computation for term
	Fast computation for term
	Fast computation for term
	Fast computation for term
	Putting everything together

	Fast Computation for Gradient on
	Key concepts
	Gradient of on
	Gradient of on
	Fast computation

	Fast Computation for Gradient on
	Gradient of on
	Gradient of on
	Fast computation

	Gradient Approximation for Entire Model
	Computation time for
	Fast computation for single-layer transformer
	Fast computation for multi-layer transformer

	Causal Attention Mask
	Tools from previous work
	Fast computation with causal mask

	Residual Connection
	Key concepts
	Analysis of the residual connection
	Analysis for the entire model with the residual connection

	Multi-head Attention

