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Abstract

Model agnostic meta-learning (MAML) is one of
the most widely used gradient-based meta-learning,
consisting of two optimization loops: an inner loop
and outer loop. MAML learns the new task from
meta-initialization parameters with an inner up-
date and finds the meta-initialization parameters
in the outer loop. In general, the injection of noise
into the gradient of the model for augmenting the
gradient is one of the widely used regularization
methods. In this work, we propose a novel co-
operative meta-learning framework dubbed CML
which leverages gradient-level regularization with
gradient augmentation. We inject learnable noise
into the gradient of the model for the model gen-
eralization. The key idea of CML is introducing
the co-learner which has no inner update but the
outer loop update to augment gradients for find-
ing better meta-initialization parameters. Since the
co-learner does not update in the inner loop, it
can be easily deleted after meta-training. There-
fore, CML infers with only meta-learner with-
out additional cost and performance degradation.
We demonstrate that CML is easily applicable to
gradient-based meta-learning methods and CML
leads to increased performance in few-shot regres-
sion, few-shot image classification and few-shot
node classification tasks. Our codes are available
at https://github.com/JJongyn/CML.

1 INTRODUCTION

Meta-learning, also known as “learning to learn”, is a
methodology to learn a new task by utilizing previous
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knowledge and experience [Vilalta and Drissi, 2002]. Model-
agnostic meta-learning (MAML) [Finn et al., 2017] is one
of the dominant gradient-based meta-learning methods [Ra-
jeswaran et al., 2019, Rusu et al., 2019, Gupta et al., 2020].
MAML consists of two optimization loops including an in-
ner loop and an outer loop. The inner loop adapts the model
with task-specific knowledge and the outer loop finds the
meta-initialization parameters which can quickly adapt the
new task knowledge in the inner loop, called task-adaptation.
Generally, meta-learning with a few-shot setting involves
both meta-training and meta-testing. In meta-training, a
variety of few-shot learning tasks are provided for a meta-
learner and the meta-learner should solve an unseen task
with few-shot samples in meta-testing. In the process, meta-
learner learns the ability to adapt to various tasks, but they
are challenged to form meta-initialization parameters with
well-generalized knowledge.

Traditionally, noise injection to the model is widely used
for improving the generalization performance of the model.
Neelakantan et al. [2015] finds that adding noise to a net-
work’s gradient improves the network’s generalization per-
formance. Similarly, Yang et al. [2020] performs gradient
augmentation by pruning the model to create multiple sub-
networks and using different data augmentations for each
input in the sub-networks for inducing the diversity into the
gradient, but this requires multiple inferences. They show
that injecting noise into gradients plays an important role in
improving generalization performance.

Motivated by the regularization effect of noise in gradients
and the diverse gradient augmentation for the model gen-
eralization, we propose a novel cooperative meta-learning
(CML) framework. It can be applied with gradient-based
meta-learning to find better meta-initialization parameters
through a regularization effect but has no additional cost
at test time. CML has three parts which are the feature ex-
tractor, meta-learner and co-learner. The feature extractor
and meta-learner parameters already exist in the original
MAML and co-learner is newly introduced in this work for
generating the new gradient. The co-learner is a plug-and-
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Figure 1: Overall process of CML and comparisons with other methods with a given task (Ti). ψ, θ and ϕ denote meta-
initialization parameters of the feature extractor, meta-learner and co-learner. The feature extractor ψ extracts the features,
i.e., body layers of DNN. The meta-learner θ and co-learner ϕ predict outputs based on the features, i.e., classifier. ψ′

i, θ
′
i,

and ϕ′i means adapted parameters with i-task during an inner loop. Since CML does not adapt the co-learner to the task for
generalization from gradient augmentation, after meta-training, CML can infer without additional costs. In meta-testing,
CML evaluates performance after performing a task-adaptation, like standard MAML having ψ and θ. On the other hand,
CML† has parameters ψ and ϕ, where only ψ performs the task-adaptation and then evaluates the performance.

play module that takes the features of the feature extractor
as input and generates their gradients by backpropagation.
Thus, its goal is to provide a gradient for augmentation from
a different perspective than the meta-learner, creating an
augmented meta-gradient. We think that this is effective as a
learned meaningful noise generated by the training of the co-
learner rather than simply adding random noise. To achieve
our goal, we design the CML with two purposes: Firstly, the
co-learner arouses a different point of view from the naive
meta-learner for generalization ability and diversity of meta-
gradient. Secondly, the co-learner can be easily deleted at
test time without any accuracy drop, which means the co-
learner affects only finding meta-initialization parameters
not learning a new task.

Figure 1 shows the overall process of CML and compar-
isons with other methods such as a naive gradient-based
meta-learning and a multi-branch framework with meta-
learning. In meta-training, our newly introduced co-learner
is only updated in the outer loop, which means the meta-
learner solely adapts the new task in the inner loop. Since
the co-learner is updated at the previous outer loop, not
the current inner loop, the co-learner cooperatively finds the
meta-initialization parameters of the shared feature extractor
by gradient augmentation in the meta-gradient with a dif-
ferent perspective than the meta-learner. Hence, CML does
not need to make a sub-network such as pruning and use a
different data augmentation with multiple inferences for the
diversity. Also, after meta-training, CML can easily delete
the co-learner because the co-learner does not change the

meta-initialization parameters in the inner loop. Therefore,
CML can only infer the feature extractor and meta-learner
in meta-testing. Another variation of CML, the co-learner
without task-adaptation can be used with the feature extrac-
tor which is represented as CML† in Figure 1. Our main
contributions are summarized as follows:

• We propose the cooperative meta-learning (CML)
framework which finds the better meta-initialization
parameters without additional cost at test time. Un-
like previous regularization methods, our proposed co-
learner generates diverse meta-gradient without multi-
ple data augmentation, inference and pruning.

• We verify the effectiveness of CML and its applicabil-
ity, where CML is applied with gradient-based meta-
learning methods on various tasks such as few-shot
regression, few-shot image classification and few-shot
node classification tasks.

• We show that CML’s gradient augmentation induces
gradient diversity and conduct an analysis of the gra-
dient of the co-learner and meta-learner during meta-
optimization.

• We demonstrate that the performance improvement is
not solely attributed to the additional parameters of
the co-learner during meta-training, but rather to the
framework of CML with meta-training.
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2 RELATED WORK

2.1 GRADIENT-BASED META-LEARNING

In recent, meta-learning successfully covers a diverse ap-
plication [Hospedales et al., 2021]. Gradient-based meta-
learning optimizes a bilevel optimization problem [Colson
et al., 2007] where it has a task-adaptation (inner loop)
learning a new task with a few shot samples from meta-
initialization parameters and meta-optimization (outer loop)
finding proper meta-initialization parameters from an inner
loop update. Many variants of MAML have been studied
in various domains [Yin et al., 2020, Obamuyide and Vla-
chos, 2019, Collins et al., 2022, Lee et al., 2021]. BOIL
[Oh et al., 2020] tackles the feature reuse problem in meta-
optimization and freezes the classifier in task-adaptation.
Sharp-MAML [Abbas et al., 2022] leverages sharpness-
aware minimization to solve a bilevel optimization problem.
In this work, we propose a new meta-learning framework
that can be applied to any gradient-based meta-learning.

2.2 MULTI-BRANCH FRAMEWORK

While maintaining the exact computational graph for infer-
ence, many works to boost the performance of the model
have been studied. Auxiliary training adds auxiliary classi-
fiers connected in intermediate layers [Szegedy et al., 2015,
Zhang et al., 2020] and multi-task learning simultaneously
learns multiple related tasks and the knowledge from multi-
task can be reused by the others [Yang and Hospedales,
2017]. Unlike previous methods, multi-branch frameworks
[Kim et al., 2021, Xie and Du, 2022, Liang et al., 2022]
shared intermediate layers and split multi-branch under the
same task which utilizes knowledge distillation [Hinton
et al., 2015] transferring the knowledge to enhance indepen-
dent branches. Zhu et al. [2018] split the model into several
sub-networks and made an ensemble logit to teach individ-
ual sub-networks. Song and Chai [2018] introduces multiple
heads from the same network to improve the generalization
of the model.

2.3 REGULARIZATION BY NOISE

To improve the generalization performance, various ways
to impose constraints on model structure and gradients by
noise have been studied. Hinton and Roweis [2002] uses
gaussian gradient noise schedule to train the embedding
model. Dropout [Srivastava et al., 2014] randomly drops
the connections during training which introduces the ran-
dom noise into forward propagation. Similarly, Huang et al.
[2016] randomly disconnects the layers during training.
Neelakantan et al. [2015] shows injecting noise to gradi-
ent works very deep architecture. GradAug [Yang et al.,
2020] generates meaningful noise in gradients rather than

random noises by multiple data augmentation and pruning
of the model.

Cooperative meta-learning leverages the advantages of both
multi-branch framework and regularization by noise in
the gradient-based meta-learning domain. CML only in-
troduces a co-learner and trains it in meta-optimization to
augment a meta-gradient by sharing the feature extractor.
It induces a regularization effect by injecting noise into
the meta-gradient without multiple forwarding or making a
sub-network such as pruning.

3 METHODOLOGY

In this section, we give a brief explanation of the Model-
Agnostic Meta-Learning (MAML) and then, we explain
a proposed cooperative meta-learning (CML) framework
which is an extension of MAML that uses cooperative learn-
ing with gradient augmentation to learn meta-initialization
parameters of the DNN. In meta-learning, the ability to gen-
eralize to a new task is a challenging problem. To solve this
problem, we introduce a co-learner that drives the augmen-
tation at the gradient-level regularization.

3.1 MODEL-AGNOSTIC META-LEARNING
(MAML)

In this work, we divide the DNN model used for meta-
learning into two groups: the feature extractor ψ which
extracts the features, i.e., body layers of DNN and the meta-
learner θ predicting outputs based on the features, i.e., clas-
sifier. We sample a set of tasks {T }Ni containing N tasks
from the task distribution p(T ). DNN model represented by
a f(ψ,θ) is trained using samples from each task Ti under the
two optimization loops. These samples Di are divided into
support set DSi and query set DQi which are used in the in-
ner loop and outer loop, respectively. MAML consisting of
two optimization loops which are the inner loop and outer
loop tries to find well-generalized meta-initialization pa-
rameters during meta-training. In the inner loop, we update
task-specific parameters from meta-initialization parameters
(ψ, θ) using the support set with an outer step size of α.

(ψ′
i, θ

′
i) = (ψ, θ)− α∇(ψ,θ)L(f(ψ,θ);DSi ) (1)

and takes totally M -updates for task-specific parameters.

(ψ′
i, θ

′
i)← (ψ′

i, θ
′
i)− α∇(ψ′

i,θ
′
i)
L(f(ψ′

i,θ
′
i)
;DSi ) (2)

We will consider one gradient step for the rest for simplifi-
cation. After task-adaptation in the inner loop, we compute
each task loss for the query set with task-specific parame-
ters (ψ′

i, θ
′
i). By summing all task losses, meta-optimization
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optimizes the following objectiveness:

min
ψ,θ

N∑
i

L(f(ψ′
i,θ

′
i)
;DQi ) =

N∑
i

L(f(ψ,θ)−α∇(ψ,θ)L(f(ψ,θ);DSi );D
Q
i )

(3)

In the outer loop, we update meta-initialization param-
eters with N task losses using meta-gradient by meta-
optimization with an outer step size of β.

(ψ, θ)← (ψ, θ)− β∇(ψ,θ)

N∑
i

L(f(ψ′
i,θ

′
i)
;DQi ) (4)

In meta-testing, we verify the trained meta-initialization
parameters. The inner loop adapts to the new task with
a support set that remains the same as in meta-training.
However, the outer loop only computes the accuracy using
a query set for each task. There is no meta-optimization
process in the outer loop of meta-testing.

3.2 COOPERATIVE META-LEARNING (CML)

Our proposed framework includes an additional module
called co-learner ϕ inducing gradient augmentation in the
meta-optimization. The co-learner can consist of a convolu-
tion layer or a fully connected layer, depending on the task.
In meta-training, CML performs task-adaptation with the
feature extractor and meta-learner in the inner loop same as
the original gradient-based meta-learning such as MAML.
The co-learner is added to the feature extractor during meta-
optimization in the outer loop. Note that the co-learner only
intervenes in the outer loop to perform meta-optimization
with the feature extractor and meta-learner. In other words,
the co-learner does not perform task-adaptation for the cur-
rent task in the inner loop, therefore, it has implicit knowl-
edge of tasks in the previous sampled batch. As a result, it
has a different representation from the naive meta-learner.
In this framework, the meta-learner and co-learner always
share a representation of the feature extractor. Hence, their
gradients are aggregated in the feature extractor, resulting
in gradient augmentation.

Formally, we sample a support set DSi and query set DQi
from a new task Ti. Also, we denote the initial parameters
for the feature extractor, meta-learner and co-learner as ψ, θ
and ϕ and two models in our framework: model fm, which
composes of a shared feature extractor and a meta-learner,
and f c, which composes of a shared feature extractor and
a co-learner. In the inner loop, the feature extractor and
the meta-learner update the parameters ψ′

i and θ′i with M -
updates from a batch of DSi , respectively. However, the
co-learner does not update the parameters ϕ′i in the inner
loop. Therefore, task-specific parameters ψ′

i, θ
′
i and ϕ′i are

Algorithm 1 Cooperative Meta Learning

1: [Meta-training]
2: Input: Task distribution p(T ); Meta-learner model fm;

Co-learner model f c; Step sizes α, β; Loss scaling fac-
tor γ ; The number of task in batch: N

3: Output: Meta-initialization parameters ψ, θ, ϕ
4: Randomly initialize parameters ψ, θ, ϕ
5: while not converged do
6: Sample N tasks for batch Ti ∼ p(T )
7: for all Ti do
8: Sample dataset D = (DSi ,D

Q
i ) from Ti

9: Update task-specific parameters (ψ′
i, θ

′
i) by Eq.(5)

10: end for
11: Intervene co-learner ϕ in meta-optimization step
12: Calculate total loss with co-learner by Eq.(6)
13: Update meta-initialization parameters (ψ, θ, ϕ) with

β by Eq.(7)
14: end while
15: return ψ, θ, ϕ
16: [Meta-testing]
17: Input: Sample test dataset Dtest = (DStest,D

Q
test)

18: Load meta-initialization parameters ψ, θ, ϕ
19: for all Dtest do
20: if method is “CML” then
21: Update task-specific parameters (ψ′, θ′) for DStest

by Eq.(8)
22: Evaluate the model fmψ′,θ′ with DQtest
23: end if
24: if method is “CML†” then
25: Update task-specific parameters ψ′ for DStest by

Eq.(9)
26: Evaluate the model f cψ′,ϕ with DQtest
27: end if
28: end for

as follows:

(ψ′
i, θ

′
i)← (ψ, θ)−α∇(ψ,θ)L(fm(ψ,θ);D

S
i ), ϕ′i = ϕ (5)

where α is an inner step size which is a fixed hyper parame-
ters. Unlike ψ′

i and θ′i which are updated for the current task
Ti in the inner loop, ϕ′i keeps the updated parameters from
the previously sampled tasks in the outer loop. In the outer
loop, our model f updates meta-initialization parameters
from DQi with task-specific parameters updated by DSi . Our
purpose is to converge to ψ, θ and ϕ that minimize Eq.(6)
with the loss of the meta-learner and co-learner.

N∑
i

{L(f(ψ′
i,θ

′
i,ϕi)

;DQi )} =

N∑
i

{L(fm(ψ′
i,θ

′
i)
;DQi ) + γL(f c(ψ′

i,ϕ)
;DQi )}

(6)

where γ is the loss scaling factor. The feature extractor
and meta-learner have task-specific parameters ψ′

i and θ′i
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(a) 5-shot (b) 10-shot (c) 20-shot

Figure 2: Results of MAML and CML on 5,10 and 20-shot of simple regression task.

with knowledge about the current task Ti, but the co-learner
has the parameters ϕ that have been updated by meta-
optimization on the previous sampled N tasks.

(ψ, θ, ϕ)← (ψ, θ, ϕ)−β∇(ψ,θ,ϕ)

N∑
i

{L(f(ψ′
i,θ

′
i,ϕi)

;DQi )}

(7)
Then, we compute the meta-gradient with N task losses for
the query set DQi . It is created by gradient augmentation,
where the gradient noise from the co-learner is added to
the existing gradient. From Eq.(7), we update the meta-
initialization parameters with an outer step size of β by
meta-optimization in the outer loop. The updated ψ, θ and ϕ
are initialized with meta-initialization parameters for meta-
testing. Lastly, our framework can infer with CML and
CML† using meta-testing dataset Dtest = (DS

test, D
Q
test) in

meta-testing phase, and CML performs the task-adaptation
as follows:

(ψ′, θ′)← (ψ, θ)− α∇(ψ,θ)L(fm(ψ,θ);D
S
test) (8)

The model then evaluates againstDQtest by using the adapted
parameters ψ′ and θ′ like standard MAML. Therefore, it
does not require any additional inference cost for the co-
learner.

ψ′ ← ψ − α∇(ψ,ϕ)L(f c(ψ,ϕ);D
S
test) (9)

On the other hand, in Eq.(9), CML† performs the task-
adaptation only for ψ. Note that ϕ of the co-learner does not
perform task-adaptation and has existing meta-initialization
parameters. Then we evaluate model with ψ′ and ϕ against
DQtest. Our CML algorithm is shown in Algorithm 1.

Next, we demonstrate that the gradient calculated from the
co-learner converges theoretically when it is combined into
meta-gradients. Our meta-gradient is updated by combining
the gradients from the meta-learner(θ′) and co-learner(ϕ)
in the feature extractor(ψ′). We represent the loss function
of the base network with ψ′, θ′ to be L(ψ′, θ′) after the
task-adaptation.

Let the meta-initialization parameters of the base network
consisting of N feature extraction layers and the meta-
learner as ω = {ψ′

1, · · · , ψ′
N , θ

′}. Consider the gradient
G(ψ′,θ′) = {gψ

′

1 , · · · , gψ
′

N , g
θ′} of the base network com-

puted by the meta-learner in the outer loop and the gra-
dient Ḡ(ψ′,ϕ) = {ḡψ

′

1 , · · · , ḡψ
′

N , 0} of the feature extractor
computed by the co-learner. A zero value is just for match-
ing the dimension. Let Ĝ(ψ′,θ′,ϕ) = G(ψ′,θ′) + Ḡ(ψ′,ϕ) =

{(gψ
′

1 + ḡψ
′

1 ), · · · , (gψ
′

N + ḡψ
′

N ), gθ
′} be the gradient of base

network by gradient aggregation computed by the loss func-
tion L(ψ′, θ′;DQ). If ⟨gψ

′

j , ḡ
ψ′

j ⟩ > 0, ∀j, (1 ≤ j ≤ N)
is satisfied, the direction of the augmented gradient is a
descent direction for finding meta-initialization parameters.

By Taylor’s expansion of the loss function L for task and
the base network of ω with CML updates:

L(ω − αĜ(ψ′,θ′,ϕ)) = L(ω)− α∇L(ω)T Ĝ(ψ′,θ′,ϕ) +O(α2)

With ∇L(ω) = G(ψ′,θ′) and limα→0
|O(α2)|

α = 0, there
exists ᾱ > 0 such that

|O(α2)|
α

< |⟨G(ψ′,θ′), Ĝ(ψ′,θ′,ϕ)⟩|, ∀α ∈ (0, ᾱ)

we have |⟨G(ψ′,θ′), Ĝ(ψ′,θ′,ϕ)⟩| > 0 (∵ ⟨gψ
′

j , ḡ
ψ′

j ⟩ >

0, ∀j). In this condition, L(ω − αĜ(ψ′,θ′,ϕ)) − L(ω) <
0 and ∀α ∈ (0, ᾱ). Therefore, CML updates the parameters
ω toward the descent direction in the outer loop.

4 EXPERIMENTS

In this section, we apply our CML to various gradient-based
meta-learning and evaluate the performance of our frame-
work on few-shot regression, few-shot image classification
and few-shot node classification in Section 4.1∼4.3. We
also conduct a gradient analysis of the co-learner in our
framework, as discussed in Section 4.4. To confirm the
performance improvement from the gradient augmentation
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effect in CML, not from additional parameters or multi-
branch structure, we compare CML with CL, having the
same structure, and the naive gradient-based meta-learning
in Section 4.5. To a fair comparison, we follow the original
settings of several gradient-based meta-learning algorithms
and test them on well-known few-shot benchmarks. More
implementation details are in the Appendix.

4.1 FEW-SHOT REGRESSION

We evaluate the performance of CML with MAML as a
baseline in K-shot sinusoidal regression. The amplitude and
phase of the sinusoidal wave follow the ranges of [0.1,5.0]
and [0,π]. Each task consists of datapoints x, y of a sinu-
soidal wave. The input x is uniformly sampled in the range
[-5.0,5.0]. The loss function for comparing predicted y and
target y uses mean-squared error. The baseline consists of 2
hidden layers of size 40 with ReLU nonlinearities, 1 input
layer and 1 output layer following [Finn et al., 2017]. For
CML, the regressor is additionally attached with 1 hidden
layer of size 40 with ReLU nonlinearities and 1 output layer
as a co-learner. In meta-training, we use K ∈ {5,10,20}
samples as training examples and train using a batch size
of 4, one inner-gradient step, a fixed step size of 0.01 and
our loss scaling factor γ of 0.2. For meta-testing, we evalu-
ate adaptation with one gradient step for K=5, 10, and 20
test points. Each model predicts the target sinusoidal wave
through the given K test points. Furthermore, the co-learner
is deleted and it is only evaluated from the feature extractor
and meta-learner as the original model. Figure 2 shows that
our CML performs better than MAML for 5, 10, and 20
shots. It means that our framework adapts well to simple
networks and shows better generalization performance than
the original framework.

4.2 FEW-SHOT IMAGE CLASSIFICATION

We compare the performance of the proposed method on
few-shot image classification with several gradient-based
meta-learning algorithms including MAML [Finn et al.,
2017], MAML++ [Antoniou et al., 2018], BOIL [Oh et al.,
2020] and Sharp-MAML [Abbas et al., 2022]. In this ex-
periment, we evaluate the performance of 5-way 1/5-shot
problems on MiniImagenet datasets. In CML, the co-learner
uses two convolution layers and a fully connected layer. Our
loss scaling factor γ is fixed at 0.5 for all methods. We also
evaluate the performance of the co-learner.

Results Table 1 shows that the proposed methods out-
perform the original algorithms. Note that CML, which
removed the co-learner during meta-testing, improves the
performance of the original algorithms. It indicates that
the co-learner only performs meta-optimization, which suc-
cessfully leads it to converge to well-generalized meta-
initialization parameters. Specifically, on MAML++ [Anto-

Table 1: Test accuracy of 4-conv network with the CML
framework on MiniImagenet dataset. The MAML algo-
rithms are from [Oh et al., 2020]. The Sharp-MAML is
used for reproduction. The blue color and red color indicate
the output of the meta-learner and co-learner, respectively.
Our experiments are performed in 3 runs.

Method MiniImagenet 5-way (%)
1-shot 5-shot

MAML [Finn et al., 2017] 47.44 ± 0.23 61.75 ± 0.42
MAML + CML 49.32 ± 0.37 65.84 ± 0.46
MAML + CML† 50.35 ± 0.15 66.43 ± 0.43

MAML++ [Antoniou et al., 2018] 52.15 ± 0.26 68.32 ± 0.44
MAML++ + CML 52.46 ± 0.05 70.08 ± 0.61
MAML++ + CML† 52.86 ± 0.17 70.69 ± 0.49

BOIL [Oh et al., 2020] 49.61 ± 0.61 66.45 ± 0.37
BOIL + CML 50.04 ± 0.30 66.91 ± 0.13
BOIL + CML† 50.83 ± 0.25 67.50 ± 0.48

Sharp-MAML [Abbas et al., 2022] 49.06 ± 0.52 65.63 ± 0.54
Sharp-MAML + CML 49.56 ± 0.45 66.90 ± 0.20
Sharp-MAML + CML† 49.70 ± 0.62 67.06 ± 0.16

Table 2: Test accuracy for 5-way 1/5-shot of the MAML and
CML framework on the diverse datasets.

Method Omniglot (%) CIFAR-FS (%) FC100 (%) VGG Flower (%)

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

MAML 91.78 96.59 56.55 70.10 36.07 48.03 63.17 74.48
CML 93.99 97.15 57.67 73.87 36.90 51.06 64.31 77.03

niou et al., 2018], our framework achieves 70.08% perfor-
mance without any additional inference cost in meta-testing.
In CML†, we infer through the co-learner instead of the
meta-learner. CML† outperforms CML because CML† has
more parameters. More interestingly, the co-learner shows
high performance without any adaptation. This suggests that
our framework has a well-trained feature extractor, and the
co-learner plays an important role in achieving this. It looks
similar to BOIL [Oh et al., 2020], but whereas BOIL freezes
the meta-learner for representation changes, we introduce a
co-learner to take advantage of the gradient augmentation ef-
fect of Theorem 3.2. In other words, the co-learner provides
a gradient augmentation effect to converge the feature ex-
tractor with meta-initialization parameters that enable good
generalization. The effectiveness of this approach is also
demonstrated across different datasets, as shown in Table 9.

4.3 FEW-SHOT NODE CLASSIFICATION

In this experiment, we evaluate CML on a few-shot node
classification of graph neural networks (GNNs). Few-shot
node classification aims to achieve fast adaptation to new
node tasks that are unseen during training. We also define an
N-way K-shot problem and consider node tasks Tnode which
consist of support nodes DS

node and query nodes DQ
node. For

performance comparison, we use G-Meta [Huang and Zitnik,
2020] and AMM-GNN [Wang et al., 2020], which belong to
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(a) Accuracy curves (b) Gradient Similarity (c) Gradient Norm (d) CKA Similarity

Figure 3: (a) Accuracy of MAML with random noise and CML. (b) Gradient similarity for the meta-learner and co-learner
of the 4th convolution layer. (c) Comparison of gradient norm for the feature extractor in MAML, CL and CML after
task-adaptation in the inner loop. At this point, we ignore the effect of bias, because of its negligible impact. (d) CKA
Similarity results of representations before and after task-adaptation in the inner loop.

Table 3: Results on node classification with CML. The G-
Meta and AMM-GNN algorithms are from [Tan et al., 2022].
Our all experiments are performed 5 runs.

Method CiteSeer 2-way (%) Amazon 2-way (%) CoraFull 5-way (%)

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

G-Meta 55.15 64.53 70.57 85.96 60.44 75.84
G-Meta + CML 61.17 76.07 72.26 87.10 60.49 76.02

AMM-GNN 54.53 62.93 74.29 80.10 58.77 75.61
AMM-GNN + CML 61.13 66.88 78.91 86.68 63.27 76.19

gradient-based meta learning with GNN, as a baseline and
evaluate on the CoraFull, Amazon-Computer and CiteSeer
datasets [Sen et al., 2008, Shchur et al., 2018]. We also
perform 5-way 1/5-shot and 2-way 1/5-shot, respectively.
Our base model follows [Tan et al., 2022], using GCN as
an encoder of hidden size 16 and a fully connected layer
as a meta-learner. We train using the Adam optimizer for
a step size of 0.001. Also, we set the inner gradient-steps
of 20 with a step size of 0.05. In CML framework, our co-
learner additionally includes 1 hidden layer of size 16 and
a fully connected layer as the output layer using the loss
scaling factor γ of 0.2. As shown in Table 3, our framework
outperforms the baseline method on node classification. In
this experiment, the co-learner improves the performance of
the encoder and meta-learner, despite having a very simple
network structure. It shows that our framework is suitable for
solving the few-shot problems and is applicable to various
DNN methods related to meta-learning.

4.4 GRADIENT AUGMENTATION ANALYSIS

In this section, we analyze the effect of gradient augmenta-
tion by a co-learner. All of our experiments are evaluated on
MiniImagenet 5-way 5-shot, and the network structure and
experimental settings are as in Section 4.2.

Is the gradient of the co-learner really meaningful? To
verify that the gradient of the co-learner is applied as mean-

ingful noise on the meta-gradient, we compare it to MAML
with random noise. To generate random noise, we introduce
a co-learner that does not perform any updating into the
MAML (e.g. inner and outer loops). By doing so, the meta-
gradient of MAML is updated with a randomized gradient
added to the original gradient. For a fair comparison, both
models have the same initialization parameters and take the
same sampled data as input. Our CML outperforms MAML
with random noise and converges to well-generalized pa-
rameters much faster, as shown in Figure 3a. It shows that
the gradient of the co-learner influences the meta-gradient
with meaningful noise, not just random noise.

The co-learner induces the diversity of the meta-gradient
Yang et al. [2020] learns a well-generalized full network
by inducing gradient diversity with multiple-forwarding of
subnetworks. Inspired by this, we perform gradient aug-
mentation on the meta-gradient by updating the proposed
co-learner only in the outer loop, unlike the meta-learner, to
induce gradient diversity. To demonstrate this, we compare
it to Collaborative Learning (CL) [Song and Chai, 2018],
a multi-branch framework approach that does not freeze
the co-learner, i.e., CL is like a multi-head framework that
updates both the meta-learner and the co-learner. Oh et al.
[2020] shows that the convolution layer before the classi-
fier on task-adaptation is the key to inducing representation
change. Based on their findings, we compare CL and CML
by computing the gradient similarity of the 4th convolution
layer of the feature extractor calculated from each meta-
learner and co-learner. From Figure 3b, we observe that
CML has a lower gradient similarity between the meta-
learner and co-learner in the feature extractor than CL. In
general, a value closer to 1 suggests that the patterns and
features captured are more similar. Our CML explores more
different directions during the optimization process than CL
due to its co-learner. It indicates that the co-learner produces
a notably more diverse gradient, attributed to the augmen-
tation effect within the meta-gradient. We also show that
the gradient similarity of CML is larger than zero, which
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Table 4: Number of parameters and test accuracy on Mini-
Imagenet 5-way 1/5-shot. CML and CL use the MAML
framework as a baseline. The "⋆" and "†" indicate the output
of the meta-learner and co-learner, respectively. All experi-
ments are performed in 3 runs.

Method Parameters # MiniImagenet 5-way (%)
Train Test 1-shot 5-shot

MAML 129K 129K 47.44 ± 0.23 61.75 ± 0.42
More-MAML 232K 232K 48.48 ± 0.60 62.53 ± 0.12
CL 203K 203K 47.57 ± 0.15 62.36 ± 1.02

(1) Comparison to the meta-learner
CL⋆ 203K 129K 47.45 ± 0.13 61.60 ± 1.39
CML (Ours) 203K 129K 49.32 ± 0.37 65.84 ± 0.46

(2) Comparison to the co-learner
CL† 203K 195K 48.45 ± 0.40 62.50 ± 0.62
CL† w/o adaptation 203K 195K 20.66 ± 0.38 20.54 ± 2.61
CML† (Ours) 203K 195K 50.35 ± 0.15 66.43 ± 0.43

satisfies the precondition in Theorem 3.2.

Effect of the gradient augmentation In this experiment,
we investigate the impact of the augmentation on the meta-
gradient. Firstly, we analyze the norm of the gradient for
each convolution layer in the feature extractor after task-
adaptation in the inner loop. The gradient norm is an impor-
tant indicator of how much a particular layer affects learning.
Figure 3c shows the averaged gradient norm of each con-
volution layer in the feature extractor for MAML, CL and
CML. We observe that CL and MAML have very small
gradient norms, close to zero on all convolution layers. It in-
dicates that they mostly maintain the existing representation
with minimal changes for a new task. However, our frame-
work has relatively larger gradient norms, which indicates
that the model is dynamically adapting to new tasks, and
there is an amplification of diversity on the meta-gradient
from the co-learner. We also perform a Centered Kernel
Alignment (CKA) [Kornblith et al., 2019] to compare rep-
resentations similarity before and after adaptation. CKA is
one way to compare the similarity of representation and a
CKA value close to 1 means that the two representations
are similar. Figure 3d shows the CKA similarity of MAML
and CML representations before and after task-adaptation.
In MAML, the change in representation occurs only at the
head. On the other hand, CML indicates that the representa-
tion change occurs in the 4th convolution layer, which also
proves that the co-learner in CML induces the representa-
tion change at a high level. Thus, our results suggest that a
new meta-gradient from the co-learner induces it to learn
more task-specific features.

4.5 EFFICIENCY ANALYSIS OF THE CML
STRUCTURE

In this section, we conduct an experiment to justify the va-
lidity of our framework’s structure. Our framework requires
more parameters during meta-training due to the addition of

Table 5: Ablation study of the loss scaling factor.

Loss scaling factor (γ) MiniImagenet 5-way (%)
1-shot 5-shot

0.2 49.07 64.39
0.5 49.61 65.53
0.8 49.07 64.73
1.0 49.32 65.84

the co-learner. Therefore, we compare the parameter sizes
of CML, CL and MAML with more parameters, called
More-MAML, to demonstrate that our framework does not
simply improve performance by having more parameters.
In this experiment, CML and CL follow the same network
architecture as Section 4.2, while More-MAML has addi-
tional convolution layers. From Table 4, we can see that
More-MAML, CL and CML have 232K, 203K and 203K
parameters, respectively, during meta-training. Note that
the CML has fewer parameter sizes than More-MAML and
CL in meta-testing, but shows better performance on Mini-
Imagenet datasets. Also in (1), CL⋆ shows a performance
degradation when inferring with a meta-learner like CML.
In setting (2), both CL† and CML† use the co-learner to
evaluate performance. We observe that without performing
adaptation, CL† leads to a deterioration in the model’s infer-
ential capabilities. It emphasizes that adaptation is essential
in the general case, and that our approach has a uniquely
structured framework. Notably, although our co-learner does
not perform task-adaptation during meta-testing in CML†,
it outperforms models with a similar number of parameters
while achieving the highest accuracy. In this experiment,
our findings highlight that having more parameters in meta-
learning does not necessarily lead to improved performance,
while our framework demonstrates an effective learning
framework to address this limitation.

4.6 ABLATION STUDY

Update scheme for loss scaling factor The proposed
method has parameters γ for the influence of the co-learner
on the feature extractor. To verify the effect of this influence,
we conduct experiments for 5-way 1/5-shot on MiniIma-
genet datasets. From Table 5, we show that our method has
higher performance than conventional MAML regardless
of γ. In particular, 1 shot and 5 shot achieve the highest
performance at 0.5 and 1.0, respectively. This result shows
that our method is robust against γ and suggests that the
intervention of the co-learner is important.

5 CONCLUSION AND DISCUSSION

In this paper, we propose a novel training framework called
Cooperative Meta-Learning (CML). The main idea of our
framework is that the proposed co-learner in meta-training
generates a gradient augmentation effect. To achieve this, we
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design the co-learner so that it only updates in the outer loop
and can be easily deleted in meta-testing. Our experiments
demonstrate that our co-learner generates meaningful gradi-
ents, which leads to diversity on the meta-gradient, and this
guides the learning direction to better meta-initialization
parameters. It also shows that the diversity of the meta-
gradient is a key factor in its strong generalization ability in
the few-shot problem.
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A IMPLEMENTATION DETAILS

A.1 IMAGE CLASSIFICATION

In our experiments, BOIL [Oh et al., 2020] and MAML++ [Antoniou et al., 2018] demonstrate results that are highly
consistent with the original papers, thus reporting the original paper results 1 2. In addition, the MAML [Finn et al., 2017]
follows the experiments in [Oh et al., 2020]. However, in the case of Sharp-MAML, the results obtained using the official
code in the same experimental setup differed from the original paper. Therefore, we report the experimental results based on
our execution following the official code 3.

Architecture we used the 4-conv network model, following [Finn et al., 2017]. In detail, the model contains four 3 × 3
convolution layers with batch normalization, a ReLU nonLinearity and 2 × 2 max-pooling and a fully connected layer. CML
additionally includes two 3 × 3 convolution layers and a fully connected layer as a co-learner.

Experimental settings We basically follow the original settings for each algorithm. For task-adaption, We follow the
original settings: 5 inner-gradient steps on Sharp-MAML and MAML++ and 1 inner-gradient step on the rest following [Oh
et al., 2020]. In CML framework, we train using loss scaling of γ = 1. We perform 3 runs and report all our results from the
model with the best validation accuracy. We used the Pytorch framework and GeForce RTX 3090 for all experiments.

Datasets We evaluate our method on the following benchmark datasets. MiniImagenet contains 60000 images with 100
classes and 600 images size of 84 × 84 for each class. Omniglot contains 32,460 images size of 28 × 28 of handwritten
characters with 1,623 different characters from 50 alphabets. CIFAR-FS is randomly sampled based on CIFAR-100 and it
contains 600 images size of 32 ×32 with 100 classes. FC-100 is also a split dataset from CIFAR-100 that contains 600
images size of 32 × 32 with 100 classes. VGG-Flower contains 258 images size of 32 × 32 for each class.

Table 6: Statistics datasets

Dataset Nodes # Edge # Features # Class split (train / validation / test)

CoraFull 19,793 63,421 8,710 40 / 15 / 15
Amazon-Computer 13,752 245,861 767 4 / 3 / 3

CiteSeer 3,327 4,552 3,703 20 / 10 / 10

1https://github.com/jhoon-oh/BOIL
2https://github.com/AntreasAntoniou/HowToTrainYourMAMLPytorch
3https://github.com/mominabbass/Sharp-MAML

Accepted for the 40th Conference on Uncertainty in Artificial Intelligence (UAI 2024).
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A.2 NODE CLASSIFICATION

We perform our experiments with the same environment from the official code 4 of [Tan et al., 2022]. We experiment on the
CoraFull, Amazon-Computer and CiteSeer datasets from Table 6, which are widely used in node classification.

B COMPARISON OF THE META-LEARNER AND CO-LEARNER FOR THE SAME
PARAMETERS

Table 7: Results on the performance of the meta-learner and co-learner with the same parameters. Our CML framework uses
MAML as a baseline with a shared feature extractor, meta-learner, and co-learner. The "∗" indicates that the model failed to
converge.

Structure Learner MiniImagenet 5-way (%)
1-shot 5-shot

Conv(0) Meta-learner 49.52 ± 0.41 65.82 ± 0.55
Co-learner 49.16 ± 0.47 65.13 ± 0.27

Conv(2) Meta-learner 48.06 ± 0.97 66.20 ± 0.44
Co-learner ∗ 65.44 ± 0.27

We conduct experiments on the performance of the meta-learner and co-learner with the same capacity. In this experiment,
our feature extractor has the four convolution layers as shown in Section 4.2, and the co-learner and meta-learner are
evaluated on the same structure, Conv(0) with no convolution layer and only a fully connected layer, and Conv(2) with
two convolution layers and a fully connected layer. From Table 7, we observe that the meta-learner that performs task-
adaptation in meta-testing achieves higher performance than the co-learner. It can be seen that our feature extractor already
has good performance during meta-training, rather than the co-learner having good performance despite not performing
task-adaptation. Therefore, the co-learner assists the learning of the feature extractor during meta-training and guides it to
converge in a good direction. However, we find that our co-learner fails to converge on the 1-shot problem with the Conv(2)
structure. This suggests that we need to empirically evaluate the optimized structure of the co-learner based on the network
architecture.

C ABLATION STUDY ON THE NUMBER OF CONV-LAYER IN THE CO-LEARNER

Table 8: Test Accuracy(%) by number of convolution layer on MiniImagenet 5-way 1-shot. We use MAML as a baseline
and follow the experimental settings in Section 4.2.

Conv layer (#) Conv(0) Conv(1) Conv(2) Conv(3) Conv(4)

CML 49.52 ± 0.41 49.39 ± 0.51 49.32 ± 0.37 48.85 ± 0.28 49.36 ± 0.23
CML† 49.16 ± 0.47 50.21 ± 0.60 50.35 ± 0.15 49.82 ± 0.29 50.17 ± 0.28

We explore the impact for the structure of the co-learner in our CML framework. Table 8 shows that all models outperform
the performance of standard MAML. In particular, Conv(0), which has only a fully connected layer without a convolution
layer, achieved the highest performance. It clearly shows that our learning framework is effective in leading convergence
to well-generalized meta-initialization parameters. Also, the co-learner in the Conv(2) model with two convolution layers
achieves the highest accuracy of 50.35%.

D CML TO A LARGER NETWORK

We run experiments on CIFAR-FS, VGG-Flower, and FC-100 on a larger network. Resnet12 [Oreshkin et al., 2018]
network.The findings demonstrate that CML enhances the performance of MAML, even with larger backbone architectures.
This improvement can be attributed to the enhanced representational ability of the feature extractor facilitated by the
co-learner, irrespective of the backbone network size.

4https://github.com/Zhen-Tan-dmml/TLP-FSNC
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Table 9: Test accuracy of Resnet12 network with the CML framework on CIFAR-FS, VGG Flower, and FC100 dataset.

Method CIFAR-FS (%) VGG Flower (%) FC100 (%)

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

MAML 61.86 73.32 63.43 75.42 36.61 47.48
CML 62.11 78.31 66.07 81.15 37.56 51.51

E VISUALIZATION OF CML BY T-SNE

(a) MAML

(b) CML

Figure 4: t-SNE of (a) MAML and (b) CML on trained miniimagenet. We perform the adaptation with the support set and
then evaluate the method with the query set.

T-SNE [Van der Maaten and Hinton, 2008] is a typical dimension reduction technique that maps high-dimensional data into
a lower-dimensional space. It allows us to assess the similarity of data points before and after adaptation. We experiment
with T-SNE for MAML and CML without the co-learner with the same parameters at inference time. In Table 4, our CML
shows that the ability to form more consistent and distinct clusters than MAML. It can be seen that the intervention of
the co-learner attached to the CML produces a gradient augmentation effect, which is attributed to better generalization
performance.
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