Under review as a conference paper at ICLR 2026

TRAINING MULTI-LAYER TRANSFORMERS IN AL-
MOST LINEAR TIME

Anonymous authors
Paper under double-blind review

ABSTRACT

The computational complexity of the self-attention mechanism in popular trans-
former architectures poses significant challenges for training and inference, and
becomes the bottleneck for long inputs. Is it possible to significantly reduce the
quadratic time complexity of computing the gradients in multi-layer transformer
models? This paper proves that a novel fast approximation method can calculate
the gradients in almost linear time n'*°(1) where 7 is the input sequence length,
while it maintains a polynomially small approximation error 1/poly(n) across
the entire model. Our theory holds for general loss functions and when the multi-
layer transformer model contains many practical sub-modules, such as residual
connection, causal mask, and multi-head attention. We further validate our ap-
proach through numerical experiments, demonstrating both its high approxima-
tion fidelity and substantial speedups in practice. By improving the efficiency of
gradient computation, we hope that this work will facilitate more effective training
and deployment of long-context language models based on our theoretical results.

1 INTRODUCTION

Large Language Models (LLMs), such as ChatGPT (Schulman et al., [2022)), GPT-4 (Achiam et al.,
2023)), Claude 3.5 (Anthropicl 2024)), Llama 3.1 (Llama Team) 2024)), DeepSeek R1 (Guo et al.,
2025) and others, have demonstrated immense potential to enhance various aspects of our daily lives,
e.g., conversation Al (Liu et al., 2024), AT agent (Xi et al.,2023;|Chen et al.|2024c), search AI (Ope-
nAlL|[2024), Al assistant (Mahmood et al.| 2023} Zhang et al.|[2023) and many so on. One of LLMs’
most emergent abilities is working with long-context information, a format crucial for recording
material such as academic papers, official reports, legal documents, and so on. LLMs have proven
adept at tackling long-context tasks, including Retrieval Augmented Generation (RAG) (Lewis et al.}
2020; (Gao et al., 2023d), zero-shot summarization (Liu et al.,[2023;[Zhang et al.,|2024c)), and main-
taining very long-term conversations (Xu et al.l 2021b; [2022), and so on. This proficiency has
necessitated the development of long-context modeling capabilities within LLMs.

The self-attention mechanism is crucial for the success of LLMs since LLMs are mainly based
on Transformer architecture, whose key module is attention. In attention computation, we will
compute the attention score between each pair of tokens, which is the complexity bottleneck during
long context training and inference. In detail, we need to spend O(n?d) running time for each
self-attention block, which is quadratic in n, where n is the length of the context input and d is the
hidden feature dimension of the model. For example, LLaMA 3.1 405B (Llama Team| 2024]), one
of the cutting-edge LLMs, supports n =128k and d = 4096, while taking 30.84M GPU training
hours, which underscores the need for more efficient training processes for such extensive context
models. Given the extensive context lengths of LLMs, this quadratic time complexity results in
critical challenges: (7) a marked decrease in training efficiency (He et al.,|2023};|Lv et al.,[2023)); and
(41) significant energy usage, which in turn contributes to higher carbon dioxide emissions (Samsi
et al.| 2023; Stojkovic et al., [2024).

One seminal work (Alman & Song|, |2023) showed that the self-attention inference can be approxi-
mated in almost linear time. However, this result is for the inference time (forward pass), but does
not address the main challenge, which is the expensive computation in the training time (backward
pass). In this work, we address this main challenge by proving that the gradient computation in the

Under review as a conference paper at ICLR 2026

back-propagation of self-attention can be approximated in almost linear time. This suggests we may
be able to save the substantial resources required for training LLMs.

1.1 KEY BACKGROUND

We first introduce some basic background, starting with defining the softmax function and the self-
attention module.

Definition 1.1 (Softmax). Let z € R™. We define Softmax : R™ — R" satisfying
Softmax(z) := exp(z)/(exp(z), 1n).
Here, we apply exp to a vector entry-wise.

Definition 1.2 (Self-attention module). Let X € R™*¢ denote the input sequence, where n is the
number of input tokens and d is the hidden dimension size. Let Wq, Wg , Wy € R*4 pe the query,
key and value weight matrix. The self-attention function Attn(X) with weights is:

Attn(X) = Softmax(XWoW i X T /d) - X Wy .
where Softmax is applied to each row of its input matrix. The attention can be re-written as:
Attn(X) = f(X) - XWy,

where (1) A = exp(XWoWLXT/d) € R*™™ and exp is applied element-wise, (2) D :=
diag(A1,) € R™ ", and (3) f(X) := D=1 A € R"*" is the attention matrix.

In contemporary LLMs, the architecture typically incorporates multiple layers of attention. Conse-
quently, in order to design a fast training algorithm for the entire model, it is imperative to examine
self-attention within the multi-layer transformer structure formally defined as follows.

Definition 1.3 (Multi-layer transformer). Let m denote the number of transformer layers in the
model. Let X be the input sequence. Let g; denote components other than self-attention in the i-th
transformer layer, and assume its forward and backward computations can be run in time linear in
its input sequence length. Let Attn; denote the self-attention module in the i-th transformer layer
with weights Wq,, Wi, , Wy, (see also Definition [7;2]) We define an m-layer transformer as

Fn(X) := g o Attn,, © g1 0 Attn,,_q 0 - -+ 0 g1 0 Attn; o go(X),

where o denotes function composition.

In Definition the g; includes the layer norm, MLP, residual connection, dropout, positional
encoding, multi-head concatenation, and other operations. All forward and backward computations
of these practical modules can be run in linear time with respect to n. Thus, in this work, we mainly
focus on the acceleration of the self-attention module. Specifically, as shown in Definition
the n x n attention matrix f(X) dominates the computational complexity, introducing a quadratic
bottleneck. In the exact computation case, if the attention matrix is full rank, no acceleration is
possible. However, by compromising negligible accuracy, designing a fast sub-quadratic algorithm
becomes feasible. Fortunately, by employing the polynomial kernel approximation method from
(Aggarwal & Alman, 2022)), we can approximate the attention matrix and achieve an almost linear
time n'+°(1) algorithm, effectively breaking the quadratic bottleneck.

1.2 OUR CONTRIBUTIONS

‘We now state our main result as follows:

Theorem 1.4 (Main result, informal version of Theorem [3.2). Let n be the number of tokens and
d the hidden dimension size. We assume d = O(logn) and each number in matrices can be writ-
ten using O(logn) bits. Assume the number of layers m is constant. There exists an algorithm
(Algorithm |l) that can compute the gradient of multi-layer self-attention (see also Definition |I.3
in almost linear time n*+°), where the approximation error of the algorithm that computes the
gradient of the entire model can be bounded by 1/ poly(n).

Our assumption is mild when the context length n is large, as the feature dimension d is usually
regarded as a constant, which is also used in (Aggarwal & Alman, |2022); similarly, the number of

Under review as a conference paper at ICLR 2026

layers is usually much smaller than n and regarded as a constant. Our results indicate that large
language models (LLMs) can be trained in almost linear time n'*t°(1) and maintain a robust ap-
proximation guarantee, while the traditional way takes 2(n?) time. This advancement is realized
through the application of polynomial kernel approximation (Alman & Song| 2023} 2024a)). To be
more specific, by leveraging the inherent sparsity within the dense attention matrix, we perform
efficient low-rank approximation, thereby significantly accelerating the computation of the dense
matrices. Our framework is applicable to general loss functions, making it universally applicable.
Furthermore, our analysis holds when the multi-layer transformer model contains many practical
sub-modules, such as residual connection, causal mask, and multi-head attention (Section EI)

Numerous studies, including FlashAttention (Dao et al.,|2022; |Daol [2023; |Shah et al., 2024), quan-
tization techniques (Hu et al.,[2024a;|Lin et al., 2024]), and sparsity approaches (Han et al., 2024; Ma
et al.| [2024a)), have empirically focused on accelerating attention mechanisms. However, theoreti-
cally, these methods are still constrained by quadratic time complexity. In this study, we introduce an
innovative acceleration technique (Algorithm/[I)) that effectively overcomes this quadratic bottleneck,
backed by solid theoretical foundations (Theorem|[3.2). Moreover, this new method is designed to be
seamlessly integrated with existing approaches to further enhance their performance (see Section 3)).

Our contributions are as follows:

* We introduce a fast computation method that allows the gradient of each self-attention layer
to be approximated in almost linear time n' *°(1) with 1/ poly(n) error, where n is the input
sequence length, breaking the quadratic time complexity bottleneck (Theorem 3.1).

* We extend our single-layer results to module-wise gradient computation so that our Algo-
rithm [1] approximates gradient computation in m - n't°(1) time for m-layer transformer.
Importantly, the approximation of the gradient diverges from the exact gradient by an error
of 1/ poly(n) across the entire model (Theorem 3.2).

* Additionally, our analysis holds for the multi-layer transformer model contains residual
connection, casual mask, and multi-head attention. Our results can be applied to any
gradient-based algorithm, e.g., training, full fine-tuning, prompt-tuning, and so on (Sec-

tion 3)).

Roadmap. Our paper is organized as follows. Section [2] provides essential concepts and key def-
initions across the whole paper. Section [3] presents our primary findings, where we articulate our
novel algorithm that is capable of calculating gradients across the entire model in almost linear time.
In Section] we explain the techniques we employ, including low-rank approximation, techniques
for accelerating the computation of gradients, and an analysis of the approximation error. Section 3|
provides various extensions of our algorithm. Lastly, we conclude this paper in Section|[6}

2 PRELIMINARY

2.1 Loss FUNCTION

The loss function is the optimization objective in the training of LLMs, and we define it as follows.

Definition 2.1 (Loss function L(X)). For some input matrix X € R™*%, we define the one-unit dif-
ferentiable loss function ((X); 1, : R™¢ — R, forany j € [n], k € [d], and assume differentiability.

Furthermore, we define the overall loss function L(X), such that L(X) = >7"_, Zzzl UX)jk-

Remark 2.2. Typically, the most widely used loss function in the LLM training procedure is the
cross-entropy loss function, which can also be viewed as a summation of one unit loss function as in
Definition The output matrix of the multi-layer transformer needs to pass an additional linear
layer to map the hidden dimension d to the vocabulary size dyoc. Assuming dyoc is a constant,
the weight matrix dimensions for this additional MLP layer are d X dyoc.. The probability tensor
Yored € R7™*dvee js the final output. We denote the ground truth as Yer € R™*dvoe corresponding to
Yored. According to the cross-entropy loss definition, the formula is expressed as

U

n Gvoc

Lcross—entropy (X) = - Z (ifgt)j,k IOg((Ypred)Lk’)'
j=1k=1

Under review as a conference paper at ICLR 2026

where the summation iterates over all elements. The ground truth (Yg);.x = 1 for the correct class
and 0 otherwise.

2.2 CLOSED FORMS OF GRADIENT COMPONENTS

In training large language models (LLMs), updating the model necessitates computing the gradient
of weights for every layer. Consequently, it becomes essential to derive the closed-form expressions
for all corresponding gradient components with respect to the weights of the query, key, and value
matrices in the transformer model. We first define some intermediate variables before detailing these
gradient components in each self-attention transformer layer.

Definition 2.3 (Intermediate variables T;). Let m denote the number of transformer layers in the
model. Let m-layer self-attention transformer as defined in Definition Let d denote the hidden
dimension. Let n denote the sequence length. Let X € R™*? be the input sentence. Let g; denote
components other than self-attention in the i-th transformer layer. Let Attn; denote the self-attention
module in the i-th transformer layer (see also Definition[I.2).

Fori € {0,1,2,--- ,m}, we define T;(X) € R"™*% be the intermediate variable (hidden states)
output by i-th layer self-attention transformer. Namely, we have
g0 (X)v i = 07
T;(X) = ,
00 = oo R a2, 5

Here, we use o to denote function composition.

Then, we are ready to introduce the closed forms of the three gradient components in a single self-
attention transformer layer. Notably, according to the chain rule, the gradient of the k-th transformer
layer in LLMs depends on the gradient components from the (k + 1)-th transformer layer. The gra-
dient can be calculated for every transformer layer by combining the upstream and local gradients.
The closed forms of the gradients for each layer in multi-layer transformers are formalized in the
following lemma (Lemma|[2.4).

Lemma 2.4 (Closed form of gradient components, informal version of Lemma [C.4). Ler L(X)
as defined in Deﬁnition@ and the m-layer transformer defined as in Definition [[.3] Let
Wao,, Wi, Wy, € R denote the attention weight in the i-th attention. Let T;(X) denote
the intermediate variable output by i-th self-attention transformer layer (see Definition 2.3). Let
G; € R™? denote the gradient matrix resulting from the application of the chain rule up to the

function g;, i.e., G; = %. For j € [n],k € [d], let G,(j, k) denote the (j, k)-th entry of

G;, let % € R"*4 denote the gradient of (j, k)-th entry of Attn;(T;_1(X)). Then,
we can show that

dL(X _ n d . dAttn; (T3 -1 (X)),
* Part 1. dTi_(l())() =2 =1 2pe1 Gild, k) - W

» Part 2. Let W,,, be Wg,, Wk, or Wy, then

ALY) _ 5~ i Gk - QAT (X))

dW,, ; dw,,
v j=1k=1 ¢

Our main results are based on the above closed forms of four gradient components.

3 MAIN RESULTS

In this section, we present our main findings. In Section [3.1] we delineate the computational ef-
ficiency of our gradient calculation methods in each single layer. Section introduces our main
theorem (Theorem for multi-layer transformer by integrating the preceding results and provid-
ing our main algorithm (Algorithm|[T). Section [3.3|discusses how we transcend the previous works.

3.1 FAST COMPUTING FOR SINGLE LAYER

In the case of single-layer attention, we provide our theorem that states the three gradient compo-
nents can be calculated in almost linear time with negligible error.

Under review as a conference paper at ICLR 2026

Theorem 3.1 (Single-layer gradient approximation). We assume d = O(logn) and each num-
ber in matrices can be written using O(logn) bits. Let L(X) be deﬁned as Definition 2.1} Sup-
pose we have a szngle -layer self-attention transformer model (m = 1 in Definition [.3). Assume
11X oo IWoW i |lsos IWv|loo < poly(n). We can approximate one-layer self-attention for three

dL(X) dL(X) dL(X) : . 140(1) 4 .
gradient components, i.e. IX > aWow T and T, nn D) time with 1/poly(n) error.

Proof. We finish the proof by combining Lemma[.1] .2]and 4.3 O

Next, we present the formal algorithm for our method, detailed in Algorithm Our algorithm
comprises two primary functions: SINGLEGRAD, which computes the gradient for a single trans-
former layer (Line [IZ), and MULTIGRAD, which calculates the gradient across an m-layer trans-
former (Line [26). SINGLEGRAD function computes each gradient component using the techniques
described in the Appendix and subsequently integrates these approximated components into the gra-
dients for T3, W, Wl—(ri, and Wy,. MULTIGRAD function iterates through each layer, leveraging the
gradient for T; from preceding layer to compute the gradients in the current layer.

Algorithm 1 Almost Linear Time (ALT) Multi-layer Transformer Gradient Approximation

1: datastructure ALTGRAD > Theorem [3.1]and 3.2]
2: members
3: n € R: the length of input sequence
d € R: the hidden dimension
m € R: the number of transformer layers
L(X) € R: the loss function > Definition 2.1]
T; € R™*%: the output of i-th transformer layer
Attn; € R™*9: the output that pass i-th attention layer
9: Wa,, Wk,, Wy, € R4*?: the weight matrices in i-th transformer layer
10: end members
11:

A A S

12: procedure SINGLEGRAD(dL(X)) > Theorem
13: Compute G; = dAEfrf) via Lemma > nttoM) time
14: Compute Dg, D+, Ds, Do, Dy via LemmaE . . - > nito@) time

15: /* Approximate 3 dz (

, Lemma @ */

16: G+ Dg+ D7+ D8 + Doy + Dy > ntte) time

. dL(X)
17: /* Approximate T, Wy Lemmap.2|*/
18: Construct Us, V3 via Lemma[4.2] >n!te) time
19: Juw + (T;L 1U3) (V' Tiov) > ntte) time
20: /* Approximate ;- (X) , Lemmal.3|*/
21: Construct Uy, V7 via Lemma > nttoM) time
22: Gy <+ (TN, U) - (VT GY) > ntte) time
23: return g, G.,, gu > gt is the approximated 5 dL(X) for back-propagation
24: end procedure
25:
26: procedure MULTIGRAD(L(X) > Theorem 3.2]
27: Compute =37 (X) > O(nd) time
28 g+ X)
29: forzfmﬁldo
30: Gty Gw, gv < SINGLEGRAD (gy)
31: Optimize W, , Wk, via g,, using optimizer
32: Optimize Wy, via g, using optimizer
33: end for

34: end procedure
35: end datastructure

Under review as a conference paper at ICLR 2026

3.2 FAST COMPUTING FOR MULTI-LAYER TRANSFORMERS

Based on the results demonstrated in previous sections, we are ready to introduce our main result:
the gradients of the whole transformer model can be approximated in almost linear time.

Theorem 3.2 (Main result, formal version of Theorem[T.4). Ler m denote the number of transformer
layers. Assume the number of layers m is constant. We assume d = O(logn) and each number in
matrices can be written using O(logn) bits. We can show that, for any i € [m], all the gradient
components (see also Lemmal[2.4)) of the i-th layer can be computed by Algorithm(l|in almost linear
time n*T°W) | and approximation error of the algorithm that computes the gradient of the entire m
layer transformer model can be bounded by 1/ poly (n).

Proof. We prove the theorem by directly combining Theorem [3.1]and Lemma[4.5] O

Theorem demonstrates that, during the training of a multi-layer transformer model, at each
training iteration, the gradient computation for the weight matrices of each layer can be performed
in almost linear time n'+°(1). This result supports the feasibility of fast training for any transformer-
based large language models (LLMs). Algorithm [highlights the significance of the gradient with
respect to the intermediate variables T;(X). Due to the application of the chain rule in gradient
computation, the gradient of 7;(X) is indispensable for determining the gradients of the weight
matrices Wq,, Wi, and Wy, at the i-th layer. Consequently, by iteratively computing the gradient
for T;(X), we systematically propagate the gradient through to the initial transformer layer.

3.3 BEYOND THE PREVIOUS WORK

Our algorithm exhibits significant advancements over two seminal prior studies, (Alman & Song,
2023) and (Alman & Song,2024a). In (Alman & Song}[2023)), the authors proposed an almost linear
time algorithm for computing the forward process of the attention mechanism. In contrast, (Alman
& Song| [2024a) introduced an almost linear time algorithm for the backward of attention mecha-
nism. However, (Alman & Song, 2024a)) has the following limitations: (¢) only computing gradients
for a single layer of the attention mechanism, which cannot extend to multiple layers; (i) com-
puting gradients only for the weight matrix W, Wk, (as defined in Definition [T.2), but ignore
other crucial components such as the MLP layer following attention computation and the activation
function.

In our work, we have the following improvements beyond previous work: (¢) we enable almost linear
time gradient computation across an entire transformer layer, incorporating both the MLP layer and
the activation function; (i¢) we extend the gradient calculation to include not only Wq,, Wk, but
also T;(X) and Wy,. These advancements collectively demonstrate a substantial leap forward from
the methodologies in (Alman & Song}, 2023) and (Alman & Song, 2024al).

4 TECHNICAL OVERVIEW

The main new challenge for our setting is the gradient with respect to the intermediate variables 77,
which previous work (Alman & Song), [2024a) on a single layer does not require. However, it is an
essential component for multi-layer gradient computation. The gradient computation w.r.t. 7T; are
not the same as that for the gradient w.r.t. Wg,, Wk, , Wy, in a single layer. We give more details in
Section 421

In this section, we provide a brief overview of the proof techniques used throughout this paper.

4.1 LoOW-RANK APPROXIMATION FOR ATTENTION MATRIX

In this section, we delve into the crucial techniques behind our work: the low-rank approximation
of the attention matrix, which is achieved through the polynomial method (Alman et al., 2020; Ag-
garwal & Alman, 2022)). Drawing inspiration from (Alman & Song| 2023)), the intuition of this
approximation lies in the fact that the attention matrix f(X) € R™*" (as defined in Definition ,
also referred to as the similarity matrix in attention mechanism, can be effectively approximated by

Under review as a conference paper at ICLR 2026

low-rank matrices Uy, V; € R™**1 where k1 = n°(). The naive method for calculating the atten-
tion matrix f(X) has a time complexity of O(n?), whereas the input data X € R™*< contains only
d-n = n'*t°() entries. This discrepancy suggests the potential of using low-rank representations
of f(X) to design a fast algorithm.

An example of how to use the low-rank representations is the attention forward. First, note that
approximating f(X) alone does not lead to a fast algorithm since U;V;" still requires n x n en-
tries. But by using the structure of the attention Attn(X) := f(X)V where V. = XWy,, we can

do it faster. By expressing f(X) as U;V,", the attention forward becomes U, VlT V . Itis
~~ ~

~—
nxki kixn nxd

well known that different multiplication sequences can require dramatically different numbers of
operations, so the order of matrix multiplications matters, which is indeed the case here. We first
perform V"V € R¥1*4 and this cost O(kynd) = n'T°(!) time. Then we can compute U, V;"V/
within O(nk;d) = n*+t°() time.

This method significantly reduces the computation time of the attention forward from O(n?) to
almost linear time, n'*°(1). Driven by this technique and analyzing the close forms of the gradients,
we extend the acceleration to the gradient of the entire model.

4.2 ACCELERATING GRADIENT COMPUTATION OF T;(X)

Based on the low-rank approximation method mentioned in Section .1| we compute the gradient
of L(X) with respect to the intermediate variable T;(X), which denotes the output of the i-th trans-
former layer. This computation is critical because, thanks to the chain rule, it enables us to calculate
gradients for other gradient components.

Extending to general loss functions. According to the findings in (Deng et all

2023b), the gradient gﬁ_(())?) can be decomposed into five components, namely

Ca(X), C4(X),Cs(X),C7(X), Cs(X), as detailed in Lemma In this work, we introduce
a comprehensive analysis framework (Definition 2.1) and we have demonstrated its applicability
to the cross-entropy loss (Remark 2.2). Consequently, by utilizing this generalized analysis
framework, we extend the notation L(X) to include a wide range of general loss functions.

Accelerating the gradient computation. A crucial aspect of speeding up gradient computation
for the entire multi-layer transformer model involves accelerating the calculation of gradients with
respect to the intermediate variables T;(X). The main challenge lies in the fact that comput-
ing the gradient of T;(X) requires calculating the gradients for other components within a trans-
former layer, including the residual connection, multi-head attention, and causal attention mask
(see Section [5). We have conducted an extensive analysis of these components within the trans-
former layer (see Section [l [l and [K)) and demonstrated that, through the application of low-rank

approximation techniques, the gradient 372 (()Q) can be computed in almost linear time n'*°()

(Lemma [{.T). In particular, we apply the low-rank approximation technique on the five terms
C2(X),C4(X), Cs(X), C7(X), Cs(X) respectively, demonstrating that each term can be computed
in almost linear time, nHO(l), as shown in Section Then, we aggregate those terms, as described
in Section Since all five terms are n X d matrices, the summation of these terms takes O(nd)
time. We then conclude that for any single-layer transformer, the gradient computation with respect
to the input can be performed in almost linear time n'T°(1) as stated in Lemma

The statement made for a single transformer layer can be readily generalized to any layer within an
m-layer transformer model. For instance, consider the intermediate variables 7;(X) and T;_1(X)

(as defined in Definition , where T;(X) = (g; o Attn;)(T;-1(X)). Given the gradient %,

as established in the previous paragraph, we compute the gradient with respect to T;_1 (X), namely
dL(X)

dT;1(X)°

can be conducted recursively. Thus, we can compute the gradient of the loss function L(X') on any

T;(X) in almost linear time n' (1)

in almost linear time n'*t°(1). For a multi-layer transformer model, the above process

Under review as a conference paper at ICLR 2026

Lemma 4.1 (Fast computation for gﬁ (())(()), informal version of Lemma . Let L(X) be de-
fined as Definition Let m denote the number of self-attention transformer layers (see Defini-

tion . Let T;(X) denote the intermediate variable output by i-th self-attention transformer layer
(see Definition . We show that éiﬁ(())?) can be approximated in n'*+°") time, with 1/ poly(n)

approximation error.

Proof sketch. In Lemmas and we have delineated several essential gra-
dient components, Dg, D7, Dg, Do, Dy € R™*4. We have established that these components can
be computed in almost linear time n'*+°(1), with the approximation error bounded by €/ poly(n).
Moreover, Lemma illustrates that the gradient w.r.t. T; can be expressed as the sum of these

gradient components. That is, % = D ic{2,4,6,7,8} Di- Given that the computational com-

plexity of the summation operation is O(nd), the aggregate time complexity for approximating the

gradient % with g, remains n'+°(1), For the approximation error, by setting ¢ to 1/ poly(n),
we ensure that the error of the gradient approximation g; is also 1/ poly(n). O

4.3 ACCELERATING GRADIENT COMPUTATION OF W; AND Wy,

Let W, := WQlW;l with Wg, and W, representing the query and key weight matrices, respec-
tively, the gradients of W; and WYy, represent all trainable weight matrices in a transformer layer.
Consequently, by determining the gradients for W; and Wy, across each layer, we achieve almost
linear time gradient back-propagation throughout multi-layer transformer models.

Fast gradient computation. The prior study in (Alman & Song| 2024a) demonstrated that the
gradient of W; can be computed in almost linear time. We extend their findings by adapting their
approach to accommodate general loss function L(X) (as defined in Definition and further
generalize their results to include the gradient computation for both W; and Wy, in each transformer

layer (Lemmaf4.2)and [4.3).

Lemma 4.2 (Fast computation for djv(f) informal version of Lemma . Let L(X) be defined as
Definition 2.1} and m be the number of self-attention transformer layers (Definition[I.3). For any
i€ m] let W; = W, W;(— , Wy, € R4 denote the attention weight in the i-th transformer layer.

L(X) 140(1)

We show that v~ can be approximated in n time, with 1/ poly(n) approximation error.
dL(X)

Lemma 4.3 (Fast computation for Ty informal version of Lemma . Let L(X) be defined

as Definition[2.1) and m be the number of self-attention transformer layers (Definition[I.3)). For any
i€ m], let W, = Wy, WI—'(—i, Wy, € R4 denote the attention weight in the i-th transformer layer.

We show that (;%(,f) 1+o(1)

can be approximated in n time, with 1/ poly(n) approximation error.

4.4 ACCELERATING GRADIENT COMPUTATION FOR MULTI-LAYER TRANSFORMERS

In this section, our focus turns to extending the single-layer transformer result from the previous
section to a multi-layer transformer.

Running time analysis. We derive the closed-form gradient for the non-attention components
within a transformer layer g; (Definition [I.3). With the closed-form gradient of g; established in
Lemma [H.T| we then demonstrate in Lemma [4.4] that the gradient computation for g; can also be
achieved in n't°(Y) time. Given that the number of layers 7 is constant and the computation time
for gradients on each layer is n'T°(1) we iteratively repeat this procedure for m times. Therefore,
the overall running time for computing gradients across the entire model is m - n*t0(1) = pl+o(1),
Lemma 4.4 (Computation time for G, informal version of Lemma[H.2). Let T;(X) be defined as
Definition ie. T;(X) = (gi o Attn;)(T;—1(X)). Let G; € R™*® denote the gradient matrix
. _ dL(X)
resulting from the application of the chain rule up to the function g;, i.e., G; = Thttn; (T, 1 (X))
éj:ﬁi(é)). Assuming for any Z € R™? we have g;(Z) € R"¥9, and
9i(Z) = ¢(Z - W), where W, € R and ¢ : R — R denotes any element-wise activation

function. Let ¢’ denote the derivative of . Then, we show that G; can be computed in n*+t°1) time.

Assume we already have

Under review as a conference paper at ICLR 2026

Error propagation analysis. Here, we consider the approximation error. The approximation error
originates from the low-rank approximation of the attention matrix, as detailed in Lemma|[C.13] As
discussed in previous sections, the approximation error in each layer can be bounded by 1/ poly(n).
Then, we only need to focus on how error propagates in different layers.

We first prove that our 1/ poly(n) approximation error statement holds for one layer transformer, as
evidenced in Lemma[H.3] Subsequently, through mathematical induction and leveraging the results
of error propagation over the gradient of g;, we show that the approximation error can be bounded
by 1/ poly(n) for any m-layer transformer (Lemma[4.5)), where m is considered as constant.

Lemma 4.5 (Multi-layer transformer gradient approximation, informal version of Lemma([H.4). Let
L(X) be defined as Definition Let X be defined as Definition Suppose we have a m-

layer transformer (see Definition . Then, for any i € [m|, we can show that: (i) Running time:

Our algorithm can approximate dgﬁ(:((;()’ dg&i_{) and C(lil{/l(/f/(,) in n'°W) time; (ii) Error bound:

The approximation of the entire transformer model can be bounded by 1/ poly(n). Namely, our

algorithm output § satisfies ||g — dﬁ()?() lloo < 1/poly(n).

The rate of error accumulation in a transformer with m layers grows exponentially as n”*. Namely,
the error increases from 1/ poly(n) to n™/ poly(n). Nevertheless, because m is a constant and the
polynomial poly(n) has a high degree, the total error remains insignificant in practical scenarios.

5 EXTENSIONS

Multi-head attention and residual connections. Multi-head attention and residual connections
are important components in attention mechanisms. These components were not involved in our ini-
tial analysis for simplicity. Incorporating them into our algorithm is straightforward. This suggests
that our algorithm can be readily adapted to more practical transformer models. The detailed analy-
sis for incorporating residual connection can be found in Section [J]Jand Lemma[J.3] For the synergy
with multi-head attention, we provide comprehensive analysis in Section|[K]and Lemma

Causal attention mask. The causal attention mask is critical to prevent transformers from “cheat-
ing” during training by ensuring future information is not used. The full-rank characteristic of the
causal attention mask poses challenges for low-rank approximations. Nevertheless, we have iden-
tified a method to accelerate the computation of causal masked attention by exploiting its inherent
properties, showing almost linear time complexity. A comprehensive explanation is provided in
Section More detailed analysis can be found in Section[[Jand Lemma|[.7]and [[.§]

Prompt tuning. Prompt tuning is a prevalent approach in parameter-efficient fine-tuning (PEFT),
which requires the calculation of gradients on input data X. Given our algorithm can compute
gradients for intermediate variables 7; in almost linear time, we can adapt this acceleration to the
gradient for the input data X, thus enhancing the efficiency of the prompt tuning process. Additional
details are provided in Section

Synergy with system-level attention acceleration. Many contemporary works focus on system-
level acceleration of attention mechanisms, often by leveraging caching and mitigating I/O bottle-
necks. Our algorithm has the potential to integrate with such advancements. By combining our
theoretical improvements in computation time (from O(n?) to n'*°(M)) with system-level optimiza-
tions, the overall efficiency of attention mechanism computation may improve further. We leave the
implementation of our method on GPU as future work. More details can be found in Section

6 CONCLUSION

In this work, we proposed a novel algorithm (Algorithm [I)), which can approximately train a multi-
layer transformer model in almost linear time, introducing only a small error. Importantly, our
algorithm is designed to be compatible with general loss functions, practical sub-modules (residual
connection, casual mask, multi-head attention), and general gradient-based algorithms. It may be
seamlessly integrated with other system-level acceleration techniques. With experimental support,
we believe our finding is able to accelerate the training of LLMs in practice.

Under review as a conference paper at ICLR 2026

ETHIC STATEMENT

This paper does not involve human subjects, personally identifiable data, or sensitive applications.
We do not foresee direct ethical risks. We follow the ICLR Code of Ethics and affirm that all aspects
of this research comply with the principles of fairness, transparency, and integrity.

REPRODUCIBILITY STATEMENT

We ensure reproducibility of our theoretical results by including all formal assumptions, definitions,
and complete proofs in the appendix. The main text states each theorem clearly and refers to the
detailed proofs. No external data or software is required.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Amol Aggarwal and Josh Alman. Optimal-degree polynomial approximations for exponentials and
gaussian kernel density estimation. In Proceedings of the 37th Computational Complexity Con-
ference, pp. 1-23, 2022.

Josh Alman and Zhao Song. Fast attention requires bounded entries. Advances in Neural Information
Processing Systems, 36, 2023.

Josh Alman and Zhao Song. The fine-grained complexity of gradient computation for training large
language models. arXiv preprint arXiv:2402.04497, 2024a.

Josh Alman and Zhao Song. How to capture higher-order correlations? generalizing matrix soft-
max attention to kronecker computation. In The Twelfth International Conference on Learning
Representations, 2024b.

Josh Alman, Timothy Chu, Aaron Schild, and Zhao Song. Algorithms and hardness for linear
algebra on geometric graphs. In 2020 IEEE 61st Annual Symposium on Foundations of Computer
Science (FOCS), pp. 541-552. IEEE, 2020.

Anthropic. The claude 3 model family: Opus, sonnet, haiku, 2024. URL https://www—cdn.
anthropic.com.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

Rouzbeh Behnia, Mohammadreza Reza Ebrahimi, Jason Pacheco, and Balaji Padmanabhan. Ew-
tune: A framework for privately fine-tuning large language models with differential privacy. In
2022 IEEE International Conference on Data Mining Workshops (ICDMW), pp. 560-566. IEEE,
2022.

Jan van den Brand, Zhao Song, and Tianyi Zhou. Algorithm and hardness for dynamic attention
maintenance in large language models. arXiv preprint arXiv:2304.02207, 2023.

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D Lee, Deming Chen, and Tri
Dao. Medusa: Simple llm inference acceleration framework with multiple decoding heads. arXiv
preprint arXiv:2401.10774, 2024.

Shang Chai, Liansheng Zhuang, and Fengying Yan. Layoutdm: Transformer-based diffusion model
for layout generation. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 18349-18358, 2023.

Beidi Chen, Zichang Liu, Binghui Peng, Zhaozhuo Xu, Jonathan Lingjie Li, Tri Dao, Zhao Song,
Anshumali Shrivastava, and Christopher Re. Mongoose: A learnable Ish framework for efficient
neural network training. In International Conference on Learning Representations, 2020.

10

https://www-cdn.anthropic.com
https://www-cdn.anthropic.com

Under review as a conference paper at ICLR 2026

Bo Chen, Xiaoyu Li, Yingyu Liang, Zhenmei Shi, and Zhao Song. Bypassing the exponential de-
pendency: Looped transformers efficiently learn in-context by multi-step gradient descent, 2024a.

Bo Chen, Yingyu Liang, Zhizhou Sha, Zhenmei Shi, and Zhao Song. Hsr-enhanced sparse attention
acceleration. arXiv preprint arXiv:2410.10165, 2024b.

Shouyuan Chen, Sherman Wong, Liangjian Chen, and Yuandong Tian. Extending context window
of large language models via positional interpolation. arXiv preprint arXiv:2306.15595, 2023.

Weize Chen, Ziming You, Ran Li, Yitong Guan, Chen Qian, Chenyang Zhao, Cheng Yang, Ruobing
Xie, Zhiyuan Liu, and Maosong Sun. Internet of agents: Weaving a web of heterogeneous agents
for collaborative intelligence. arXiv preprint arXiv:2407.07061, 2024c.

Timothy Chu, Zhao Song, and Chiwun Yang. How to protect copyright data in optimization of large
language models? arXiv preprint arXiv:2308.12247, 2023.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691, 2023.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. Advances in Neural Information Processing Systems,

35:16344-16359, 2022.

Yichuan Deng, Sridhar Mahadevan, and Zhao Song. Randomized and deterministic attention sparsi-
fication algorithms for over-parameterized feature dimension. arXiv preprint arXiv:2304.04397,
2023a.

Yichuan Deng, Zhao Song, Shenghao Xie, and Chiwun Yang. Unmasking transformers: A theoret-
ical approach to data recovery via attention weights. arXiv preprint arXiv:2310.12462, 2023b.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Miiller, Harry Saini, Yam
Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for
high-resolution image synthesis. In Forty-first International Conference on Machine Learning,
2024.

Quentin Fournier, Gaétan Marceau Caron, and Daniel Aloise. A practical survey on faster and
lighter transformers. ACM Computing Surveys, 55(14s):1-40, 2023.

Elias Frantar and Dan Alistarh. Optimal brain compression: A framework for accurate post-training
quantization and pruning. Advances in Neural Information Processing Systems, 35:4475-4488,
2022.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in
one-shot. In International Conference on Machine Learning, pp. 10323-10337. PMLR, 2023.

Yeqi Gao, Sridhar Mahadevan, and Zhao Song. An over-parameterized exponential regression.
arXiv preprint arXiv:2303.16504, 2023a.

Yeqi Gao, Zhao Song, and Xin Yang. Differentially private attention computation. arXiv preprint
arXiv:2305.04701, 2023b.

Yeqi Gao, Zhao Song, Xin Yang, and Ruizhe Zhang. Fast quantum algorithm for attention compu-
tation. arXiv preprint arXiv:2307.08045, 2023c.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, and
Haofen Wang. Retrieval-augmented generation for large language models: A survey. arXiv
preprint arXiv:2312.10997, 2023d.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

11

Under review as a conference paper at ICLR 2026

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Kamal Gupta, Justin Lazarow, Alessandro Achille, Larry S Davis, Vijay Mahadevan, and Abhinav
Shrivastava. Layouttransformer: Layout generation and completion with self-attention. In Pro-
ceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1004—1014, 2021.

Insu Han, Rajesh Jayaram, Amin Karbasi, Vahab Mirrokni, David Woodruff, and Amir Zandieh.
Hyperattention: Long-context attention in near-linear time. In The Twelfth International Confer-
ence on Learning Representations, 2024.

Nan He, Hanyu Lai, Chenyang Zhao, Zirui Cheng, Junting Pan, Ruoyu Qin, Ruofan Lu, Rui Lu,
Yunchen Zhang, Gangming Zhao, et al. Teacherlm: Teaching to fish rather than giving the fish,
language modeling likewise. arXiv preprint arXiv:2310.19019, 2023.

Jerry Yao-Chieh Hu, Donglin Yang, Dennis Wu, Chenwei Xu, Bo-Yu Chen, and Han Liu. On sparse
modern hopfield model. In Thirty-seventh Conference on Neural Information Processing Systems
(NeurIPS), 2023.

Jerry Yao-Chieh Hu, Pei-Hsuan Chang, Haozheng Luo, Hong-Yu Chen, Weijian Li, Wei-Po Wang,
and Han Liu. Outlier-efficient hopfield layers for large transformer-based models. In Forty-first
International Conference on Machine Learning (ICML), 2024a.

Jerry Yao-Chieh Hu, Bo-Yu Chen, Dennis Wu, Feng Ruan, and Han Liu. Nonparametric modern
hopfield models. arXiv preprint arXiv:2404.03900, 2024b.

Jerry Yao-Chieh Hu, Thomas Lin, Zhao Song, and Han Liu. On computational limits of modern
hopfield models: A fine-grained complexity analysis. In Forty-first International Conference on
Machine Learning (ICML), 2024c.

Jerry Yao-Chieh Hu, Maojiang Su, En-Jui Kuo, Zhao Song, and Han Liu. Computational limits
of low-rank adaptation (lora) for transformer-based models. arXiv preprint arXiv:2406.03136,
2024d.

Jerry Yao-Chieh Hu, Dennis Wu, and Han Liu. Provably optimal memory capacity for modern hop-
field models: Tight analysis for transformer-compatible dense associative memories. In Advances
in Neural Information Processing Systems (NeurIPS), volume 37, 2024e.

Jerry Yao-Chieh Hu, Weimin Wu, Zhao Song, and Han Liu. On statistical rates and provably efficient
criteria of latent diffusion transformers (dits). arXiv preprint arXiv:2407.01079, 2024f.

Itay Hubara, Brian Chmiel, Moshe Island, Ron Banner, Joseph Naor, and Daniel Soudry. Accel-
erated sparse neural training: A provable and efficient method to find n: m transposable masks.
Advances in neural information processing systems, 34:21099-21111, 2021.

Tian Jin, Michael Carbin, Dan Roy, Jonathan Frankle, and Gintare Karolina Dziugaite. Pruning’s
effect on generalization through the lens of training and regularization. Advances in Neural In-
formation Processing Systems, 35:37947-37961, 2022.

Praneeth Kacham, Vahab Mirrokni, and Peilin Zhong. Polysketchformer: Fast transformers via
sketches for polynomial kernels. arXiv preprint arXiv:2310.01655, 2023.

Feyza Duman Keles, Pruthuvi Mahesakya Wijewardena, and Chinmay Hegde. On the computational
complexity of self-attention. In International Conference on Algorithmic Learning Theory, pp.
597-619. PMLR, 2023.

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. arXiv
preprint arXiv:2001.04451, 2020.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Pro-
cessing, pp. 3045-3059, 2021.

12

Under review as a conference paper at ICLR 2026

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding. In International Conference on Machine Learning, pp. 19274-19286. PMLR, 2023.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Kiittler, Mike Lewis, Wen-tau Yih, Tim Rocktéschel, et al. Retrieval-augmented genera-
tion for knowledge-intensive nlp tasks. Advances in Neural Information Processing Systems, 33:
9459-9474, 2020.

Chenyang Li, Yingyu Liang, Zhenmei Shi, Zhao Song, and Tianyi Zhou. Fourier circuits in neu-
ral networks: Unlocking the potential of large language models in mathematical reasoning and
modular arithmetic. arXiv preprint arXiv:2402.09469, 2024a.

Tianle Li, Ge Zhang, Quy Duc Do, Xiang Yue, and Wenhu Chen. Long-context llms struggle with
long in-context learning. arXiv preprint arXiv:2404.02060, 2024b.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the
11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers),
pp- 4582-4597, 2021.

Xiaoyu Li, Yingyu Liang, Zhenmei Shi, and Zhao Song. A tighter complexity analysis of sparsegpt.
arXiv preprint arXiv:2408.12151, 2024c.

Xiaoyu Li, Yingyu Liang, Zhenmei Shi, Zhao Song, and Junwei Yu. Fast john ellipsoid computation
with differential privacy optimization. arXiv preprint arXiv:2408.06395, 2024d.

Xiaoyu Li, Yingyu Liang, Zhenmei Shi, Zhao Song, and Yufa Zhou. Fine-grained attention i/o
complexity: Comprehensive analysis for backward passes. arXiv preprint arXiv:2410.09397,
2024e.

Xiaoyu Li, Zhao Song, and Junwei Yu. Quantum speedups for approximating the john ellipsoid.
arXiv preprint arXiv:2408.14018, 2024f.

Yanghao Li, Hanzi Mao, Ross Girshick, and Kaiming He. Exploring plain vision transformer back-
bones for object detection. In European conference on computer vision, pp. 280-296. Springer,
2022.

Yuchen Li, Yuanzhi Li, and Andrej Risteski. How do transformers learn topic structure: Towards a
mechanistic understanding. In International Conference on Machine Learning, pp. 19689—19729.
PMLR, 2023a.

Zhihang Li, Zhao Song, and Tianyi Zhou. Solving regularized exp, cosh and sinh regression prob-
lems. arXiv preprint arXiv:2303.15725, 2023b.

Zhihang Li, Zhao Song, Weixin Wang, Junze Yin, and Zheng Yu. How to inverting the leverage
score distribution? arXiv preprint arXiv:2404.13785, 2024g.

Yingyu Liang, Heshan Liu, Zhenmei Shi, Zhao Song, and Junze Yin. Conv-basis: A new
paradigm for efficient attention inference and gradient computation in transformers. arXiv
preprint arXiv:2405.05219, 2024a.

Yingyu Liang, Jiangxuan Long, Zhenmei Shi, Zhao Song, and Yufa Zhou. Beyond linear approxi-
mations: A novel pruning approach for attention matrix, 2024b.

Yingyu Liang, Zhizhou Sha, Zhenmei Shi, and Zhao Song. Differential privacy mechanisms in
neural tangent kernel regression. arXiv preprint arXiv:2407.13621, 2024c.

Yingyu Liang, Zhizhou Sha, Zhenmei Shi, Zhao Song, and Yufa Zhou. Looped relu mlps may be
all you need as practical programmable computers. arXiv preprint arXiv:2410.09375, 2024d.

Yingyu Liang, Zhenmei Shi, Zhao Song, and Chiwun Yang. Toward infinite-long prefix in trans-
former. arXiv preprint arXiv:2406.14036, 2024e.

Yingyu Liang, Zhenmei Shi, Zhao Song, and Yufa Zhou. Unraveling the smoothness properties of
diffusion models: A gaussian mixture perspective. arXiv preprint arXiv:2405.16418, 2024f.

13

Under review as a conference paper at ICLR 2026

Yingyu Liang, Zhenmei Shi, Zhao Song, and Yufa Zhou. Differential privacy of cross-attention with
provable guarantee. arXiv preprint arXiv:2407.14717, 2024g.

Yingyu Liang, Zhenmei Shi, Zhao Song, and Yufa Zhou. Tensor attention training: Provably effi-
cient learning of higher-order transformers. arXiv preprint arXiv:2405.16411, 2024h.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization for
on-device 1lm compression and acceleration. Proceedings of Machine Learning and Systems, 6:
87-100, 2024.

Na Liu, Liangyu Chen, Xiaoyu Tian, Wei Zou, Kaijiang Chen, and Ming Cui. From 1lm to conversa-
tional agent: A memory enhanced architecture with fine-tuning of large language models. arXiv
preprint arXiv:2401.02777, 2024.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Tam, Zhengxiao Du, Zhilin Yang, and Jie Tang. P-tuning:
Prompt tuning can be comparable to fine-tuning across scales and tasks. In Proceedings of the
60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers).
Association for Computational Linguistics, 2022.

Yixin Liu, Kejian Shi, Katherine S He, Longtian Ye, Alexander R Fabbri, Pengfei Liu, Dragomir
Radev, and Arman Cohan. On learning to summarize with large language models as references.
arXiv preprint arXiv:2305.14239, 2023.

Al @ Meta Llama Team. The llama 3 herd of models. arXiv preprint arXiv:2407.21783, 2024.

Minh-Thang Luong, Hieu Pham, and Christopher D Manning. Effective approaches to attention-
based neural machine translation. arXiv preprint arXiv:1508.04025, 2015.

Kai Lv, Yuqing Yang, Tengxiao Liu, Qinghui Gao, Qipeng Guo, and Xipeng Qiu. Full parameter
fine-tuning for large language models with limited resources. arXiv preprint arXiv:2306.09782,
2023.

Da Ma, Lu Chen, Pengyu Wang, Hongshen Xu, Hangqi Li, Liangtai Sun, Su Zhu, Shuai Fan, and Kai
Yu. Sparsity-accelerated training for large language models. arXiv preprint arXiv:2406.01392,
2024a.

Nanye Ma, Mark Goldstein, Michael S Albergo, Nicholas M Boffi, Eric Vanden-Eijnden, and Sain-
ing Xie. Sit: Exploring flow and diffusion-based generative models with scalable interpolant
transformers. arXiv preprint arXiv:2401.08740, 2024b.

Amama Mahmood, Junxiang Wang, Bingsheng Yao, Dakuo Wang, and Chien-Ming Huang. Llm-
powered conversational voice assistants: Interaction patterns, opportunities, challenges, and de-
sign guidelines. arXiv preprint arXiv:2309.13879, 2023.

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh Hajishirzi, and Luke
Zettlemoyer. Rethinking the role of demonstrations: What makes in-context learning work? In
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pp.
11048-11064, 2022.

Jesse Mu, Xiang Li, and Noah Goodman. Learning to compress prompts with gist tokens. Advances
in Neural Information Processing Systems, 36, 2024.

OpenAl. Searchgpt, 2024. URL|https://openai.com/index/searchgpt—prototype.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 4195-4205, 2023.

Lianke Qin, Saayan Mitra, Zhao Song, Yuanyuan Yang, and Tianyi Zhou. Fast heavy inner product
identification between weights and inputs in neural network training. In 2023 IEEE International
Conference on Big Data (BigData), pp. 128-133. IEEE, 2023a.

Lianke Qin, Zhao Song, and Baocheng Sun. Is solving graph neural tangent kernel equivalent to
training graph neural network? arXiv preprint arXiv:2309.07452, 2023b.

14

https://openai.com/index/searchgpt-prototype

Under review as a conference paper at ICLR 2026

Lianke Qin, Zhao Song, Lichen Zhang, and Danyang Zhuo. An online and unified algorithm for
projection matrix vector multiplication with application to empirical risk minimization. In In-
ternational Conference on Artificial Intelligence and Statistics (AISTATS), pp. 101-156. PMLR,
2023c.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. OpenAl blog, 2019.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684—10695, 2022.

Siddharth Samsi, Dan Zhao, Joseph McDonald, Baolin Li, Adam Michaleas, Michael Jones,
William Bergeron, Jeremy Kepner, Devesh Tiwari, and Vijay Gadepally. From words to watts:
Benchmarking the energy costs of large language model inference. In 2023 IEEE High Perfor-
mance Extreme Computing Conference (HPEC), pp. 1-9. IEEE, 2023.

John Schulman, Barret Zoph, Christina Kim, Jacob Hilton, Jacob Menick, Jiayi Weng, Juan Fe-
lipe Ceron Uribe, Liam Fedus, Luke Metz, Michael Pokorny, et al. Chatgpt: Optimizing language
models for dialogue. OpenAl blog, 2(4), 2022.

Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, and Tri Dao.
Flashattention-3: Fast and accurate attention with asynchrony and low-precision. arXiv preprint
arXiv:2407.08608, 2024.

Weiyan Shi, Ryan Shea, Si Chen, Chiyuan Zhang, Ruoxi Jia, and Zhou Yu. Just fine-tune twice:
Selective differential privacy for large language models. In Proceedings of the 2022 Conference
on Empirical Methods in Natural Language Processing, pp. 6327-6340, 2022.

Zhenmei Shi, Yifei Ming, Xuan-Phi Nguyen, Yingyu Liang, and Shafiq Joty. Discovering the gems
in early layers: Accelerating long-context llms with 1000x input token reduction. arXiv preprint
arXiv:2409.17422, 2024a.

Zhenmei Shi, Junyi Wei, Zhuoyan Xu, and Yingyu Liang. Why larger language models do in-context
learning differently? arXiv preprint arXiv:2405.19592, 2024b.

Tanmay Singh, Harshvardhan Aditya, Vijay K Madisetti, and Arshdeep Bahga. Whispered tuning:
Data privacy preservation in fine-tuning llms through differential privacy. Journal of Software
Engineering and Applications, 17(1):1-22, 2024.

Charlie Snell, Ruiqgi Zhong, Dan Klein, and Jacob Steinhardt. Approximating how single head
attention learns. arXiv preprint arXiv:2103.07601, 2021.

Zhao Song and Chiwun Yang. An automatic learning rate schedule algorithm for achieving faster
convergence and steeper descent. arXiv preprint arXiv:2310.11291, 2023.

Zhao Song, Xin Yang, Yuanyuan Yang, and Lichen Zhang. Sketching meets differential privacy:
fast algorithm for dynamic kronecker projection maintenance. In International Conference on
Machine Learning (ICML), pp. 32418-32462. PMLR, 2023a.

Zhao Song, Mingquan Ye, and Lichen Zhang. Streaming semidefinite programs: O(4/n) passes,
small space and fast runtime. arXiv preprint arXiv:2309.05135, 2023b.

Mitchell Stern, Noam Shazeer, and Jakob Uszkoreit. Blockwise parallel decoding for deep autore-
gressive models. Advances in Neural Information Processing Systems, 31, 2018.

Jovan Stojkovic, Esha Choukse, Chaojie Zhang, Inigo Goiri, and Josep Torrellas. Towards
greener llms: Bringing energy-efficiency to the forefront of Ilm inference. arXiv preprint
arXiv:2403.20306, 2024.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning approach
for large language models. In The Twelfth International Conference on Learning Representations,
2024.

15

Under review as a conference paper at ICLR 2026

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Szymon Tworkowski, Konrad Staniszewski, Mikotaj Pacek, Yuhuai Wu, Henryk Michalewski, and
Piotr Mitos. Focused transformer: Contrastive training for context scaling. Advances in Neural
Information Processing Systems, 36, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Vijay Viswanathan, Chenyang Zhao, Amanda Bertsch, Tongshuang Wu, and Graham Neubig.
Prompt2model: Generating deployable models from natural language instructions. arXiv preprint
arXiv:2308.12261, 2023.

Jiayu Wang, Yifei Ming, Zhenmei Shi, Vibhav Vineet, Xin Wang, and Neel Joshi. Is a picture worth
a thousand words? delving into spatial reasoning for vision language models. arXiv preprint
arXiv:2406.14852, 2024a.

Yilin Wang, Zeyuan Chen, Liangjun Zhong, Zheng Ding, Zhizhou Sha, and Zhuowen Tu. Dolfin:
Diffusion layout transformers without autoencoder. arXiv preprint arXiv:2310.16305, 2023a.

Yilin Wang, Haiyang Xu, Xiang Zhang, Zeyuan Chen, Zhizhou Sha, Zirui Wang, and Zhuowen Tu.
Omnicontrolnet: Dual-stage integration for conditional image generation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7436-7448, 2024b.

Yuntao Wang, Zirui Cheng, Xin Yi, Yan Kong, Xueyang Wang, Xuhai Xu, Yukang Yan, Chun Yu,
Shwetak Patel, and Yuanchun Shi. Modeling the trade-off of privacy preservation and activity
recognition on low-resolution images. In Proceedings of the 2023 CHI Conference on Human
Factors in Computing Systems, pp. 1-15, 2023b.

Zirui Wang, Zhizhou Sha, Zheng Ding, Yilin Wang, and Zhuowen Tu. Tokencompose: Grounding
diffusion with token-level supervision. arXiv preprint arXiv:2312.03626, 2023c.

Dennis Wu, Jerry Yao-Chieh Hu, Teng-Yun Hsiao, and Han Liu. Uniform memory retrieval with
larger capacity for modern hopfield models. In Forty-first International Conference on Machine
Learning (ICML), 2024a.

Dennis Wu, Jerry Yao-Chieh Hu, Weijian Li, Bo-Yu Chen, and Han Liu. STanhop: Sparse tan-
dem hopfield model for memory-enhanced time series prediction. In The Twelfth International
Conference on Learning Representations (ICLR), 2024b.

Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen Ding, Boyang Hong, Ming Zhang, Junzhe
Wang, Senjie Jin, Enyu Zhou, et al. The rise and potential of large language model based agents:
A survey. arXiv preprint arXiv:2309.07864, 2023.

Chaojun Xiao, Zhengyan Zhang, Chenyang Song, Dazhi Jiang, Feng Yao, Xu Han, Xiaozhi Wang,
Shuo Wang, Yufei Huang, Guanyu Lin, et al. Configurable foundation models: Building 1lms
from a modular perspective. arXiv preprint arXiv:2409.02877, 2024.

Chenwei Xu, Yu-Chao Huang, Jerry Yao-Chieh Hu, Weijian Li, Ammar Gilani, Hsi-Sheng Goan,
and Han Liu. Bishop: Bi-directional cellular learning for tabular data with generalized sparse
modern hopfield model. In Forty-first International Conference on Machine Learning (ICML),
2024a.

Hu Xu, Gargi Ghosh, Po-Yao Huang, Prahal Arora, Masoumeh Aminzadeh, Christoph Feichten-
hofer, Florian Metze, and Luke Zettlemoyer. VIm: Task-agnostic video-language model pre-
training for video understanding. arXiv preprint arXiv:2105.09996, 2021a.

Jing Xu, Arthur Szlam, and Jason Weston. Beyond goldfish memory: Long-term open-domain
conversation. arXiv preprint arXiv:2107.07567, 2021b.

16

Under review as a conference paper at ICLR 2026

Xinchao Xu, Zhibin Gou, Wenquan Wu, Zheng-Yu Niu, Hua Wu, Haifeng Wang, and Shihang
Wang. Long time no see! open-domain conversation with long-term persona memory. arXiv
preprint arXiv:2203.05797, 2022.

Zhuoyan Xu, Zhenmei Shi, and Yingyu Liang. Do large language models have compositional abil-
ity? an investigation into limitations and scalability. In ICLR 2024 Workshop on Mathematical
and Empirical Understanding of Foundation Models, 2024b.

Amir Zandieh, Insu Han, Majid Daliri, and Amin Karbasi. Kdeformer: Accelerating transformers
via kernel density estimation. In International Conference on Machine Learning, pp. 40605—
40623. PMLR, 2023.

Bowen Zhang, Zhi Tian, Quan Tang, Xiangxiang Chu, Xiaolin Wei, Chunhua Shen, et al. Segvit: Se-
mantic segmentation with plain vision transformers. Advances in Neural Information Processing
Systems, 35:4971-4982, 2022.

Jieyu Zhang, Ranjay Krishna, Ahmed H Awadallah, and Chi Wang. Ecoassistant: Using llm assistant
more affordably and accurately. arXiv preprint arXiv:2310.03046, 2023.

Jingyi Zhang, Jiaxing Huang, Sheng Jin, and Shijian Lu. Vision-language models for vision tasks:
A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024a.

Jingzhao Zhang, Sai Praneeth Karimireddy, Andreas Veit, Seungyeon Kim, Sashank Reddi, Sanjiv
Kumar, and Suvrit Sra. Why are adaptive methods good for attention models? Advances in
Neural Information Processing Systems, 33:15383-15393, 2020.

Michael Zhang, Kush Bhatia, Hermann Kumbong, and Christopher Ré. The hedgehog & the por-
cupine: Expressive linear attentions with softmax mimicry. arXiv preprint arXiv:2402.04347,
2024b.

Tianyi Zhang, Faisal Ladhak, Esin Durmus, Percy Liang, Kathleen McKeown, and Tatsunori B
Hashimoto. Benchmarking large language models for news summarization. Transactions of the
Association for Computational Linguistics, 12:39-57, 2024c.

17

Under review as a conference paper at ICLR 2026

Appendix

Roadmap. In Section [A] we provide related works of this paper. In Section [B] we provide a
detailed discussion about several potential extensions of our framework. In Section|C] we introduce
basic notations and concepts used in our paper, along with the low-rank approximation technique
introduced in (Alman & Song| [2023) and (Alman & Song} [2024a). In Section [D] we provide details
about how we integrate the gradient of 7;(X) into matrix form. In Sectio% we explain how
to apply the low-rank approximation technique to accelerate the computation for the gradient on
T;(X). In Section [E we extend the result of (Alman & Song, 2024a)) to arbitrary loss functions
and accelerate the computation of gradient on W via the low-rank approximation technique. In
Section[G] we calculate the gradient on Wy, and accelerate the computation of the gradient on Wy .
In Section[H] with the help of math induction, we analyze the time complexity and the approximation
error across the entire model. In Section[l} we discuss how our framework can expand to an attention
mechanism with a causal attention mask. In Section[J]} we provide details about how to integrate our
framework with attention mechanism with the residual connection. In Section [E we argue that,
with the addition of multi-head attention, our algorithm can still achieve almost linear time gradient
computation. In Section ??, we discuss the limitation of this work. Finally, in Section ??, we provide
a discussion about potential societal impact of this work.

A RELATED WORK

Long-context modeling in LLMs. As LLMs grow in size and capability, in-context learning
(ICL) (Min et al., 2022; |Shi et al., |2024b; |Xu et al., [2024b; |Chen et al., |2024a) has become a pre-
ferred method for directing these models to perform a variety of tasks, as opposed to the resource-
intensive process of fine-tuning. Nonetheless, research has indicated that longer prompts can impair
LLMs’ performance due to the limitation on maximum sequence length during pre-training (Li
et al.| 2024b). Consequently, extending the maximum sequence length during pre-training and fine-
tuning stages is imperative. Enhancing training efficiency is crucial given the prevalent use of the
Transformer architecture in LLMs, which incurs a quadratic computational cost relative to sequence
length. Addressing this challenge, some studies have explored continued fine-tuning of LLMs with
extended context lengths (Tworkowski et al., [2024), while others have experimented with the in-
terpolation and extrapolation capabilities of positional embedding (Chen et al., 2023). (Shi et al.,
2024a) handles long context by compressing the input tokens. However, these approaches have not
fundamentally addressed the core issue: the quadratic computational cost associated with sequence
length in the attention mechanism (Keles et al., [2023; [Fournier et al.,|2023). In this study, we delve
into accelerating the attention mechanism, thereby addressing the long-context modeling issue at its
essence.

Attention acceleration. Attention mechanism has faced criticism due to its quadratic time com-
plexity with respect to context length, a concern exacerbated by the increasing length in modern
large language models (LLMs) such as GPT-4 (Achiam et al.,|2023)), Claude 3.5 (Anthropic} |[2024),
Llama 3.1 (Touvron et al.l 2023} [Llama Teaml 2024}, etc. Nevertheless, this limitation can be cir-
cumvented by employing polynomial kernel approximation techniques (Aggarwal & Almanl|2022),
which enable the derivation of a low-rank representation of the attention matrix. This innovation
significantly accelerates both the training and inference processes of a single attention layer, achiev-
ing almost linear time complexity (Alman & Song, 2023} [2024a)), while our work supports both
training and inference for any multi-layer transformer. The foundational concept underpinning the
work of (Alman & Song| 2023};/2024a)) is the extension of the notion that polynomials can effectively
approximate exponential functions to the domain of matrices. Given that each entry of the attention
matrix is activated by a softmax function, the author of (Alman & Song|, |2023)) proposed the use
of a polynomial matrix to approximate the softmax-activated attention matrix. Additionally, they
demonstrated that this polynomial matrix can be factorized into the product of two low-rank ma-
trices. By strategically reordering the sequence of matrix multiplications, these low-rank matrices
are employed to diminish the computational complexity of the attention mechanism’s forward pass
to almost linear time. For more details, please refer to Section 3 in (Alman & Song, 2023). Fur-
thermore, this approach can be extended to higher-order attention mechanisms, i.e., tensor attention
(Alman & Song, [2024b; [Liang et al.| 2024h)). Moreover, there are other theoretical approaches. For
instance, (Liang et al.,2024a)) introduces the conv-basis method to accelerate attention computation.

18

Under review as a conference paper at ICLR 2026

(Han et all 2024) proposes a near-linear time algorithm under the assumptions of uniform softmax
column norms and sparsity.

Attention mechanism. Attention mechanisms, including self-attention and cross-attention, are
pivotal techniques employed in state-of-the-art neural networks. Since it was introduced in
2017), it has gained widespread adoption across various domains. In particular, it is integral
to decoder-only LLMs (Radford et al.,[2019) and the Vision Transformer (ViT) architecture (Doso-|
vitskiy et al.| 2020). The former has been instrumental in the remarkable success of LLMs, while
the latter has significantly advanced the field of computer vision, encompassing applications such
as image generation (Rombach et all, 2022} [Wang et al,[2023c} [2024D)), detection 2022),
segmentation (Zhang et al.,[2022), and layout generation (Gupta et al.,[2021}|Chai et al., 2023} [Wan
et al.} 20234). Moreover, attention mechanism can be integrated into multi-modal models (Xu et al.
20214a; [Zhang et al| [20244; [Liang et al [2024h, Wang et al 2024a), math reasoning (Li et al.
2024a)), diffusion models (Peebles & Xie, [2023} [Liang et al., 2024f; Hu et al., [2024f; [Esser et al.
2024; Ma et al.| [2024b; [Li et al., 2024g), differential privacy (Behnia et al., 2022; [Shi et al., 2022;
Wang et al.,[2023b; [Liang et al., 2024g; [Singh et al 2024} [Chu et al., 2023} [Liang et al.l [2024c; [Li
et al.l 2024d; [Song et al., [20234) and many other techniques (Liang et al., [2024d; [Li et al., 202

Qin et al., 2023azbic; |Song et al., [2023b; Xiao et al., 2024} [Viswanathan et al., 2023).

Attention theory. (Bahdanau et al., [2014) introduced attention mechanisms in NLP, enhancing
encoder-decoder architecture with variable-length vectors to improve machine translation. Build-
ing on this, (Cuong et al.l [2015)) developed local and global attention variants, further refining NLP
tasks. Recent Large Language Model research has focused extensively on attention computation
(Deng et al| [20234; [Alman & Song} 2023}, [Zandieh et al 2023). Studies by (Zandieh et all, 2023}
[Chen et al., 2020; Kitaev et al., [2020) use Locality Sensitive Hashing for attention approximation,
with (Zandieh et al.| [2023) offering efficient dot-product attention. 2023) and (Alman

& Song, [2023) explore static and dynamic attention calculations, while 2023b)) investi-
gates hyperbolic regression regularization. (Deng et al, 2023a)) proposes algorithms for reducing

attention matrix dimensionality in LLMs. Attention has also been examined from optimization and

convergence perspectives (Li et al.},[2023a; [Gao et all,[2023a; [Snell et all,[2021}; Zhang et al., [2020),

investigating word co-occurrence learning (L1 et al., 2023a), regression problems with exponential
activation functions 20234), attention mechanism evolution during training
[2021), and the impact of heavy-tailed noise on stochastic gradient descent (Zhang et al.l [2020).
Theoretical explorations of attention variants include quantum attention (Gao et al., |2023c)), tensor

attention (Alman & Song) 2024b} [Liang et al., [2024h), and differentially private attention (Liang
let all 2024g; Gao et al., [2023b}; [Liang et al., 2024c).

More methods for model acceleration. Various techniques have been developed for model
acceleration. One approach involves modifying model architectures to enable faster inference,
such as Mamba (Gu & Dao) [2023), Linearizing Transformers (Zhang et al.| [2024b)), PolySketch-
Former (Kacham et al., [2023)), and the Hopfield Model (Hu et al.l 2024bza; [Wu et all 2024a}
let al.l 20244} [Hu et al., [2024c} Wu et al, [2024b} [Hu et al., [2023; 2024€) and so on. Another line
of work is to prune the weights in a neural network to reduce running time and memory consump-

tion (Hubara et al.| 2021} Jin et al.,[2022}; [Frantar & Alistarhl [2022; 2023}, [Sun et al., 2024} [Li et al],
2024c}|Liang et al.}[2024D)). In addition, specific techniques have been developed to accelerate LLM

generation (Chen et al.,[2024bja; [Song & Yang| 2023} [Li et al., 2024¢]).

B DISCUSSION AND EXTENSION DETAILS

In Section we argue that our framework can easily adapt to the multi-head attention mechanism.
In Section@ we introduce how to integrate residual connection to our framework. In Section[B23]
we detail the integration of the causal attention mask into our algorithm. In Section[B:4] we discuss
the possibility of the synergy between our theoretical side attention acceleration and the existing
system-level attention acceleration mechanism. In Section [B.3] we show how to expedite prompt
tuning using our results.

19

Under review as a conference paper at ICLR 2026

B.1 MULTI-HEAD ATTENTION

The multi-head attention mechanism was first introduced by (Vaswani et al.,2017). This innovation
allows a token to simultaneously attend to multiple positions within the same layer, thereby enriching
the model’s capacity for capturing various dependencies. However, this enhanced capability comes
with an increase in the size of the attention matrix f(X) from 1 X n x n to h X n x n, where
h is the number of attention heads. To mitigate the computational burden, each head’s vector is
derived by splitting the original vector, reducing the dimensionality of each head to dj, := d/h. To
summarize, the key distinctions between multi-head and single-head attention are (1) an enlarged
attention matrix f(X) and (2) a reduced dimensionality dj, within each attention head.

Enlarged attention matrix. As previously discussed, the attention matrix’s dimensionality in-
creases with the number of heads, h. Despite this expansion, the application of the low-rank approx-
imation technique, as outlined in Section [f.1] ensures that the computation time for the attention
matrix remains almost linear. Specifically, for a constant number of heads h in the multi-head mech-
anism, the time complexity for computing f(X) € R**"x" js . plHo(l) = pl+o(d)

Reduced dimensionality. Another differentiating factor of multi-head attention is the lower di-
mensionality processed by each head, i.e. dj, := d/h, compared the full d in single-head attention.
This reduction ensures that the gradient computation time does not increase with the introduction of
multiple attention heads.

We provide comprehensive analysis of the synergy of our algorithm with multi-head attention in
Section[K] We first prove in Lemma[K.2] with the addition of multi-head attention, the gradient over
the attention mechanism can be computed in almost linear time. Then, we further prove that for any
multi-layer transformer, with multi-head attention, the gradient can be computed in almost linear
time as well.

B.2 RESIDUAL CONNECTION

Residual connection is a pivotal technique in deep neural network architectures, effectively address-
ing issues such as vanishing and exploding gradients during training process, and facilitating faster
convergence of the model. Residual connection is also integrated into the standard attention mech-
anism. Formally, given the intermediate variable T;(X) output by the i-th transformer layer as
defined in Definition [2.3] we provide the formal definition of residual connection in Definition
and Since the residual connection only brings an additional add operation to each component
and with T;(X) belonging to the space R™*, the residual connection introduces only a marginal
computational overhead of O(n - d) per layer. Consequently, the total computational cost for each
layer is O(n - d) + n'+°(1) = 1+ Hence, by intuition, the inclusion of residual connections
does not compromise the overall complexity of our method.

The detailed analysis is provided in Section[J] where we first prove in Lemma[J.3] that if the gradient
over one structure can be computed in almost linear time, then with the addition of the residual
connection, the gradient can also be computed in almost linear time. Then we use math induction to
extend our result to the entire multi-layer transformer model.

B.3 CAUSAL ATTENTION MASK

In transformer training, attention mask is a crucial component, designed to prevent a given token
from attending to future tokens in the sequence. Causal attention mask is a widely used attention
mask, which is configured as a lower triangular matrix, where elements on or below the main diag-
onal are ones, with all other entries being zeros.

Now we describe how to incorporate this into our algorithm. Let M € {0,1}"*" represent the

causal attention mask (see Definition . Let f(X):= D Y (M ® A) where A = exp(XWX " /d)
and D := diag((M ©® A) - 1,,). Lemmall.1|reveals that A has a low-rank representation given by
UoV,' . Using Lemma we know (M © (UpV,'")) - v for any vector v € R™ can be computed in
almost linear time.

20

Under review as a conference paper at ICLR 2026

To integrate the causal mask into the gradient computation within each transformer layer, we first
find all instances that have the structure of f(X) - H or (f(X)® (UV ")) - H, where H,U,V are

low rank matrices. Then, we replace f(X) with f(X) in these instances. More detailed analysis of
causal attention can be found in Section[I} To be more specific, we group the gradient components for
T;, Wi, Wy, into two categories, one for dot product (Lemma [[.7), another for Hadamard product
(Lemma [[.8). After showing each component can be calculated in almost linear time, the overall
gradient computation remains n'T°(1) time. Thus, our framework can seamlessly accommodate
causal attention masks.

B.4 SYSTEM-LEVEL ATTENTION ACCELERATION

The attention computing acceleration involves a two-pronged strategy that leverages both system-
level improvements (e.g. Flash Attention (Dao et al.l [2022; [Dao, 2023} |[Shah et al., |2024))) and the
theoretical time complexity improvements (e.g. our work and (Han et al.,2024)).

Numerous efforts have been made in the literature to accelerate attention calculations at the sys-
tem level. For instance, Flash Attention (Dao et al., |2022; [Daoj 2023} [Shah et al. 2024)) targets
the I/O bottleneck inherent in attention mechanisms. Studies such as block-wise parallel decod-
ing (Stern et al., [2018) focus on implementing parallel decoding within transformer models to en-
hance inference speed. Additionally, recent advancements in the field of speculative decoding, such
as Medusa (Cai et al.| 2024), leverage a smaller, more efficient model to generate predictions, with
the larger model only responsible for validating, the smaller model’s outputs (Leviathan et al.,[2023).

Despite these innovations, the aforementioned methods do not address the fundamental quadratic
time complexity O(n?) of the attention mechanisms. This presents an opportunity to complement
our low-rank approximation technique, with these system-level optimizations, thereby achieving
an even greater acceleration in attention computation. For instance, we could design an I/O-aware
algorithm for Algorithm |1} similar to the approach taken by Flash Attention, to effectively leverage
GPU acceleration.

To implement our algorithm practically on GPU, we have some coding challenges to fix: (1) we
need to define some new tensor operations in PyTorch, e.g. Eq. (3), Eq. (8); (2) we need to sys-
tematically re-implement some back-propagation function of the current PyTorch function; (3) we
need to implement some CUDA function to run our algorithm in parallel for the casual mask, see
discussion in Section[B.3] We may leave this as our future work.

B.5 PROMPT TUNING

Prompt tuning, as introduced by various studies (Li & Liang, 2021} [Lester et al., 2021} [Liu et al.,
2022; Mu et al.l 2024} Hu et al., |2024d; [Liang et al., 2024e), has emerged as a parameter-efficient
fine-tuning strategy for large language models (LLMs). Specifically, prompt tuning involves ad-
justing “soft prompts” conditioned on frozen LLMs. This method requires relatively small number
of tuneable parameters compared with fine-tuning the entire LLMs, making it a popular choice for
conserving training resources, including data and computational power.

The analysis reveals that the essence of prompt tuning involves computing gradients with respect to
the soft prompts X, across the entire model. In both prompt tuning and full fine-tuning, the quadratic
O(n?) computational complexity of gradient calculation remains the same due to the self-attention
mechanism inherent in LLMs.

In this work, leveraging the low-rank approximation technique discussed in Section our algo-
rithm (Algorithm [T) efficiently computes gradients on soft prompts X, over the entire model in
almost linear time. This suggests that our method is universal and can also be applied within tradi-
tional prompt tuning frameworks.

C PRELIMINARY ON GRADIENT CALCULATION

In Section [C.1] we list several useful math facts used in the following sections of this paper. In
Section [C.2] we provide the close forms of the gradient components. In Section [C.3] we introduce
some mathematical definitions to facilitate understanding of gradient calculations. In Section

21

Under review as a conference paper at ICLR 2026

we list some low rank approximation technique introduced in (Alman & Song} 2023)) and (Alman &
Song| [2024a)). In Section|C.5] we demonstrate that the entries of matrices defined in Section|C.3|are
bounded.

Notations. For two vectors z € R™ and y € R", we use (z,y) to denote the inner product
between z, y. Namely, (z,y) = >, z;y;. We use e; to denote a vector where only i-th coordinate
is 1, and other entries are 0. For each a,b € R"™, we use a ® b € R"™ to denote the Hardamard
product, i.e. the i-th entry of (a ® b) is a;b; for all i € [n]. We use 1,, to denote a length-n
vector where all the entries are ones. We use || A|| to denote the /., norm of a matrix A € R"*9,
ie. ||Allcc := max;ep) jeia) |4 |- We use poly(n) to denote polynomial time complexity with
respective to n.

C.1 BASIC MATH FACTS

In this section, we provide some useful basic math facts,
Fact C.1. Let x,y,z € R™. Then we have

s (2O y,z) =2 diag(y)z.
* (2, (y©2) =(y, (2 ©2) = (2, (y ©2))
* (2,y) = (z Oy, 1,).

Then, we introduce a classical folklore used for the Hadamard product of two matrices.
Fact C.2 (Folklore, (Alman & Song} 2024a))). Let Uy, V; € Rk, Let Uy, Vo € R™"**2_ Then we
have

(U1 W)e(Us V')=Uol)(VioV)'
NGNS NGNS N Nl
nXxki ki xn nXxka kyxn nxkiks kikaxn

Here, given U, € R™*1 and Uy € R™*2 the Uy @ Uy € R %152 s the row-wise Kronecker
product, i.e., (Uy @ U2); 1, +(15—1)k; = (U1)i1, (U2)ig, foralli € [n], Iy € [kq] and la € [ko].

C.2 CLOSE FORM OF THREE GRADIENT COMPONENTS

We first restate the definition of self-attention, where we denote W := WoW,. € R?*? for sim-
plicity.
Definition C.3 (Self-attention module). Let X € R™*¢ denote the input sequence, where n, is the
number of input tokens and d is the hidden dimension size. Let Wy € R be the value weight
matrix, and let W := W WE € R pe the key-query weight matrix. The self-attention function
Attn(X) with weights W, Wy is:

Attn(X) = Softmax (XWX " /d) - X - Wy
where Softmax is applied to each row of its input matrix. The attention can be re-written as:

Attn(X) = f(X) - X - Wy,

where (1) A == exp(XW X T /d) € R"*" and exp is applied element-wise, (2) D := diag(Al,,) €
R™*" and (3) f(X) := D1 A € R"*" is the attention matrix.

Note that the gradient of W and Wi can easily be calculated from the gradient of IV, i.e.,
dL(X) dL(X) dW

AW, aw dwg
dL(X)
= Taw VK

where the first step follows from the chain rule, and the second step follows from basic calculus.

Then, we show how to derive the close form for the gradient components within each layer of a
multi-layer transformer.

22

Under review as a conference paper at ICLR 2026

Lemma C.4 (Close form of gradient components, formal version of Lemma 2.4). If we have the
below conditions,

Let L(X) be defined as Definition

Let W; = WQW; € R4 pe the key-query weight matrix, Wy, € R*4 be the value
weight matrix for the i-th transformer layer.

Let T;(X) denote the intermediate variable output by i-th self-attention transformer layer

(see Definition 2.3).

Let G; € R"*4 denote the gradient matrix resulting from the application of the chain rule
dL(X)

up to the function g;, i.e., G; = Thtn: (T, 1 ()"
For ia € |n],jo € [d], let G;(ia,j2) denote the (ia,j2)-th entry of G;, let

dAttniég:g)))iz’“ € R"*4 denote the gradient of (iz, ja)-th entry of Attn;(T;_1(X)).

Then, we can show that

Part 1.
dL(X) " dAEN (T (X))i,
—— = Gi(iz, j2) - 22
dTi 1 (X) 232 dT; -1 (X)
Part 2.
dL(X) i zd: o dAN(Tio 1 (X))i,
= Gi(i2,j2) - 22
aw, A e aw;
Part 3.

n d
dL(X) = Z Z Gi(i27j2) : dAttni(Tifl(X))i%j? :

dWy, : dWy,
o 7,2:1]2:1 K
Proof. We have
e L(X)eR.
. Attni(Ti_l(X)) S RnXd,Ti_l(X) S R™xd,
e W, € RdXd, in € Rixd,
Therefore, we have
o _dL(X) nxd dAttni(Ti_1(X)) nxd)x(nxd
Ty € Rrxd, BETa0) ¢ Rnxd)x(nxd),
R dL(X) dxd dAttn; (T; 1 (X)) nxd dxd
LOO ¢ gixa, 4T (0) ¢ Renxd)x(dxd),
. il{/‘(/)‘i) € RIxd, dAttnii(g;/i‘;il(X)) e R(nxd)x(dxd)
Then, simply applying chain rule, we can get the final results. O

23

Under review as a conference paper at ICLR 2026

C.3 BASIC NOTATIONS FOR COMPUTING GRADIENTS

We remark that, in this section, for convenience of computing a closed form for the gradient, we
ignore the 1/d factor in function Softmax. Since it is only a rescaling factor, it won’t affect how we
compute these matrices in general.

Before we move on to compute gradients, we need to define some useful notations.

We begin with introducing the index for a matrix.

Definition C.5 (Simplified notations). For any matrix Z € R™ %, fori € [n],j € [d], we have
following definitions:

» Let Z; ; and Z(i,j) denote the (i, j)-th entry of Z.
N
scalar

» Let Z; . and Z(i, x) denote the i-th row of Z.

~—
dx1

» Let Z, j and Z(*, j) denote the j-th column of Z.
~

nx1

Then, we define the exponential matrix in the attention mechanism.

Definition C.6 (Exponential function w). If we have the below conditions,
o Let X € R™*4
o Let W := WoW/- € Rixd
We define u(X) € R™*™ as follows
u(X) == exp(XWXT)

Then, we introduce the summation vector of the aforementioned exponential matrix.

Definition C.7 (Sum function of softmax «). If we have the below conditions,
o Let X € R4
» Let u(X) be defined as Definition

We define a(X) € R™ as follows

Then, with the help of the summation vector, we are ready to normalize the exponential matrix and
get the softmax probability matrix.

Definition C.8 (Softmax probability function f). If we have the below conditions,

e Let X € R4

o Let u(X) € R™ " be defined as Definition

* Let a(X) € R™ be defined as Definition|C 7]
We define f(X) € R™"*™ as follows

F(X) = ding(a(X)) u(X)

where we define f(X);'; € R™ is the jo-th row of f(X).
Besides the probability matrix introduced above, we introduce the value matrix in the following

definition.

24

Under review as a conference paper at ICLR 2026

Definition C.9 (Value function h). If we have the below conditions,
o Let X € R"¥¢
o Let Wy € Réxd

We define h(X) € R"* as follows
hMX) = XWy

Then, we introduce s(X) to represent the output of the attention mechanism.
Definition C.10 (Self-attention output s). If we have the below conditions,

o Let f(X) be defined as Deﬁnition
* Let h(X) be defined as Definition|C-9]

We define s(X) € R"*4 as follows

Then, we introduce ¢(X) and p(X) to facilitate the calculation of the gradient on V.
Definition C.11 (Definition of ¢(X)). If we have the below conditions,

o Let h(X) € R™* be defined as in Deﬁnition

o Let G; € R™*? denote the gradient matrix resulting from the application of the chain rule

.) dL(X
up to the function g;, i.e., G; = Wm

* Foris € [n], jo € [d], let G;(iz, j2) denote the (ia, j2)-th entry of G;.
We define q(X) € R"*" as
(X)".

=G, h
S N——
nxd dxn

q(X)

where we define q(X);'; € R™ is the jo-th row of q(X).
Definition C.12 (Definition of p(X), Definition C.5 in (Alman & Song, 2024a))). For every index
Jo € [n], we define p(X);, € R™ as
P(X)j, = (diag(f(X)j,) — F(X)jo f(X)})a(X)jo
where we have p(X) € R™*™ and we define p(X);»'; € R™ is the jo-th row of p(X).

Furthermore, we define p1(X) = f(X)©q(X) and p2(X) = diag(p1(X)-1,,) f(X). Additionally,
we can calculate p(X) as

p(X) = p1(X) — p2(X)
C.4 LOW RANK REPRESENTATIONS

Using (Alman & Song [2023)’s polynomial method techniques, we can obtain the following low-
rank representation result.

Lemma C.13 (Low rank representation to f, Section 3 of (Alman & Song} [2023)), Lemma D.1
of (Alman & Song, 2024a)). For any R = o(y/logn), there exists a ky = n°Y) such that: Let
X € R and W € R4 be a square matrix. It holds that | XW |l < R, X|lee < R,
then there are two matrices Uy, Vy € R™ ¥t such that ||[UV;" — f(X)||e < €/poly(n). Here
F(X) =D lexp(XWXT) (see also Deﬁnition and we define D = diag(exp(XW X T)1,,)
(see also Definition . Moreover; these matrices Uy, Vi can be explicitly constructed in n'*+°(%)
time.

25

Under review as a conference paper at ICLR 2026

A similar technique can be applied to s(X).

Lemma C.14 (Low rank representation to s). Let d = O(logn). Assume that each number in the
n x d matrices h(X) € R"*? can be written using O(logn) bits. Let n x d matrix s(X) € R"*4 be
defined as Deﬁnition Then, there are two matrices U1, Vi € R™*1 we have | UV, h(X) —
§(X)[leo < €/ poly(n).

Proof. We can show that
U VA" R(X) = s(X) oo = [U1VAT A(X) = F(X)R(X)]loo
= [I(U V" = £(X) h(X) [l
—_——

nxn nxn nxd

<nl| UtVy" = F(X) lloc [l A(X) lloo
—— ~——

nxn nxn nxd
<nl|U1V;" = £(X) [l - pOly(n)
—— N~
nxn nxn

< ¢/ poly(n)

where the 1st step is from the choice of s(X), the 2nd step comes from AC — BC = (A — B)C
holds for any matrices A, B, and C, the 3rd step is because of basic linear algebra, the 4th step
is due to each number in h(X) can be written using O(log(n)) bits, the fifth step follows from

[UV," = F(X) oo < €/ poly(n).
O

We can also get a low-rank representation of p; (z) and pa(x).

Lemma C.15 (Low rank representation to p;(X), Lemma D.4 of (Alman & Song| [2024a)). Let
ky = n°W. Let ky = n°M). Assume that py(X) := f(X) ® ¢(X). Assume Uy,V; € R™M
approximates the f(X) such that ||[UV;" — f(X)|lee < €/poly(n). Assume Uy, Vo € R™*k2
approximates the q(X) € R™*™ such that ||UsVy' — q(X)|leo < €/ poly(n). Then there are
matrices Us, Vi € R™¥*3 such that ||[UsV3" — p1(X)||leo < €/ poly(n). The matrices Us, V3 can be

explicitly constructed in n*T°W) time.

Lemma C.16 (Low rank representation py(X), Lemma D.5 of (Alman & Song, 2024a))). Let ki =
n°M). Let ky = n°M). Let ky = n°M). Assume that py(X) is an n x n where jo-th row p2(X)j, =

f(X)jof(X);Eq(X)jo for each jo € [n]. Assume Uy, Vi € R™ ¥ approximates the f(X) such
that UL V)" — £(X)||eo < €/ poly(n). Assume Us, Vo € R"**2 approximates the ¢(X) € R™*"
such that ||U3Vy' — q(X)|leo < €/ poly(n). Then there are matrices Uy, Vy € R™ ¥ such that

1U.V," — p2(X)|loo < €/ poly(n). The matrices Uy, Vy can be explicitly constructed in n*+°(1)
time.

C.5 BOUNDED ENTRIES OF MATRICES

In this section, we provide proof that entries of matrices are bounded.

We begin with the exponential matrix f(X).
Lemma C.17 (Bounded entries of f(X)). If we have the below conditions,

o Let f(X) € R"™*™ be defined in Deﬁnition
Then, we can show that

[F (X))o <1

Proof. By Definition [C.8] we have
F(X) = diag(a(X)) ™ u(X)

26

Under review as a conference paper at ICLR 2026

By Definition[C.7] we have
a(X) =u(X)1,

Combining above two equations, we have

[F (XMoo <1

A similar analysis can be applied to h(X) and s(X) as well.
Lemma C.18 (Bounded entries of h(X)). If we have the below conditions,

o Let X € R™ W, Wy € R™ be defined in Deﬁnition
* Assuming each entry of X, W, Wy can be re represented using O(log(n)) bits.
o Let h(X) € R"*4 be defined in Deﬁnition

Then, we can show that

[2(X)lsc < poly(n)

Proof. By Definition[C.9} we have
h(X) = XWy

Then, we have

[A(X)]loo = I XWy s
<l X oo W [| 0o
< poly(n)

where the 1st step is from the definition of h(X), the 2nd step comes from basic linear algebra, the
3rd step is because of each entry in X and Wy, can be represented by O(log(n)) bits. O

Lemma C.19 (Bounded entries of s(X)). If we have the below conditions,
o Let X € R™ W, Wy € R be defined in Deﬁnition
* Assuming each entry of X, W, Wy can be re represented using O(log(n)) bits.
o Let s(X) € R"*4 be defined in Deﬁnition

Then, we can show that

[5(X)loe < poly(n)

Proof. By Definition[C.10] we have

Then, we have
[8(X) oo = llF(X)R(X)l0o
<l £ (X)oo 1(X) oo
< poly(n)

where the 1st step is from the definition of ¢(X), the 2nd step comes from basic linear algebra, the

3rd step is because of Lemma[C.17} [C.18] O

27

Under review as a conference paper at ICLR 2026

D MATRIX VIEW

. dL(X)
In this section, we dive into analyzing the gradient of T 0

In Section we give the gradient of s(X') with respective to X. In Section we show the close
form of the gradient on 7;(X) via the chain rule. In Section we integrate each C;(X) to its
corresponding matrix term B;(X). In Section applying the similar technique used in the previ-
ous section, we integrate the gradient on 7;(X) into its corresponding matrix view. In Section
we further apply matrix integration on each matrix term in the gradient on T;(X) calculated in the
previous section. In Section[D.6] we give the matrix view of all gradient components.

D.1 GRADIENT OF s(X)

In this section, we give the gradient of s(X') with respective to X.

The results from (Deng et al.,2023b)) give the gradient of ¢(X). By chain rule, the gradient of s(X)
is equivalent to the gradient of ¢(X') from (Deng et al., 2023b), since ¢(X) = s(X) — B where B is
a constant matrix.

Lemma D.1 (Gradient of s(X);, j,, Lemma B.16 in (Deng et al., [2023b)). If we have the below
conditions,

o Let 5(X) € R"*? be defined as Deﬁnition
Then, we have

e Part 1. Forallig =i, € [’I’L}, Jo,J1 € [d},
dS(X)io,jo

e = C1(X) + C2(X) + C3(X) + Ca(X) + C5(X)

1,J1
where we have definitions:
- Cl(X) = *S(X)imjo : f(X)ioyio : <Wj17*ﬂXio,*>
- C2(X) = _S(X)imjo ’ <f(X)i07*’XW*7j1>
- C3(X) = f(X)imio ’ h(X)iOJO ’ <Wj1,*,Xi0,*>
- 04(X) = <f(X)i0,* © (XW*Jl)a h(X)*,j0>
- C5(X) = f(X)imio ’ (WV)j17j0
 Part 2. For all ig # i1 € [n], jo,J1 € [d],
ds(X)i, .5
EUiose — 04(x) + r(x) + ()
dXihjl
where we have definitions:
- CG(X) = _S(X)imjo ’ f(X)ihio : <Wj1,*’Xio,*>
s This is corresponding to Cy(X)
- 07(X) = f(X)’ihio ’ h(X)’ihjo ’ <Wj17*’Xio,*>
s This is corresponding to C3(X)
= Cs3(X) = f(X)irio - (W)10
s This is corresponding to Cs(X)

D.2 GRADIENT ON T;(X)

In the Lemma we use the chain rule to calculate the close form of the gradient on T;(X).
Lemma D.2 (Gradient for T;(X)). If we have the below conditions,

e Let Attn; be defined as Definition
o Let T;(X) € R"*9 be defined as Definition

28

Under review as a conference paper at ICLR 2026

* Let s(X) be defined as Definition|C.10}

o Let G; € R™*? denote the gradient matrix resulting from the application of the chain rule

up to the function g;, i.e., G; = %.

» Foriy € [n], j2 € [d], let G (i2, j2) denote the (iz, j2)-th entry of G;.

Then, we can show that, for iy € [], 71 € [d], we have
dL(X ds()i
T Gilio, jo) - — 20
dT;- 1 X 21,J1 102:1]02:1 XZIJI

Proof. By Lemma@ we have

o dAN (Ti-1(X))is s
dn K - ZG V0 R

ia=1 jo=1

By Definition [C.3]and Definition [C.10} we have
Attni (T3 (X)) = 5(T;-1(X))

Therefore, by combining above two equations and substituting variable T; _; (X) = X, we have

dL ds(X),
— G (0, jo) oo
dT’L 1 l17]1 zozjl]0221 dX’LlJl

D.3 MATRIX VIEW OF C(X)

In this section, we will provide the matrix view of C;(X) € R, fori € {6,7,8,2,4}. We will
consider each C;(X) one by one. We begin with Cg(X).

Lemma D.3 (Matrix view of C(X)). If we have the below conditions,
o Let Co(X, i1, 1) := —5(X)ig jo - [(X)irsio - (Wi s, Xig,x) be defined as in Lemmal|D. 1]

s We define a matrix Bs(X) € R"*9. Forall iy € [n],j1 € [d], let Bs(iy,j1) denote the
(il,jl)-ﬂ’l entry OfBG(X). We define BG(Z.17].1) = CG(X, il;jl)-

Then, we can show that

Bo(X) = —5(X)igjo [(X)wig (W Xig)
N~—— D e e e

nxd 1x1 nx1 1xd
Proof. We have
CG(Xailajl) = (X)Zo,Jo : ()7171'0 ! <Wj1,*7X7307*>
= (X)Zo»jo : ()21,10 Xz—(: *lei*

where the 1st step is from the choice of Cg(X), the 2nd step comes from (a, b) = a ' b holds for any
a,be R

We have
BG(X)(ilv*) = *5<X)i07jo f(X)ihiO W Xio,*
~———— —— —— VT~
dx1 1x1 1x1 Axd gyq

Then, we have
BG(X) = _S(X)’imjo f(X)*,io (H/ Xzo,)

nxd 1x1 nx1 1xd

29

Under review as a conference paper at ICLR 2026

A similar analysis procedure can also be applied on C7(X).
Lemma D.4 (Matrix view of C7(X)). If we have the below conditions,

 Let C7(X i1, 1) := [(X)irsio - M(X)josir - (Wi s Xig,«) be defined as in Lemma|D. 1}

» We define a matrix B;(X) € R" 4, Forall iy € [n],j1 € [d], let B;(i1, 1) denote the
(i1, j1)-th entry of B;(X). We define By (i1,51) = C7(X, i1, j1).

Then, we can show that
Br(X) = (f(X)uio © h(X)ujo) - (W - Xig)"

nxd nx1 1xd

Proof. We have

07(X’i17j1) = f(X)i1,i0 ’ h(X)ihjo ’ <le7*7Xi07*>
- f(X)il,iu ’ h(X)il,jo ’ WT Xi07*

J1,*

where the 1st step is from the choice of C7(X), the 2nd step comes from (a, b) = a ' b holds for any
a,b e R%.

We have
Br(X) (i1, %) = f(X)iyio - M(X)iy jo - W+ Xig

Then, we have

Then, we provide an analysis of Cs(X).
Lemma D.5 (Matrix view of Cs(X)). If we have the below conditions,

o Let Cs(X, i1, 1) := [(X)irio - (Wv)jy,jo be defined as in Lemmal[D.1|

o We define a matrix Bs(X) € R"*. Forall iy € [n],j1 € [d], let Bg(i1,j1) denote the
(il,jl)-lh entry OfBS(X). We define Bg(il,jl) = Cg(X, il;jl)-

Then, we can show that

Bs(X) = f(X)xis Wv).l 4,
N—— e ——
nxd nx1 1xd

Proof. We have

CS(X’ ilvjl) = f(X)ih’io ’ (WV)jhjo
where the 1st step is from the choice of C7(X).
We have

Bs(X) (i1, %) = f(X)iy i - Wy)ujo
Then, we have

Bs(X) = f(X)wio (W),

nxd nx1 1xd

30

Under review as a conference paper at ICLR 2026

Now, we consider C(X).

Lemma D.6 (Matrix view of C2(X)). If we have the below conditions,
 Let Co(X, j1) == —5(X)igjo * (f(X)ig,e» XWi j,) be defined as in LemmalD.]]

o We define a matrix Ba(X) € R For all j; € [d), the ji-th entry of Bo(X) is defined as
CQ (Xv Jl)

Then, we can show that

By(X) = =5(X)ig jo WL X T F(X)ig
N AN AL S T AN AL
dx1 1x1 dxd dxn 9

Proof. We have
C2(X7j1) = S<X>lo,J0 ’ < (X)ioy*’XW*ij
S(X)LO,]() ’ (XW* Jl) f(X)'i(u*
= (X)Zo ,Jo * NI XT f(X)loy*

d><n

1x1 1xd nx1

where the 1st step is from the choice of Cy(X), the second step follows from (a,b) = a b, for any
a,beR™

Then, we have

Ba(X) = =5(X)igjo W L X T F(X)ig s
———

—_— IO 0
dx1 1x1 dxd dxn 551

Finally, we analyze C4(X), which is the last term we need to compute.

Lemma D.7 (Matrix view of Cy(X)). If we have the below conditions,
* Let Cy(X, j1) = (f(X)igx © (XW,j,), h(X)s j,) be defined as in LemmalD.]]

o We define a matrix By(X) € R%. For all j; € [d), the ji-th entry of B4(X) is defined as
Ca(X, j1).
Then, we can show that

B4(X) = W;{: (f(X)lo,* © h(X)*,jo)

{

nx1

Proof. We have

04(Xajl) = <f(X)i0,* © (XW 7j1) h(X)* j0>
<f(X)i0,* © h()* Joo (XW 7]1)>
= (XWeji) T (F(X)ige © (X))

where the 1st step is from the choice of Cy(X), the 2nd step comes from Fact and the last step
follows from basic linear algebra. O

D.4 MATRIX VIEW OF GRADIENT ON T;(X)

Since we have got the matrix Vlew of each C;(X) term in the previous section, we can get the matrix
view of the gradient on 7;(X) in Lemma-

Lemma D.8 (Matrix view of single entry of gradient). If we have the below conditions,

31

Under review as a conference paper at ICLR 2026

* Let s(X) be defined as Definition|C.10}

o Let G; € R™*? denote the gradient matrix resulting from the application of the chain rule

.) dL(X
up to the function g;, i.e., G; = m.

o Forig € [n], j2 € [d], let G;(i2, j2) denote the (ia, j2)-th entry of G;.
s Let Bs(X),B7(X),Bs(X) € R"™ 9 be defined in Lemma |D.3| Lemma and

Lemma
o Let Bo(X), B4(X) € R? be defined in Lemma@and Lemma@

For any ig € [n], jo € [d], we have
ds (X)io »Jo

Gi(io, jo) - X ZGi(io,jo)'(Bﬁ(X)+B7(X)+38(X)+\6?/(B2(X)+B4(X))T)

1x1 nxd nx1 1xd

Proof. By Lemma|D.1| we have

e Part 1. For all ig = iy € [n], jo,J1 € [d],
P o _ 0, (0x) 1 C(X) + C4(X) + Cu(X) + C5(X) 1)
11,71
* Part 2. For all iy # i1 € [n], jo,j1 € [d],
dS(X)imJb

X, = Cs(X) + C7(X) + C3(X))

ds(X)tU

Since for any i € [n], j1 € [d], let G;(io, jo) - —3x 20 denote the (i1, j1)-th entry of G; (i, jo0) -
21,31

ds(X)in.i : 1
%, we consider the following two cases:

* Case 1. The io-th row of G;(ig, jo) - %

ds(X)

* Case 2. The other n — 1 rows of G;(io, jo) - — x> where i; # io.

We first consider Case 1.

Recall that the matrix view of Co(X), C4(X) € R are Bo(X), B4(X) € R?, and the matrix view
of Cs(X),C7(X),Cs(X) € Rare Bg(X), By(X), Bs(X) € R"*“, respectively.

For k € {6,7,8}, we use Bi(X)(s, *) € R? to denote the s-th row of By (X).

We use (G;(io, jo) - %)(io,) € R? to denote the 7o-th row of G (49, jo) - %

Since Cg(X), C7(X), Cs(X) are the corresponding parts of C; (X), C3(X), C5(X), and by Eq. (1),
then we can have the following

(Gi(io, Jo) - ds(ff%)(im*)

= G;(io, jo) - (Be(X)(i0, *) + Br(X)(io, *) + Bs(X)(io, *) + B2(X) + Ba(X))
—_———

1x1 dx1

We then consider Case 2.

For k € {6,7,8}, we use By(X)(# s,%) € R(""1xd to denote the matrix By,(X) with the s-th
row removed.

Similarly, we use (G; (4o, jo) - %)(7é i, *) € R=1xd to denote the matrix G;(ig, jo) -

% with the 7y-th row removed.

32

Under review as a conference paper at ICLR 2026

By Eq. (Z), we have

ds (X>i0 »Jo

(Giio, Jo) - aix)(# 0, *) = Gilio, jo) - (Be(X)(F 90, *) + Br(X)(# io, *) + Bs(X)(# d0, *))

1x1 dx(n—1)

Combining Case 1 and Case 2 together, we have

dS(X)io,jo

Gi(io, jo) - X :Gi(io,jo)'(BG(X)JrB?(X)+38(X)+&(B2(X)+B4(X))T)

1x1 nxd nx1 1xd

Then, we have the matrix view of T;(X) gradient.

Lemma D.9 (Matrix view of T;(X) gradient). If we have the below conditions,

* Let L(X) be defined as Definition[2.1]
o Let T(X) be defined as Definition

s Let G; € R™? denote the gradient matrix resulting from the application of the chain rule

up to the function g;, i.e., G; = %.

o Forig € [n], j2 € [d], let G;(i2, j2) denote the (ia, j2)-th entry of G;.

s Let Bs(X),B7(X),Bs(X) € R"™ 9 be defined in Lemma |D.3| Lemma and
LemmalD.J)

o Let Bo(X), B4(X) € R? be defined in Lemma@and Lemma@

Then, we have

n d
Z Z i(i0, jo) (X)+B7(X)+Bs(X)+\ei;(Bz(X)+B4(X))T)

1x1 nxd nx1 1xd

dTl 1(

Proof. By Lemma|D.§] we have

ds(X)io ,Jo

Gi(io, Jo) - X :Gi(io,jo)‘(Bﬁ(X)‘i‘BﬂX)+Bs(X)+\€i,o/(Bz(X)+B4(X))T)

1x1 nxd nx1 1xd

Then, by Lemma [C.4] we have

n d o dAEN (Ti-1(X))iy s
ZZ Z27]2 d '

dTZ 1 Ti- 1(X)

After combining the above two equations, we are done. O

D.5 MATRIX VIEW OF EACH TERM IN GRADIENT ON T;(X)

In this subsection, we reduce the double summation to a matrix product for easy and clear analysis.

We first work on the Bg term.
Lemma D.10 (Matrix view of Bg(X) term). If we have the below conditions,

e Let Bo(X) = —s(X)igjo F(X)usig W - X,)" be defined in Lemma|D.3
N—— N N e e’

nxd 1x1 nx1 1xd

33

Under review as a conference paper at ICLR 2026

» We define z(X) € R™*™, which satisfies
26(X) i = (Gilio, *) " 5(X)ig) [(X)ig
—_———— ————— — — ——
nx1 1xd dx1 nx1
e Let f(X) € R"*" be defined in Definition|C.8|
« Let W € R¥? pe defined in Definition|C.3|

s Let G; € R™? denote the gradient matrix resulting from the application of the chain rule

up to the function g;, i.e., G; = %.

» Foriy € [n], j2 € [d], let G;(i2, j2) denote the (iz, j2)-th entry of G;.

Then we have

n d
> Y Gilio, jo) Bs(X) = — z6(X)

X W
- : M~
io=1jo=1 1x1 nxd nxn nxd dxd
Proof.
n d n d
>0 Gilio,jo)Be(X) = = > > Gilio, jo) (X)ig o £(X)wio (W Xig)"
= iozleZIA’_/H/_/H’_/%’_/

1x1 1x1 nx1 1xd

n d
= - Z Z ii0,50) $(X)igjo) F(X)wi (W - i)
S — \—\,—/w_/ N— N ———

1x1 1x1 nxl1 1xd

n

= (Gilio,#) " $(X)ig) F(X)iy (W - Xigu) "

io=1

1xd dx1 nx1 1xd
n

- Z (Gz(207 *)T S(X)’io,*) f(X)*,ZO 10 * WT
—_— A/—’\v/

10=1 dxd

1xd dx1 nx1 1xd

where the st step is from the choice of Bg(X), the 2nd step comes from basic algebra, the 3rd step
is because of a ' b = Zle a; - b; holds for any a,b € RY, the 4th step is due to (AB)" = BT AT
for any matrices A and B.

Recall that we have 26(X). i, = (Gi(i0, %) " 8(X)ig.x) F(X)nio-
—— ————— — — ——

nx1 1xd dx1 nx1
Then, we have
n
T _ T
- Z 7/0a X)io,*) f(X)*,lo ig, *W Z ZG(X)*,IO zO*W
%f—"w—/ \W—/\\,/ N
io=1 1xd dx1 nx1 1xdq xd =1 %1 1% dXd
= —2(X) X W'
SN~
nxn nxd dxd
where the 1st step is from the choice of z5(X), the 2nd step comes from basic linear algebra. O

Then, we can get the matrix view of B7(X) term.
Lemma D.11 (Matrix view of B7(X) term). If we have the below conditions,

e Let Br(X) = (f(X)uio © M(X)ujo) - (W - Xiy.) " be defined in Lemma

~——
nxd nx1 1xd

34

Under review as a conference paper at ICLR 2026

» We define z7(X) € R™*™, which satisfies
27(X)wio = [(X)s5y O(R(X) Gilio, *)).
—_———— —— N —
nx1 nx1 nxd dx1
o Let X € R™*4 W € R¥*? be defined in Deﬁnition

o Let G; € R™*? denote the gradient matrix resulting from the application of the chain rule
dL(X)

up to the function g, i.e., G; = Tt (T5 1 (X))

o Forig € [n], j2 € [d], let G;(i2, j2) denote the (ia, j2)-th entry of G;.

Then we have

Z ZG Zo,jo B7)—Z7(X) X I/V—r

i0=1 jo= 1 1% d nxn nXxd dxd

Proof. We have

Z Z Gi(207J0 B7 Z Z Gi(Zo;jo (X)wsio © P(X) gio) - (W - Xy)"

10=1jo= 1 d 10=1jo= 1 1%

nx1 1xd

n

Z *lo Z G ZO?JO) ,Jo)) : (W'Xio’*)—r
H,_/ - ~—_———
X

io=1 J01 1

nx1 n><1 1xd

n

Z (f(X)sio ©(R(X) Gi(io, *))) - (XLTU W)
—_— =

io=1

nx1 nxd dx1 1xd

where the 1st step is from the choice of B (X), the 2nd step comes from basic algebra, the 3rd step
is because of basic linear algebra.

Recall that we have z7(X)., = f(X)x.i, O(h(X) G;(io, *)).
—— e e N
nx1 nx1 nxd dx1

Then we have

n

Z f(X)* 7.0 (X) Gi(i07 *))) (Xi—g *WT)
—_—— =~ N——

to=1 nx1 nxd dx1 1xd

n

_2: T
- *10 Zo*W

— W—’
nx1 1xq 9xd

= Z7(X) X WT
—— VN

nxn nXd dxd
where the 1st step is from the choice of z7(X), the 2nd step comes from basic linear algebra. O

Then, we consider Bs(X).
Lemma D.12 (Matrix view of Bg(X) term). If we have the below conditions,

o Let Bs(X) = f(X)sio (W), jo be defined in Lemma|D.5|
nx nx1 1xd

o Let G; € R™*? denote the gradient matrix resulting from the application of the chain rule
dL(X)

up to the function g;, i.e., G; = TAtEn: (15 1 (X))

35

Under review as a conference paper at ICLR 2026

* Foris € [n], jo € [d], let G;(iz, j2) denote the (ia, j2)-th entry of G;.

Then we have

n d

> ZG i0, jo) Bs() f(X) Gy Wy
10=1 1 v y

0=1jo= 1x1 nxd nxn nxd dxd

Proof. We have

Z Z G ZOa]O BS Z Z G @07.70)* Zo (WV>* ,Jo
N——— ——

i0=1 jo= 1 d i0=1jo= 1 1x1

nx1 1xd
n d
= Z f(X)*,lo(Z GZ(Z(%]O) (WV)* jo)
io=1 o TN ——
nx1 1x1 1xd

n

D F(X)ay Gilio,)T W
—_——— —

io=1

nx1 1xd dxd
= f(X) Gi Wy
N

nxn nxXd dxd

where the st step is from the choice of Bg(X), the 2nd step comes from basic algebra, the 3rd step
is because of basic linear algebra, the 4th step is due to basic linear algebra.

O

Now, we can do the matrix view of By (X) term.

Lemma D.13 (Matrix view of By (X) term). If we have the below conditions,
* Let By(X) = =s(X)iy.jo W | W X7 XL J(X)iy x be defined in LemmalD
—_— —— NN
dx1 1x1 dxd dxn 5

o Let G; € R™*? denote the gradient matrix resulting from the application of the chain rule

up to the function g;, i.e., G; = sz(x))'

» Foriy € [n], j2 € [d], let Gi(i2, j2) denote the (iz, j2)-th entry of G;.

We define z2(X) € R™ ™, which satisfies

22(X)i = (Gilio, *) T 5(X)ig.e) F(X)ig
—— ——— e ——

nx1 1xd dx1 nx1

o Let X € R™*4 W € R4 pe defined in DeﬁnitiOn

Then we have

nod
Z ZG (40, Jo) Sio, B2(X) —_fi(f_),\X/\m,/./
o=ljo=1" Y1 o ira X nxd dxd
Proof. We have
nod
Z Z Gi(io, jo) €i, Ba(X Z ZG 00, Jo) 5(X)i, S & Jio.ds, Cin f(X);E*\)g_,\VK,
i(’:lJ“:lTx\TxT 0=1j0=1"_ 1% 1 ?XITT”M dxd

36

Under review as a conference paper at ICLR 2026

n d
.. T
— Z:(Z Gilio,jo) 5(X i) €io FX)] . X IV,
to=1 jo=1 1x1 1x1 nx1 Ixn 1xd dxd

- Z 7’0; X)’LO*) €ig f(X);l(—) * X W
H/—l/ —~—~ L~ ~
to=1 1xd dx1 nx1 1xn nxd dxd

n

=Y iy (Gilio,®) " s(X)ig) (X)) . X W
~ " —

205 Q! N~

to=1 nx1 1xd dx1 1xn nxd dxd

where the 1st step is from the choice of By (X), the 2nd step comes from basic algebra, the 3rd step

is because of a'b = ijl a; - b; holds for any a,b € RY, the 4th step is due to (AB)" = BT AT
holds for any matrix A, B.

Recall that we have 29(X)i, « = (Gi(io, %) " 5(X)ig.x) F(X)ig v
——— —— —— ——
nx1 1xd dx1 nx1

Then, we have

n

n
. T T T
= > i (Gilio,®) T s(X i) (X)L X W= = > iy (X)X W
N —— ——— L ~ et e NN
=11 1xd dx1 Ixn 7Xd dxd OElpx1 T gxn mxd dxd
= —»X) X W
AN

nxn nXd dxd

where the 1st step is from the choice of z(X), the 2nd step comes from basic linear algebra. O

Finally, we do a similar analysis for the term B4(X). Then, we get all the matrix views we need.
Lemma D.14 (Matrix view of B4(X) term). If we have the below conditions,

« Let By(X) =W X (f(X)igx @ h(X). j,) be defined in Lemmam

dx1 dxd dxn nx1

o Let G; € R™*? denote the gradient matrix resulting from the application of the chain rule

up to the function g;, i.e., G; = %.

» Foriy € [n], j2 € [d], let G (i2, j2) denote the (ia, j2)-th entry of G;.
o We define z4(X) € R™*™, which satisfies
2(X)ig e = f(X)ig,« © (R(X)Gi(io, *))
—_— —— ———

nx1 nx1 nx1

Then we have

Z ZG ZO).]O ezo B4(X) = (X)\X,\W,
io=1jo= 1 1x1 ><d nxn nxd dxd

Proof. We have

iiGz

n d
g Z: 7’07]0 il/o/(f(X)vo, Qh’()*]0) X W

07]0 610 B4
At N e N N — - : N~
fo=ljo=1 " 131 X1 1xd 1x1 nxl 1xn nxd dxd
d
C T
Z 20 zo * Q(Z Gi(207]0) h(X)*,jo))\ X \ W ,
o=1 ~ Jo=1 y M d dxd
n><1 1xn 1x1 1xn nxa ax

37

Under review as a conference paper at ICLR 2026

= 3 ey (FO)] L 0 (X)Gilio,)) X IV,

to=1 nxd dxd

nx1 1xn 1xn

= Z 620 Z4 10* X W
N~

to= 1n><1 Txn mxd dxd
=z(X) X W
. ~ N~

nxn NXd dxd

where the 1st step is from the choice of B4 (X), the 2nd step comes from basic algebra, the 3rd step
is because of basic linear algebra, the 4th step is due to the choice of z4(X), the 5th step follows
from basic linear algebra. O

D.6 COMPONENTS OF GRADIENT ON T;(X)
Definition D.15 (Definition of Dy). If we have the below conditions,

s Forky € {6,7,8}, let By, (X) € R"*4 be defined as Lemma and respec-
tively.

s For ky € {2,4}, let By, (X) € R¥! be defined as Lemma@and@] respectively.

o Let G; € R™*? denote the gradient matrix resulting from the application of the chain rule

up to the function g;, i.e., G; = %.

We define D, € R™*? as follows:

» Forky € {6,7,8}, we define

Z ZG (40, Jo Bkl()

’L[) lj[) 1 d

* For ko € {2,4}, we define

Z ZG i0; jo) o, Bk2(X)

i0=Lio=1"1x7 1x1 1x d
Definition D.16 (Definition of K). If we have the below conditions,
o Let s(X) € R"*? pe defined as Deﬁnition

o Let G; € R™*? denote the gradient matrix resulting from the application of the chain rule

up to the function g;, i.e., G; = %.

We define K € R"™, where for each iy € [n], we define
= Gilio,*) " 5(X)ig

1x1 1xd dx1

Furthermore, we have
K = (G; X)) 1
£ (Gi©s(X)) 1q
nx

nxd dx1

Lemma D.17 (Close form of Dy). If we have the below conditions,

o Let X € R™™ W € R4 be defined as Deﬁnition

38

Under review as a conference paper at ICLR 2026

s Fork € {6,7,8,2,4}, let D}, € R"*9 be defined as Deﬁnition

e For ky € {6,7,2,4}, let z,(X) € R" ™ be defined as Lemma|D.10} |D.11| |D.13| and
respectively.

¢ Let K € R™ be defined as Definition|[D.16]

» We define z(X) € R™*™, which satisfies
26(X) = £(X) diag(K) .
—— S N——

nxXn nxn nxn

* We define z7(X) € R™*™, which satisfies

z(X) = f(X) O(h(X) G)
nxn nxn nxd ;:7-:

» We define zo(X) € R™*™, which satisfies
z9(X) = diag(K) f(X)
—— N—— N~

nxn nxn nxn

o We define z4(X) € R™*™, which satisfies

X) = f(X G; h(X)T
24(X) = f()Q(\;d,(d))

Then, we can show that the close forms of Dy, can be written as follows:

b D6:—ZG(X) X WT.

nxn nXd dxd

e Dr=z(X) X W',

nxn nXd dxd

Ds = f(X) G; Wy.
R T
nxn nxd dxd

'DQZ—ZQ(X) X W.
oo~

nxn nXd dxd

d D4 = Z4(X)
nxn nXd dxd

Proof. We finish the proof by parts.

* By Lemma|[D.I0] we have the close form of Dg.
* By Lemma|D.T1] we have the close form of D.
* By Lemma|D.12] we have the close form of Dg.
* By Lemma|D.I3] we have the close form of Ds.
* By Lemma|[D.T4] we have the close form of Dy.

39

Under review as a conference paper at ICLR 2026

E FAST COMPUTATION FOR GRADIENT ON T'(X)

In this section, we give an almost linear time n'*t°(}) algorithm for each B;(X) term. Namely,

we consider Bg(X), B7(X), Bg(X), B2(X), B4(X) in Section E.4] and |E.5| respec-

tively.

E.1 FAST COMPUTATION FOR Bg(X) TERM

Before we introduce the almost linear time algorithm for Bg(X) term, we need to introduce the
accelerated algorithm for the key component term, zg(X), in Lemma

We first compute K, which is defined in Definition [D.16]
Lemma E.1 (Computation time for K). If we have the below conditions,

s Let K € R™ be defined as Definition[D.16]

Then, we can show that K can be computed in O(n - d) time.

Proof. Since for each ig € [n], we have
Kiy = Gi(io, %) 8(X)i
~N

1x1 1xd dx1

Then, we have that it takes O(d) time for calculating each entry.

Since there are total n entries in K, the overall computation time for K is O(n - d). O
We now compute zg(X).
Lemma E.2 (Fast computation for z5(X)). If we have the below conditions,

o Let X € R™ W, Wy € R be defined in Deﬁnition

o Let G; € R™*? denote the gradient matrix resulting from the application of the chain rule
. . - dL(X)
up to thefunctlon g, L.e., GZ = m

o Assuming each entry of X, W, Wy, G; can be re represented using O(log(n)) bits.
o Let z(X) € R™"™" be defined in Lemma

Then, for some k¢ = n°"), there are matrices Ug, Vg € R™¥¢ such that ||UsVy" — 26(X)]lo0 <
¢/ poly(n). The matrices Us, Vi can be constructed in n*+°() time.

Proof. Recall in Lemma|[D.10] we have define z5(X) satisfying the following equation

26(X) sy = (Gilio,)" $(X)ig) F(X)ssiy 3)
N—_——— ———— e — ——
nx1 1xd dx1 nx1

Recall that K € R™ has been defined in Definition By Lemma [EI] we have K can be
computed in O(n - d) time.

We also have

z6(X) = f(X) diag(K)
—_— S——

nxn nxn nxn

By Lemma|C.13| we have U;, Vi € R™*#1 such that
[U: V" = f(X)]loo < €/ poly(n)

40

Under review as a conference paper at ICLR 2026

LetUg = Uy, Vg = diag(K)Vl.
We have Vg = diag(K) Vi can be computed in nk; time.
——
nxn nxkp
The overall running time for constructing Us and Vg is n' (1),
Then, we consider the error bound.
We have
1UsVe" = 26(X) e = U2V, ding(K) — F(X) diag(K)]|oc
<nl|UiVy" = F(X)]|ool| diag(K) oo
< n(e/ poly(n))|| diag(K)||
< ¢/ poly(n)

where the 1st step is from the choice of U, Vg, the 2nd step comes from basic linear algebra, the
3rd step is because of Lemma |[C.13] the 4th step is due to || diag(K)||oo < poly(n).

O

Then, we are ready to introduce the almost linear time algorithm for Bg(X) term.
Lemma E.3 (Fast computation for Bg(X) term). If we have the below conditions,

o Let X € R™ W, Wy € R be defined in Deﬁnition
* Assuming each entry of X, W, Wy, G; can be re represented using O(log(n)) bits.
Let Bs(X) € R™"™"™ be defined in Lemma

* We define Dg € R"™ 9, where Dg := 37" _ % _; Gi(io. jo) Bg(X).

ig=1

o Let G; € R™*? denote the gradient matrix resulting from the application of the chain rule

up to the function g;, i.e., G; = W)&Xﬂ

* Foris € [n], jo € [d], let G;(iz, j2) denote the (ia, j2)-th entry of G;.

Then, we can show that, there is an algorithm to approximate Dg in n*+°1) time, and it can achieve
¢/ poly(n) accuracy.

Namely, the algorithm output 156 satisfying
IDs — Delloo < €/ poly(n)

Proof. Recall that in Lemma|D.10] we have defined z4(X) € R™*™, which satisfies
26(X) i = (Gilio, *) " 5(X)igu) [(X)sig
N—_—— —_——— —— ——

nx1 1xd dx1 nx1

And, in that Lemma, we also have

n d
Gi(io, jo) Be(X) = — 2z6(X) X W'
Z Z (v) (" v)vv
fo=Lljo=1 "2y nxd nxn 7nXxd dxd

Let Us, Vs € R™<¥s be defined as LemmalE.2]
Let 36(X) = UsVy.
By Lemma|[E-2] we have
I36(X) — 26(X)loe < ¢/ poly(n) @

41

Under review as a conference paper at ICLR 2026

Proof of running time.

We compute in the following way:

* Compute Vi X , which takes n'+°() time.
—~

kexn nxd

« Compute Vg X W', which takes n'T°(!) time.
N
kexd dxd
« Compute Us V;' XWT, which takes n'+°() time.
N~ ——

nxke ke xd

Therefore, the overall running time is pito),
Proof of error bound.
We have
IZ6(X)XWT = 26(X)XW T [|oo < d - n|Z6(X) = 26(X) oo [X oo Wl
< d - n(e/ poly (n)) | X[loo[[W|o
< €/ poly(n)

where the st step is from basic linear algebra, the 2nd step comes from Eq.(@), the 3rd step is
because of ||W||o < poly(n) and || X||s < poly(n).

O

E.2 FAST COMPUTATION FOR B7(X) TERM

Similar to the analysis process of Bg(X) term, we first provide the almost linear time algorithm for
27(X), then provide that algorithm for B7(X).

Lemma E.4 (Fast computation for z7(X)). If we have the below conditions,

o Let z7(X) € R™ " be defined in Lemma

* By Lemma let Uy, Vi be the low rank approximation of f(X), such that |U,V," —
fX) o < €/ poly(n).

o Let X € R™™ W, Wy € R¥*? be defined in Deﬁnition
* Assuming each entry of X, W, Wy, G; can be re represented using O(log(n)) bits.

s Let G; € R™? denote the gradient matrix resulting from the application of the chain rule

up to the function g;, i.e., G; = %.

o Forig € [n], j2 € [d], let G;(i2, j2) denote the (ia, j2)-th entry of G;.

Then, for some ky = n°WY), there are matrices Uz, Vi € R™* such that ||U; V" — 27(X)]|ee <
¢/ poly(n). The matrices Uz, Vy can be constructed in n*+°() time.

Proof. Recall that in Lemma [D.11] we have defined z7(X) € R™*", where the io-th column of
z7(X) satisfies

27(X)wio = [(X)s i O((X) Gilio, *))
—_——— —

—— ——
nx1 nx1 nxd dx1
which is equivalent to
z(X) = f(X) o(MX) G)
LR S

nxn nxn nxd dxn

42

Under review as a conference paper at ICLR 2026

By Lemma [C.13| we know f(X) := U;V," is a good approximation for f(X).
We choose Uy = U; @ h(X) and V7 = Vi @ G, where Uy, V; € R"*F1d,
Proof of running time.

For U; = U; @ h(X), since U; € R™ ¥ h(X) € R4, constructing Uy takes O(ndk;) =
O(n'*t°M) time.

Similarly, constructing V5 takes O(n'*°(1)) time.
Proof of error bound.
Using Fact[C.2] we have
U7V = 22(X) oo = U V7" = F(X) © (R(X)G])l
=i @ W(X)(Vi @ Gi)" = F(X) O (MX)G])loo
= (V") © (WMX)G]) = f(X) © (h(X)G])lo

= [If(X) © (MX)G]) = F(X) © (h(X)G])l
< d[|h(X)loo||Gillo - €/ Poly(n)
< ¢/ poly(n) (3)
where the st step is from the definition of z7(X), the 2nd step comes from the choice of U; and V7,
the 3rd step is because of Fact the 4th step is due to the definition of f(X), the 5th step follows

from || f(X) — f(X)|loe < €/ poly(n), the sixth step follows from Lemma and ||Gilleo <
poly(n).

Then, we can do similarly fast computation for B; term.
Lemma E.5 (Fast computation for B7(X) term). If we have the below conditions,

o Let B7(X) € R"*? be defined in Lemma

* We define D7 € R"*%, where D7 := Y7 _, 2?0:1 Gi(io,jo) B7(X).

o Let X € R™*4 W, Wy € R B ¢ R" 4 be defined in Deﬁnition

* Assuming each entry of X, W, Wy, G; can be re represented using O(log(n)) bits.

o Let G; € R™*? denote the gradient matrix resulting from the application of the chain rule

up to the function g;, i.e., G; = %.

o Forig € [n], j2 € [d], let G;(i2, j2) denote the (ia, j2)-th entry of G;.

Then, we can show that, there is an algorithm to approximate D7 in n'*+°1) time, and it can achieve
¢/ poly(n) accuracy.

Namely, the algorithm output 57 satisfies
ID7 = Drllos < ¢/ poly(n)

Proof. In Lemma|D.11| we have

Z ZG Zo,]o B7)—Z7(X) X I/V—r

i0=1jo= 1 nxn nXd dxd

Let Uy, Vy € R™*¥7 be defined in Lemma[E.4|
Let g7(X) = U7V7T.

43

Under review as a conference paper at ICLR 2026

By Lemma [E.4] we have
120(X) = 27(X)lloc < €/ poly(n) (6)

Proof of running time.

We compute in the following way:

 Compute V;' X , which takes n'+°() time.
—

k7><n nxd

+ Compute V. X W', which takes n'T°(!) time.
N
k7 xd dxd
« Compute U; V,' XWT, which takes n'+°() time.
N~ ——

nxkr k7 xd

Therefore, the overall running time is pito(),
Proof of error bound.
We have
1Z2(X)XWT = 22(X)XW T |loo < d - n|77(X) = 27(X) oo 1 X oo W]| o
<d-n(e/ poly(n))[| X |loo Wl
< ¢/ poly(n)

where the 1st step is from basic linear algebra, the 2nd step comes from Eq. (6), the 3rd step is
because of ||W||oo < poly(n) and || X || < poly(n).

O

E.3 FAST COMPUTATION FOR Bg(X) TERM

Then, we can do fast computations on Bg(X) term.
Lemma E.6 (Fast computation for Bg(X) term). If we have the below conditions,

o Let Bs(X) € R"*? be defined in Lemma

* We define Ds € R"™*?, where Ds := 3" _; S°% | G(io, jo) Bs(X).

o Let X € R™ W, Wy € R¥™ be defined in Deﬁnition

* Assuming each entry of X, W, Wy, G; can be re represented using O(log(n)) bits.

o Let G; € R™*? denote the gradient matrix resulting from the application of the chain rule

up to the function g;, i.e., G; = %.

» Foriy € [n], j2 € [d], let G (i2, j2) denote the (ia, j2)-th entry of G;.

Then, we can show that, there is an algorithm to approximate Dg in n o) time, and it can achieve
e/ poly(n) accuracy.

Namely, the algorithm output l~)8 satisfies
IDs — Ds||oo < €/ poly(n)

Proof. Recall that in Lemma[D.T2] we have

n d

Z Z Gi(io, jo) Bs(X) = f(X) G; WJ
P :1_\,_/\\,_/ N~ NN~
0=2Jo 1x1 nxd nxn nXd dxd

44

Under review as a conference paper at ICLR 2026

Let f(X) := UV, denote the approximation of f(X).
By Lemma|C.13] we have

1F(X) = f(X)lloo < €/ poly(n) @)

Proof of running time.

We compute in the following way:

* Compute V;' G; , which takes n'+°() time.
~ =~
kixn nxd

+ Compute V,' G; W;}, which takes n'+°() time.
——
ki xd dxd

« Compute U; V;"G; Wy, which takes n'*+°() time.
M N——

nxky k1 xd

Therefore, the overall running time is pito),
Proof of error bound.
We have
IFO)GWY = F(X)GWY oo

<d-nllf(X) = F(X) ol Gilloc [Wvlloo
< d-n(e/poly(n))[|Gilloo[Wv |l oo
< ¢/ poly(n)

where the st step is from basic linear algebra, the 2nd step comes from Eq.(7), the 3rd step is
because of ||G;|lco < poly(n) and ||[Wy ||oo < poly(n).

O

E.4 FAST COMPUTATION FOR B3(X) TERM

Then, we provide the proof of how to do fast computation on By (X).
Lemma E.7 (Fast computation for z5(X)). If we have the below conditions,

o Let (X)) € R"*™ be defined as in Lemma
o Let X € R4 W, Wy € R4*4 be defined in Deﬁnition
* Assuming each entry of X, W, Wy, G; can be re represented using O(log(n)) bits.

o Let G; € R™*? denote the gradient matrix resulting from the application of the chain rule
. . o dL(X)
up to the function g;, i.e., G; = Tt (15 1 (X))

* Foris € [n], jo € [d], let G;(iz, j2) denote the (ia, j2)-th entry of G;.

Then, for some kg = n°"), there are matrices Uy, Vo € R™ ¥ such that |UgVy' — 22(X)]|0e <
¢/ poly(n). The matrices Uy, Vy can be constructed in n*+°0) time.

Proof. Recall that in Lemma|D.13| we have defined 25(X) € R™*"™, where the ig-th row of z2(X)
satisfies

Z2(X)i0,* = (GZ(Z()v *)T S(X)’L'Oy*) f(X)ZO*
——— —_—— —— ——

nx1 1xd dx1 nx1

45

Under review as a conference paper at ICLR 2026

Recall that K € R™ has been defined in Definition[D.16]
By LemmaE.1] we have K can be computed in O(n - d) time.
We also have

zi(/)il = diag(K) L(i(_l

nxn nxn nxn

By Lemma|C.13} let Uy, V; be the low rank approximation of f(X), such that |[U;V;" — f(X)||oe <
¢/ poly(n).
Let Uy = diag(K)Ul, Ve = V1.
We have Ug = diag(K) U; can be computed in nk; time.
——
nxn nxki
The overall running time for constructing Uy and Vj is n' o),
Then, we consider the error bound.
We have
1UVy'" — 22(X)lloo = || diag(K)U1V;" — diag(K) f(X) |l
<l VT = F(X) ool diag (K)o
< n(e/ poly(n))|| diag(K)l|o
< ¢/ poly(n) ®)

where the 1st step is from the choice of U, Vg, the 2nd step comes from basic linear algebra, the
3rd step is because of Lemma|C.13] the 4th step is due to || diag(K)|/ < poly(n).

O
Lemma E.8 (Fast computation for By (X) term). If we have the below conditions,
o Let By(X) € R"* be defined in Lemma@
s We define Dy € R"*4, where Dy := D=1 2?0:1 Gi(io, jo) €iy Ba(X)T.
S—— N
i1x1 nxl 1xd
o Let X € R W, Wy € R4 B € R" 4 be defined in Deﬁnilion
o Assuming each entry of X, W, Wy, B, G; can be re represented using O(log(n)) bits.

s Let G; € R™? denote the gradient matrix resulting from the application of the chain rule
. . _ dL(X)
up to the function g;, i.e., G; = Thten; (T, 1 (X))
» Foriy € [n], j2 € [d], let G;(i2, j2) denote the (iz, j2)-th entry of G;.

Then, we can show that, there is an algorithm to approximate Dy in n*+°1) time, and it can achieve
¢/ poly(n) accuracy.

Namely, the algorithm output 152 satisfies

ID2 = Dal|e < €/ poly(n)
Proof. In Lemma|[D.13] we have

n d
Gilio, jo) €iy B2(X)T = —20(X) X W
t0==Jo= 1x1 nx1 1xd nxn 7nxd dxd

Let Uy, Vo € R™**9 be defined in LemmalE.7}

46

Under review as a conference paper at ICLR 2026

LetZﬂAﬁ:::UQW;.
By LemmalE.7] we have

1Z2(X) — 22(X)|loc < €/ poly(n) ©

Proof of running time.

We compute in the following way:

 Compute V' X , which takes n'+°() time.

k?gX’l’L nxd

e Compute V;;X W, which takes ntT°() time.
~—

koxd dxd

* Compute Uy V,' XW, which takes n'+°() time.
—_—

nxkg ko xd

Therefore, the overall running time is n'+°(1),
Proof of error bound.

‘We have

[22(X)XW — 22(X) X W || oo < d-n|Z2(X) — 22(X) |0 | X [l oo W | oo
< d-n(e/ poly(n)) | X [loo W loo
< ¢/ poly(n)

where the 1st step is from basic linear algebra, the 2nd step comes from Eq.(9), the 3rd step is
because of ||W||oo < poly(n) and || X || < poly(n).

O

E.5 FAST COMPUTATION FOR By(X) TERM

Finally, our analysis shows that we can do fast computations for B4(X) term. After that, we showed
that all terms can be computed quickly.

Lemma E.9 (Fast computation for z4(X)). If we have the below conditions,

o Let z(X) € R™™ be defined in Lemma|D.14]
o Let X € R™ W, Wy € R™ be defined in Deﬁnition
* Assuming each entry of X, W, Wy, G; can be re represented using O(log(n)) bits.

o Let G; € R™*? denote the gradient matrix resulting from the application of the chain rule

. . dL(X
up to the function g;, i.e., G; = m

» Foriy € [n], j2 € [d], let G;(i2, j2) denote the (iz, j2)-th entry of G;.

Then, for some ki = n°1Y), there are matrices Uyq, Vig € R"¥F10, Jet Z4(X) := UyoVih, such that
1Z4(X) — 24(X)]||0o < €/ poly(n). The matrices Usg, Vig can be constructed in n*+°") time.

Proof. In Lemma|D.14] we have defined 24(X) € R™*™, where the io-th column of z4(X) satisfies
24(X)ig,» = (f(X)ig © (M(X)Gi(io, ¥)))
—— —_— —

nx1 nx1l nx1

47

Under review as a conference paper at ICLR 2026

which is equivalent to

_) T
24(X)—(@®\G;,h(X))

nxn nxn nxXd dxn

By Lemma|C.13] let Uy, V; be the low rank approximation of f(X), such that |[U; V" — f(X)||o0 <
e/ poly(n).

We choose Uy = Uy @ G; and Vip = Vi @ h(X), where Uyg, V1o € R"¥F14,

Proof of running time.

For Uy = U, @Gy, since Uy € R™¥*1 G; € R™"*4, constructing Uy takes O (ndk;) = O(n*+°(W)
time.

Similarly, constructing V3 takes O(n!'t°(1)) time.

Proof of error bound.

Let f(X) := UV,
Using Fact[C.2] we have
1Z4(X) = 2a(X) [loo = [U10V3g — F(X) © (G - h(X) ")l oo
=01 0 G)(Vi @ h(X))T = f(X) © (Gi - M(X) ")]lw
= [(UV") © (Gi - W(X)T) = F(X) © (Gi - h(X))]0

where the 1st step is from the definition of Z4(X), z4(X), the 2nd step comes from the choice of
Uy and Vi, the 3rd step is because of Fact[C.2]

H(UWV) 0 (Gi- h(X)T) = F(X) @ (Gi - M(X) oo = 10UV = F(X) s llGi - h(X) Tloo
< d - (¢/ poly(n))[[M(X)|l o | Gilloo
< ¢/ poly(n)

where the Ist step is from basic linear algebra, the 2nd step comes from |[|[U1V] — f(X)]eo <
€/ poly(n), the 3rd step is because of Lemma and ||G;||oo < poly(n).

O
Lemma E.10 (Fast computation for B4(X) term). If we have the below conditions,

o Let B4y(X) € R™"*? be defined in Lemma@
» We define Dy e RnXd, where Dy := ZZJ=1 2?0:1 Gl(’Lo,jo) €4, B4(X)T

———— ——

1x1 nx1 1xd

o Let X € R™ W, Wy € R¥*? be defined in Deﬁnition
* Assuming each entry of X, W, Wy, G; can be re represented using O(log(n)) bits.

o Let G; € R™*? denote the gradient matrix resulting from the application of the chain rule

up to the function g;, i.e., G; = %.

* Foris € [n], jo € [d], let G;(i2, j2) denote the (ia, j2)-th entry of G;.

Then, we can show that, there is an algorithm to approximate Dy in nit°Q) time, and it can achieve
e/ poly(n) accuracy.

Namely, the algorithm output Dy satisfies

IDs = Dallos < ¢/ poly(n)

48

Under review as a conference paper at ICLR 2026

Proof. In Lemma[D.14] we have

n d
Gi(io, jo) €iy Ba(X)" = z(X) X W
zz—:l z_:la,_/\,o./wl/ R(,_/\/\/
o=17J0= 1x1 nx1 1xd nxn NXd dxd
Let 54<X) = U10V1—5-
By Lemma [E.9] we have
[1Z2(X) — 24(X)loe < €/ poly(n) (10)

Proof of running time.

We compute in the following way:

e Compute Vl—g X , which takes n2*T°(1) time.

k1o Xn nxd

« Compute V4 X W , which takes n'T°(!) time.
~—
k1o xd dxd
* Compute Uyg Vi XW, which takes n'+°() time.
N~ ——

nxkio kioxd

Therefore, the overall running time is n*+o(1),
Proof of error bound.
We have
FXW — 24(X)XW oo € dnl5(X) — 2205l | X ol W
< d-n(e/ poly(n))[| X |oo W |oo
< ¢/ poly(n)

where the 1st step is from basic linear algebra, the 2nd step comes from Eq.(T0), the 3rd step is
because of ||W||oo < poly(n) and || X||s < poly(n).

O

E.6 PUTTING EVERYTHING TOGETHER

After we have analyzed each B;(X) term in the previous section, we put them together in this
section, to analyze the overall running time and error bound of the gradient of L(X) on T;(X) in

LemmalE 1]

Lemma E.11 (Fast computation for %, formal version of Lemma . If we have the below

conditions,

* Let L(X) be defined as Definition

* Let m denote the number of self-attention transformer model (see Definition[I.3).

o Foranyi € [m), let T;(X) be defined as Definition

o Let X € R™ W, Wy € R be defined in Deﬁnition

* Assuming each entry of X, W, Wy, G; can be re represented using O(log(n)) bits.

o Let G; € R™*? denote the gradient matrix resulting from the application of the chain rule

. . dL(X
up to the function g;, i.e., G; = m

49

Under review as a conference paper at ICLR 2026

o Assume G can be computed in n*+°0) time.

L(X)

We can show that d%,il(x) can be approximated in n*T°W) time, with 1 / poly(n) approximation

14o(

error. Namely, our algorithm can output g, inn U time, which satisfies

15~ g I < 1/ poly()

Proof. By Lemma | we have

Z ZG io, do) (Bs(X) + Br(X) + Bs(X) + eiy (Ba(X) + Ba(X)))

’Lo 1]0 1 1x

= Z D;

i€{2,4,6,7,8}

dTl 1(

nxd nx1 1xd

where the 1st step is from Lemma the 2nd step comes from the definition of
D65D77D83D2aD4-

Then, by LemmalE.3]| E.10, we have Dg, D7, Ds, D2, Dy € R™ 4 can be approxi-
mated in n'+°(!) time, with up to ¢/ poly(n) error.

Namely, for i € {2,4,6,7,8}, let D, € R"*4 denote the approximated version of D, we have
1D; = Do < €/ poly(n)

Let g = 216{2,4,6,7,8} D;.

Proof of running time.

The running time for computing g = 3¢ 2 46,75} D; is O(nd).

Therefore, the overall running time for computing g, is n'+°(1),

Proof of error bound.

‘We have
- dL(X) ~
gt — m”oo = Z (Di — D)oo
i-l i€{2,4,6,7,8}
< > D= Dyl
i€{2,4,6,7,8}
< ¢/ poly(n)

where the 1st step is from the definition of g; and dTi())()’

the 3rd step is because of || D; — D||o < €/ poly(n).

the 2nd step comes from basic algebra,

Then, choose € = 1/ poly(n), we have

15— gy e < 1/volv(n)

F FAST COMPUTATION FOR GRADIENT ON W

In Section[E.T] we introduce some essential notations used in this section. In Section[E2] we offer the
gradient of s(X) on W, which is equivalent to the gradient of the output of the attention mechanism
on W. In Section we illustrate the gradient of L(X) on W. In Section we introduce the
almost linear time algorithm for calculating the gradient of L(X') on W, along with the error bound
analysis.

50

Under review as a conference paper at ICLR 2026

F.1 KEY CONCEPTS

Definition F.1 (Definition of A, (Alman & Song, 2024a)). Let A;, Ay € R"*¢ be two matrices.

Suppose that A = A1 ® Ay € R™ %" We define A, € R4 pean x d? size sub-block from A.
Note that there are n such sub-blocks.

Remark F.2. Note that the Ay, Ay matrices in Definition[F1|is X in our setting. Since in (Alman &
Song| 2024dl), they consider a more general setting, where Ay, Ao can be difference matrices, while
in our problem, we consider self-attention. Therefore, in our paper, we have A1 = As = X.

F.2 GRADIENT OF s(X) ON W

We begin with introducing the close form of the gradient of s(X).

(Alman & Song, [2024a) proved the close form of the gradient of ¢(X) = s(X) — B with respect to
W for a constant matrix B. By chain rule, this is equivalent to the gradient of s(X) with respect to
w.

Lemma F.3 (Gradient of s(X) on W, Lemma B.1 in (Alman & Song,[2024a))). If we have the below
conditions,

e Let A be defined as Definition For every i € [d?], define A;,; € R™ to be the i-th
column for Aj, € Rnxd*,

e Let f(X),h(X), s(X) be defined as Definition|C.8

o Let W € R4 be defined as Deﬁnition Let w € RY denote the vector representation

of W.
Then, for each i € [d?], we have For each jo € [n), for every iy € [d]
ds(X) 0 ic
i — (g, 7 (X)X i) = X D) (A SO

F.3 GRADIENT OF L(X) ON W

Differing from the ¢5 loss function used in (Alman & Song| 2024a)), our framework supports arbi-
trary loss functions. Therefore, we use Lemmato illustrate the gradient of L(X) on W.

Lemma F.4 (Gradient of L(X) on W). If we have the below conditions,
» Let L(X) be defined as Definition
o Let W € R¥™¥4 X € R"*4 be Defined as Deﬁnition
o Let p(X) be defined as Definition

Then, we can show that
dL(X)

o =X (X)X

Proof. By Lemma we have, for each i € [d?], we have For each jy € [n], for every ig € [d]

ds(X); i
S inio ()0 F(X),, hX)i) ~ (F(X), B)i) (A f(XD) (D)
nx1 nx1 nx1 nx1 nx1 nx1 nx1
By Fact[C.1] we have
<Aj07i Qf(X)jov h(X)7[J> = A;E,i dlag(f(X)]o)h(X)zo

and

(F(X)jor (X)ig) + (F(X)jor Ajoi) = A s F(X)jo F(X) L R(X)z,

51

Under review as a conference paper at ICLR 2026

By Eq. (T1), for each i € [d?], we have For each j, € [n], for every ig € [d], we have

% AT s(diag(£(X);) — F(X);0 £ ()] (X,

which implies,
(B(()i(ivszo = Aj, (diag(f(X);,) = F(X);,f(X)},) h(X)s,
\/ ——

d2xn nxn nx1

By Lemma|[C.4] for i € [m], we have

dL

d o dAEN (T 1(X))is
Z 22732 aw. ’

||
i MS

By the definition of s(X) (Definition|C.10), we have
s(X) = Attn; (T;-1 (X))

Combining Eq. and Eq. (T3), for each i € [m], we have

n d
= Z Z]0; lO \,/ (dlag(f(X>J0) - f(X)iof(X);E) h(X)io
Jo=lio=1 1><1 d2xn nxn nx1

Recall that we have defined ¢(X) in Definition|C.11]

Recall that p(x) j, € R™ is define as Definition |C.12]
p()jo := (diag(f(2)j5) — f(@)jof(@)},)a(x)0.

Then, we have

djéé) ZZG) (dlag(f()io) = F(X)jo F(X)) h(X)i,

14 1
Jo=lio= d2><7l nxn nxl1

1a, - j ;]
Z A d g)]0) f(X)]of(X)]D)q(X)]o

jo=1">"

d2xn nxn nx1

Z AJO p]o

Jo=1
= X" pX) X
p(X) X

dxn pxp nxd

12)

13)

(14)

15)

(16)

where the 1st step is from Eq. (I4), the 2nd step comes from Eq. (I3), the 3rd step is because of

Eq. (T6), the 4th step is due to the tensor tricks.

52

O

Under review as a conference paper at ICLR 2026

F.4 FAST COMPUTATION

Finally, we introduce the almost linear time algorithm and its error analysis of the gradient of L(X)
on W in Lemmal[E3]

Lemma F.5 (Fast computation for dL(X)

W). If we have the below conditions,

* Let L(X) be defined as Definition[2.1]
* Let m denote the number of self-attention transformer layers (see Definition [I.3).

» Foranyi € [m], let W; = WQiWI—(V{ denote the attention weight in the i-th transformer
layer. '

dL(X)
dW,‘,

Namely, our algorithm can output Gy, in n* %) time, which satisfies
15 dL(X)
Jw aw,

can be approximated in n*+°() time, with 1/ poly(n) approximation error.

We can show that

oo <1/ poly(n)

Proof. Recall by Lemma|C.15}(C.16| we have defined p; (X), p2(X) € R"*™.

In those Lemmas, we have p; (X), p2(X) have low rank approximation U3 V3" and U, V", respec-
tively.

By the definition of p(X) (Definition [C.12)), we have

p(X) = p1(X) — p2(X) (17)
Then, by Lemma[F.4] we have
LX) -
=X p(X)X
av, p(X)

=X (p1(X) —p2(X))X
where the 1st step is from Lemma[F.4] the 2nd step comes from Eq. (T7).
Let p1(X), p2(X) denote the low rank approximations for p1 (X), p2(X), respectively.

Proof of running time. We first compute X " 1 (X)X in following order

 Compute X ' Uy , which takes n'T°(!) time.
N~
dXn pxks

* Compute X ' Us V5" , which takes n'T°(!) time.
S~

dXks ks xn

« Compute X ' UsV5" X , which takes n'+°() time.

——

dxn nxd

The overall running time for X ' p; (X)X is n'*o(1),

Similarly, the overall running time for X " po (X)X is n'*o(1).

Since X "p1 (X)X, X Tpa(X)X € R¥*4 the computation time for X ' (py(X) — p2(X))X is
O(d?).

Therefore, the overall running time for X T (p1(X) — po(X))X is nlto(1)
Proof of error bound.

We consider the error for X " p; (X)X first.

53

Under review as a conference paper at ICLR 2026

IXT51(X)X = X "p1(X)XJoo = IX T (51(X) = p1(X)) X |
<) X2 1191(X) = p1(X) |l
< n®(e/ poly(n)) || X ||,
< ¢/ poly(n) (18)

where the 1st step is from basic algebra, the 2nd step comes from basic linear algebra, the 3rd step
is because of ||p1(X) — p1(X)|leo < €/ poly(n), the 4th step is due to | X || < poly(n).

Similarly, we can have

IX 7 P2(X)X — X Tp2(X) X||oo < €/ poly(n) (19)

Therefore, we have
X TPX)X = X Tp(X) X0
= X TP (X)X = X Tpi (X)X + X 52(X)X — X T pa(X) X o
<X TP(X)X = X Tp1(X) X|oo + [|X T P2(X) X = X Tp2(X) X|oo
< (¢/ poly(n)) + (¢/ poly(n))
= €/ poly(n)

where the 1st step is from basic algebra, the 2nd step comes from triangle inequality, the 3rd step is
because of Eq. (18) and Eq. (T9), the 4th step is due to basic algebra.

Then, we choose € = 1/ poly(n), we have

~ dL(X)
ng - aw,

oo <1/ poly(n)

G FAST COMPUTATION FOR GRADIENT ON Wy,

In Section we introduce the close form of the gradient of s(X) on Wy,. In Section we
provide the close form of the gradient of L(X) on Wy.. In Section based on the close form
calculated in the previous section, we introduce the almost linear time algorithm for computing the
gradient of L(X') on Wy.

G.l GRADIENT OF s(X) ON Wy

Since s(X) = f(X)h(X), we begin with considering the gradient of 4(X) on Wy in LemmalG.1}
Lemma G.1 (Gradient of h(X) on Wy/). If we have the below conditions,

* Let h(X) be defined as Definition|C.9|
o Let Wy be defined as Definition[C.3)
Then, for any iy € [n], jo € [d] and any i1, j1 € [d], we have

dh(X)is 5 _ {Xio,il Jo=11
d(WV)ilA,jl 0 jO 7é jl

Proof. Since h;, j, satisfies
_yT
hig o = Xig s (Wv) o

we have h;, ;, only depends on (Wvy), j,.

54

Under review as a conference paper at ICLR 2026

Hence, we have, for jo # j1,
AR X)io o

-0
d(Wv)i, 4

For jo = j1 case, we have

A X)iogo _ 5
d(Wv)iy jo o

O

Combining the result in the previous Lemma and the chain rule, we can have the gradient of s(X)
on Wy in Lemma[G.2}

Lemma G.2 (Gradient of s(X) on Wy/). If we have the below conditions,

o Let s(X) be defined as Definition|C.10}
* Let Wy be defined as Definition|C.3]

Then, for any iy € [n], jo € [d] and any i1, j1 € [d], we have

e Part 1.
dS(X)izajz — {f(X)z—'l;,*X*,h j2 = jl
d(WV)il,jl 0 j2 7é jl
e Part 2.
dS(X)iz-,jz _ T T
W =X f(X)iy« €,
~ dxn nx1 1xd
Proof. Proof of Part 1.
By Definition[C.10] we have
S(X)iz,jz = f(X)z—;*h(X)*,Jz (20)

Therefore, s(X),, ;, is only depends on h(X). ;,, which further means s(X);, j, is only depends
on (WV)*Jz .

Hence, for j; # ja, we have

dS(X)iz,jg —0
d(WV)il-,j'z
We consider j; = js case.
By, Eq. (20, we can derive that
ds(X)is
——222 = (X)), 21
(X, i ey

By chain rule, we have

d
dS(X>i2;j2 _ Z ds(X>i2;j2 dh(X)iS;jz
dWv)inge = A X)ig 3o AWV)iy g
d
dh(X)i, ;
— X i 13,J2
zSZZI f() 2,13 d(WV)L1]2

55

Under review as a conference paper at ICLR 2026

E f 12,23 13,i1

iz3=1
= f(X)] . X.i, (22)

12 ,%

where the 1st step is from chain rule, the 2nd step comes from Eq. (ZI)), the 3rd step is because of
Lemma [G.1] the 4th step is due to basic linear algebra.

Proof of Part 2.
By Eq (22), we have

dS(X)’imjz —x7T f(X)
d(I/I/V)*J'2 \/W&
——— dxn

nx1
dx1
which implies
ds(X)iZujZ _ XT X) T
- f()7427* ejQ
~ dxn nx1 1xd
X

G.2 GRADIENT OF L(X) oN Wy

Since we have already got the close form of the gradient of s(X) on Wy, we can easily extend it
and get the close form of the gradient of L(X) on Wy in Lemma

Lemma G.3 (Gradient of L(X) on Wvy). If we have the below conditions,

o Let L(X) be defined as Definition2.1]
o Let Wy be defined as Definition[C.3)

Then, we can show that

dL(X

) - s G
dWy, N~

S~—— dXn pxn nxd
dxd

Proof. We slightly abuse the notation, using Wy to represent V; in Lemma[G.1] [G.2}
By Lemma[G.2] we have

ds(X)iy ja T T
— = X f(X)iy € 23)
W S
v dXn oyl 1xd
dxd
By Lemma[C.4} we have
n d
- dAEn (Ti-1 (X)) iz s
gz 24
dWV zz: zz: i(i2,J2) dwy, &9

By Definition[C.10]and Definition [C.3] we have
$(X) = Attn;(T;—1(X))

Therefore, combining Eq. (23) and Eq. (24), we have
dL(X)
dWy,

56

Under review as a conference paper at ICLR 2026

[
IvgE
M&

Gz(l27.72) XT f(X)127* 6

i2=17j2=1 1x1 dxn

nxl1 1xd
n d
T
= g X g i(i2,J2) -2
i:lvH’_/ =1 \H/_’v
2Thdxn px 1x1 1xd

X7 F(X)iyw Gilin,)"
3 & {0 G
2=bdxn 1xd
= XU f(X) G

e Y SN
dXn pxn nxd

where the st step is from Eq. (23) and Eq. (24), the 2nd step comes from basic algebra, the 3rd step
is because of basic linear algebra, the 4th step is due to basic linear algebra.

O
G.3 FAST COMPUTATION
Finally, we can introduce our almost linear time algorithm for computing the L(X) gradient on Wy,.

Lemma G.4 (Fast computation for (%f)) formal version of Lemma . If we have the below

conditions,

* Let L(X) be defined as Definition[2.1]
* Let m denote the number of self-attention transformer layers (see Definition .
s Foranyi € [m], let Wy, € R?*? denote the attention weight in the i-th transformer layer:

dL(X)
AWy,

Namely, our algorithm can output G, in n* W) time, which satisfies
- dL(X)

140(1)

We can show that can be approximated inn time, with 1/ poly(n) approximation error.

|oo < 1/ poly(n)

Proof. Recall in Lemma|C.13| U, V;" is the low rank approximation of f(X).

Let f(X) := U, V;" denote the low rank approximation of f(X).

Recall in Lemma|[G.3] we have
dL(X
N x i 6
dWVi N~
—— dXn pxn nxd
dxd

Proof of running time.
We compute X | f(X)G, in following order
« Compute X' - U; , which takes n't°(1) time.
N~~~
dXn nxk,
« Compute X ' - Uy - V;' , which takes n't°(!) time.
—— ~~
dxky ki xXn
e Compute xXT. U - VlT - G, , which takes d? - n time.
—_— =~

dxn nxd

57

Under review as a conference paper at ICLR 2026

The overall running time is n't°(1),
Proof of error bound.
We have
IXT-F(X)-Gi = X+ f(X) - Gilloo = [IX T (F(X) = (X)) - Gilloo
<0 [|X oo |LF(X) = F(X)[loo|Gill o
< n*(e/ poly(n)) | X || Gill
< €/ poly(n)
where the Ist step is from basic algebra, the 2nd step comes from basic linear algebra, the 3rd
step is because of || f(X) — f(X)]leo < €/ poly(n), the 4th step is due to || X ||oc < poly(n) and
[Gilloe < poly(n).
Letg, = X7 - f(X)-G,.
We choose € = 1/ poly(n). Then, we have
g, — S0
dWy,

|oo < 1/ poly(n)

H GRADIENT APPROXIMATION FOR ENTIRE MODEL

In Section|H. 1| we introduce the close form of G; and argue that GG; can be computed in almost linear
time n'*°W), In Section we provide the almost linear time algorithm for gradient computing
on a single-layer transformer. In Section [H.3] with the help of math induction, we introduce the
almost linear time algorithm for computing the gradient of the multi-layer transformer, along with
its approximation error.

H.1 COMPUTATION TIME FOR G

Here we consider g; in Definition[I.3]as a linear layer with an arbitrary non-linear activation ¢. Since
g; can be viewed as a composition of an MLP and an activation function, we begin with analyzing
the T; gradient on Attn;.

Lemma H.1 (Gradient of T; on Attn;). If we have the below conditions,
o Let T;(X) be defined as Definition

o Assuming for any Z € R"™ 9, we have g;(Z) € R™ 4, and g;(Z) = ¢(ZW,), where
W, € R¥>? and ¢ : R — R denotes any element-wise activation function. Let ¢ denote
the derivative of ¢.

o We simplify the notation, using T; and Attn; to represent T;(X) and Attn;(T;_1(X)),
respectively.

s For any matrix Z € R™*% we use Z(i,) to denote the (i, j)-th entry of Z.

Then, we can show that, for any iy, i5 € [n], ja, js € [d],

* Part 1.
CdTi(iaga) o' (Attn; (ia, %) "W, ja)) Wy(js, ja) ia = i
dAttn,(is, js) 0 1x1 1x1 i
* Part 2.
% = ¢/(Attni(i47*)TWQ(*7j4))@/Wg(*,j4)T
~ 1x1 nx1 1xd

58

Under review as a conference paper at ICLR 2026

Proof. Proof of Part 1.
By the definition of T} (Definition 2.3), for is € [d], j4 € [n], we have

Ti(ia, ja) = d(Attn;(ig, %) T W (*, js))
Therefore, for any i5 # i4, we have

dT; (44, ja)

P St A— 0
dAttn; (is, js)

Then, we consider i4 = 75 case.
By basic calculus, we have

dT; (i4, ja)

iV)y T . o
dAttn,;(i4,j5) ¢ (Attnl(l‘l’ *) Wg(*7j4)) Wg(]oajél)

1x1 1x1

Combining two equations mentioned above, we have the result for Part 1.
Proof of Part 2.
By result of Part 1, for i5 = 74, we have

dT; (4, ja)

_ o\t Ja)) A N7 T . . .
dAttn; (is, j5) ¢'(Attn; (ia, %) Wy (x, ja)) Wy (js, ja)

1x1 1x1

which implies

d:rl(l47.j4) Y] . T .)
Tt (14, x) — DAL, %) Wo (7)) Wo (%, 1a)
1x1 dx1

By result of Part 1, for i5 # i4, we have

dT;(is, ja)

R St —
dAttn; (is, *)

By basic linear algebra, combining the two equations mentioned above, we have

dT; (44, ja)

dAttnl = ¢/(Attn1(l4’ *)TWQ(*7]4)) ei4 Wg(*’j4)—r

1x1 nx1 1xd

Then, we can argue that the computation for GG; can be done in almost linear time pito(d),

Lemma H.2 (Computation time for G;, formal version of Lemma@.4). If we have the below con-
ditions,

o Let G; € R™*? denote the gradient matrix resulting from the application of the chain rule
.) - dL(X)
up to thefl/ﬁ'l(,tl()n g, L.e., GZ = m

* Assuming we already have STL,(())(())~

o Assuming for any Z € R" % we have g;(Z) € R™ 4, and g;(Z) = ¢(ZW,), where
Wy € R¥>? and ¢ : R — R denotes any element-wise activation function. Let ¢’ denote
the derivative of ¢.

o We simplify the notation, using T; and Attn; to represent T;(X) and Attn;(T;_1(X)),
respectively.

59

Under review as a conference paper at ICLR 2026

s For any matrix Z € R™*%, we use Z (i,) to denote the (i, j)-th entry of Z.

Then, we can show that G; can be computed in n'*+°M) time.

Proof. Let gr, := dﬁ(T)f) and for any iy € [n], 74 € [d], let g1, (i4, ja) denote the (i4, j4)-th entry
of ar; -

Similarly, for any i5 € [n], j5 € [d], let T;(i5, j5) denote the (i5, j5)-th entry of T;.

We can have

dL(X) dT,
dT; dAttn;
dT;

dAttni

Zzg in dT;(i4, ja)
7: (i, Ja) dAttn;

Z4 1]4 1

=91; *

where the st step is from the definition of G;, the 2nd step comes from chain rule, the 3rd step is
because of the definition of g7,, the 4th step is due to chain rule.

n d
Z Zg iai dT5(ia, ja)
7: (i, Ja) dAttn;

n d
= > ZgTi(i4vj4)¢/(Attni(7;4v*)TWg(*7j4))\eiﬁ/Wg(*7j4)T

1x1 nxl 1xd

—
X
—

n d
= Z Ciy ZgTi(i47j4) ¢/(Attni(i47*)TWg(*7j4)) Wg(*vj4)T

ia=l % Ja=1 1x1 1x1 1xd

- Z e, (Wy (gTi(z}h*)@(ﬁ'(Attni(z};,>0<)TI/Vg)))—r
N N

14=1

nx1l dxd dx1 dx1
= (91, © ¢/ (Attn;Wy)) W, (25)
~—
nxd dxd

where the 1st step is from Lemma[H.I] the 2nd step comes from basic algebra, the 3rd step is because
of basic linear algebra, the 4th step is due to basic linear algebra.

By Eq. (23), we have the close form of G;.

We can compute G; in the following order

 Compute (g7, © ¢'(Attn;W,)), which takes n - d time.

nxd

* Compute (g7, ® ¢'(Attn;W,)) VVg—r , which takes d? - n time.
-

nxd dxd

Therefore, the overall running time for G is n'*°(),

60

Under review as a conference paper at ICLR 2026

H.2 FAST COMPUTATION FOR SINGLE-LAYER TRANSFORMER

In this section, we dive into the computation time and approximation error of the gradient of a
single-layer transformer. We demonstrate in the following Lemma that the gradient of a single-
layer transformer can be computed in almost linear time n'T°(1), and its error can be bounded by
1/ poly(n).

Lemma H.3 (Single-layer transformer gradient approximation). If we have the below conditions,

Let L(X) be defined as Definition

Let X be defined as Definition

s Let the gradient matrix G; € R™"*? be defined as G; = Wii@f))'

o Forig € [n], j2 € [d], let G;(i2, j2) denote the (ia, j2)-th entry of G;.

o Assuming for any Z € R™ %, we have g;(Z) € R"*4, and g;,(Z) = ¢(Z - W,), where
Wy € R¥>? and ¢ : R — R denotes any element-wise activation function. Let ¢’ denote
the derivative of ¢.

* Suppose we have a single-layer transformer (see Definition[I.3)).

Then, we can show that,

L(X)

R d 14+0(1
Part 1: running time. Our algorithm can approximate —3¢ o(1)

nn time.

e Part 2: error bound. The approximation error of the single-layer transformer can be

bounded by 1/ poly(n). Namely, our algorithm output g, satisfies

dL(X)
ax

g1 — loc <1/ poly(n)

Proof. By Definition[I.3] a single-layer transformer has following structure:

g1 © Attny o go(X)

By the definition of G;, we have

__ dL(X)

o dAttnl(To(X))
_dL(X) a7y (X)

T ATy (X)) dAttng (Ty(X))

G

(26)

By Lemma|H.2} we have G, can be computed in n' () time.

Proof of Part 1: running time.

For less confusion, in this part of the proof, we ignore the approximation error temporarily.

Since we have got GG;, we use methods mentioned in Lemma [F35] to compute

(#0 (())(()) , d(fév)f) , (31%"(’?/(1) , respectively, which takes n't°(!) time for each.

Then, since we have ;7%0 (())(()), again by Lemma we have dﬁ()?) can be computed in n' o)
time.

Therefore, the overall running time is n'+°(1),
Proof of Part 2: error bound.
Then, we move on to the error bound.

By Lemma|[H.2]and Eq. (26), there is no approximation error when computing G1.

61

Under review as a conference paper at ICLR 2026

By Lemma - we have there is 1/poly(n) approximation error on
dL(x

dL(X) dL(X) , respectivel
dTo(X)® AWy @ dWy, > [eSpectively.

Let gt,, Guw, » Gv, denote the approximation results of G# ((X)) , djéé) , ‘31];‘,[(,)() respectively.

‘We have
- dL(X)
— <
and
~ dL(X)
— <1 1
and
dL(X)
— <
G, W, oo <1/ poly(n)

Let Gy = Jto dj;‘f)((x) denote the approximated version of Gj.

We have
|Go — Gonoo
. ()\ dTo(X)
<n-dgi, - dTO((fQ) WSS
dTo()

lloo

< n-d(1/poly(n))|
< 1/poly(n)

where the 1st step is from the definition of éo, the 2nd step comes from basic linear algebra, the 3rd
step is because of Eq. (27), the 4th step is due to each entry can be written by O(log n) bits.

Let 51 = éo.
Therefore, we have

_dL(X)
g1 — X

oo < 1/poly(n)

H.3 FAST COMPUTATION FOR MULTI-LAYER TRANSFORMER

Since we have already demonstrated that almost linear time gradient computation can be applied to
a single-layer transformer, with the help of math induction, we can easily generalize that result to
the multi-layer transformer. In the following Lemma, we display that the gradient of the multi-layer
transformer can be computed in almost linear time, and its approximation error can be bounded by
1/ poly(n).

Lemma H.4 (Multi-layer transformer gradient approximation, formal version of Lemma[d.3). If we
have the below conditions,

* Let L(X) be defined as Definition[2.1]
e Let X be defined as Definition

o Let G; € R™*? denote the gradient matrix resulting from the application of the chain rule

up to the function g;, i.e., G; = %

62

Under review as a conference paper at ICLR 2026

* Foris € [n], jo € [d], let G;(iz, j2) denote the (ia, j2)-th entry of G;.
* Let gradient components for each layer be computed according to Lemma[E 11} [F23]

o Assuming for any Z € R™ %, we have g;(Z) € R™*4, and g;,(Z) = ¢(Z - W,), where
Wy € R¥>? and ¢ : R — R denotes any element-wise activation function. Let ¢’ denote
the derivative of .

* Suppose we have a m-layer transformer (see Definition|l.3).

Then, we can show that,

L(X)

. d 14+0(1
Part 1: running time. Our algorithm can approximate =3~ M

nn time.

e Part 2: error bound. The approximation error of the multi-layer transformer can be

bounded by 1/ poly(n). Namely, our algorithm output g satisfies

_dL(X)
g — X

oo <1/ poly(n)

Proof. We use math induction to prove this Lemma.

Step 1: Proof of a single-layer transformer.

Firstly, by Lemmal[H.3] we have that for one-layer transformer, our conclusion is established.
Step 2: Assumption for k-layer transformer.

Secondly, we assume for any k, for k-layer transformer model, we have

dL(X) . 140(1) ¢
ax_ nn time.

* Qur algorithm can approximate

* The approximation error of the k-layer transformer can be bounded by 1/ poly(n). Namely,
our algorithm output g satisfies

_dL(X)
g — X

oo <1/ poly(n)

Step 3: Proof of (k + 1)-layer transformer.
Thirdly, we consider the (k + 1)-layer transformer model.

Without loss of generality, we assume that the additional transformer layer is added at the beginning
of the model.

Namely, let Fj, denote a k-layer transformer model. We have

Fk(X) =gi o Attng o - - - ogio Attn; OQO(X)

Let the (k + 1)-layer transformer model have the following structure:

Fk+1 (X) = Fk o Attn o g(X) (28)

Let Ty := g(X)

By assumption, we have

dL(X)

. - . 1+4o0(1 N
Thten(Ty) CaN be approximated in n'T°() time.

dL(X)

* Let g, denote the approximated version of TAten(T5) " We have
~ dL(X)
- || <1 1 29
19k JAtn(Ty) oo <1/ poly(n) (29)

63

Under review as a conference paper at ICLR 2026

Step 3.1: Proof of the running time for (£ + 1)-layer transformer

For less confusion, in this part of the proof, we ignore the approximation error temporarily.

dL(X)
dAttn(Ty)

By the assumption, we have can be approximated in n'*°() time.

We compute dﬁ()‘?) in following order:

* Since we already have %, by Lemma , the computation time for Lﬁ(Tf) is
plite),

¢ Since we have dﬁ(Tf) , by Lemma the computation time for dﬁ()‘(x) is ptto(),

is pito(),

Therefore, for (k + 1)-layer transformer, the overall running time for dﬁg‘(x)
Step 3.2: Proof of the error bound for (k + 1)-layer transformer

By Lemma , during the process of solving the approximated version of 358(()) , the approxima-

tion error will not be magnified by more than poly(n).

dL(X)

Let g, denote the approximated version of dg(x) > We have
~ dL(X) - dL(X)
- o < 1 - o
[0~ 35y I < Poly ()l — g
<1/ poly(n) (30)

where the 1st step is from the above statement, the 2nd step comes from Eq. (29), the 3rd step is
because of basic algebra.

Then, we consider
dL(X) B dL(X) . dg(X)

dX dg(x) dx GD

Recall that we have g = dfl()‘f) . Then, we have

LX) LX), dg(X)

15 - e = 1 - S o e
an(x), dg(x)
e 2
< n-d(1/poly(m) L.

< 1/poly(n)

where the Ist step is from Eq. (31)), the 2nd step comes from basic linear algebra, the 3rd step is
because of Eq. (30), the 4th step is due to each entry can be written by O(logn) bits.

<n- d‘lgto -

Step 4: Use math induction.

So far, with the assumption that our statement holds under k-layer transformer, we have proved that
our statement still holds under (k + 1)-layer transformer.

Therefore, by math induction, our statement holds for any m-layer transformer.

I CAUSAL ATTENTION MASK

This section will discuss how to combine the causal attention mask with our framework. We argue
that even with the causal attention mask, we can also achieve almost linear time gradient computing
for the multi-layer transformer.

64

Under review as a conference paper at ICLR 2026

In Section|[[.I] we introduce essential tools from literature to deal with the causal mask added on the
attention matrix. In Section [I.2] we show that with the addition of causal mask, our framework can
still achieve almost linear time gradient computation.

I.1 ToOLS FROM PREVIOUS WORK

Firstly, we restate a classical low-rank approximation method in the literature.

Lemma I.1 (Low-rank approximation, (Alman & Song, 2023)). Suppose Q, K € R"*9, with
IQlcc < R, and ||[K|loo < R. Let A := exp(QK '/d) € R™ ™. For accuracy parameter
€ € (0,1), there is a positive integer g bounded above by

o=0(mo{tagrzmy)

and a positive integer v bounded above by

5

such that: There is a matrix A € R"™ ™ that is an (e, 7)-approximation of A € R™"*™. Furthermore,
the matrices Uy and V; defining A can be computed in O(n - r) time.

Then, we provide the formal definition for the causal attention mask.

Definition 1.2 (Causal attention mask, (Liang et al.| [2024a))). We define the causal attention mask
as M € {0,1}"*", where M; ; = 1 ifi > j and M; ; = 0 otherwise.

Algorithm 2 Causal attention mask algorithm, Algorithm 4 in (Liang et al.| 2024a)

1: procedure CAUSALMASK(Uy € R™™* V, € R"*F y € R™) > LemmalL.3]
2 co + Og
3: forj=1—ndo
4 by < (V') v > Let (V,,"); denote the j-th row of Vg € R"*k
——
kx1 scalar
5: Ccj 4 cj1+ bj
N~~~
kx1 kx1
6: end for
7: forj=1— ano
8: Y Uy)js ¢)
——
kx1 kx1
9: end for
10: return Y >Y € R"”

11: end procedure

In previous work (Liang et al.| 2024a), they point out there exists an algorithm (Algorithm [2) that
can calculate low-rank matrices (with the causal attention mask) multiplication with any vector v in
almost linear time. We restate their results in Lemma [[3

Lemma 1.3 (Fast computation for causal attention mask on tensor, (Liang et al.|2024a))). Let M €
{0,1}"*™ be a causal attention mask defined in Definition Let Uy, Vo € R"¥*. Let v € R™.
Then, there exists an algorithm (see Algorithm|2) whose output satisfies that

Y = (Mo UVy)),
which takes O(nk) time.

We extend their results to the multiplication of matrix with n°(Y) columns.

Lemma 1.4 (Fast computation for causal attention mask on matrix). If we have the below conditions,

o Let M € {0,1}"*"™ be a causal attention mask defined in Deﬁnition

65

Under review as a conference paper at ICLR 2026

o Let Uy, Vy € R™™F where k = n°W),
o Let H € Rk where kg = n°®),
Then, there exists an algorithm, whose output satisfies that
Z=(Mo UV,))H,

which takes n*T°M) fime.

Proof. For j € [kg],let H, ; € R™ denote the j-th column of H.
By Lemma we can compute (M ® (UgVy'))H, ; in O(nk) time.
There are kj columns in total. Therefore, the overall running time is O(nkky) = O(n - n°(*) .

o) = plto(t), O

1.2 FAST COMPUTATION WITH CAUSAL MASK

We can easily change all low-rank matrices multiplication to the algorithm mentioned in Lemma|[.4]
Then, our framework can support the causal attention mask and still achieves almost linear time
gradient computing for the multi-layer transformer.

The causal mask directly affects the attention matrix, so it’s necessary to define the attention matrix
with the causal mask applied.

Definition L.5. Ler M € {0,1}™*"™ be a causal attention mask defined in Definition We define
attention matrix with causal mask as:

F(X):=D " (Mo A)
where A = exp(XW X" /d) and D := diag((M ® A) - 1,,).

After analyzing the components of gradients on 7;(X), W;, Wy, in Section and [G] we cate-
gorize them into two groups: one involving the dot product and the other involving the Hadamard

product of the attention matrix. Then, we can show f(X)H and (f(X) ® (UVT))H for low rank
matrices U, V, H can be approximated in almost linear time.

Lemma 1.6. If we have the below conditions,
o Let f(X) be defined in Deﬁnition@
o Let U,V € R"*F where k = n°(),
o Let H € R" ¥4 where ky = n°W.

Then, approximating the following takes n*T°W) time:

~

e Part1. f(X)H

« Part2. (f(X)® (UVT)H

Proof. From Definition [[.5] we know

f(X):=D' (Mo A)

where D := diag((M © A) - 1,,).

By Lemma UoV,' is a good approximation for A. Then, we can approximate f(X) by:
DM ® (UoVy))

where D := diag((M © (UgVy")) - 1,,).

66

Under review as a conference paper at ICLR 2026

Using Lemma we know (M ® (UgV,")) - v for any vector v € R™ can be computed in almost
linear time.

We begin by examining the normalization matrix D~!. Calling Lemma we compute (M ©
(UgV,")) - 1,, in almost linear time. Then, it takes O(n) time to make (M ® (UyV,')) - 1,, diagonal.
Given that D is diagonal, its inverse D~! can be determined in O(n) time. Thus, we can compute
D~ in almost linear time.

Proof of Part 1. H can be viewed as a combination of ky vectors, each of size n. Calling
Lemma|l.4] we can compute (M ® (UpVy"))H in n'+o(1) time.

Finally, we compute D' (M @ (UyV,"))H, which takes n't°(!) time since D~! is diagonal. The
~ —

nxn nx ki

overall gradient computation remains n!+°() time.
Proof of Part 2. The proof for this part involves Fact|C.2] We can show
(DM © (UsVy') © (UVT)H = (Mo (D™'UVy')) © (UV) H
= (Mo (D™'UVy) o (UVI)HH
= (Mo (D' U)o U)(Voo V)")H

where the 1st step is from D(A ® B) = (DA) ® B = A ® (DB) for diagonal matrix D € R™*™
and A, B € R™*", the 2nd step comes from (A® B) ©C =A® (Bo C) for A, B,C € R™*",
and the last step follows from Fact[C.2]

Let Upr == (D~'Up) @ U and Vi == Vp @ V.
For Uy, we compute D! Uy which takes nk time. We then compute (D~'Uy) @ U which

N—_——
NXN pxk nxk nxk

takes O(nk?) time.

For Vjs, we compute Vo @V which takes O(nk?) time.

nxk nxk

We now have (M ® (U V,})H. Calling Lemma we finish the proof. O

We now prove for gradient components that have dot product.
Lemma 1.7 (Components for dot product). If we have the below conditions,

Let f(X) be defined in Deﬁnition@

s Let G; € R™? denote the gradient matrix resulting from the application of the chain rule

up to the function g;, i.e., G; = %.

 Let Dg = — f(X) diag(K)XW " be defined in Lemma

* Let Dy = — diag(K) f(X)XW be defined in Lemma|D.17]

Let Dy = f(X)G; Wy} be defined in Lemma

s Let g, :== X " f(X)G; be the gradient on Wy, and defined in Lemma

Then, we can show the following can be approximated in almost linear time:
e Part 1. Dg = —f(X) diag(K)XW T
e Part2. Dy = — diag(K) f(X)XW
« Part3. Dg = f(X)G, Wy}

s Part4. g, := XTJ?(X)Gi

67

Under review as a conference paper at ICLR 2026

Proof. Proof of Part 1. For ﬁg, we compute diag(K) X first, which takes nd time.
——

nxn nxd

Then, we compute f(X) diag(K)X using Part 1. of Lemmal|L6| which takes n' () time.
S~ ———

nxn nxd

Finally, we compute f(X) diag(K)X W, which takes n'+°() time.
—_——

nxd dxd

Proof of Part 2. For Dy, we compute f(X) X using Part 1. of Lemma which takes n!*+o(®)

nxn nXd
time.

Then, we compute diag(K) f(X)X, which takes nd time.
——
nxn nxd
After that, we compute diag(K)f(X)X W , which takes n1*+°() time.
—_——

nxd dxd

Proof of Part 3. For ﬁg, we compute in the following steps:
We compute f(X) G; using Part 1. of Lemma which takes n'T°() time.
\,-/\/-’
nxn nXd
Then, we compute f(X)G; Wy, , which takes n - d time.
——
nxd dxd
Proof of Part 4. For g,,, we compute in the following steps:

We compute f(X) G; using Part 1. of Lemma which takes n'T°() time.
NN

nxn nxd

Then, we compute X ' f(X)G, which takes n - d? time. O
N ——

dxn nxd

We then prove for gradient components that have Hadamard product.
Lemma 1.8 (Components for Hadamard product). If we have the below conditions,

o Let f(X) be defined in Deﬁnition@

o Let G; € R™*? denote the gradient matrix resulting from the application of the chain rule

.) dL(X
up to the function g;, i.e., G; = WM.

s Let D7 = (f(X) ® (W(X)G])XW be defined in Lemma

o Let Dy = (f(X) ® (G;h(X) ")) XW be defined in Lemmal|D.17}

o Let gy == X 'p(X)X = XT(p1(X) — p2(X))X be the gradient on W; and defined in
Definition and LemmalF.3|where p1(X) = f(X) ® q(X) and p2(X) = diag(p1(X) -
1) f(X).

Then, we can show the following can be approximated in almost linear time:

e Part 1. D7 = (f(X) ® (M(X)GT NXWT

)®
e Part2. Dy = (F(X) © (G:h(X)T)) XW

~

e Part 3. Gu = X7 (u(X) — P2(X))X where pi(X) = J(X) ® g(X) and ps(X) =
diag(F1 (X) - 1) F(X).

[y

68

Under review as a conference paper at ICLR 2026

~

Proof. Proof of Part 1. For D;, we can compute (f(X)® (h(X)G])) X using Part 2. of

nxn nxd

Lemma|L6] which takes n'+°() time.
We then compute (f(X) o (WMX)G])X W, which takes nd? time.

nxd dxd

Proof of Part 2. For D7, we can compute (f(X) ® (G;h(X)T)) X using Part 2. of Lemma

nxn nxd

which takes n!+°(1) time.

We then compute (f(X) ® (G;h(X)T))X W , which takes nd? time.

nxd dxd

Proof of Part 3. For g,,, we consider X " p; (X)X first. Based on Definition|C.11} we have p; (X) =
f(X)©q(X) = f(X)® (G;h(X)T). We then compute (f(X) ® (G;h(X) ")) X using Part 2. of
| which takes n'+°(1) time. After that, we compute X ' (f(X) ® (G;h(X)"))X, which

dxn

Lemma

nxd

takes nd” time.

Now we consider X "p»(X)X. By definition, p»(X) = diag(p;(X) - 1,)f(X). We first com-
pute p1(X) -1, = (f(X) ® (Gih(X)T)) - 1,, using Part 2. of Lemma , which takes
n'to time. Meanwhile, we compute f(X)X using Part 1. of Lemma , which takes
n'*°() time. We then have diag(p;(X) - 1,,) f(X)X, which takes nd time. Finally, we compute
—_— ————

~

nxn nxd
X diag(p1(X) - 1,)f(X)X, which takes nd? time.
dxn nxd
Together, X ' 51 (X)X — X " po(X) X takes d? time. O
dxd dxd

Thus, we show that our framework can support causal attention masks.

J RESIDUAL CONNECTION

In this section, we discuss how to adapt our framework to the attention mechanism with the residual
connection.

In Section we provide a formalized definition of the two residual connections used in the at-
tention mechanism. In Section we argue that with the addition of the residual connection, the
gradient over the attention mechanism can be computed in almost linear time n'+°(!) and the ap-
proximation error can be bound by 1/ poly(n). In Section we use math induction to show that
the gradient over the entire transformer with the residual connection can also be computed in almost
linear time n'*+°(1),

J.1 KEY CONCEPTS

Recall that in Definition we have defined 7;(X) € R"*¢ as the intermediate variable output
by the i-th transformer layer. For simplicity, we use T; to represent T;(X) in the rest part of this
section. Namely, we have

T; = (g; o Attn;) (Ti—1)

Then, we consider adding the residual connection to our framework. Note that there are two residual
connection operations in one transformer layer. We first define the residual connection over the Attn;
in Definition [J 1]

69

Under review as a conference paper at ICLR 2026

Definition J.1 (Residual connection over Attn;). If we have the below conditions,
e Let T; be defined as Definition
* Let Attn; be defined as Definition
We define Z; € R™*? as the output with the residual connection of Attn;. Namely, we have
Zi =Ti—1 + Attny(T;—1)

Then, we consider the second residual connection over the MLP layer g;, where we have the formal
definition for this in Definition [I.2]

Definition J.2 (Residual connection over g;). If we have the below conditions,

* Let the multi-layer transformer be defined as Definition
* Let the intermediate variable T} be defined as Definition2.3]
* Let g; denote the components other than self-attention in the i-th transformer layer.

« Let Z; € R™*% be defined as Definition[J.1]

Then T;, the output of i-th layer transformer with the residual connection, should have the following
form:

T; = Zi + gi(Z:)

J.2 ANALYSIS OF THE RESIDUAL CONNECTION

In the previous section, we have defined the two residual connection operations.

In this section, we argue that if the gradient computation can be done in almost linear time without
the residual connection, then with the addition of the residual connection, the gradient computation
can also be completed in almost linear time.

Lemma J.3 (Analysis of the residual connection). If we have the below conditions,

* Let L(X) be defined as Definition[2.1]

o Let Yp € R"¥% and X € R"*? denote the output and input of the residual connection,
respectively.

e Let H: R4 5 R"%% denote some layer in the transformer, such as MLP, Attn, etc.
* Suppose the residual connection can be written as

Yr = Xr +H(XR).

dL(X)
dYR

dL(X) dH(XR)

IV, —dx, in almost linear

€ R™%% then we can calculate

* Assuming we have
time n'to(),

Then, we can show that,

dL(X)
dXr

o If djg:) has 1 / poly(n) approximation errov, then the approximation error on d(f)(()}i) i

still 1/ poly(n).

. 140(1).

can be calculated in almost linear time n

Proof. By the chain rule, we have

dL(X) dL(X) dYg
dXp ~ dYp dXz

70

Under review as a conference paper at ICLR 2026

dL(X dH(X
dYr dXpg
dL(X dL(X) dH(X
_dL(Y) | dL(X) dH(Xg))
dYg dYr dXg
where the 1st step is from the chain rule, the 2nd step comes from basic calculus, the 3rd step is
because of basic algebra.

dL(X)
dYr

dL(X) dH(XR)
dYr dXg

By the assumption, we already have , and

time ntto(),

can be computed in almost linear

L(X) and dL(X) dH(XR)

.. . d .
The addition operation between v Ve —dXn takes n - d time.

Therefore, the overall running time for %ﬁ) is plte),

Then, we consider the approximation error.

By Eq. (32) and basic linear algebra, the approximation error will not be magnified by more than

(n - dpoly(n) + 1). Since (n - dpoly(n) + 1)(1/ poly(n)) = poly(n), the approximation error on

ddL)(();) can be bounded by 1/ poly(n).

O

J.3 ANALYSIS FOR THE ENTIRE MODEL WITH THE RESIDUAL CONNECTION

In the previous section, we have shown that, with the addition of the residual connection on a single
component, the gradient computation time can still be done in almost linear time. We will apply this
finding to the entire model.

We begin by single layer proof.
Lemma J.4 (Fast gradient computation for single-layer transformer with residual connection). If
we have the below conditions,

* Let L(X) be defined as Definition[2.1]
* Let X € R™ % be defined as Definition|C.3|
* Suppose we have a single-layer transformer (see Definition[I.3)).

* Let the residual connection be defined as Definition[J 1| and[J.2}

Then, we can show that,

L(X)

. d . 140(1) 4
¢ Part 1: running time. Our algorithm can approximate =3~ inn time.

» Part 2: error bound. The approximation error of the single-layer transformer with the
residual connection can be bounded by 1/ poly(n). Namely, our algorithm output g,,
satisfies

~ dL(X)

)<
lgm — =% oo <1/ poly(n)

Proof. We use T; to represent T; (X)) for simplicity. By the definition of T; (see also Definition ,
we have the following equations

Ty = go(X)

Follow Definition[J.T]and J.2] we have
Z1 = Tp + Attny (Tp)
and
Ty =71+ 9:1(Z1)

Then we calculate the gradient by the following steps:

71

Under review as a conference paper at ICLR 2026

* Step 1: Calculate dL(X) By the definition of L(X) (see also Definition , we have

dﬁ(T)f) can be computed inn - d time.

» Step 2: Calculate dj(Z)f). By Lemma the assumption in Lemma is satisfied.

dg(Z)f) can be computed in almost linear time n'*+°(1),

Therefore, we have

» Step 3: Calculate dﬁgpf). By Lemma , the assumption in Lemma |J.3| is satisfied.

Hence, dﬁ(Tf) can be computed in almost linear time. By Lemma , the approximation

error is 1/ poly(n).

* Step 4: Calculate dL(X). By Lemma ()‘(X) can be computed in n'T°(1). The
approximation error is (1 - d)(1/poly(n)) = (l/poly()

dL(X)
dX

To sum up, we can show that the overall running time for is n'T°() and the approximation

error is 1/ poly(n).
Let g,, be the output of Step 4. Then we are done.

We now prove for multi-layer.

Lemma J.5 (Fast gradient computation for multi-layer transformer with residual connection). If we
have the below conditions,

* Let L(X) be defined as Definition|2.1]
o Let X € R™"*? pe defined as Deﬁnition
e Let the residual connection be defined as Definition[J 1| and

* Suppose we have a m-layer transformer (see Definition [I.3).

Then, we can show that,

* Part 1: running time. Our algorithm can approximate % in n*t°W) time.

* Part 2: error bound. The approximation error of the m-layer transformer with the resid-
ual connection can be bounded by 1/ poly(n). Namely, our algorithm output g, satisfies

dL(X)
ax

19r —

loo <1/ poly(n)

Proof. We use math induction in this proof.

Step 1: Proof of a single-layer transformer.

Firstly, by Lemma[J.4] we have the statement holds for a single-layer transformer.
Step 2: Assumption for k-layer transformer.

Secondly, we assume for any k, for k-layer transformer model, we have

e Part 1: running time. Our algorithm can approximate dL(X in O(n'*t°M) time.

* Part 2: error bound. The approximation error of the k-layer transformer can be bounded
by 1/ poly(n). Namely, our algorithm output g satisfies

5 -) <1/ poly(n)

72

Under review as a conference paper at ICLR 2026

Step 3: Proof of (k + 1)-layer transformer.
Thirdly, we consider the (k + 1)-layer transformer model.
Let Fj, denote a k-layer transformer with the residual connection.

Then, the entire model can be written as
(Fr 0 g0)(X)
By the definition of T3, we have
To = go(X)
Then, by definition of Z; (see also Definition @, we have
Z1 =Ty + Attny (Tp)

By Definition[J.2] we have
Ty =71+ g1(Z1)
Without loss of generality, we assume that the additional transformer layer is added at the beginning

of the model. Then, the (k + 1)-layer transformer model has the following structure:

Fri1(X) = Fr(Th)

dL(X)
dT;

n'*°(1) and the approximation error can be bounded by 1/ poly(n).

By the assumption for k-layer transformer, we have

can be computed in almost linear time

We apply similar proof of Lemma then we can show that, we can compute dfi()‘f) in almost

linear time n'*+°(1) and the approximation error can be bounded by 1/ poly(n).

O

K MULTI-HEAD ATTENTION

Following the notation used in Section we use h to denote the number of heads, and dj, = d/h
to denote the dimension of each head.

Definition K.1 (Multi-head attention). If we have the below conditions,

e Let h denote the number of heads.

* Let d denote the hidden dimension. Let dy, = d/h denote the dimension of each attention
head.

o Let Q, K,V € R"*? be defined as Deﬁnition
Let f(X) be defined as Definition
Let s(X) be defined as Definition|C.10}

The multi-head attention can be formalized as follows:

« Step 1. Split the hidden dimension d of Q, K,V € R"*% into h parts. Then, for each
1 € [h], we have Q;, K, V; € R,

s Step 2. For each | € [h], calculate the attention matrix f; := Softmax(Q,K," /dy,) €
R™ " and calculate the corresponding attention result s; := f;V; € R"* %,

* Step 3. Concatenate s; € R™*% together, then we have the final multi-head attention
output s € R"¥4,

73

Under review as a conference paper at ICLR 2026

Then, we dive into the analysis of the gradient computation process over the attention mechanism
with multi-head attention.

Lemma K.2 (Analysis of the multi-head attention). If we have the below conditions,

o Let Attn(X) be defined as Definition

* Let multi-head attention mechanism be defined as Definition|[K1|

o Let Yy, X, € R"%4 denote the output and input of the multi-head attention, respectively.
Then, we can show that,

dL(X . . .
* 3)(() can be calculated in almost linear time n

1+o(1)-

dL(X) ;
ax,,

e If 3 dL(X) has 1/ poly(n) approximation error, then the approximation error on
still 1/ poly(n).

Proof. Following the notations used in Definition [K.1} m for I € [h], we use s; € R"*9 to denote
the output by each attention head. And we use s € R™*? to denote the concatenated version of the
output of the multi-head attention.
By the chain rule and the definition of L(X) (see also Definition 2.1)), we have
dL(X) dL(X) dY, ds
dX,, dY,, ds dX,,
AL(X) Y, <~ ds;

dY,, ds & dX,,

where the 1st step is from the chain rule, the 2nd step comes from s € R”*4 is the concatenated
version of s; € R™X %

We calculate the gradient in the following steps:

dL(X)

« Step 1: Calculate . By the definition of L(X) (Definition 2.1), we have that X2
can be calculated in n "d time.

* Step 2: Calculate ddL}(,X) dY . Since we already have dL(X) , by Lemma L we have

dv,,
d(l;(/x) d;/’" can be computed in almost linear time n't°(1),

* Step 3: Calculate 2500 . Yo 5™ dsiEoreach | € [h], by Lemma dLix)

dY,
dfi/s d‘igl can be computed in n1+0(1). Since the number of heads h can be viewed as a

constant here, it takes n'+°(!) time to compute the gradients on & heads.

Therefore, the overall running time for d(f)((x) is plto),

Then, we consider the error bound.

By assumption, there is 1/ poly(n) approximation error on ddLl(,X) For each [€ [h], the approxima-

dL(X) dYp, | _ds
dY, ds dXp, -

tion error will not be magnified by more than n? - d - dj, - poly(n) on

Then, since there is total i heads, the approximation error on ddL)((X) can be bound by

h-n%-d-dy - poly(n) - (1/poly(n)) = 1/ poly(n)

O

Similar to the proof of Lemma [H.3| and [H.4] we apply Lemma to deal with the multi-head

attention in each transformer layer. Then, we can show that dﬁ()‘?) can be computed in almost linear

time n'+°(!) and the approximation error can be bounded by 1/ poly(n).

74

Under review as a conference paper at ICLR 2026

LLM USAGE DISCLOSURE

LLMs were used only to polish language, such as grammar and wording. These models did not
contribute to idea creation or writing, and the authors take full responsibility for this paper’s content.

75

	Introduction
	Key Background
	Our Contributions

	Preliminary
	Loss Function
	Closed Forms of Gradient Components

	Main Results
	Fast Computing for Single Layer
	Fast Computing for Multi-Layer Transformers
	Beyond the Previous Work

	Technical Overview
	Low-Rank Approximation for Attention Matrix
	Accelerating Gradient Computation of Ti(X)
	Accelerating Gradient Computation of Wi and WVi
	Accelerating Gradient Computation for Multi-Layer Transformers

	Extensions
	Conclusion
	Related Work
	Discussion and Extension Details
	Multi-head attention
	Residual connection
	Causal attention mask
	System-level attention acceleration
	Prompt tuning

	Preliminary on Gradient Calculation
	Basic math facts
	Close form of three gradient components
	Basic notations for computing gradients
	Low rank representations
	Bounded entries of matrices

	Matrix View
	Gradient of
	Gradient on
	Matrix view of
	Matrix view of gradient on
	Matrix view of each term in gradient on
	Components of gradient on

	Fast Computation for Gradient on
	Fast computation for term
	Fast computation for term
	Fast computation for term
	Fast computation for term
	Fast computation for term
	Putting everything together

	Fast Computation for Gradient on
	Key concepts
	Gradient of on
	Gradient of on
	Fast computation

	Fast Computation for Gradient on
	Gradient of on
	Gradient of on
	Fast computation

	Gradient Approximation for Entire Model
	Computation time for
	Fast computation for single-layer transformer
	Fast computation for multi-layer transformer

	Causal Attention Mask
	Tools from previous work
	Fast computation with causal mask

	Residual Connection
	Key concepts
	Analysis of the residual connection
	Analysis for the entire model with the residual connection

	Multi-head Attention

