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ABSTRACT

Consistency Models (CM) (Song et al., 2023) accelerate score-based diffusion
model sampling at the cost of sample quality but lack a natural way to trade-off
quality for speed. To address this limitation, we propose Consistency Trajectory
Model (CTM), a generalization encompassing CM and score-based models as
special cases. CTM trains a single neural network that can – in a single forward
pass – output scores (i.e., gradients of log-density) and enables unrestricted traversal
between any initial and final time along the Probability Flow Ordinary Differential
Equation (ODE) in a diffusion process. CTM enables the efficient combination
of adversarial training and denoising score matching loss to enhance performance
and achieves new state-of-the-art FIDs for single-step diffusion model sampling
on CIFAR-10 (FID 1.73) and ImageNet at 64 × 64 resolution (FID 1.92). CTM
also enables a new family of sampling schemes, both deterministic and stochastic,
involving long jumps along the ODE solution trajectories. It consistently improves
sample quality as computational budgets increase, avoiding the degradation seen in
CM. Furthermore, unlike CM, CTM’s access to the score function can streamline
the adoption of established controllable/conditional generation methods from the
diffusion community. This access also enables the computation of likelihood. The
code is available at https://github.com/sony/ctm.

1 INTRODUCTION

Deep generative models encounter distinct training and sampling challenges. Variational Autoencoder
(VAE) (Kingma & Welling, 2013) can be trained easily but may suffer from posterior collapse,
resulting in blurry samples, while Generative Adversarial Network (GAN) (Goodfellow et al., 2014)
generates high-quality samples but faces training instability. Conversely, Diffusion Model (DM) (Sohl-
Dickstein et al., 2015; Ho et al., 2020; Song et al., 2020b) addresses these issues by learning the
score (i.e., gradient of log-density) (Song & Ermon, 2019), which can generate high quality samples.
However, compared to VAE and GAN excelling at fast sampling, DM involves a gradual denoising
process that slows down sampling, requiring numerous model evaluations.

Score-based diffusion models synthesize data by solving the reverse-time (stochastic or deterministic)
process corresponding to a prescribed forward process that adds noise to the data (Song & Ermon,
2019; Song et al., 2020b). Although advanced numerical solvers (Lu et al., 2022b; Zhang & Chen,
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2022) of Stochastic Differential Equations (SDE) or Ordinary Differential Equations (ODE) substan-
tially reduce the required Number of Function Evaluations (NFE), further improvements are challeng-
ing due to the intrinsic discretization error present in all differential equation solvers (De Bortoli et al.,
2021). Recent developments in sample efficiency thus focus on Distillation models (Salimans & Ho,
2021) (Figure 1) that directly estimates the integral along the Probability Flow (PF) ODE sample
trajectory, amortizing the computational cost of numerical solvers, exemplified by the Consistency
Model (CM) (Song et al., 2023). However, their generation quality does not improve as NFE increases
(the red curve of Figure 7). Theorem 1 (in this paper) explains this inherent absence of speed-quality
trade-off in CM’s multistep sampling by the overlapping time intervals between jumps. This persists
as a fundamental issue when training jumps solely to zero-time as in CM.

Figure 1: Training and sampling comparisons of score-based and distillation models with CTM.
Score-based models exhibit discretization errors during SDE/ODE solving, while distillation models
can accumulate errors in multistep sampling. CTM mitigates these issues with γ-sampling (γ = 0).

This paper introduces the Consistency Trajectory Model (CTM) as a unified framework simulta-
neously assessing both the integrand (score function) and the integral (jump) of the PF ODE, thus
bridging score-based and distillation models. More specifically, CTM estimates anytime-to-anytime
jump, ranging both infinitesimally small jumps (score function) and long jumps (integral over any
time horizon) along the PF ODE, providing increased flexibility at inference time. Particularly, our
unique feature enables a novel sampling method called γ-sampling, which alternates forward and
backward jumps along the solution trajectory, with γ governing the level of stochasticity.

CTM’s anytime-to-anytime jump along the PF ODE greatly enhances its training flexibility as
well. It allows the combination of the distillation loss and auxiliary losses, such as denoising score
matching (DSM) and adversarial losses. These auxiliary losses measures statistical divergences1

between the data distribution and the sample distribution, which provides student high-quality training
signal for better jump learning. Notably, leveraging these statistical divergences to student training
enables us to train the student as good as teacher, reaffirming the conventional belief established
in the distillation community of classification tasks that auxiliary losses beyond distillation loss
can enhance student performance. In experiments, we achieve the new State-Of-The-Art (SOTA)
performance in both density estimation and image generation for CIFAR-10 (Krizhevsky, 2009) and
ImageNet (Russakovsky et al., 2015) at a resolution of 64× 64.

1The DSM loss is closely linked to the KL divergence (Song et al., 2021; Kim et al., 2022c). Also, the
adversarial GAN loss is a proxy of f -divergence (Nowozin et al., 2016) or IPMs (Arjovsky et al., 2017).
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2 PRELIMINARY

In DM (Sohl-Dickstein et al., 2015; Song et al., 2020b), the encoder structure is formulated using a set
of continuous-time random variables defined by a fixed forward diffusion process2, dxt =

√
2tdwt,

initialized by the data variable, x0 ∼ pdata. A reverse-time process (Anderson, 1982) from T to 0
is established as dxt = −2t∇ log pt(xt)dt+

√
2tdw̄t, where w̄t is the standard Wiener process in

reverse-time, and pt(x) is the marginal density of xt following the forward process. The solution
of this reverse-time process aligns with that of the forward-time process marginally (in distribution)
when the reverse-time process is initialized with xT ∼ pT . The deterministic counterpart of the
reverse-time process, called the PF ODE (Song et al., 2020b), is given by

dxt

dt
= −t∇ log pt(xt) =

xt − Ept0(x|xt)[x|xt]

t
,

where pt0(x|xt) is the probability distribution of the solution of the reverse-time stochastic process
from time t to zero, initiated from xt. Here, Ept0(x|xt)[x|xt] = xt + t∇ log pt(xt) is the denoiser
function (Efron, 2011), an alternative expression for the score function∇ log pt(xt). For notational
simplicity, we omit pt0(x|xt), a subscript in the expectation of the denoiser, throughout the paper.

In practice, the denoiser E[x|xt] is approximated using a neural network Dϕ, obtained by minimizing
the DSM (Vincent, 2011; Song et al., 2020b) loss Ex0,t,p0t(x|x0)[∥x0−Dϕ(x, t)∥22], where p0t(x|x0)
is the transition probability from time 0 to t, initiated with x0. With the approximated denoiser, the
empirical PF ODE is given by

dxt

dt
=

xt −Dϕ(xt, t)

t
. (1)

Sampling from DM involves solving the PF ODE, equivalent to computing the integral∫ 0

T

dxt

dt
dt =

∫ 0

T

xt −Dϕ(xt, t)

t
dt ⇐⇒ x0 = xT +

∫ 0

T

xt −Dϕ(xt, t)

t
dt, (2)

where xT is sampled from a prior distribution π approximating pT . Decoding strategies of DM
primarily fall into two categories: score-based sampling with time-discretized numerical integral
solvers, and distillation sampling where a neural network directly estimates the integral.

Score-based Sampling Any off-the-shelf ODE solver, denoted as Solver(xT , T, 0;ϕ) (with an
initial value of xT at time T and ending at time 0), can be directly applied to solve Eq. (2) (Song
et al., 2020b). For instance, DDIM (Song et al., 2020a) corresponds to a 1st-order Euler solver, while
EDM (Karras et al., 2022) introduces a 2nd-order Heun solver. Despite recent advancements in
numerical solvers (Lu et al., 2022b; Zhang & Chen, 2022), further improvements may be challenging
due to the inherent discretization error present in all solvers (De Bortoli et al., 2021), ultimately
limiting the sample quality obtained with few NFEs.

Distillation Sampling Distillation models (Salimans & Ho, 2021; Meng et al., 2023) successfully
amortize the sampling cost by directly estimating the integral of Eq. (2) with a single neural network
evaluation. However, their multistep sampling approach (Song et al., 2023) exhibits degrading sample
quality with increasing NFE, lacking a clear trade-off between computational budget (NFE) and
sample fidelity. Furthermore, multistep sampling is not deterministic, leading to uncontrollable
sample variance. We refer to Appendix A for a thorough literature review.

3 CTM: AN UNIFICATION OF SCORE-BASED AND DISTILLATION MODELS

To address the challenges in both score-based and distillation samplings, we introduce the Consistency
Trajectory Model (CTM), which integrates both decoding strategies to sample from either SDE/ODE
solving or direct anytime-to-anytime jump along the PF ODE trajectory.

3.1 DECODER REPRESENTATION OF CTM

2This paper can be extended to VPSDE encoding (Song et al., 2020b) with re-scaling (Kim et al., 2022a).
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Figure 2: Learning objectives
of Score-based (t = s line),
distillation (s = 0 line), and
CTM (upper triangle).

CTM predicts both infinitesimally small step jump and long step
jump of the PF ODE trajectory. Specifically, we define G(xt, t, s)
as the solution of the PF ODE from initial time t to final time s ≤ t:

G(xt, t, s) := xt +

∫ s

t

xu − E[x|xu]

u
du.

For stable training3, we express G as a mixture of xt and a function
g, (inspired from the Euler solver4):

G(xt, t, s) =
s

t
xt +

(
1− s

t

)
g(xt, t, s),

where g(xt, t, s) = xt +
t

t−s

∫ s

t
xu−E[x|xu]

u du. We predict

Gθ(xt, t, s) =
s

t
xt +

(
1− s

t

)
gθ(xt, t, s)

as the neural jump, a combination of xt and a neural output gθ. This ensures the neural jump Gθ

satisfies the initial condition Gθ(xt, t, t) = xt for free. It removes the necessity of enforcing the
initial condition in neural network training, transforming the optimization problem from constrained
to unconstrained. Figure 2 contrasts CTM’s learning target with that of previous models.

A crucial characteristic of g becomes evident when taking the limit as s approaches t. From the
definition, we obtain

lim
s→t

g(xt, t, s) = xt + t lim
s→t

1

t− s

∫ s

t

xu − E[x|xu]

u
du = E[x|xt].

Therefore, estimating g leads to the approximation of not only the t-to-s jump but also the infinitesimal
t-to-t jump5 (denoiser function). Indeed, from the Taylor expansion, we have

g(xt, t, s) = xt +
t

t− s

∫ s

t

xu − E[x|xu]

u
du = xt +

t

t− s

[
(s− t)

xt − E[x|xt]

t
+O((t− s)2)

]
= E[x|xt] +O(|t− s|).

Therefore, g(xt, t, s) (with general s ≤ t) is interpreted as the denoiser function added with a residual
term of the Taylor expansion.

3.2 DISTILLATION LOSS: SOFT CONSISTENCY LOSS

Figure 3: An illustration of
CTM’s two predictions at time s
with an initial value xt.

To achieve trajectory learning, CTM should match the neural
jump Gθ to the true jump G by Gθ(xt, t, s) ≈ G(xt, t, s), for
any s ≤ t. We opt to train Gθ by comparing with a solution of
the numerical solver, Solver(xt, t, s;ϕ), of the pre-trained PF
ODE in Eq. (1):

Gθ(xt, t, s) ≈ Solver(xt, t, s;ϕ) ≈ G(xt, t, s).

With a perfect teacher ϕ, Solver accurately reconstructs
G(xt, t, s), and the optimal Gθ∗(xt, t, s) coincides with the
ground truth G(xt, t, s), given sufficient student network flexibility.

For a more precise estimation of the entire solution trajectory, we introduce soft consistency matching.
As illustrated in Figure 3, soft consistency compares two s-predictions: one from the teacher and
the other from the student. More precisely, the target prediction is a mixture of teacher and student,

3Directly learning xt+
∫ s

t

xu−E[x|xu]
u

or
∫ s

t

xu−E[x|xu]
u

with a neural network can easily lead to divergence.
4Solving the PF ODE from t to s with a single-step Euler solver gives xEuler

s = xt − (t− s)xt−E[x|xt]
t

=
s
t
xt+(1− s

t
)E[x|xt]. Our scale choices of s

t
and 1− s

t
, thus, are naturally derived from the Euler representation

by replacing E[x|xt] with g. We refer to Appendix C.1 for detailed analysis with this respect.
5In contrast, G is unaware of this infinitesimal jump as it collapses to the identity function when s → t, and

estimating the denoiser with finite differences along the time derivative is imprecise due to numerical issues.
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where we solve the teacher PF ODE on the (u, t)-interval and jump to s using the stop-gradient
student. In summary, soft consistency compares

Gθ(xt, t, s) ≈ Gsg(θ)

(
Solver(xt, t, u;ϕ), u, s

)
, (3)

where a random u ∈ [s, t) determines the amount of teacher information to distill, and sg is
exponential moving average stop-gradient sg(θ)← stopgrad(µsg(θ) + (1− µ)θ).
By the choice of u, this soft matching spans two frameworks:

• At u = s, Eq. (3) enforces global consistency, i.e., the student distills the teacher information
on the entire interval (s, t).

• At u = t − ∆t, Eq. (3) is local consistency, i.e., the student only distills the teacher
information on a single-step interval (t−∆t, t). Moreover, it becomes CM’s distillation
target when s = 0.

To quantify the dissimilarity between the student prediction Gθ(xt, t, s) and the teacher prediction
Gsg(θ)(Solver(xt, t, u;ϕ), u, s), we use a feature distance d in clean data space by transporting
two s-time predictions to 0-time using a stop-gradient student Gsg(θ)(·, s, 0). More specifically,
transported predictions become xest(xt, t, s) := Gsg(θ)(Gθ(xt, t, s), s, 0) and xtarget(xt, t, u, s) :=

Gsg(θ)(Gsg(θ)

(
Solver(xt, t, u;ϕ), u, s

)
, s, 0). Summing altogether, the CTM loss is defined as

LCTM(θ;ϕ) := Et∈[0,T ]Es∈[0,t]Eu∈[s,t)Ex0Ext|x0

[
d
(
xtarget(xt, t, u, s),xest(xt, t, s)

)]
,

which leads to the neural jump, at optimum, to match with the jump provided by solving the empirical
PF ODE of Eq. (1), see Appendix B (Propositions 3 and 5) for details.

3.3 AUXILIARY LOSSES FOR BETTER TRAINING OF STUDENT

In knowledge distillation for classification problems, it is widely acknowledged that the student
classifier often performs as well as, or even outperforms, the teacher classifier. A crucial factor
contributing to this success is the direct training signal derived from the data label. More precisely,
the student loss Ldistill(teacher, student) + Lcls(data, student) combines a distillation loss Ldistill and
a classifier loss Lcls, which provides a high-quality signal to the student with the data label.

However, in the context of generation tasks, distillation models tend to exhibit inferior sample
quality compared to the teacher. This is primarily because model optimization relies solely on the
distillation loss. In our approach, we extend the principles of classification distillation to our model
by introducing direct signals from both DSM and adversarial losses to facilitate student learning.

First, we guide the student training with the DSM loss, given by

LDSM(θ) = Et,x0
Ext|x0

[∥x0 − gθ(xt, t, t)∥22].

The optimal gθ∗ obtained from the DSM loss becomes gθ∗(xt, t, t) = E[x|xt] = g(xt, t, t)
6. There-

fore, the DSM loss improves jump precision when s ≈ t by acting as a regularizer. We remark that
the DSM loss mitigates the vanishing gradient problem of g learning when s→ t (because the scale
factor 1− s

t → 0) and significantly improves the accuracy of small neural jumps.

Second, we employ adversarial training for enhanced student learning, utilizing the GAN loss

LGAN(θ,η) = Ex0
[log dη(x0)] + Et∈[0,T ]Es∈[0,t]Ex0

Ext|x0

[
log
(
1− dη(xest(xt, t, s))

)]
,

where dη is a discriminator. This adversarial loss is motivated by VQGAN (Esser et al., 2021), which
shows that a combination of reconstruction and adversarial losses is beneficial for generation quality.

In summary, CTM incorporates distillation, DSM and GAN losses as

L(θ,η) := LCTM(θ;ϕ) + λDSMLDSM(θ) + λGANLGAN(θ,η),

6We opt to use the conventional DSM loss instead of the score matching loss of E[∥Dϕ(xt, t)−gθ(xt, t, t)∥22]
to ensure the exact denoiser estimation at the optimality.
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(a) γ = 1 (Fully stochastic) (b) 1 > γ > 0 (c) γ = 0 (Deterministic)

Figure 5: Illustration of γ-sampling with varying γ value. It denoises with the network evaluation

and iteratively diffuses the sample in reverse by (tn
Denoise−−−−→

√
1− γ2tn+1

Noisify−−−−→ tn+1)
N−1
n=0 .

into a single and unified training framework7; and CTM solves the mini-max problem
minθ maxη L(θ,η). Following VQGAN, we employ adaptive weighting with λDSM =
∥∇θL

LCTM(θ;ϕ)∥
∥∇θL

LDSM(θ)∥ and λGAN =
∥∇θL

LCTM(θ;ϕ)∥
∥∇θL

LGAN(θ;η)∥ , where θL is the last layer of the UNet output block.
This adaptive weighting significantly stabilizes the training by balancing the gradient scale of each
term. Algorithm 4 summarizes CTM’s training algorithm.

4 SAMPLING WITH CTM
EDM CM

CTM
𝛾 = 0.5𝛾 = 1 𝛾 = 0

NFE 40

NFE 4

NFE 1

CTM

Score-based Sampling Distillation Sampling

Figure 4: Comparison of score-based models (EDM), distilla-
tion models (CM), and CTM with various sampling methods
and NFE trained on AFHQ-cat (Choi et al., 2020) 256× 256.

CTM enables exact score eval-
uation through gθ(xt, t, t), sup-
porting standard score-based sam-
pling with ODE/SDE solvers. In
high-dimensional image synthesis,
as shown in Figure 4’s left two
columns, CTM performs compara-
bly to EDM using Heun’s method
as a PF ODE solver.

CTM additionally enables time
traversal along the solution trajec-
tory, allowing for the newly intro-
duced γ-sampling method, refer to
Algorithm 2 and Figure 5. Suppose the sampling timesteps are T = t0 > · · · > tN = 0. With
xt0 ∼ π, where π is the prior distribution, γ-sampling denoises xt0 to time

√
1− γ2t1 with

Gθ(xt0 , t0,
√
1− γ2t1), and perturb this neural sample with forward diffusion to the noise level at

time t1. The γ-sampling iterates this back-and-forth traversal until reaching to time tN = 0.

Our γ-sampling is a new distillation sampler that unifies previously proposed sampling techniques,
including distillation sampling and score-based sampling.

• Figure 5-(a): When γ = 1, it coincides to the multistep sampling introduced in CM, which is
fully stochastic and results in semantic variation when NFE changes, e.g., compare samples
of NFE 4 and 40 with the deterministic sample of NFE 1 in the third column of Figure 4.
With a fixed xT , CTM reproduces CM’s samples in the fourth column of Figure 4.

• Figure 5-(c): When γ = 0, it becomes the deterministic distillation sampling that estimates
the solution of the PF ODE. A key distinction between the γ-sampling and score-based
sampling is that CTM avoids the discretization errors, e.g., compare (score-based) samples
in the leftmost column and (γ = 0 distillation) samples in the rightmost column of Figure 4.

7The DSM loss is closely linked to the KL divergence (Song et al., 2021; Kim et al., 2022b) and the GAN loss
is a proxy of f -divergences (Nowozin et al., 2016) or IPMs (Arjovsky et al., 2017). Therefore, our comprehensive
loss can be interpreted as Ldistill(teacher, student) +DKL(data∥student) +Df (data, student), which combines
the distillation loss (between teacher/student) with statistical divergences (between data/student).
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Reference
𝛾 = 1 𝛾 = 0

Figure 6: γ controls sample variance in stroke-based generation (see Appendix C.5).

• Figure 5-(b): When 0 < γ < 1, it generalizes the EDM’s stochastic sampler (Algorithm 1).
Appendix B.4 shows that γ-sampling’s sample variances scale proportionally with γ2.

The optimal choice of γ depends on practical usage and empirical configuration (Karras et al., 2022;
Xu et al., 2023). Figure 6 demonstrates γ-sampling in stroke-based generation (Meng et al., 2021),
revealing that the sampler with γ = 1 leads to significant semantic deviations from the reference
stroke, while smaller γ values yield closer semantic alignment and maintain high fidelity. Moreover,
Figure 7 showcases γ’s impact on generation performance. In Figure 7-(a), γ has less influence
with small NFE, but the setup with γ ≈ 0 is the only one that resembles the performance of the
Heun’s solver as NFE increases. Additionally, CM’s multistep sampler (γ = 1) significantly degrades
sample quality as NFE increases. This quality deterioration concerning γ becomes more pronounced
with higher NFEs, shown in Figure 7-(b), potentially attributed to the error accumulation during the
iterative neural jump overlap to zero-time. We explain this phenomenon using a 2-steps γ-sampling
example in the following theorem, see Theorem 8 for a generalized result for N steps.

Theorem 1 ((Informal) 2-steps γ-sampling). Let t ∈ (0, T ) and γ ∈ [0, 1]. Let pθ∗,2 denote as
the density obtained from the γ-sampler with the optimal CTM, following the transition sequence

T →
√
1− γ2t→ t→ 0, starting from pT . Then DTV (pdata, pθ∗,2)

8 = O
(√

T −
√
1− γ2t+ t

)
.

0 10 20 30

NFE

2

4

6

8

10

F
ID

γ-sampling (γ = 0)

γ-sampling (γ = 0.9)

γ-sampling (γ = 1)

Heun solver (CTM)

(a) FID by NFE

0.0 0.2 0.4 0.6 0.8 1.0

γ

2

4

6

8

10

F
ID

NFE 18

NFE 35

(b) Sensitivity to γ

Figure 7: (a) CTM enables score-based sampling and
distillation γ-sampling on CIFAR-10. (b) The FID de-
grade highlights the importance of trajectory learning.

When it becomes N steps, the γ-sampling
with γ = 1 iteratively conducts long jumps
from tn to 0 for each step n, which aggre-
gates the error to O(√T + t1 + · · ·+ tN ).
In contrast, such time overlap between
jumps does not occur with γ = 0, elim-
inating the error accumulation, resulting in
only O(

√
T ) error, see Appendix C.2. In

summary, CTM addresses challenges asso-
ciated with large NFE in distillation models
with γ = 0 and removes the discretization
error in score-based models.

5 EXPERIMENTS

5.1 STUDENT (CTM) BEATS TEACHER (DM) – QUANTITATIVE ANALYSIS

We evaluate CTM on CIFAR-10 and ImageNet 64× 64, using the pre-trained diffusion checkpoints
from EDM (CIFAR-10) and CM (ImageNet) as the teacher models. We adopt EDM’s training config-
uration for LDSM(θ) and employ StyleGAN-XL’s (Sauer et al., 2022) discriminator for LGAN(θ,η).
For student, we use EDM’s DDPM++ implementation on CIFAR-10; and CM’s ADM implementation
on ImageNet. In addition to these default architectures, we incorporate s-information via auxiliary
temporal embedding with positional embedding (Vaswani et al., 2017), and add this embedding to the
t-embedding. We minimally change the CM’s design to comply the previous implementation, and we
list important modifications in Table 4 in Appendix D.1: 1) We find that a large µ for stop-gradient
EMA significantly stabilizes the adversarial training; 2) We evaluate the model performance with
student EMA rate of 0.999; 3) we reuse the skip connection and output scaling of the pre-trained
diffusion model to our neural output modeling: gθ(xt, t, s) = cskip(t)xt+cout(t)NNθ(xt, t, s), where
NNθ is a neural network. The selection of cskip and cout ensures that the initialized gθ(xt, t, t) closely

8The total variation of two densities p and q is defined as DTV (p, q) := 1
2

∫
|p(x)− q(x)| dx.

9Bold text indicates the best performance, while underlined text means the second best performance.
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Table 1: Performance comparisons on CIFAR-109.

Model NFE Unconditional Conditional

FID↓ NLL↓ FID↓

GAN Models
BigGAN (Brock et al., 2018) 1 8.51 ✗ -
StyleGAN-Ada (Karras et al., 2020) 1 2.92 ✗ 2.42
StyleGAN-D2D (Kang et al., 2021) 1 - ✗ 2.26
StyleGAN-XL (Sauer et al., 2022) 1 - ✗ 1.85

Diffusion Models – Score-based Sampling
DDPM (Ho et al., 2020) 1000 3.17 3.75 -

DDIM (Song et al., 2020a) 100 4.16 - -
10 13.36 - -

Score SDE (Song et al., 2020a) 2000 2.20 3.45 -
VDM (Kingma et al., 2021) 1000 7.41 2.49 -
LSGM (Vahdat et al., 2021) 138 2.10 3.43 -
EDM (Karras et al., 2022) 35 2.01 2.56 1.82

Diffusion Models – Distillation Sampling
KD (Luhman & Luhman, 2021) 1 9.36 ✗ -
DFNO (Zheng et al., 2023) 1 3.78 ✗ -
2-Rectified Flow (Liu et al., 2022) 1 4.85 ✗ -
PD (Salimans & Ho, 2021) 1 9.12 ✗ -
CD (official report) (Song et al., 2023) 1 3.55 ✗ -
CD (retrained) 1 10.53 ✗ -
CD + GAN (Lu et al., 2023) 1 2.65 ✗ -
CTM (ours) 1 1.98 2.43 1.73

PD (Salimans & Ho, 2021) 2 4.51 - -
CD (Song et al., 2023) 2 2.93 - -
CTM (ours) 2 1.87 2.43 1.63

Models without Pre-trained DM – Direct Generation
CT 1 8.70 ✗ -
CTM (ours) 1 2.39 - -

Table 2: Performance comparisons on Ima-
geNet 64× 64.

Model NFE FID↓ IS↑ Rec↑

Validation Data 1.41 64.10 0.67

ADM (Dhariwal & Nichol, 2021) 250 2.07 - 0.63
EDM (Karras et al., 2022) 79 2.44 48.88 0.67
BigGAN-deep (Brock et al., 2018) 1 4.06 - 0.48
StyleGAN-XL (Sauer et al., 2022) 1 2.09 82.35 0.52

Diffusion Models – Distillation Sampling
PD (Salimans & Ho, 2021) 1 15.39 - 0.62
BOOT (Gu et al., 2023) 1 16.3 - 0.36
CD (Song et al., 2023) 1 6.20 40.08 0.63
CTM (ours) 1 1.92 70.38 0.57

PD (Salimans & Ho, 2021) 2 8.95 - 0.65
CD (Song et al., 2023) 2 4.70 - 0.64
CTM (ours) 2 1.73 64.29 0.57
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Figure 8: FID-IS curve on ImageNet.

(a) EDM (79 NFE) (b) CTM w/o GAN (1 NFE) (c) CTM w/ GAN (1 NFE)
Figure 9: Samples generated by (a) EDM, (b) CTM without GAN (λGAN = 0), and (c) CTM
with GAN (adaptive λGAN). More generated samples are demonstrated in Appendix E.

aligns with the pre-trained denoiser, with slight random noise introduced from the s-embedding.
Reusing cskip and cout directs the student network to focus on training long jumps while preserving
the accuracy of small jumps (via LDSM) from the initial training phase. Consequently, achieving good
performance requires only 100K iterations (10x faster) for CIFAR-10 and 30K iterations (20x faster)
for ImageNet, compared to corresponding baselines.

CIFAR-10 CTM’s NFE 1 FID (1.98) excels not only CM (3.55) on unconditional generation, but
CTM (1.73) outperforms the SOTA models, such as EDM (1.82 with 35 NFE) and StyleGAN-XL
(1.85) on conditional generation. In addition, CTM achieves the SOTA FID (1.63) with 2 NFEs,
surpassing all previous generative models. These results on CIFAR-10 are obtained upon the official
PyTorch code of CM, where retraining CM with their code yields FID of 10.53 (unconditional),
significantly worse than the reported FID of 3.55. Additionally, CTM’s ability to approximate scores
using gθ(xt, t, t) enables evaluating Negative Log-Likelihood (NLL) (Song et al., 2021; Kim et al.,
2022b), establishing a new SOTA NLL. This improvement can be attributed, in part, to CTM’s
reconstruction loss when u = s, and improved alignment with the oracle process (Lai et al., 2023a).

ImageNet CTM surpasses any previous non-guided generative models in FID. Also, CTM most
closely resembles the IS of validation data, which implies that StyleGAN-XL tends to generate sam-
ples with a higher likelihood of being classified for a specific class, even surpassing the probabilities
of real-world validation data, whereas CTM’s generation is statistically consistent in terms of the
classifier likelihood. In sample diversity, CTM reports an intermediate level of recall, but the random
samples in Figure 16 exhibits the actual samples are comparably diverse to those of EDM or CM.
Furthermore, the high likelihood of CTM on CIFAR-10 indirectly indicates that CTM has no issue
on mode collapse. Lastly, we emphasize that all results in Tables 1 and 2 are achieved within 30K
training iterations, requiring only 5% of the iterations needed to train CM and EDM.

Classifier-Rejection Sampling CTM’s fast sampling enables classifier-rejection sampling. In the
evaluation, for each class, we select the top 50 samples out of 50

1−r samples based on predicted class
probability, where r is the rejection ratio. This sampler, combined with NFE 1 sampling, consumes
an average of NFE 1

1−r . In Figure 8, CTM shows a FID-IS trade-off comparable to classifier-guided
results (Ho & Salimans, 2021) achieved with high NFEs of 250 (see Figure 17 for samples).

8



Published as a conference paper at ICLR 2024

5.2 QUALITATIVE ANALYSIS
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Figure 10: Comparison of local, global, and the proposed
soft consistency matching.

CTM Loss Figure 10 highlights that
soft consistency outperforms local
consistency and performs compara-
ble to global consistency. Specifi-
cally, local consistency distills only
1-step teacher, so the teacher of time
interval [0, T − ∆t] is not used to
train the neural jump starting from
xT . Rather, teacher on [t−∆t, t] with
t ∈ [0, T −∆t] is distilled to student
from neural jump starting from xt, not xT . The student, thus, has to extrapolate the learnt but
scattered teacher across time intervals to estimate the jump from xT , which could potentially lead
to imprecise estimation. In contrast, the amount of teacher to be distilled in soft consistency is
determined by a random u, where u = 0 represents distilling teacher on the entire interval [0, T ], see
Appendix C.3. Hence, soft matching serves as a computationally efficient and high-performing loss.
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Figure 11: The effect of DSM loss.

DSM Loss Figure 11 illustrates two
benefits of incorporating LDSM with
LCTM. It preserves sample quality
for small NFE unless DSM scale out-
weighs CTM. For large NFE sam-
pling, it significantly improves sample
quality due to accurate score estima-
tion. Throughout the paper, we main-
tain λDSM to be the adaptive weight
(the case of CTM +1.0DSM), based
on insights from Figure 11.
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Figure 12: The effect of GAN loss.

GAN Loss Figure 12 highlights the
benefits of integrating the GAN loss
for both small- and large-NFE sam-
ple quality. In Figure 9, CTM shows
superior sample production compared
to the teacher, with GAN refining lo-
cal details. Throughout the paper,
we implement a GAN warm-up strat-
egy: deactivating GAN training with
λGAN = 0 during warm-up iterations
and subsequently activating GAN training with an adaptive λGAN, following the VQGAN’s approach.
Additional insights into the effects of GAN on generated samples are discussed in Appendix C.4.

Training Without Pre-trained DM Leveraging our score learning capability, we replace the pre-
trained score approximation, Dϕ(xt, t), with CTM’s approximation, gθ(xt, t, t), allowing us to
obtain the corresponding empirical PF ODE dxt =

xt−gθ(xt,t,t)
t . Consequently, we can construct

a pretrained-free target, x̂target := Gsg(θ)(Gsg(θ)(Solver(xt, t, u;sg(θ))), u, s), s, 0), to replace
xtarget in computing the CTM loss LCTM. When incorporated with DSM and GAN losses, it achieves
a NFE 1 FID of 2.39 on unconditional CIFAR-10, a performance on par with pre-trained DMs.
Contrastive to CM, our CTM uses the identical form of loss from its score approximation capability.

6 CONCLUSION

CTM, a novel generative model, addresses issues in established models. With a unique training
approach accessing intermediate PF ODE solutions, it enables unrestricted time traversal and seamless
integration with prior models’ training advantages. A universal framework for Consistency and
Diffusion Models, CTM excels in both training and sampling. Remarkably, it surpasses its teacher
model, achieving SOTA results in FID and likelihood for few-steps diffusion model sampling on
CIFAR-10 and ImageNet 64× 64, highlighting its versatility and process.
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ETHICS STATEMENT

CTM poses a risk for generating harmful or inappropriate content, including deepfake images, graphic
violence, or offensive material. Mitigating these risks involves the implementation of strong content
filtering and moderation mechanisms to prevent the creation of unethical or harmful media content.

REPRODUCIBILITY STATEMENT

The code is available at https://github.com/sony/ctm. Moreover, we outline our training
and sampling procedures in Algorithms 4 and 2, and detailed implementation instructions for result
reproducibility can be found in Appendix D.
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A RELATED WORKS

Diffusion Models DMs excel in high-fidelity synthetic image and audio generation (Dhariwal
& Nichol, 2021; Saharia et al., 2022; Rombach et al., 2022), as well as in applications like media
editing, restoration (Meng et al., 2021; Cheuk et al., 2023; Kawar et al., 2022; Saito et al., 2023;
Hernandez-Olivan et al., 2023; Murata et al., 2023). Recent research aims to enhance DMs in sample
quality (Kim et al., 2022b;a), density estimation (Song et al., 2021; Lu et al., 2022a), and especially,
sampling speed (Song et al., 2020a).

Fast Sampling of DMs The SDE framework underlying DMs (Song et al., 2020b) has driven
research into various numerical methods for accelerating DM sampling, exemplified by works such
as (Song et al., 2020a; Zhang & Chen, 2022; Lu et al., 2022b). Notably, (Lu et al., 2022b) reduced
the ODE solver steps to as few as 10-15. Other approaches involve learning the solution operator of
ODEs (Zheng et al., 2023), discovering optimal transport paths for sampling (Liu et al., 2022), or
employing distillation techniques (Luhman & Luhman, 2021; Salimans & Ho, 2021; Berthelot et al.,
2023; Shao et al., 2023). However, previous distillation models may experience slow convergence
or extended runtime. Gu et al. (2023) introduced a bootstrapping approach for data-free distillation.
Furthermore, Song et al. (2023) introduced CM which extracts DMs’ PF ODE to establish a direct
mapping from noise to clean predictions, achieving one-step sampling while maintaining good sample
quality. CM has been adapted to enhance the training stability of GANs, as (Lu et al., 2023). However,
it’s important to note that their focus does not revolve around achieving sampling acceleration for
DMs, nor are the results restricted to simple datasets.

Consistency of DMs Score-based generative models rely on a differential equation framework,
employing neural networks trained on data to model the conversion between data and noise. These
networks must satisfy specific consistency requirements due to the mathematical nature of the
underlying equation. Early investigations, such as (Kim et al., 2022c), identified discrepancies
between learned scores and ground truth scores. Recent developments have introduced various
consistency concepts, showing their ability to enhance sample quality (Daras et al., 2023; Li et al.,
2023), accelerate sampling speed (Song et al., 2023), and improve density estimation in diffusion
modeling (Lai et al., 2023a). Notably, Lai et al. (2023b) established the theoretical equivalence of
these consistency concepts, suggesting the potential for a unified framework that can empirically
leverage their advantages. CTM can be viewed as the first framework which achieves all the desired
properties.

B THEORETICAL INSIGHTS ON CTM

In this section, we explore several theoretical aspects of CTM, encompassing convergence analysis
(Section B.2), properties of well-trained CTM, variance bounds for γ-sampling, and a more general
form of accumulated errors induced by γ-sampling (cf. Theorem 1).

We first introduce and review some notions. Starting at time t with an initial value of xt and ending
at time s, recall that G(xt, t, s) represents the true solution of the PF ODE, and G(xt, t, s;ϕ) is the
solution function of the following empirical PF ODE.

dxu

du
=

xu −Dϕ(xu, u)

u
, u ∈ [0, T ]. (4)

Here ϕ denotes the teacher model’s weights learned from DSM. Thus, G(xt, t, s;ϕ) can be expressed
as

G(xt, t, s;ϕ) =
s

t
xt + (1− s

t
)g(xt, t, s;ϕ),

where g(xt, t, s;ϕ) = xt +
t

t−s

∫ s

t
xu−Dϕ(xu,u)

u du. (Delbracio & Milanfar, 2023) also derived a
similar formulation, albeit for different purposes.

B.1 UNIFICATION OF SCORE-BASED AND DISTILLATION MODELS

The following lemma summarizes our dedicated G-expression using an auxiliary function g, allowing
convenient access to both the integral via G and the integrand via g, visualized in Figure 13.

17



Published as a conference paper at ICLR 2024

Lemma 2 (Unification of score-based and distillation models). Suppose that the score satisfies
supx

∫ T

0
∥∇ log pu(x)∥2 du <∞. The solution G(xt, t, s) can be expressed as:

G(xt, t, s) =
s

t
xt +

(
1− s

t

)
g(xt, t, s) with g(xt, t, s) = xt +

t

t− s

∫ s

t

xu − E[x|xu]

u
du.

Here, g satisfies:

• When s = 0, G(xt, t, 0) = g(xt, t, 0) is the solution of PF ODE at s = 0, initialized at xt.

• As s→ t, g(xt, t, s)→ E[x|xt]. Hence, g can be defined at s = t by its limit: g(xt, t, t) :=
E[x|xt].

Figure 13: Schematic illustration of our
CTM.

As outlined in Section 3.1, the g-expression for G is in-
herently associated with the Taylor approximation to the
integral:

G(xt, t, s) = xt +

[
(s− t)

xt − E[x|xt]

t
+O

(
|t− s|2

)]
=

s

t
xt +

(
1− s

t

)[
E[x|xt] +O (|t− s|)︸ ︷︷ ︸

=g(xt,t,s)

]
,

To further elucidate why Taylor’s expansion is the primary
cause of discretization errors, we will provide an explana-
tion using the DDIM sampler with the oracle score function. The denoised sample with DDIM from
t to t−∆t is xDDIM

t−∆t =
(
1− ∆t

t

)
xt +

∆t
t E[x|xt]. However, the Taylor expansion of the integration

yields that the true trajectory sample is xtrue
t−∆t =

(
1− ∆t

t

)
xt+

∆t
t

(
E[x|xt]+O(∆t)

)
. Therefore, the

DDIM trajectory differs from the true trajectory by ∆t
t O(∆t), which exactly represents the residual

term of the Taylor expansion beyond the 2nd order. Consequently, the discretization error originates
from the failure to estimate the residual term of the Taylor expansion.

B.2 CONVERGENCE ANALYSIS – DISTILLATION FROM TEACHER MODELS

Convergence along Trajectory in a Time Discretization Setup. CTM’s practical implementation
follows CM’s one, utilizing discrete timesteps t0 = 0 < t1 < · · · < tN = T for training. Initially,
we assume local consistency matching for simplicity, but this can be extended to soft matching. This
transforms the continuous time CTM loss to the discrete time counterpart:

LN
CTM(θ;ϕ) := En∈[[1,N ]]Em∈[[0,n]]Ex0,p0tn (x|x0)

[
d
(
xtarget(xtn , tn, tm),xest(xtn , tn, tm)

)]
,

where d(·, ·) is a metric, and

xest(xtn , tn, tm) := Gθ

(
Gθ(xtn , tn, tm), tm, 0

)
xtarget(xtn , tn, tn−1, tm) := Gθ

(
Gθ

(
Solver(xtn , tn, tn−1;ϕ), tn−1, tm

)
, tm, 0

)
.

In the following theorem, we demonstrate that irrespective of the initial time tn and end time tm,
CTM Gθ(·, tn, tm;ϕ), will eventually converge to its teacher model, G(·, tn, tm;ϕ).
Proposition 3. Define ∆N t := max

n∈[[1,N ]]
{|tn+1 − tn|}. Assume that Gθ is uniform Lipschitz in x

and that the ODE solver admits local truncation error bounded uniformly by O((∆N t)p+1) with
p ≥ 1. If there is a θN so that LN

CTM(θN ;ϕ) = 0, then for any n ∈ [[1, N ]] and m ∈ [[1, n]]

sup
x∈RD

d
(
GθN

(GθN
(x, tn, tm), tm, 0), GθN

(G(x, tn, tm;ϕ), tm, 0)
)
= O((∆N t)p)(tn − tm).

Similar argument applies, confirming convergence along the PF ODE trajectory, ensuring the local
consistency with θ replacing sg(θ):

Gθ(xt, t, s) ≈ Gθ(Solver(xt, t, t−∆t;ϕ), t−∆t, s)
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by enforcing the following loss

L̃N
CTM(θ;ϕ) := En∈[[1,N ]]Em∈[[0,n]]Ex0,p0tn (x|x0)

[
d
(
x̃target(xtn , tn, tm), x̃est(xtn , tn, tm)

)]
,

where
x̃est(xtn , tn, tm) := Gθ(xtn , tn, tm)

x̃target(xtn , tn, tn−1, tm) := Gθ

(
Solver(xtn , tn, tn−1;ϕ), tn−1, tm

)
.

Proposition 4. If there is a θN so that L̃N
CTM(θN ;ϕ) = 0, then for any n ∈ [[1, N ]] and m ∈ [[1, n]]

sup
x∈RD

d
(
GθN

(x, tn, tm), G(x, tn, tm;ϕ)
)
= O((∆N t)p)(tn − tm).

Convergence of Densities. In Proposition 3, we demonstrated point-wise trajectory convergence,
from which we infer that CTM may converge to its training target in terms of density. More precisely,
in Proposition 5, we establish that if CTM’s target xtarget is derived from the teacher model (as defined
above), then the data density induced by CTM will converge to that of the teacher model. Specifically,
if the target xtarget perfectly approximates the true G-function:

xtarget(xtn , tn, tn−1, tm) ≡ G(xtn , tn, tm), for all n ∈ [[1, N ]],m ∈ [[0, n]], N ∈ N. (5)
Then the data density generated by CTM will ultimately learn the data distribution pdata.

Simplifying, we use the ℓ2 for the distance metric d and consider the prior distribution π to be pT ,
which is the marginal distribution at time t = T defined by the diffusion process:

dxt =
√
2tdwt, (6)

Proposition 5. Suppose that

(i) The uniform Lipschitzness of Gθ (and G),

sup
θ
∥Gθ(x, t, s)−Gθ(x

′, t, s)∥2 ≤ L ∥x− x′∥2 , for all x,x′ ∈ RD, t, s ∈ [0, T ],

(ii) The uniform boundedness in θ of Gθ: there is a L(x) ≥ 0 so that

sup
θ
∥Gθ(x, t, s)∥2 ≤ L(x) <∞, for all x ∈ RD, t, s ∈ [0, T ]

If for any N , there is a θN such that LN
CTM(θN ;ϕ) = 0. Let pθN

(·) denote the pushforward
distribution of pT induced by GθN

(·, T, 0). Then, as N →∞, ∥pθN
(·)− pϕ(·)∥∞ → 0. Particularly,

if the condition in Eq. (5) is satisfied, then ∥pθN
(·)− pdata(·)∥∞ → 0 as N →∞.

B.3 NON-INTERSECTING TRAJECTORY OF THE OPTIMAL CTM

CTM learns distinct trajectories originating from various initial points xt and times t. In the
following proposition, we demonstrate that the distinct trajectories derived by the optimal CTM,
which effectively distills information from its teacher model (Gθ∗(·, t, s) ≡ G(·, t, s;ϕ) for any
t, s ∈ [0, T ]), do not intersect.
Proposition 6. Suppose that a well-trained θ∗ such that Gθ∗(·, t, s) ≡ G(·, t, s;ϕ) for any t, s ∈
[0, T ], and that Dϕ(·, t) is Lipschitz, i.e., there is a constant Lϕ > 0 so that for any x,y ∈ RD and
t ∈ [0, T ]

∥Dϕ(x, t)−Dϕ(y, t)∥2 ≤ Lϕ ∥x− y∥2 .

Then for any s ∈ [0, t], the mapping Gθ∗(·, t, s) : RD → RD is bi-Lipschitz. Namely, for any
xt,yt ∈ RD

e−Lϕ(t−s) ∥xt − yt∥2 ≤ ∥Gθ∗(xt, t, s)−Gθ∗(yt, t, s)∥2 ≤ eLϕ(t−s) ∥xt − yt∥2 . (7)
This implies that xt ̸= yt, Gθ∗(xt; t, s) ̸= Gθ∗(yt; t, s) for all s ∈ [0, t].

Specifically, the mapping from an initial value to its corresponding solution trajectory, denoted as
xt 7→ Gθ∗(xt, t, ·), is injective. Conceptually, this ensures that if we use guidance at intermediate
times to shift a point to another guided-target trajectory, the guidance will continue to affect the
outcome at t = 0.
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B.4 VARIANCE BOUNDS OF γ-SAMPLING

Suppose the sampling timesteps are T = t0 > t1 > · · · > tN = 0. In Proposition 7, we analyze the
variance of

Xn+1 := Gθ(Xn, tn,
√
1− γ2tn+1) + Zn,

resulting from n-step γ-sampling, initiated at

X1 := Gθ(xt0 , t0,
√

1− γ2t1) + γZ0, where Zn
iid∼ N (0, γ2t2n+1)I).

Here, we assume an optimal CTM which precisely distills information from the teacher model
Gθ∗(·) = G(·, t, s;ϕ) for all t, s ∈ [0, T ], for simplicity.
Proposition 7. We have

ζ−1(tn, tn+1, γ)Var (Xn) + γ2t2n+1 ≤ Var (Xn+1) ≤ ζ(tn, tn+1, γ)Var (Xn) + γ2t2n+1,

where ζ(tn, tn+1, γ) = exp
(
2Lϕ(tn −

√
1− γ2tn+1)

)
and Lϕ is a Lipschitz constant of Dϕ(·, t).

In line with our intuition, CM’s multistep sampling (γ = 1) yields a broader range of Var (Xn+1)
compared to γ = 0, resulting in diverging semantic meaning with increasing sampling NFE.

B.5 ACCUMULATED ERRORS IN THE GENERAL FORM OF γ-SAMPLING.

We can extend Theorem 1 for two steps γ-sampling for the case of multisteps.

We begin by clarifying the concept of “density transition by a function”. For a measurable mapping
T : Ω→ Ω and a measure ν on the measurable space Ω, the notation T ♯ν denotes the pushforward
measure, indicating that if a random vector X follows the distribution ν, then T (X) follows the
distribution T ♯ν.

Given a sampling timestep T = t0 > t1 > · · · > tN = 0. Let pθ∗,N represent the density resulting
from N-steps of γ-sampling initiated at pT . That is,

pθ∗,N :=
N−1

n=0

(
T θ∗√

1−γ2tn+1→tn+1
◦ T θ∗

tn→
√

1−γ2tn+1

)
♯pT .

Here,
N−1

n=0

denotes the sequential composition. We assume an optimal CTM which precisely distills

information from the teacher model Gθ∗(·) = G(·, t, s;ϕ) for all t, s ∈ [0, T ].
Theorem 8 (Accumulated errors of N-steps γ-sampling). Let γ ∈ [0, 1].

DTV (pdata, pθ∗,N ) = O
(

N−1∑
n=0

√
tn −

√
1− γ2tn+1

)
.

Here, Tt→s : RD → RD denotes the oracle transition mapping from t to s, determined by Eq. (6).
The pushforward density via Tt→s is denoted as Tt→s♯pt, with similar notation applied to T θ∗

t→s♯pt,
where T θ∗

t→s denotes the transition mapping associated with the optimal CTM trained with LCTM.

B.6 TRANSITION DENSITIES WITH THE OPTIMAL CTM

In this section, for simplicity, we assume the optimal CTM, Gθ∗ ≡ G with a well-learned θ∗, which
recovers the true G-function. We establish that the density propagated by this optimal CTM from
any time t to a subsequent time s aligns with the predefined density determined by the fixed forward
process.

We now present the proposition ensuring alignment of the transited density.
Proposition 9. Let {pt}Tt=0 be densities defined by the diffusion process Eq. (6), where p0 := pdata.
Denote Tt→s(·) := G(·, t, s) : RD → RD for any t ≥ s. Suppose that the score ∇ log pt satisfies
that there is a function L(t) ≥ 0 so that

∫ T

0
|L(t)|dt <∞ and
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(i) Linear growth: ∥∇ log pt(x)∥2 ≤ L(t)(1 + ∥x∥2), for all x ∈ RD

(ii) Lipschitz: ∥∇ log pt(x)−∇ log pt(y)∥2 ≤ L(t) ∥x− y∥2, for all x,y ∈ RD.

Then for any t ∈ [0, T ] and s ∈ [0, t], ps = Tt→s♯pt.

This theorem guarantees that by learning the optimal CTM, which possesses complete trajectory
information, we can retrieve all true densities at any time using CTM.

C ALGORITHMIC DETAILS

C.1 MOTIVATION OF PARAMETRIZATION

Our parametrization of Gθ is affected from the discretized ODE solvers. For instance, the one-step
Euler solver has the solution of

xEuler
s = xt − (t− s)

xt − E[x|xt]

t
=

s

t
xt +

(
1− s

t

)
E[x|xt].

The one-step Heun solver is

xHeun
s = xt −

t− s

2

(
xt − E[x|xt]

t
+

xEuler
s − E[x|xEuler

s ]

s

)
= xt −

t− s

2

(
xt

t
+

xEuler
s

s

)
+

t− s

2

(
E[x|xt]

t
+

E[x|xEuler
s ]

s

)
=

s

t
xt +

(
1− s

t

)((
1− t

2s

)
E[x|xt] +

t

2s
E[x|xEuler

s ]

)
.

Again, the solver scales xt with s
t and multiply 1− s

t to the second term. Therefore, our G(xt, t, s) =
s
txt + (1− s

t )g(xt, t, s) is a natural way to represent the ODE solution.

For future research, we establish conditions enabling access to both integral and integrand expressions.
Consider a continuous real-valued function a(t, s). We aim to identify necessary conditions on a(t, s)
for the expression of G as:

G(xt, t, s) = a(t, s)xt +
(
1− a(t, s)

)
h(xt, t, s),

for a vector-valued function h(xt, t, s) and that h satisfies:

• lims→t h(xt, t, s) exists;
• it can be expressed algebraically with E[x|xt].

Starting with the definition of G, we can obtain

G(xt, t, s) = xt +

∫ s

t

xu − E[x|xu]

u
du

= a(t, s)xt +
(
1− a(t, s)

)[
xt +

1

1− a(t, s)

∫ s

t

xu − E[x|xu]

u
du
]

︸ ︷︷ ︸
h(xt,t,s)

.

Suppose that there is a continuous function c(t) so that

lim
s→t

s− t

1− a(t, s)
= c(t),

then

lim
s→t

h(xt, t, s) = xt + lim
s→t

[ 1

1− a(t, s)

∫ s

t

xu − E[x|xu]

u
du
]

= xt + lim
s→t

[ s− t

1− a(t, s)

xt∗ − E[x|xt∗ ]

t∗

]
, for some t∗ ∈ [s, t]
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= xt + c(t)
(xt − E[x|xt]

t

)
=
(1 + c(t)

t

)
xt −

c(t)

t
E[x|xt].

The second equality follows from the mean value theorem (We omit the continuity argument details
for Markov filtrations). Therefore, we obtain the desired property 2). We summarize the necessary
conditions on a(s, t) as:

There is some continuous function c(t) in t so that lim
s→t

s− t

1− a(t, s)
= c(t). (8)

We now explain the above observation with an example by considering EDM-type parametrization.

Consider cskip(t, s) :=

√
(s−σmin)2+σ2

data
(t−σmin)2+σ2

data
and cout(t, s) := (1− s

t ). Then G(xt, t, s) can be expressed
as

G(xt, t, s) = cskip(t, s)xt + cout(t, s)h(xt, t, s),

where h is defined as

h(xt, t, s) =
1

cout

[
(1− cskip)xt +

∫ s

t

xu − E[x|xu]

u
du
]
.

Then, we can verify that cskip(t, s) satisfies the condition in Eq. (8) and that

E[x|xt] = g(xt, t, t) +
σ2

min + σ2
data − σmint

(t− σmin)2 + σ2
data

xt.

The DSM loss with this cskip(t, s) becomes

LDM(θ) = E
[∥∥∥∥x0 −

(
gθ(xt, t, t) +

σ2
min + σ2

data − σmint

(t− σmin)2 + σ2
data

xt

)∥∥∥∥2
2

]
However, empirically, we find that the parametrization of cskip(t, s) and cout(t, s) other than the ODE
solver-oriented one, i.e., cskip(t, s) =

s
t and cskip(t, s) = 1− s

t , faces training instability. Therefore,
we set G(xt, t, s) =

s
txt + (1− s

t )g(xt, t, s) as our default design and estimate g-function with the
neural network.

C.2 CHARACTERISTICS OF γ-SAMPLING

Connection with SDE When Gθ = G, a single step of γ-sampling is expressed as:

xγ
tn+1

= xtn +G(xtn , tn,
√
1− γ2tn+1) + γtn+1ϵ

= xtn −
(∫ tn+1

tn

u∇ log pu(xu) du︸ ︷︷ ︸
past information

+

∫ √1−γ2tn+1

tn+1

u∇ log pu(xu) du︸ ︷︷ ︸
future information

)
+ γtn+1ϵ,

where ϵ ∼ N (0, I). This formulation cannot be interpreted as a differential form (Øksendal, 2003)
because it look-ahead future information (from tn+1 to

√
1− γ2tn+1) to generate the sample xγ

tn+1

at time tn+1. This suggests that there is no Itô’s SDE that corresponds to our γ-sampler pathwisely,
opening up new possibilities for the development of a new family of diffusion samplers.

Connection with EDM’s stochastic sampler We conduct a direct comparison between EDM’s
stochastic sampler and CTM’s γ-sampling. We denote Heun(xt, t, s) as Heun’s solver initiated at
time t and point xt and ending at time s. It’s worth noting that EDM’s sampler inherently experiences
discretization errors stemming from the use of Heun’s solver, while CTM is immune to such errors.
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Algorithm 1 EDM’s sampler

1: Start from xt0 ∼ π
2: for n = 0 to N − 1 do
3: t̂n ← (1 + γ)tn

4: Diffuse xt̂n
← xtn +

√
t̂2n − t2nϵ

5: Denoise xtn+1
← Heun(xt̂n

, t̂n, tn+1)
6: end for
7: Return xtN

Algorithm 2 CTM’s γ-sampling

1: Start from xt0 ∼ π
2: for n = 0 to N − 1 do
3: t̃n+1 ←

√
1− γ2tn+1

4: Denoise xt̃n+1
← Gθ(xtn , tn, t̃n+1)

5: Diffuse xtn+1
← xt̂n+1

+ γtn+1ϵ
6: end for
7: Return xtN

The primary distinction between EDM’s stochastic sampling in Algorithm 1 and CTM’s γ-sampling
in Algorithm 2 is the order of the forward (diffuse) and backward (denoise) steps. However, through
the iterative process of forward-backward time traveling, these two distinct samplers become indistin-
guishable. Aside from the order of forward-backward steps, the two algorithms essentially align if we
opt to synchronize the CTM’s time (tCTM

n , t̃CTM
n ) to with the EDM’s time (t̂EDM

n , tEDM
n+1), respectively,

and their γs accordingly.

C.3 ALGORITHMIC COMPARISON OF LOCAL CONSISTENCY AND SOFT CONSISTENCY

In this subsection, we explain the algorithmic difference between the local consistency loss and the
soft consistency loss focusing on how the neural jump Gθ(xT , T, 0) is trained.

Local Consistency (Implicit Information from Teacher) Let us assume that at some training
iteration the maximum time T is sampled as a random time t. Then CM matches the long jump
provided by Gθ(xT , T, 0) and Gsg(θ)(Solver(xT , T, T − ∆t), T − ∆t, 0). Hence, the neural
jump Gθ(xT , T, 0) distills on the teacher information within the interval [T −∆t, T ] and may lack
precision for the trajectory within [0, T −∆t]. The transfer of teacher information for the interval
[0, T −∆t] may occur in another iteration with a random time t ≤ T −∆t. In this case, the student
model Gθ(xt, t, 0) distills the teacher information solely within the interval [t−∆t, t], where the
network is trained with xt as the input.

However, for 1-step generation, gθ(xT , T, 0) still lacks perfect knowledge of the teacher information
within [t−∆t, t]. This is because, when the student network input is xT , the teacher information for
the interval [t−∆t, t] with t ≤ T −∆t has not been explicitly provided, as the student was trained
with the input xt to distill information within [t−∆t, t]. Given the non-overlapping intervals with
distilled information from local consistency, the student neural network must extrapolate and attempt
to connect the scattered teacher information. Consequently, this implicit signal provided by teacher
results in slow convergence and inferior performance.

Soft Consistency (Explicit Information from Teacher) At the opposite end of local consistency,
there is glocal consistency, where the teacher prediction is constructed solely with an ODE solver
to cover the entire interval [0, T ] (or [0, t] for a random time t). In this case, the student model can
explicitly extract information from the teacher. However, this approach is resource-intensive (3x
slower than local consistency on CIFAR-10) during training due to the ODE solving calls on the
entire interval at each iteration.

In contrast, our innovative loss, soft matching, constructs the teacher prediction by using an ODE
solver spanning from T to a random u. Importantly, u is not limited to T −∆t, but can take any
value in the range of [0, T ]. As a result, the teacher information has the opportunity to be distilled and
transmitted over a broader range of [u, T ]. More precisely, if a random u is sampled with u ≤ t−∆t,
the range [u, T ] contains the interval [t − ∆t, t], and the student network directly distills teacher
information of the interval [t − ∆t, t]. As u is arbitrary, the student of CTM with input xT will
ultimately receive the explicit information from the teacher for any intermediate timesteps. This
renders CTM superior to CM for 1-step generation, as evidenced in Figure 10, while maintaining
training efficiency (2x faster than global consistency on CIFAR-10).

C.4 COMPARISON OF GAN EFFECTS IN GENERATION
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(a) Teacher EDM (NFE 79) (b) CTM without GAN (NFE 1) (c) CTM with GAN (NFE 1)

Figure 14: Uncurated samples from (a) teacher, (b) CTM without GAN, and (c) CTM with GAN. For
visualization purpose, we upsample 64×64 samples to 224×224 resolution with bilinear upsampling
technique. Best viewed with zoom-in.

Table 3: Effect of GAN Loss
on CIFAR-10. We use identical
hyperparameters except the GAN
loss for fair comparison.

Model NFE FID

CTM w/o GAN 1 5.19
CTM w/ GAN 2.28

CTM w/o GAN 18 3.00
CTM w/ GAN 2.23

This section investigates the effect of adversarial training with
generated samples and its statistics. In Figure 14, we compare
the samples of (a) the teacher diffusion model, (b) CTM (NFE 1)
without GAN, and (c) CTM (NFE 1) with GAN. It shows that the
samples with auxiliary GAN loss exhibit enhanced fine details,
effectively addressing high-frequency alisasing artifacts. More-
over, improvements in overall shapes (butterfly/background) and
features (brightness/contrast/saturation) are evident in these sam-
ples. Although existing literature (Kynkäänniemi et al., 2023)
discusses the possibility that FID improvement may not neces-
sarily correlate with an actual enhancement in human perceptual
judgement, our observations in Figure 14 indicates that, in the
case of CTM, the improvement achieved through GAN is indeed
perceptually discernible in human judgement.

We compare FIDs of CTM trained with/without GAN in Table 3. Consistent to the findings in
previous research (Song & Ermon, 2020), the improved fine-details of GAN-augmented samples
in Figure 14-(c) results in better FID than CTM without GAN, as indicated in the table. Moreover,
Table 3 demonstrates that the use of adversarial loss is also beneficial on the generation of large-NFE
samples.

C.5 TRAJECTORY CONTROL WITH GUIDANCE

We could apply γ-sampling for application tasks, such as image inpainting or colorization, using the
(straightforwardly) generalized algorithm suggested in CM. In this section, however, we propose a
loss-based trajectory optimization algorithm in Algorithm 3 for potential application downstream
tasks.
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Algorithm 3 Loss-based Trajectory Optimization

1: xref is given
2: Diffuse xt0 ← xref + t0ϵ
3: for n = 1 to N do
4: t̃n ←

√
1− γ2tn

5: Denoise xt̃n
← Gθ(xtn−1 , tn−1, t̃n)

6: for m = 1 to M do
7: Sample ϵ, ϵ′ ∼ N (0, I)

8: Apply corrector xt̃n
← xt̃n

+ ζ
2

(
∇ log pt̃n(xt̃n

)−ct̃n∇xt̃n
L(xt̃n

,xref + t̃nϵ)
)
+
√
ζϵ′

9: end for
10: Sample ϵ ∼ N (0, I)
11: Diffuse xtn ← xt̂n

+ γtnϵ
12: end for

Algorithm 3 uses the time traversal from tn−1 to t̃n, and apply the loss-embedded corrector (Song
et al., 2020b) algorithm to explore t̃n-manifold. For instance, the loss could be a feature loss between
xt̃n

and xref + t̃nϵ. With this corrector-based guidance, we could control the sample variance.
This loss-embedded corrector could also be interpreted as sampling from a posterior distribution.
For Figure 6, we choose N = 2 with (t0, t1) =

(
(σ

1/ρ
max + (σ

1/ρ
min − σ

1/ρ
max)0.45)ρ, (σ

1/ρ
max + (σ

1/ρ
min −

σ
1/ρ
max)0.35)ρ

)
, ct̃n ≡ 1, and M = 10.

D IMPLEMENTATION DETAILS

D.1 TRAINING DETAILS Algorithm 4 CTM Training
1: repeat
2: Sample x0 from data distribution
3: Sample ϵ ∼ N (0, I)
4: Sample t ∈ [0, T ], s ∈ [0, t], u ∈ [s, t)
5: Calculate xt = x0 + tϵ
6: Calculate Solver(xt, t, u;ϕ)
7: Update θ ← θ − ∂

∂θL(θ,η)
8: Update η ← η + ∂

∂ηLGAN(θ,η)

9: until converged

Following Karras et al. (2022), we utilize the
EDM’s skip connection cskip(t) =

σ2
data

t2+σ2
data

and

output scale cout(t) =
tσdata√
t2+σ2

data

for gθ modeling
as

gθ(xt, t, s) = cskip(t)xt + cout(t)NNθ(xt, t, s),

where NNθ refers to the actual neural network
output. The advantage of this EDM-style skip
and output scalings are that if we copy the teacher
model’s parameters to the student model’s param-
eters, except student model’s s-embedding structure, gθ(xt, t, t) initialized with ϕ would be close to
the teacher denoiser Dϕ(xt, t). This good initialization partially explains the fast convergence speed.

We use 4×V100 (16G) GPUs for CIFAR-10 experiments and 8×A100 (40G) GPUs for ImageNet
experiments. We use the warm-up for λGAN hyperparameter. On CIFAR-10, we deactivate GAN
training with λGAN = 0 until 50K training iterations (200K for training without pre-trained DM) and
activate the generator training with the adversarial loss (added to CTM and DSM losses) by setting
λGAN to be the adaptive weight. The minibatch per GPU is 16 in the CTM+DSM training phase, and
11 in the CTM+DSM+GAN training phase. On ImageNet, due to the excessive training budget, we
deactivate GAN only for 10k iterations and activate GAN training afterwards. We fix the minibatch
to be 11 throughout the CTM+DSM or the CTM+DSM+GAN training in ImageNet.

We follow the training configuration mainly from CM, but for the discriminator training, we follow
that of StyleGAN-XL (Sauer et al., 2022). For LCTM calculation, we use LPIPS (Zhang et al., 2018) as
a feature extractor. We choose t and s from the N -discretized timesteps to calculate LCTM, following
CM. Across the training, we choose the maximum number of ODE steps to prevent a single iteration
takes too long time. For CIFAR-10, we choose N = 18 and the maximum number of ODE steps to be
17, i.e., we do nothing for CIFAR-10 training. For ImageNet, we choose N = 40 and the maximum
number of ODE steps to be 20. We find the tendency that the training performance is improved by
the number of ODE steps, so one could possibly improve our ImageNet result by choosing larger
maximum ODE steps.
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Table 4: Experimental details on hyperparameters.

Hyperparameter CIFAR-10 ImageNet 64x64

Unconditional Conditional Conditional

Training with ϕ Training from Scratch Training with ϕ Training with ϕ

Learning rate 0.0004 0.0004 0.0004 0.000008
Discriminator learning rate 0.002 0.002 0.002 0.002
Student’s stop-grad EMA parameter µ 0.9999 0.999 0.999 0.999
N 18 18 18 40
ODE solver Heun Heun Heun Heun
Teacher Dϕ(xt, t) gθ(xt, t, t) Dϕ(xt, t) Dϕ(xt, t)
Max. ODE steps 17 17 17 20
EMA decay rate 0.999 0.999 0.999 0.999
Training iterations 100K 300K 100K 30K
Mixed-Precision (FP16) True True True True
Batch size 256 128 512 2048
Number of GPUs 4 4 4 8

For LDSM calculation, we select 50% of time sampling from EDM’s original scheme of t ∼
N (−1.2, 1.22). For the other half time, we first draw sample from ξ ∼ [0, 0.7] and transform
it using (σ

1/ρ
max + ξ(σ

1/ρ
min − σ

1/ρ
max))ρ. This specific time sampling blocks the neural network to forget

the denoiser information for large time. For LGAN calculation, we use two feature extractors to
transform GAN input to the feature space: the EfficientNet (Tan & Le, 2019) and DeiT-base (Touvron
et al., 2021). Before obtaining an input’s feature, we upscale the image to 224x224 resolution with
bilinear interpolation. After transforming to the feature space, we apply the cross-channel mixing
and cross-scale mixing to represent the input with abundant and non-overlapping features. The
output of the cross-scale mixing is a feature pyramid consisting of four feature maps at different
resolutions (Sauer et al., 2022). In total, we use eight discriminators (four for EfficientNet features
and the other four for DeiT-base features) for GAN training.

Following CM, we apply Exponential Moving Average (EMA) to update sg(θ) by

sg(θ)← stopgrad(µsg(θ) + (1− µ)θ).

However, unlike CM, we find that our model bestly works with µ = 0.999 or µ = 0.9999, which
largely remedy the subtle instability arise from GAN training. Except for the unconditional CIFAR-10
training with ϕ, we set µ to be 0.999 as default. Throughout the experiments, we use σmin = 0.002,
σmax = 80, ρ = 7, and σdata = 0.5.

D.2 EVALUATION DETAILS
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Figure 15: SOTA on CIFAR-10. Closeness to
the origin indicates better performance.

For likelihood evaluation, we solve the PF ODE,
following the practice suggested in Kim et al.
(2022b) with the RK45 (Dormand & Prince, 1980)
ODE solver of tol = 1e− 3 and tmin = 0.002.

Throughout the paper, we choose γ = 0 otherwise
stated. In particular, for Tables 1 and 2, we report
the sample quality metrics based on either the one-
step sampling of CM or the γ = 0 sampling for
NFE 2 case. For CIFAR-10, we calculate the FID
score based on Karras et al. (2022) statistics, and
Figure 15 summarizes the result. For ImageNet,
we compute the metrics following Dhariwal &
Nichol (2021) and their pre-calculated statistics. For the StyleGAN-XL ImageNet result, we recalcu-
lated the metrics based on the statistics released by Dhariwal & Nichol (2021), using StyleGAN-XL’s
official checkpoint.

For large-NFE sampling, we follow the EDM’s time discretization. Namely, if we draw n-NFE
samples, we equi-divide [0, 1] with n points and transform it (say ξ) to the time scale by (σ

1/ρ
max +

(σ
1/ρ
min − σ

1/ρ
max)ξ)ρ. However, we emphasize the time discretization for both training and sampling is a

modeler’s choice.

E ADDITIONAL GENERATED SAMPLES
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(a) Tench (b) Tree frog (c) Elephant (d) Kimono

Figure 16: Uncurated sample comparisons with identical starting points, generated by EDM (FID
2.44) with NFE 79, CTM (FID 2.19) with NFE 1, CTM (FID 1.90) with NFE 2, and CM (FID 6.20)
with NFE 1, on (a) tench (class id: 0), (b) tree frog (class id: 31), (c) elephant (class id: 386), and (d)
kimono (class id: 614).

(a) W/o classifier-rejection sampling (NFE 1) (b) W/ classifier-rejection sampling (avg. NFE 2)

Figure 17: Random samples (Siberian Husky) (d) with and (e) without classifier-free sampling.
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F THEORETICAL SUPPORTS AND PROOFS

F.1 PROOF OF LEMMA 2

Proof of Lemma 2. The reverse-time SDE is

dxT−τ = g2(T − τ)∇ log pT−τ (xT−τ )dt+ g(T − τ)dwτ ,

where the forward-time SDE is given by

dxτ = g(τ)dwτ .

The reverse-time PF-ODE thus becomes

dxT−τ =
1

2
g2(T − τ)∇ log pT−τ (xT−τ )dτ.

Therefore, by integrating from T − t to T − s (s < t), we obtain

xs − xt =

∫ T−s

T−t

1

2
g2(T − τ)∇ log pT−τ (xT−τ )dτ.

By change-of-variable with u = T − τ , the equation is derived to be

xs = xt −
∫ s

t

1

2
g2(u)∇ log pu(xu)du.

With g(u) =
√
2u and the Tweedie’s formula ∇ log pu(xu) =

E[x|xu]−xu

u2 , we derive Eq. (2) in our
paper:

xs = G(xt, t, s) = xt +

∫ s

t

xu − E[x|xu]

u
du.

Now, we derive the following equations:

G(xt, t, s) =
s

t
xt + (1− s

t
)xt +

∫ s

t

xu − E[x|xu]

u
du

=
s

t
xt + (1− s

t
)[xt +

1

(1− s
t )

∫ s

t

xu − E[x|xu]

u
du]

=
s

t
xt + (1− s

t
)[xt +

t

t− s

∫ s

t

xu − E[x|xu]

u
du]

=
s

t
xt + (1− s

t
)g(xt, t, s),

where g(xt, t, s) := xt +
t

t−s

∫ s

t
xu−E[x|xu]

u du.

As the score,∇ log pt(x), is integrable, the Fundamental Theorem of Calculus applies, leading to

lim
s→t

g(xt, t, s) = xt + t lim
s→t

1

t− s

∫ s

t

xu − E[x0|xu]

u
du

= xt − t
xt − E[x0|xt]

t
= E[x0|xt].

■

F.2 PROOF OF THEOREM 1

Proof of Theorem 1. Define Tt→s as the oracle transition mapping from t to s via the diffusion
process Eq. (6). Let T θ∗

t→s(·) represent the transition mapping from the optimal CTM, and T ϕ
t→s(·)

represent the transition mapping from the empirical probability flow ODE. Since all processes start at
point T with initial probability distribution pT and T θ∗

t→s(·) = T ϕ
t→s(·), Theorem 2 in (Chen et al.,

2022) and TT→t♯pT = pt from Proposition 9 tell us that for t > s
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DTV

(
Tt→s♯pt, T θ∗

t→s♯pt

)
= DTV

(
Tt→s♯pt, T ϕ

t→s♯pt

)
= O(t− s). (9)

DTV

(
Tt→0T√1−γ2t→t

T
T→
√

1−γ2t
♯pT , T θ∗

t→0T√1−γ2t→t
T θ∗

T→
√

1−γ2t
♯pT

)
(a)

≤DTV

(
Tt→0T√1−γ2t→t

T
T→
√

1−γ2t
♯pT , T θ∗

t→0T√1−γ2t→t
T
T→
√

1−γ2t
♯pT

)
+DTV

(
T θ∗

t→0T√1−γ2t→t
T
T→
√

1−γ2t
♯pT , T θ∗

t→0T√1−γ2t→t
T θ∗

T→
√

1−γ2t
♯pT

)
(b)
=DTV

(
Tt→0TT→t♯pT , T θ∗

t→0TT→t♯pT

)
+DTV

(
T
T→
√

1−γ2t
♯pT , T θ∗

T→
√

1−γ2t
♯pT

)
(c)
=DTV

(
Tt→0♯pt, T θ∗

t→0♯pt

)
+DTV

(
T
T→
√

1−γ2t
♯pT , T θ∗

T→
√

1−γ2t
♯pT

)
(d)
=O(

√
t) +O(

√
T −

√
1− γ2t).

Here (a) is obtained from the triangular inequality, (b) and (c) are due to T√
1−γ2t→t

T
T→
√

1−γ2t
=

TT→t and TT→t♯pT = pt from Proposition 9, and (d) comes from Eq. (9).

■

F.3 PROOF OF PROPOSITION 3

Proof of Proposition 3. Consider a LPIPS-like metric, denoted as d(·, ·), determined by a feature
extractor F of pdata. That is, d(x,y) = ∥F(x)−F(y)∥q for q ≥ 1. For simplicity of notation, we
denote θN as θ. Since LN

CTM(θ;ϕ) = 0, it implies that for any xtn , n ∈ [[1, N ]], and m ∈ [[1, n]]

F
(
Gθ(Gθ(xtn+1

, tn+1, tm), tm, 0)
)
= F

(
Gθ(Gθ(x

ϕ
tn , tn, tm), tm, 0)

)
(10)

Denote

en,m := F
(
Gθ(Gθ(xtn , tn, tm), tm, 0)

)
−F

(
Gθ(G(xtn , tn, tm;ϕ), tm, 0)

)
.

Then due to Eq. (10) and G is an ODE-trajectory function that G(xtn+1
, tn+1, tm;ϕ) =

G(xtn , tn, tm;ϕ), we have

en+1,m = F
(
Gθ(Gθ(xtn+1

, tn+1, tm), tm, 0)
)
−F

(
Gθ(G(xtn+1

, tn+1, tm;ϕ), tm, 0)
)

= F
(
Gθ(Gθ(x

ϕ
tn , tn, tm), tm, 0)

)
−F

(
Gθ(G(xtn , tn, tm;ϕ), tm, 0)

)
= F

(
Gθ(Gθ(x

ϕ
tn , tn, tm), tm, 0)

)
−F

(
Gθ(Gθ(xtn , tn, tm), tm, 0)

)
+ F

(
Gθ(Gθ(xtn , tn, tm), tm, 0)

)
−F

(
Gθ(G(xtn , tn, tm;ϕ), tm, 0)

)
= F

(
Gθ(Gθ(x

ϕ
tn , tn, tm), tm, 0)

)
−F

(
Gθ(Gθ(xtn , tn, tm), tm, 0)

)
+ en,m.

Therefore,

∥en+1,m∥q ≤
∥∥∥F(Gθ(Gθ(x

ϕ
tn , tn, tm), tm, 0)

)
−F

(
Gθ(Gθ(xtn , tn, tm), tm, 0)

)∥∥∥
q
+ ∥en,m∥q

≤ L1L
2
2

∥∥∥xϕ
tn − xtn

∥∥∥
q
+ ∥en,m∥q

= O((tn+1 − tn)
p+1) + ∥en,m∥q .

Notice that since Gθ(xtm , tm, tm) = xtm = G(xtm , tm, tm;ϕ), em,m = 0.

So we can obtain via induction that

∥en+1,m∥q ≤ ∥em,m∥q +
n−1∑
k=m

O((tk+1 − tk)
p+1)
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=

n−1∑
k=m

O((tk+1 − tk)
p+1)

≤ O((∆N t)p)(tn − tm).

■

Indeed, an analogue of Proposition 3 holds for time-conditional feature extractors.

Let dt(·, ·) be a LPIPS-like metric determined by a time-conditional feature extractor Ft. That is,
dt(x,y) = ∥Ft(x)−Ft(y)∥q for q ≥ 1. We can similarly derive

sup
x∈RD

dtm
(
Gθ(x, tn, tm), G(x, tn, tm;ϕ)

)
= O((∆N t)p)(tn − tm).

F.4 PROOF OF PROPOSITION 5

Proof of Proposition 5. We first prove that for any t ∈ [0, T ] and s ≤ t, as N →∞,

sup
x∈RD

∥GθN
(GθN

(x, t, s), s, 0), GθN
(G(x, t, s;ϕ), s, 0)∥2 → 0. (11)

We may assume {tn}Nn=1 so that tm = s, tn = t, and tm+1 → s, tn+1 → t as ∆N t→∞.

sup
x
∥GθN

(GθN
(x, t, s), s, 0), GθN

(G(x, t, s;ϕ), s, 0)∥2
≤ sup

x
∥GθN

(GθN
(x, t, s), s, 0), GθN

(GθN
(x, tn+1, tm+1;ϕ), tm+1, 0)∥2

+sup
x
∥GθN

(GθN
(x, tn+1, tm+1;ϕ), tm+1, 0), GθN

(G(x, tn+1, tm+1;ϕ), tm+1, 0)∥2
+sup

x
∥GθN

(G(x, tn+1, tm+1;ϕ), tm+1, 0), GθN
(G(x, t, s;ϕ), s, 0)∥2

Since both G and GθN
are uniform continuous on RD × [0, T ]× [0, T ], together with Proposition 3,

we obtain Eq. (11) as ∆N t→∞.

In particular, Eq. (11) implies that when N →∞
sup
x
∥GθN

(GθN
(x, T, 0), 0, 0)−GθN

(G(x, T, 0;ϕ), 0, 0)∥2
=sup

x
∥GθN

(x, T, 0)−G(x, T, 0;ϕ)∥2 → 0.

This implies that pθN
(·), the pushforward distribution of pT induced by GθN

(·, T, 0), converges in
distribution to pϕ(·). Note that since {GθN

}N is uniform Lipschitz

∥Gθ(x, t, s)−Gθ(x
′, t, s)∥2 ≤ L ∥x− x′∥2 , for all x,x′ ∈ RD, t, s ∈ [0, T ], and θ,

{GθN
}N is asymptotically uniformly equicontinuous. Moreover, {GθN

}N is uniform bounded
in θN . Therefore, the converse of Scheffé’s theorem (Boos, 1985; Sweeting, 1986) implies
that ∥pθN

(·)− pϕ(·)∥∞ → 0 as N → ∞. Similar argument can be adapted to prove
∥pθN

(·)− pdata(·)∥∞ → 0 as N →∞ if the regression target pϕ(·) is replaced with pdata(·). ■

F.5 PROOF OF PROPOSITION 6

Lemma 10. Let f : RD × [0, T ]→ RD be a function which satisfies the following conditions:

(a) f(·, t) is Lipschitz for any t ∈ [0, T ]: there is a function L(t) ≥ 0 so that for any t ∈ [0, T ]
and x,y ∈ RD

∥f(x, t)− f(y, t)∥ ≤ L(t) ∥x− y∥ ,

(b) Linear growth in x: there is a L1- integrable function M(t) so that for any t ∈ [0, T ] and
x ∈ RD

∥f(x, t)∥ ≤M(t)(1 + ∥x∥).
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Consider the following ODE

x′(τ) = f(x(τ), τ) on [0, T ]. (12)

Fix a t ∈ [0, T ], the solution operator T of Eq. (12) with an initial condition xt is defined as

T [xt](s) := xt +

∫ s

t

f(x(τ ;xt), τ) dτ, s ∈ [t, T ]. (13)

Here x(τ ;xt) denotes the solution at time τ starting from the initial value xt. Then T is an injective
operator. Moreover, T [·](s) : RD → RD is bi-Lipschitz; that is, for any xt, x̂t ∈ RD

e−L(s−t) ∥xt − x̂t∥2 ≤ ∥T [xt](s)− T [x̂t](s)∥2 ≤ eL(t−s) ∥xt − x̂t∥2 . (14)

Here L := supt∈[0,T ] L(t) <∞. In particular, if xt ̸= x̂t, T [xt](s) ̸= T [x̂t](s) for all s ∈ [t, T ].

Proof of Lemma 10. Assumptions (a) and (b) ensure the solution operator in Eq. (13) is well-
defined by applying Carathéodory-type global existence theorem (Reid, 1971). We denote T [xt](s) as
x(s;xt). We need to prove that for any distinct initial values xt and x̂t starting from t, T [xt] ̸≡ T [x̂t].
Suppose on the contrary that there is an s0 ∈ [t, T ] so that T [xt](s0) = T [x̂t](s0). For s ∈ [t0, s0],
consider y(s;xt) := x(t+ s0 − s;xt) and y(s; x̂t) := x(t0 + s0 − s; x̂t). Then both y(s;xt) and
y(s; x̂t) satisfy the following ODE{

y′(s) = −f(y(s), s), s ∈ [t, s0]

y(t) = T [xt](s0) = T [x̂t](s0)
(15)

Thus, the uniqueness theorem of solution to Eq. (15) leads to y(s0;xt) = y(s0; x̂t), which means
xt = x̂t. This contradicts to the assumption. Hence, T is injective.

Now we show that T [·](s) : RD → RD is bi-Lipschitz for any s ∈ [t, T ]. For any xt, x̂t ∈ RD,

∥T [xt](s)− T [x̂t](s)∥2 = ∥x(s;xt)− x̂(s; x̂t)∥2
≤ ∥xt − x̂t∥2 +

∫ s

t

∥f(x(τ ;xt), τ)− f(x̂(τ ; x̂t), τ)∥2 dτ

≤ ∥xt − x̂t∥2 + L

∫ s

t

∥x(τ ;xt)− x̂(τ ; x̂t)∥2 dτ.

By applying Gröwnwall’s lemma, we obtain

∥T [xt](s)− T [x̂t](s)∥2 = ∥x(s;xt)− x̂(s; x̂t)∥2 ≤ eL(s−t) ∥xt − x̂t∥2 . (16)

On the other hand, consider the reverse time ODE of Eq. (12) by setting τ = τ(u) := t + s − u,
y(u) := x(t+s−u), and h(y(u), u) := −f(y(u), t+s−u), then y satisfies the following equation

y′(u) = h(y(u), u), u ∈ [t, s]. (17)

Similarly, we define the solution operator to Eq. (17) as

S[yt](s) := yt +

∫ s

t

h(y(u;yt), u) du. (18)

Here yt denotes the initial value of Eq. (17) and y(u;yt) is the solution starting from yt. Due to the
Carathéodory-type global existence theorem, the operator S[·](s) is well-defined and

S[x(s;xt)](s) = xt, S[x̂(s;xt)](s) = x̂t.

For simplicity, let yt := x(s;xt) and ŷt := x̂(s;xt). Also, denote the solutions starting from initial
values yt and ŷt as y(u;yt) and ŷ(u; ŷt), respectively. Therefore, using a similar argument, we
obtain

∥xt − x̂t∥2 = ∥S[yt](s)− S[ŷt](s)∥2
≤ ∥x(s;xt)− x̂(s;xt)∥2 +

∫ s

t

∥h(y(u;yt), u)− h(ŷ(u; ŷt), u)∥2 du

≤ ∥x(s;xt)− x̂(s;xt)∥2 + L

∫ s

t

∥y(u;yt)− ŷ(u; ŷt)∥2 du.
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= ∥T [xt](s)− T [x̂t](s)∥2 + L

∫ s

t

∥y(u;yt)− ŷ(u; ŷt)∥2 du.

By applying Gröwnwall’s lemma, we obtain

∥xt − x̂t∥2 ≤ eL(s−t) ∥T [xt](s)− T [x̂t](s)∥2 .
Therefore,

e−L(s−t) ∥xt − x̂t∥2 ≤ ∥T [xt](s)− T [x̂t](s)∥2 .
■

Proof of Proposition 6. With the definition of G(xt, t, s;ϕ), we obtain

G(xt, t, s;ϕ) =
s

t
xt + (1− s

t
)g(xt, t, s;ϕ)

= xt +

∫ s

t

xu −Dϕ(xu, u)

u
du.

Here, g(xt, t, s;ϕ) = xt +
t

t−s

∫ s

t
xu−Dϕ(xu,u)

u du. Thus, the result follows by applying Lemma 10
to the integral form of G(xt, t, s;ϕ).

■

F.6 PROOF OF PROPOSITION 7

Lemma 11. Let X be a random vector on RD and h : RD → RD be a bi-Lipschitz mapping with
Lipschitz constant L > 0; namely, for any x,y ∈ RD

L−1 ∥x− y∥2 ≤ ∥h(x)− h(y)∥2 ≤ L ∥x− y∥2 .
Then

L−2Var(X) ≤ Var(h(X)) ≤ L2Var(X).

Proof of Lemma 11. Let Y be an i.i.d. copy of X . Then h(X) and h(Y ) are also independent.
Thus, cov(X,Y ) = 0 and cov(h(X), h(Y )) = 0.

2Var (h(X)) = Var (h(X)− h(Y ))

= E
[
(h(X)− h(Y ))

2
]
− (E [h(X)− h(Y )])

2
. (19)

Since h(X) and h(Y ) are identically distributed, E [h(X)− h(Y )] = E [h(X)] − E [h(Y )] = 0.
Thus, by Lipschitzness of h

2Var (h(X)) = E
[
(h(X)− h(Y ))

2
]

(20)

≤ L2E
[
(X − Y )

2
]

= 2L2Var (X) .

The final equality follows the same reasoning as in Eq. (19). Likewise, we can apply the argument
from Eq. (20) to show that

2Var (h(X)) = E
[
(h(X)− h(Y ))

2
]

≥ L−2E
[
(X − Y )

2
]

= 2L−2Var (X) .

Therefore, L−2Var (X) ≤ Var (X) ≤ L2Var (X). ■
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Proof of Proposition 7. For any n ∈ N, since Gθ∗(Xn, tn,
√
1− γ2tn+1) and Zn+1 are indepen-

dent,

Var (Xn+1) = Var
(
Gθ∗(Xn, tn,

√
1− γ2tn+1)

)
+ Var (Zn+1)

= Var
(
Gθ∗(Xn, tn,

√
1− γ2tn+1)

)
+ γ2σ2(tn+1). (21)

Proposition 6 implies that Gθ∗(·, tn,
√

1− γ2tn+1) is bi-Lipschitz and that for any x,y

ζ−1(tn, tn+1, γ) ∥x− y∥2 ≤
∥∥∥Gθ∗(x, tn,

√
1− γ2tn+1)−Gθ∗(y, tn,

√
1− γ2tn+1)

∥∥∥
2

≤ ζ(tn, tn+1, γ) ∥x− y∥2 , (22)

where ζ(tn, tn+1, γ) = exp
(
2Lϕ(tn −

√
1− γ2tn+1)

)
. Proposition 7 follows immediately from

the inequalities (21) and (22). ■

F.7 PROOF OF PROPOSITION 9

Proof of Proposition 9. {pt}Tt=0 is known to satisfy the Fokker-Planck equation (Øksendal, 2003)
(under some technical regularity conditions). In addition, we can rewrite the Fokker-Planck equation
of {pt}Tt=0 as the following equation (see Eq. (37) in (Song et al., 2020b))

∂pt
∂t

= −div (Wtpt) , in (0, T )× RD (23)

where Wt := −t∇ log pt.

Now consider the continuity equation for µt defined by Wt

∂µt

∂t
= −div (Wtµt) in (0, T )× RD. (24)

Since the score∇ log pt is of linear growth in x and upper bounded by a summable function in t, the
vector field Wt := −t∇ log pt : [0, T ]× RD → RD satisfies that∫ T

0

(
sup
x∈K
∥Wt(x)∥2 + Lip(Wt,K) dt

)
<∞,

for any compact set K ⊂ RD. Here Lip(Wt,K) denotes the Lipschitz constant of Wt on K.

Thus, Proposition 8.1.8 of (Ambrosio et al., 2005) implies that for pT -a.e. x, the following reverse
time ODE (which is the Eq. (6)) admits a unique solution on [0, T ]{

d
dtXt(x) = Wt (Xt(x̂))

XT (x̂) = x.
(25)

Moreover, µt = Xt♯pT , for t ∈ [0, T ]. By applying the uniqueness for the continuity equation
(Proposition 8.1.7 of (Ambrosio et al., 2005)) and the uniqueness of Eq. (25), we have pt = µt =
Xt♯pT = TT→t♯pT for t ∈ [0, T ]. Again, since the uniqueness theorem with the given pT , we obtain
ps = Tt→s♯pt for any t ∈ [0, T ] and s ∈ [0, t].

■
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