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Abstract

Large language model (LLM) training and fine-001
tuning are often bottlenecked by limited GPU002
memory. While existing projection-based op-003
timization methods address this by projecting004
gradients into a lower-dimensional subspace to005
reduce optimizer state memory, they typically006
rely on dense projection matrices, which007
can introduce computational and memory008
overheads. In this work, we propose GRASS009
(GRAdient Stuctured Sparsification), a novel010
approach that leverages sparse projections011
to transform gradients into structured sparse012
updates. This design not only significantly013
reduces memory usage for optimizer states014
but also minimizes gradient memory footprint,015
computation, and communication costs, lead-016
ing to substantial throughput improvements.017
Extensive experiments on pretraining and018
finetuning tasks demonstrate that GRASS019
achieves comparable performance to full-rank020
training and existing projection-based methods.021
Notably, GRASS enables half-precision022
pretraining of a 13B parameter LLaMA model023
on a single 40GB A100 GPU—a feat infeasible024
for previous methods—and yields up to a 2×025
throughput improvement on an 8-GPU system.026

1 Introduction027

Pretraining and finetuning large language models028

(LLMs) are often memory bottlenecked: storing029

model parameters, gradients, and optimizer states030

in GPU memory is prohibitively expensive. As031

an example, pretraining a LLaMA-13B model032

from scratch under full bfloat16 precision with a033

token batch size of 256 requires at least 102 GB034

memory (24GB for trainable parameters, 49GB035

for Adam optimizer states, 24GB for weight036

gradients, and 2GB for activations), making037

training infeasible even on professional-grade038

GPUs such as Nvidia A100 with 80GB memory039

(Choquette et al., 2021). Existing memory efficient040

system-level techniques like DeepSpeed optimizer041

sharding/offloading (Rajbhandari et al., 2020) and 042

gradient checkpointing (Chen et al., 2016) trade 043

off throughput for memory advantages which slow 044

down pretraining. As models scale, the memory 045

and compute demands of increasingly large LLMs 046

continue to outpace hardware advancements, 047

highlighting the need for advances in optimization 048

algorithms beyond system-level techniques. 049

Various optimization techniques have been pro- 050

posed to enhance the efficiency of LLM training. 051

One prominent approach is parameter-efficient 052

finetuning (PEFT), such as Low-Rank Adaptation 053

(LoRA), which reparameterizes weight matrices 054

using low-rank adaptors (Hu et al., 2021). This 055

significantly reduces the number of trainable 056

parameters, yielding smaller optimizer states and 057

gradients. However, despite its efficiency, LoRA 058

and its derivatives (Sheng et al., 2023; Zhang 059

et al., 2023; Xia et al., 2024) often underperform 060

compared to full-rank finetuning (Biderman 061

et al., 2024). Variants like ReLoRA (Lialin et al., 062

2023) extend LoRA to pretraining by periodically 063

updating the full matrix with new low-rank 064

updates, but it still requires a costly initial full-rank 065

training warmup which makes it impractical in 066

memory-constrained scenarios. 067

To allow for full-rank pretraining and finetuning, 068

another approach for memory-efficient LLM 069

training involves designing adaptive optimizers 070

(Shazeer and Stern, 2018). One such class, 071

memory-efficient subspace optimizers utilizes pro- 072

jection matrices (P ) to project high-dimensional 073

gradients into a lower-dimensional space and 074

performs optimization within the subspace. This 075

projection significantly reduces the memory foot- 076

print required to store optimizer states. Existing 077

methods such as GALORE (Zhao et al., 2024) and 078

FLORA (Hao et al., 2024) employ dense projection 079

matrices, which introduce additional memory and 080

computational overhead. In contrast, we employ 081

structured sparse matrices for P , demonstrating 082
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Algorithm 1 Memory-efficient Subspace Optimization

Input: Initial weights W0 ∈ Rm×n with m ≤ n; update
frequency K; total iterations T ; subspace rank r with
r ≪ m, an off-the-shelf optimizer opt; function to update
the optimizer state, scale factor α.

Output: Optimized weights W (T )

1: t← 0
2: W (0) ←W0 ▷ Set initial weights W0 ∈ Rm×n

3: S(0) ← opt.init(0r×n) ▷ Adam state ∈ R2×r×n

4: while t ≤ T do
5: if t mod K ≡ 0 then
6: // Compute new projection matrix
7: P ← computeP (∇L(W (t))) ▷ P ∈ Rm×r

8: // [Optional] Update optimizer state
9: S(t) ← update_state(S(t))

10: end if
11: GC ← P⊤∇L(W (t)) ▷ GC ∈ Rr×n

12: S(t+1),∆(t+1) ← opt.update(S(t), GC)

13: W (t+1) ←W (t) + αP∆(t+1) ▷ Apply update
14: t← t+ 1
15: end while

Algorithm 2 MeSO Implementations

FLORA
Compute dense P : Sample Pij i.i.d. fromN (0, 1/r).
Update_state: Updates momentum as P(t+1)P

⊤
(t)S

(t).
Compute GC : Computes GC using dense matmul.
Apply update: Updates full W after dense matmul.

GALORE
Compute dense P : Top-r left singular vectors of grad GW .
Update_state: Maintains optimizer state.
Compute GC : Computes GC using dense matmul.
Apply update: Updates full W after a dense matmul.

GRASS (ours)
Compute sparse P : Computes the selection matrix B and
the diagonal scaling matrix ρ based on row norms of GW .
Update_state: Resets S(t) to zero as necessary.
Compute GC : Uses matrix associativity and sparse matmul.
Apply update: Sparse update W after sparse matmul.

their advantages in memory, computation, and083

communication efficiency across both pretraining084

and finetuning. Our main contributions include:085

1. We introduce GRASS, a novel method that086

enables full parameter training of LLMs with087

structured sparse gradients. By leveraging sparse088

projection matrices, GRASS significantly reduces089

memory consumption and communication over-090

head compared to existing projection-based op-091

timization techniques. We theoretically motivate092

and empirically analyze effective ways to con-093

struct the sparse projection matrix for GRASS.094

2. We conduct extensive experiments on both095

pretraining and finetuning tasks, demonstrating096

that GRASS converges faster in wall-clock time097

than existing projection-based methods due to its098

additional compute efficiency benefits. GRASS099

exhibits minimal performance degradation (<0.1100

perplexity gap) compared to full-rank training101

on the 1B parameter LLaMA model while102

achieving a 2.5× reduction in memory footprint.103

3. We present an optimized PyTorch imple-104

mentation of GRASS for modern hardware,105

incorporating implementation tricks to enhance106

training throughput, stability, and scalability.107

For pretraining a 1B LLaMA model, GRASS108

achieves a 25% throughput increase on a single109

GPU and up to a 2× throughput improvement110

on 8 GPUs over full-rank training and GALORE.111

Furthermore, GRASS’s low memory footprint112

enables half-precision training of a 13B LLaMA113

model on a single 40GB A100 GPU, a feat that114

existing projection-based optimization methods115

cannot achieve.116

2 A Unified View of Memory-efficient 117

Subspace Optimizers (MeSO) 118

High memory usage of full-rank training. Stan- 119

dard full-rank training of the weight matrix W ∈ 120

Rm×n in any linear layer of an LLM involves 121

1) computing the full-parameter gradient GW := 122

∇L(W ) and 2) using it to update the model 123

weights and optimizer states: 124

S(t+1),∆W (t) ← opt.update(S(t),∇L(W (t))) 125

W (t+1) ←W (t) +∆W (t) (1) 126

Here, opt.update denotes the optimizer’s up- 127

date function, which uses the current optimizer 128

state S(t) and the gradient to compute the updated 129

state S(t+1) and a learning-rate-adjusted weight up- 130

date ∆W (t) (see Appendix A for the pseudocode 131

for the Adam optimizer). However, storing both the 132

gradient and optimizer state incurs significant mem- 133

ory overhead – for example, an additional 3mn 134

floats for Adam – motivating the need for more 135

memory-efficient optimization techniques. We dis- 136

cuss these techniques in the following sections, 137

while Appendix C covers additional related work. 138

Memory-efficient optimization in a subspace. 139

To minimize the memory usage of the opti- 140

mizer state, memory-efficient subspace optimiz- 141

ers (MeSO) restrict the optimization to a sub- 142

space defined by a projection matrix P ∈ 143

Rm×r (r ≪ m) through the following objective: 144

minA∈Rr×n L(W0 + PA). Applying an off-the- 145

shelf optimizer like Adam to learn the smaller ma- 146

trix A reduces the optimizer state size to O(rn), 147

which can be much smaller than the O(mn) used 148

in full-rank training. We provide the pseudocode of 149
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this optimization procedure in Algorithm 1, which150

unifies both existing methods and our proposed151

method1. We highlight the key parts of this algo-152

rithmic framework below.153

Computing the projection matrix, computeP .154

Employing a fixed P throughout training confines155

the search to its column space, limiting the learned156

model’s expressiveness. To address this, MeSO157

methods periodically recompute P every K itera-158

tions with different choices (Algorithm 2): FLORA159

(Hao et al., 2024) independently samples each en-160

try of P from N (0, 1/r), whereas GRASS (Zhao161

et al., 2024) sets P to be the top-r left singular vec-162

tors of the full-parameter gradient matrix ∇L(W )163

obtained through a Singular Vector Decomposition164

(SVD). Despite these differences, a commonality165

among prior works is the choice of dense matrices166

for P . In our work, we explore the use of sparse167

matrices as an alternative and propose several prin-168

cipled choices for such matrices in Section 3.2.169

Optimizer state update, update_state. Updat-170

ing P can modify the subspace optimization land-171

scape. Different methods have proposed distinct172

strategies for updating the existing optimizer state173

S(t). We describe our strategy in Section 3.3.174

Projection of the full gradient, P⊤∇L(W (t)).175

MeSO methods require projecting the m× n full176

parameter gradient matrix ∇L(W (t)) into a lower-177

dimensional subspace r × n via left multiplication178

with P⊤. Existing methods compute this projec-179

tion by first materializing the full gradient matrix180

∇L(W (t)) in memory before performing the left181

projection multiplication. In contrast, GRASS lever-182

ages the associative property of matrix multipli-183

cation and the sparse structure of P to compute184

this projection without materializing the full gra-185

dient. This yields considerable computational and186

memory savings, detailed in Section 3.1. These187

efficiencies also extend to the weight update step,188

W (t) + αP∆(t+1), due to the sparsity of P . Here,189

the scale factor α controls the strength of the up-190

date, similar to the scale factor in GALORE.191

3 GRASS: a more-efficient MeSO optimizer192

Unlike prior MeSO methods that employ dense193

projection matrices, GRASS (GRAdient Structured194

Sparsification) utilizes a sparse projection matrix195

P ∈ Rm×r, where each column pj ∈ Rm has at196

most one non-zero entry (|pj |0 ≤ 1,∀j ∈ [r]).197

1This algorithm version never materializes the A matrix,
but is equivalent as we show in Appendix B.

This structure effectively constrains the subspace 198

optimization to update only r rows of the full 199

weight matrix W , inducing structured row-sparsity 200

in the gradients – hence the name GRASS. By 201

periodically updating P , GRASS learns different 202

rows of W in different iterations, resembling a 203

generalized form of coordinate gradient descent. 204

We dive into the efficiency benefits of this sparse 205

projection and various methods for constructing 206

P in the following subsections. 207

3.1 Efficiency gains of GRASS 208

Efficient Storage of P . In GRASS, the sparse 209

projection operator P⊤ ∈ Rr×m can be expressed 210

as the product of a diagonal scaling matrix ρ ∈ 211

Rr×r and a binary selection matrix B ∈ {0, 1}r×m 212

which selects a single j-th row in GW for its i-th 213

row Bij = 1. Both ρ and B can be efficiently 214

stored using r instead of mr floats, making GRASS 215

more memory-efficient in optimizer-related storage 216

(Optimizer in Table 1). 217

Efficient Gradient Projection. GRASS avoids 218

computing and storing the full gradient matrix 219

GW ∈ Rm×n for projection (P⊤GW ) , unlike 220

existing MeSO methods (Zhao et al., 2024; Hao 221

et al., 2024). Leveraging the chain rule, we express 222

GW = (∇yL)
⊤X , where ∇yL ∈ Rb×m is the gra- 223

dient of the loss with respect to the layer outputs 224

and X ∈ Rb×n represents the input activations, 225

with b being the token batch size. This allows us to 226

apply the associative rule and compute2 the sparse 227

gradient projection efficiently as ρ((B∇yL
⊤)X). 228

This insight yields significant advantages in com- 229

pute, memory, and communication: 230

• Compute savings: By exploiting this reordered 231

multiplication, GRASS computes the projection in 232

just rbn + rn FLOPs. In contrast, dense projec- 233

tion methods like GALORE and FLORA require 234

mbn + rmn FLOPs, making GRASS over m/r 235

times more computationally efficient. This sig- 236

nificant advantage arises from 1) leveraging the 237

associative rule, 2) the equivalence of left multipli- 238

cation by ρ to a simple row-wise scaling (costing 239

only nr FLOPs), and 3) the cost-free row selection 240

performed by left multiplication with B. 241

• Memory savings: GRASS’s multiplication order 242

eliminates the need to ever materialize the full gra- 243

dient matrix, directly yielding the projected result. 244

This saves memory, avoiding the storage of mn 245

2Implementation-wise, we only need to define a custom
backward pass for the PyTorch linear layer.
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Method Memory FLOPs Comm

Weights Optimizer Grad Regular step (Lines 11-13) computeP step (Line 7)

Full mn 2mn mn mnb+mn+ Cmn 0 mn
LoRA mn+mr + nr 2mr + 2nr mr + nr mbn+ 2rmn+ C(rm+ rn) + rn+ rm 0 mr + nr
ReLoRA mn+mr + nr 2mr + 2nr mr + nr mbn+ 2rmn+ C(rm+ rn) + rn+ rm mnr +mn mr + nr
FLORA mn mr + 2nr mn mbn+ 2rmn+mn+ Crn mr mn
GaLore mn mr + 2nr mn mbn+ 2rmn+mn+ Crn mnmin(n,m) mn
GRASS (ours) mn 2r + 2nr nr rbn+ 3rn+ Crn mn+m+ r nr

Table 1: Summary of Memory, FLOPs, and Distributed Communication Volume for the different methods. GRASS improves
over existing methods in Memory, FLOPs, and Communication. Weight W ∈ Rm×n. b is token batch size, r is subspace rank,
C cost of optimzer update operations per parameter, G ∈ Rm×n, P ∈ Rm×r . Detailed breakdown in Appendix F.

floats required by other methods (see the Grad246

column in Table 1). Importantly, this memory ad-247

vantage is independent of and can be combined248

with layerwise weight update techniques (Lv et al.,249

2023b; Zhao et al., 2024), which reduce memory250

by processing gradients one layer at a time.251

• Communication savings: During distributed train-252

ing, existing MeSO methods like GALORE and253

FLORA communicate the full m× n gradient ma-254

trix across workers, leading to a communication255

cost of O(mn). Since GRASS is implemented in256

the backward pass, it can directly compute and com-257

municate the r×n projected gradient without mate-258

rializing the full gradient, reducing communication259

volume to O(rn) (Comm column in Table 1).260

Efficient Weight Update. The weight update261

step, W (t) + P∆(t+1), also benefits from the spar-262

sity of P in GRASS. Instead of constructing the263

full m× n update matrix P∆(t+1), which is row-264

sparse, GRASS directly computes and applies the265

updates to the r nonzero rows. This reduces the266

computational cost to just 2nr FLOPs, compared267

to the rmn+mn FLOPs required by dense update268

methods like GALORE and FLORA.269

3.2 Choices of sparse P270

We now discuss concrete choices for computeP by271

specifying how to construct ρ and B for P⊤ = ρS.272

To simplify the notation, we denote the index of the273

only non-zero entry in the j-th row of B by σj ∈274

[m]. We consider both stochastic and deterministic275

approaches to construct {σj}rj=1 and {ρjj}rj=1.276

A. Stochastic construction of P . Since σj ∈277

[m] is a categorial variable, a natural approach278

is the with-replacement sampling of σj
i.i.d.∼279

Multinomial(q), with the probability of sampling280

any integer k ∈ [m] given by qk. To ensure281

the unbiasedness of the reconstructed gradient282

E[PP⊤GW ] = GW for its optimization conver-283

gence benefits, we set ρjj = 1√
r·qσj

after sampling284

σj . To set the multinomial distribution parameter 285

q, we consider two different principles: 286

• The Variance-reduction principle: Here we want 287

to minimize the total variance of the gradient 288

estimate PP⊤GW . The optimal q is given by 289

the following theorem (proof in Appendix D): 290
Theorem 3.1. Among all the multinomial distri- 291

butions q, the one that is proportional to the row 292

norms of G with qi =
∥Gi∥2∑m

k=1 ∥Gk∥2 minimizes the 293

total variance of the gradient estimate PP⊤G. 294

We call this method Multinomial-Norm. 295

• The Subspace-preservation principle: When 296

P is fixed for a large K number of iterations 297

and the gradient is low-rank (Zhao et al., 2024), 298

reducing the variance of the gradient estimate 299

could be less important than preserving the 300

low-rank subspace of GW upon projection. 301

To achieve this, we set qk proportional to the 302

squared row norms of GW (qk ∝ ∥Gk∥2) and 303

call this method Multinomial-Norm2. This q 304

distribution gives us approximate leverage score 305

sampling (Magdon-Ismail, 2010), which ensures 306

high probability preservation of the low-rank sub- 307

space with little additive error (see Appendix E). 308

In addition to these two principled unbiased 309

sampling with replacement methods, we also 310

experiment with the Uniform Distribution with 311

qk = 1/m as a baseline. Furthermore, we explore 312

the non-replacement sampling counterparts (-NR) 313

for each of the three distributions. Since it is 314

analytically intractable to guarantee unbiasedness 315

in this case, we set ρjj = 1 for the NR methods. 316

B. Deterministic construction of P . We con- 317

sider minimizing the gradient reconstruction er- 318

ror in Frobenius norm ∥PP⊤GW −GW ∥2F as the 319

principle to choose P . One minimizing solution 320

sets all ρjj = 1 and {σj}rj=1 to be the indices of 321

rows of GW with largest row-norms. We call this 322

computeP method Top-k. 323

Compute cost. Unlike GALORE, GRASS only 324

requires computing row norms of GW but not an 325
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SVD in the update step. (computeP column in326

Table 1). Furthermore, no additional memory is327

consumed for SVD as in GALORE.328

3.3 Implementation Details329

Updating the Optimizer State. Updating the330

projection matrix P in GRASS can lead to signif-331

icant shifts in the selected rows of the parameter332

matrix W between iterations. Since different rows333

of W may have distinct gradient moment statis-334

tics, we reset the optimizer states to zero during the335

update_state step. To further stabilize training336

after such updates, we implement a learning rate337

warmup phase. This combined approach effectively338

mitigates training instabilities, particularly those339

observed in smaller models during pretraining.340

Distributed Training. Since GRASS updates the341

projection matrix during each worker’s backward342

pass in distributed training, synchronizing the se-343

lected indices across workers is necessary. To344

minimize communication overhead, we first com-345

pute the gradient GW and then sketch it by sam-346

pling r columns based on their norms, resulting347

in a sketched matrix Gcomm ∈ Rm×r. An all-348

reduce operation is performed on Gcomm, ensur-349

ing all workers access a consistent version of the350

sketch before sampling indices. Furthermore, we351

implement custom modifications to prevent Py-352

Torch DDP (Paszke et al., 2019) from allocating353

memory for full gradients in our GRASS implemen-354

tation (see Appendix G for details).355

4 Experiments And Results356

4.1 Pretraining Performance357

Experimental setup. We compare GRASS358

against Full-rank (without gradient projection) and359

GALORE by pretraining LLaMA-based models360

(Touvron et al., 2023) in BF16 on the cleaned361

C4 subset of Dolma (Soldaini et al., 2024). We362

train without data repetition over a sufficiently363

large amount of data, across a diverse range364

of model sizes (60M, 350M, 1B). We adopt365

a LLaMA-based architecture with RMSNorm366

and SwiGLU activations (Touvron et al., 2023;367

Shazeer, 2020; Zhang and Sennrich, 2019). For368

both GRASS and GALORE, we fix the frequency369

K at 200 iterations, α at 0.25, use a consistent rank370

r, and project the attention and feed-forward layers.371

P is applied to project the smaller dimension of372

GW to achieve the best memory-performance373

tradeoff (Zhao et al., 2024). We use the same batch374

size and tune the learning rate individually for 375

each method (see Appendix H). 376

Model size 60M 350M 1B

Full-Rank 36.97 18.71 18.12
GALORE 37.09 19.38 19.23
GRASS 37.24 19.49 19.04

r/dmodel 128 / 512 128 / 1024 256 / 2048
Tokens 1.0B 5.4B 8.8B

Table 2: Train perplexity of LLaMA models on the C4 subset
of Dolma. GRASS is competitive with GALORE, but with
lower memory footprint and higher training throughput.

Figure 1: Pretraining 1B LLaMA on 8.8B tokens of C4 with
GRASS, Full-rank and GALORE. (Left) Train perplexity vs
seen tokens. (Right) Train perplexity vs wall-clock time.
GRASS outperforms GALORE and shows < 0.01 perplex-
ity gap with Full-rank loss curve in wall-clock time.

Results. As shown in Table 2, GRASS matches 377

GALORE and approaches Full-rank’s performance 378

within a perplexity gap of less than 1 even when 379

r/dmodel = 8. In Figure 1, for the 1B model we see 380

that this gap disappears when we look at perplex- 381

ity vs. training time (as opposed to tokens seen) 382

on a single A100 GPU, where due to increased 383

pretraining throughput GRASS closely follows the 384

Full-rank loss curve with < 0.1 perplexity gap. 385

4.2 Finetuning Performance 386

Experimental setup. We evaluate GRASS, 387

LoRA, Full-rank, GALORE, and FLORA on the 388

GLUE NLU benchmark (Wang et al., 2018a) by 389

finetuning a pretrained RoBERTa-Base model (Liu 390

et al., 2019) in float32 (results on the dev set). We 391

evaluate FLORA as it was primarily intended for 392

finetuning in the original work. All methods are 393

applied to the linear attention and MLP layers (rank 394

r = 8), trained for three epochs (sequence length 395

128, update frequency 100), with tuned learning 396

rates and scale factors α (see Appendix H). 397

Results. In Table 3, GRASS Top-k performs com- 398

petitively with LoRA, FLORA, and GALORE even 399

though GRASS exhibits a reduced memory foot- 400

print and improved training throughput compared 401

to these methods as we show in Section 4.4. 402
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Model COLA MNLI MRPC QNLI QQP RTE SST2 STSB WNLI Average

Full-rank 59.62 87.36 91.51 92.60 90.43 79.03 94.49 90.38 56.34 82.42

LoRA 58.36 86.80 90.09 92.49 89.43 75.09 94.49 90.22 56.34 81.48
GALORE 57.64 87.40 88.97 92.86 88.94 76.17 94.49 89.76 56.34 81.40
FLORA 59.65 86.65 89.82 92.09 88.61 76.34 94.27 90.06 56.34 81.53
GRASS (Top-k) 59.16 86.92 89.60 92.42 88.65 76.37 94.15 90.13 56.34 81.53
GRASS (Multi-Norm2-NR) 58.87 86.08 89.94 91.69 83.36 76.17 94.73 90.00 56.34 81.35
GRASS (Multi-Norm-R) 57.81 86.25 87.58 91.80 88.06 68.59 94.27 89.73 56.34 80.05
GRASS (Uni-NR) 49.66 85.70 78.01 90.94 87.56 57.76 93.35 84.86 56.34 76.02

Table 3: Evaluating GRASS on the GLUE benchmark using RoBERTa-Base. All methods use rank r = 8. GRASS is competitive
with LoRA and GALORE with a lower memory footprint. Values in blue represent the top three results in each column.

Model MMLU Acc (%)

LLaMA-7b Trainable Params Alpaca FLAN v2

Full 6898.3M 38.12 35.85
LoRA 159.90M 38.21 34.98
GALORE 6476.0M 37.93 34.72
FLORA 6476.0M 37.86 35.16
GRASS 6476.0M 38.37 36.88

Table 4: Average 5-shot MMLU accuracy for LLaMA-7B
models finetuned with various methods across Alpaca and
FLAN v2. GRASS, FLORA, GALORE, and LoRA were ap-
plied to attention and MLP layers using rank 64. GRASS
not only competes effectively with full training but also of-
fers advantages in terms of lower memory usage and higher
throughput compared to all baseline methods.

4.3 Instruction-finetuning Performance403

Experimental setup. We evaluate GRASS404

against Full finetuning, GALORE, FLORA, and405

LoRA on instruction finetuning using a LLaMA-406

7B model (Touvron et al., 2023) pretrained on407

1T tokens. We finetune on Alpaca (Taori et al.,408

2023) (52k samples) and a 100k sample subset409

of FLAN v2 (Wei et al., 2021) from Tulu (Wang410

et al., 2023) (due to FLAN v2’s scale), using411

BF16 precision. Following prior work (Touvron412

et al., 2023; Dettmers et al., 2023), we assess413

average 5-shot test performance on the MMLU414

benchmark (Hendrycks et al., 2020) (57 tasks). All415

methods, except for Full finetuning which updates416

all parameters, are applied to the attention and417

MLP layers with rank 64 (batch size 64, source and418

target sequence length 512). We finetune for 1000419

steps on Alpaca (1.26 epochs) and 1500 steps on420

Flan v2 (1.08 epochs). Additional hyperparameters421

are in Appendix H.422

Results. As shown in Table 4, GRASS per-423

forms competitively with full-parameter finetuning,424

FLORA, GALORE, and LoRA during instruction425

finetuning on both Alpaca and Flan v2. Further-426

more, Section 4.4 demonstrates that, at r = 64,427

GRASS not only matches LoRA’s performance428

but also boasts a lower memory footprint and an429

Figure 2: Normalized pretraining throughput at r = 64 for
GRASS, Full-rank, and GALORE relative to Full-rank. GRASS
throughput exceeds Full and GALORE throughput by > 25%.

Figure 3: Normalized LLaMA finetuning throughput of
GRASS, GALORE, and LoRA relative to LoRA. We use rank
r = 64. GRASS is > 18% faster than LoRA.

18% throughput increase. Because GRASS lever- 430

ages full-parameter finetuning, unlike LoRA’s con- 431

strained low-rank approach, it is expected to excel 432

in challenging tasks with larger datasets. 433

4.4 Efficiency analysis 434

Pretraining Throughput. Figure 2 compares the 435

BF16 pretraining throughput (tokens/s) of GRASS 436

and GALORE relative to Full-rank, across model 437

sizes, for both regular and projection update steps. 438

We use rank r = 64 on attention and feedforward 439

layers, uniform local batch size across methods, 440

sequence length 256, and total batch size 1024 on 441

a single 80GB A100 GPU. See Appendix H for 442

detailed settings. We did not employ activation 443

checkpointing, memory offloading, or optimizer 444

state partitioning in our experiments. 445
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Figure 4: Pretraining memory footprint for GRASS, GALORE, and Full across model sizes for a regular (non projection update
step) and r = 128. GRASS has a lower memory footprint across all model sizes and the reduction is greater at larger model sizes.

While GRASS and GALORE exhibit lower446

throughput than Full-rank at 60M parameters447

(due to matrix multiplication overhead), GRASS448

significantly outperforms both at 1B and 7B449

parameters, achieving 26% and 33.8% higher450

throughput than Full-rank, and 27% and 26.7%451

higher than GALORE (for the regular step).452

GRASS’s projection update overhead is minimal,453

unlike GALORE’s costly SVD computations. The454

throughput advantage for GRASS is expected to455

grow with larger batch sizes, benefiting further456

from its lower memory footprint compared to other457

methods. Appendix Figure 11 provides further458

throughput comparisons across different ranks,459

showing that GRASS achieves its highest relative460

throughput gains at rank (r = 64), with diminishing461

returns as rank increases or model size decreases.462

Finetuning Throughput. Figure 3 compares the463

BF16 finetuning throughput of GRASS, GALORE,464

and LoRA across various LLaMA model sizes,465

focusing on the regular step. Unlike the pretraining466

throughput benchmark, we finetune only the467

attention and MLP layers using r = 64. We468

maintain a uniform local batch size, sequence469

length 256, and total batch size of 1024 across all470

methods (detailed hyperparameters are provided471

in Appendix H). For the 7B parameter model,472

GRASS achieves throughput improvements of 26%473

and 18% over GALORE and LoRA, respectively.474

Appendix Figure 12 provides further throughput475

comparisons across ranks 8, 16, 32, and 64,476

demonstrating that GRASS consistently maintains477

its throughput advantage across these ranks.478

Pretraining Memory. Figure 4 benchmarks the479

BF16 memory footprint of pretraining GRASS480

against Full-rank and GALORE across various481

model sizes (token batch size 256, rank r = 128),482

focusing on the regular training step. GRASS con-483

sistently exhibits a lower memory footprint than484

both Full-rank and GALORE, with the memory485

Figure 5: Communication Efficiency: Weak Scaling
Throughput Comparison for 3B LLaMA pretraining using
GRASS, Full-rank, and GALORE. GRASS shows 2× higher
throughput over Full and GALORE at 8 GPUs.

reduction increasing with model size. This advan- 486

tage stems from GRASS’s reduced gradient and 487

optimizer memory (due to its sparse projection ma- 488

trices). At 13B parameters, GRASS uses 70% less 489

memory than Full-rank and 45% less than GA- 490

LORE. Notably, GRASS can pretrain a 13B parame- 491

ter LLaMA model in BF16 on a single 40GB GPU, 492

supporting ranks up to r = 768. In contrast, GA- 493

LORE, which requires converting the full gradient 494

to float32 for SVD computation, cannot pretrain a 495

13B model at rank r = 128 even on an 80GB GPU. 496

Finetuning Memory. Appendix Figure 8 and 497

Figure 9 compare the memory footprint of GRASS 498

and LoRA during LLaMA finetuning. GRASS 499

demonstrates a memory advantage of roughly 1GB 500

over LoRA when finetuning the 7B parameter 501

model in BF16 at rank (r=64). However, as batch 502

size increases, activations dominate the memory 503

footprint, and the memory usage of GRASS and 504

LoRA becomes comparable. 505

Communication. Figure 5 benchmarks the weak 506

scaling throughput (tokens/sec) of a 3B parameter 507

LLaMA model in a multi-GPU setting using an 508

L40 node with a peak all-reduce bandwidth of 8.64 509

GB/s. We use a token batch size of 4096 per worker 510

(local batch size 16, sequence length 256). GRASS, 511

by communicating only the projected gradients, 512

achieves significantly higher throughput (2× on 8 513
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Figure 6: GRASS rank ablations for 350M LLaMA training.
We report perplexity on Dolma C4 across various ranks and
training steps. Loss is averaged over a window of 50 steps.

Figure 7: GRASS Update Frequency vs. Training Perplexity
for 60M LLaMA pretraining on Realnews subset of C4. A
frequency of 200 is near optimal.

GPUs) compared to both Full-rank and GALORE.514

4.5 Ablations515

Effect of Rank. Figure 6 presents rank ablations516

for GRASS during pretraining of a 350M param-517

eter LLaMA model on the C4 subset of Dolma.518

Increasing the rank generally leads to faster conver-519

gence, but with diminishing returns. Additionally,520

since GRASS enables full-parameter training, we521

observe that training at rank r = 128 for 80k steps522

is more effective than training at rank r = 512523

for 40k steps. GRASS can therefore be used to524

trade-off memory and computational cost where in525

a memory-constrained setting one could select a526

lower rank and train longer.527

Effect of Update Frequency. Figure 7 analyzes528

the impact of update frequency on the convergence529

of GRASS during pretraining of a 60M-parameter530

LLaMA model on the Realnews subset of C4 (Raf-531

fel et al., 2020). Both overly frequent and infre-532

quent updates to the projection matrix hinder con-533

vergence. Optimal convergence is achieved within534

an update frequency range of 200 to 500 iterations.535

computeP Methods. Table 5 evaluates our pro-536

posed methods to compute the sparse projection537

P matrix (in Section 3.2) for GRASS during pre-538

training of a 60M LLaMA model on 500M tokens539

Sampling Method Eval perp

Frozen Top-k 34.78
Uniform-R 32.46
Uniform-NR 31.06
Multinomial-Norm-R 31.32
Multinomial-Norm-NR 30.93
Multinomial-Norm2-R 31.85
Multinomial-Norm2-NR 30.91
Top-k 30.88

GALORE 30.67
Full-rank 30.27

Table 5: Comparison of GRASS Sampling Methods on Evalu-
ation Perplexity during 60M LLaMA Pretraining on the Real-
News Subset of C4. Best sampling strategy is bolded.

from the RealNews subset of C4. We addition- 540

ally consider the Frozen Top-k method as a base- 541

line by sampling indices once only at iteration 0. 542

We notice that stochastic strategies employing non- 543

replacement (NR) sampling generally surpass their 544

with replacement counterparts, and biased sam- 545

pling techniques are more effective overall. Within 546

the unbiased strategies (R), the variance reduc- 547

tion approach (Multinomial-Norm-R) outperforms 548

the subspace preservation method (Multinomial- 549

Norm2-R), while their biased (NR) counterparts ex- 550

hibit comparable performance. Both Multinomial- 551

Norm2-NR and Top-k are competitive with GA- 552

LORE. The Uniform strategy, although the least 553

effective, shows substantial improvement during 554

pretraining compared to finetuning. This is likely 555

because the norm distribution is more uniform at 556

the onset of pretraining. Similar patterns in per- 557

formance across sampling methods are observed 558

during finetuning (Table 3). 559

5 Conclusion And Future Work 560

In this work, we introduce GRASS, a novel ap- 561

proach for reducing memory consumption during 562

LLM training by leveraging structured sparse gra- 563

dients. GRASS significantly reduces the memory 564

footprint of optimizer states and gradients and 565

eliminates the need to compute full gradients, lead- 566

ing to substantial computational efficiency gains. 567

Our experimental results demonstrate that GRASS 568

achieves comparable performance to full-rank 569

training and existing projection-based methods 570

while offering a substantial memory reduction and 571

throughput increase across various model sizes and 572

tasks. Future work will explore extending GRASS 573

to utilize diverse structured sparsity patterns and in- 574

vestigating strategies for dynamically adjusting the 575

projection rank based on hardware and model size. 576
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6 Limitations577

While GRASS offers compelling advantages in578

memory efficiency and training throughput, there579

are several aspects that warrant further investiga-580

tion and potential improvements.581

Implementation Complexity. Unlike drop-in op-582

timizer replacements, GRASS requires integrating583

custom linear layers into the Transformer archi-584

tecture, as the sparse projection operations occur585

during the backward pass. While this involves min-586

imal code modifications, it introduces a slight com-587

plexity barrier for adoption compared to simply588

switching optimizers. Nonetheless, the significant589

gains in performance and memory efficiency out-590

weigh this minor overhead.591

Scalability to Larger Models. Our empirical592

evaluation primarily focused on model scales up593

to 13B parameters. The effectiveness of GRASS594

for significantly larger LLMs, exceeding hundreds595

of billions of parameters, requires further examina-596

tion. Similarly, as batch sizes increase, the memory597

savings from sparse projection might become less598

prominent compared to the activation memory foot-599

print. Exploring strategies to mitigate this potential600

issue, such as combining GRASS with activation601

checkpointing techniques, would be beneficial.602

Hyperparameter Sensitivity. GRASS’s perfor-603

mance depends on hyperparameters like rank (r)604

and update frequency (K). While our experiments605

provide insights into suitable ranges for these hy-606

perparameters, a more comprehensive analysis of607

their impact on training dynamics, particularly608

as model scales increase, is crucial for maximiz-609

ing performance and generalizability. Developing610

methods to automatically and adaptively tune these611

hyperparameters could further enhance GRASS’s612

applicability.613

7 Ethical Considerations614

We acknowledge the potential ethical implications615

associated with large language models. These in-616

clude:617

Misuse Potential. LLMs, being powerful text618

generation tools, can be misused to create harmful619

or misleading content, including disinformation,620

hate speech, and spam. While our work focuses621

on improving training efficiency, we strongly ad-622

vocate for responsible use of LLMs and encourage623

further research on safeguards against malicious 624

applications. 625

Bias Amplification. LLMs are trained on mas- 626

sive text corpora, which can inherently contain bi- 627

ases and stereotypes. These biases can be amplified 628

during training, leading to potentially discrimina- 629

tory or unfair outputs. While GRASS is unlikely 630

to exacerbate this bias, we recognize the impor- 631

tance of addressing this issue through careful data 632

curation, bias mitigation techniques, and ongoing 633

monitoring of LLM behavior. 634

Environmental Impact. Training large LLMs re- 635

quires significant computational resources, which 636

can have a substantial environmental footprint. Our 637

work aims to reduce the computational cost and en- 638

ergy consumption of LLM training, contributing to 639

more sustainable and environmentally responsible 640

practices in NLP research. 641

Data and Licensing Considerations. We have 642

carefully considered the ethical implications of the 643

datasets used in this work which are publicly re- 644

leased and have followed accepted privacy prac- 645

tices at creation time. 646

• MMLU and GLUE are released under the per- 647

missive MIT license, allowing for broad research 648

use. 649

• Alpaca is also distributed under the MIT license. 650

• FLAN uses the Apache license, which permits 651

both academic and commercial applications. 652

• Dolma utilizes the ODC Attribution License, pro- 653

moting open data sharing and reuse. 654

We strictly adhere to the license terms and in- 655

tended use of these datasets, ensuring responsible 656

handling of data and compliance with ethical guide- 657

lines. We acknowledge the ongoing need for crit- 658

ical assessment and transparency regarding data 659

sources, potential biases, and licensing implica- 660

tions in LLM research. 661
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A Optimizer functions944

In Equation (1) and Algorithm 1, we use functions945

opt.init and opt.update to abstractly represent946

any stateful optimizer’s initialization and update947

function. Here we provide concrete implementa-948

tions of these functions for Adam (Kingma and Ba,949

2014) in Algorithm 3 and 4. We assume the param-950

eter matrix Z and its gradient ∇ZL is of generic951

shape Rc×d.952

Algorithm 3 Initialization of the Adam optimizer, adam.init

Input: Z ∈ Rc×d (technically, Adam only requires knowing
the shape of the parameter)

Output: S ∈ R2×c×d

1: M ← 0c×d ▷ First gradient moment statistics
2: V ← 0c×d ▷ Second gradient moment statistics
3: S ← (M,V )

953

Algorithm 4 Update of the Adam optimizer, adam.update.
β1, β2 ∈ [0, 1) are the exponential decay rates for the first and
second gradient moment estimates. t is the current iteration.
η > 0 is the current iteration’s learning rate. ϵ is a small
constant used for numerical stability in division.

Input: S ∈ R2×c×d the most recent optimizer state
∇L(Z) ∈ Rc×d the current gradient of Z

Output: Snew ∈ R2×c×d the updated optimizer state
U ∈ Rc×d the additive update matrix

1: M,V ← S ▷ Unpack the states M,V ∈ Rc×d

2: Mnew ← β1 ·M + (1− β1) · ∇L(Z)
3: Vnew ← β2 · V + (1− β2) · ∇L(Z)◦2

4: Snew ← (Mnew, Vnew)
5: M⋆ ←Mnew/(1− βt

1)
6: V⋆ ← Vnew/(1− βt

2)

7: U ← −η ·M⋆ ⊘ (V
◦ 1

2
⋆ + ϵ)

954

B Derivation of the unified algorithm of955

Memory-efficient subspace optimizers956

As we have described in Section 2, MeSO optimiz-957

ers solve the subspace optimization problem under958

the projection matrix P ∈ Rm×r:959

min
A∈Rr×n

L(W0 + PA) (2)960

by applying an off-the-shelf optimizer opt. Since961

we want to start at the initial weight matrix W0, A962

is initialized to be the zero matrix:963

A(0) ← 0r×n (3)964

S(0) ← opt.update(A(0)) (4)965

and updated through966

S(t+1),∆(t+1) ← opt.update(S(t),
d

dA
L(W0 + PA(t)))

(5)

967

A(t+1) ← A(t) +∆(t+1) (6)968

By chain rule, we have d
dAL(W0 + PA(t)) = 969

P⊤∇L(W0 + PA(t)). 970

When MeSO updates the projection matrix Pnew, 971

we can treat the new subspace optimization as hav- 972

ing its W new
0 = W old

0 +PoldA
(t) and re-initializing 973

A(t) at 0r×n with an optimizer state update using 974

update_state. The pseudocode of this algorithm 975

where we maintain the value of the A matrix is 976

given in Algorithm 5. 977

Algorithm 5 Memory-efficient subspace optimization (MeSO)
with an instantiated A matrix

Input: Initial weights W0 ∈ Rm×n with m ≤ n; update
frequency K; total iterations T ; subspace rank r with
r ≪ m, an off-the-shelf optimizer opt; function to up-
date the optimizer state, scale factor α.

Output: Optimized weights W (T )

1: t← 0
2: A(0) ← 0r×n

3: S(0) ← opt.init(A(0)) ▷ Adam state ∈ Rr×n

4: while t ≤ T do
5: if t mod K = 0 then
6: W0 ←W0 + PA(t) ▷ record progress
7: A(t) ← 0r×n ▷ reinitialize A
8: // Compute new projection matrix
9: P ← computeP (∇L(W0)) ▷ P ∈ Rm×r

10: // [Optional] Update optimizer state
11: S(t) ← update_state(S(t))
12: end if
13: GC ← P⊤∇L(W0 + PA(t)) ▷ GC ∈ Rr×n

14: S(t+1),∆(t+1) ← opt.update(S(t), GC)

15: A(t+1) ← A(t) + α∆(t+1) ▷ Apply Update
16: t← t+ 1
17: end while

978

By defining W (t) := W0+PA(t), we can easily 979

see that Algorithm 5 is equivalent to Algorithm 1 980

presented in the main paper. 981

C Additional Related Work 982

Memory-Efficient Optimization. Several works 983

aim to reduce the memory footprint of adaptive 984

optimizer states. Techniques include factorizing 985

second-order moment statistics (Shazeer and Stern, 986

2018), quantizing optimizer states (Dettmers et al., 987

2021; Anil et al., 2019; Dettmers et al., 2023; Li 988

et al., 2023), and fusing backward operations with 989

optimizer updates to minimize gradient storage (Lv 990

et al., 2023a). GRASS is orthogonal to these ap- 991

proaches and proposes a gradient projection-based 992

adaptive optimizer that significantly reduces mem- 993

ory costs by relying on projected gradient statistics. 994

Gradient Compression. In distributed and fed- 995

erated training, several gradient compression meth- 996

ods have been introduced to reduce the volume of 997

transmitted gradient data. Common approaches 998
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include:999

1. Quantization: Quantization aims to reduce the1000

bit precision of gradient elements. Examples1001

include 1-bit SGD (Seide et al., 2014), SignSGD1002

(Bernstein et al., 2018), 1-bit Adam (Tang et al.,1003

2021), TernGrad (Wen et al., 2017), and QSGD1004

(Alistarh et al., 2017).1005

2. Sparsification: This involves transmitting only1006

a small subset of significant gradient elements.1007

Random-k and Top-k element select k random1008

or largest-magnitude elements, respectively1009

to transmit. Top-k generally exhibits better1010

convergence (Stich et al., 2018), and requires1011

communicating both values and indices (Lin1012

et al., 2018; Renggli et al., 2019).1013

3. Low-Rank Decomposition: This involves1014

factorizing a gradient matrix M ∈ Rn×m as1015

M ≈ PQ⊤ for transmission, where P ∈ Rn×r1016

and Q ∈ Rm×r with r ≪ min(n,m). ATOMO1017

(Wang et al., 2018b) employs SVD for de-1018

composition, while Power-SGD (Vogels et al.,1019

2019) utilizes power iteration for more efficient1020

low-rank factorization.1021

Unlike existing methods, GRASS introduces a1022

novel approach by employing structured sparse pro-1023

jection of gradients to enhance memory efficiency1024

in both local and distributed training contexts.1025

D Proof of Theorem 3.11026

We introduce a gradient approximation method that1027

utilizes a multinomial sampling strategy to con-1028

struct an unbiased gradient estimator. A general1029

gradient G ∈ Rm×n can be expressed through an1030

atomic decomposition:1031

G =

m∑
i=1

λiai,1032

where λi is the row norm of the i-th row of G and1033

ai is an atom matrix whose only nonzero row is1034

G’s i-th row scaled to unit norm.1035

Let P be a sampling matrix for the rows, where1036

each row Pi has a single non-zero entry. The matrix1037

P is formed such that the sampling index for each1038

row Pi is chosen based on multinomial sampling1039

using the probability vector p. Thus, PP⊤ is a1040

diagonal matrix.1041

To approximate G under strict memory con-1042

straints, we use multinomial sampling to select1043

exactly r rows. The approximate gradient Gr is1044

then defined as: 1045

Gr = PP⊤G =
r∑

i=1

PiP
⊤
i G =

m∑
i=1

λiti
αi

ai, 1046

with ti ∈ [r] being the number of times in- 1047

dex i is drawn from the multinomial distribution 1048

Multinomial(p, r) with sampling distribution p and 1049

total number of draws r. By property of the multi- 1050

nomial distribution, we know that E[ti] = rpi. 1051

Therefore, by setting the normalization factor αi = 1052

rpi, we can ensure that E[Gr] = G. This explains 1053

why the scaling factor of ρjj in Section subsec- 1054

tion 3.2 should be set to be 1√
r·qσj

to maintain 1055

unbiasedness. Similarly, we can show that 1056

E[∥Gr∥2] =
m∑
i=1

λ2
i

(
1− pi
r · pi

+ 1

)
(7) 1057

− 1

r

m∑
i=1

m∑
j ̸=i

λiλja
⊤
i aj . (8) 1058

Solving the variance-minimization problem: 1059

Given the form of the unbiased estimator Gr’s sec- 1060

ond moment in Equation 8, minimizing the total 1061

variance of Gr leads to the following optimization 1062

problem: 1063

min
p

m∑
i=1

λ2
i

pi
1064

subject to
n∑

i=1

pi =1, 0 < pi ≤ 1 for all i. 1065

The Lagrangian L for this constrained optimization 1066

is: 1067

L(p, µ, γ) =
m∑
i=1

λ2
i

pi
+µ

(
m∑
i=1

pi − 1

)
−

m∑
i=1

γipi, 1068

where µ is the Lagrange multiplier for the equal- 1069

ity constraint, and γi are the multipliers for the 1070

inequality constraints ensuring pi ≥ 0. 1071

The Karush-Kuhn-Tucker (KKT) conditions for 1072

this problem are: 1073

1. Stationarity: ∂L
∂pi

= −λ2
i

p2i
+ µ− γi = 0 1074

2. Primal Feasibility:
∑m

i=1 pi = 1, 0 < 1075

pi ≤ 1 1076

3. Dual Feasibility: γi ≥ 0 1077

4. Complementary Slackness: γipi = 0 1078

Assuming pi > 0 and γi = 0 due to complemen- 1079

tary slackness, the stationarity condition simplifies 1080

to µ =
λ2
i

p2i
. Therefore, pi =

√
λ2
i
µ . 1081
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Applying the primal feasibility condition:1082

m∑
i=1

√
λ2
i

µ
= 1 ⇒ µ =

(
m∑
i=1

|λi|

)2

1083

Thus, the optimal probabilities pi are:1084

pi =
|λi|∑m
j=1 |λj |

1085

Thus pi is proportional to the magnitude of λi,1086

normalized by the sum of the magnitudes of all λ1087

values, which satisfies
∑m

i=1 pi = 1 and minimizes1088

the objective function. Since λi is equal to the row1089

norm of the i-th row of G, we have proved the1090

theorem.1091

E Row Norms and Subspace Embedding1092

Property1093

The following proof is from Magdon-Ismail (2010)1094

which can be roughly stated as sampling with row-1095

norms preserves subspaces up to additive error with1096

high probability.1097

Theorem E.1 (Subspace Preservation). Let A ∈1098

Rm×d1 with rows at. Define a sampling matrix1099

Q ∈ Rm×m using row-sampling probabilities:1100

pt ≥
∥at∥2

∥A∥2F
.1101

If r ≥ 4pA ln
2d1
δ

β2 , then with probability at least 1−δ,1102

it follows that:1103

∥A⊤A− Ã⊤Ã∥ ≤ ϵ∥A∥2.1104

Proof. Considering the singular value decomposi-1105

tions (SVDs) of A and B, we have:1106

∥A⊤B−A⊤Q⊤QB∥ = ∥VASAU
⊤
AUBSBV

⊤
B1107

−VASAU
⊤
AQ

⊤QUBSBV
⊤
B∥.1108

We may now directly apply Lemma E.2, with1109

respect to the appropriate sampling probabilities.1110

One can verify that the sampling probabilities are1111

proportional to the sum of the rescaled squared1112

norms of the rows of A and B.1113

Lemma E.2 (Sampling in Orthogonal Spaces). Let1114

W ∈ Rm×d1 and V ∈ Rm×d2 be orthogonal ma-1115

trices, and let S1 and S2 be positive diagonal matri-1116

ces in Rd1×d1 and Rd2×d2 , respectively. Consider1117

row sampling probabilities:1118

pt ≥
1

∥S1∥2F
W⊤S2

1Wt +
1

∥S2∥2F
V⊤S2

2Vt.1119

If r ≥
(
8(p1 + p2)/β

2
)
ln 2(d1+d2)

δ , then with 1120

probability at least 1− δ, it holds that: 1121

∥S1W
⊤VS2−S1W

⊤Q⊤QVS2∥ ≤ ϵ∥S1∥∥S2∥. 1122

F Memory, FLOPs and Communication 1123

Volume 1124

In this section we report the Memory, FLOPs and 1125

Communication Volume for the various methods 1126

corresponding to a single m× n weight w and its 1127

gradient G. 1128

Notes: 1129

• Let G = AB⊤, where A is an m× b matrix, B 1130

is an n × b matrix, where m ≤ n and b is the 1131

token batch size usually much larger than m,n. 1132

• Let P be an m× r projection matrix. 1133

• Here we assume A and B are constructed ahead 1134

of time and we are interested in the memory, 1135

floating-point operations, and communication 1136

volume to construct the gradients G, update 1137

the optimizer state, and updating weights w = 1138

PP⊤G. 1139

• C is the number of optimizer operations per gra- 1140

dient element. 1141

• All numbers are computed based on the original 1142

papers. 1143

• For GRASS, P⊤ = ρB where ρ is a r × r di- 1144

agonal scaling matrix, B is a sparse r ×m row 1145

selection matrix. Both ρ,B can be applied effi- 1146

ciently. 1147

We compare various optimization strategies: Full, 1148

GALORE, LoRA, ReLoRA, FLORA, and GRASS 1149

(our approach). Smart GALORE is GALORE 1150

with the matrix associativity implementation for 1151

reduced FLOPs, and the custom DDP implementa- 1152

tion for reduced communication. These strategies 1153

are analyzed based on memory requirements, com- 1154

munication volume, and floating-point operations 1155

(FLOPs). 1156

FLOPs per Worker 1157

Table 6 summarizes the FLOPs calculation for the 1158

baselines and GRASS. 1159

Memory Requirements 1160

Table 7 summarizes the memory requirements for 1161

the various baselines and GRASS. 1162

Communication Volume 1163

Table 8 summarizes the communication volume of 1164

gradients for the various methods. 1165

1166
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Method Regular Step Cost Projection Update Cost

Full Compute AB (mnb), optimizer state update (Cmn),
reprojection update (mn).

0

GALORE Compute AB (mbn), compute P⊤AB (rmn), optimizer
state update (C · rn), reprojection update (rmn), parameter
update (mn).

SVD cost (mnmin(n,m))

Smart GALORE Compute PA (rmb), compute (PA)B (rbn), optimizer
state update (C · rn), reprojection update (rmn), parameter
update (mn).

SVD cost (mnmin(n,m))

LoRA Compute AB (mbn), compute gradient for LoRA weights
(2rmn), optimizer update (C(rm+ rn)), weight update
(rn+ rm).

0

ReLoRA Compute AB (mbn), compute gradient for LoRA weights
(2rmn), optimizer update (C(rm+ rn)), weight update
(rn+ rm).

Merging weights
(mnr +mn)

FLORA Compute AB (mbn), compute PAB (rmn), optimizer
state update (C · rn), reprojection update (rmn), parameter
update (mn).

Sampling Gaussians (mr)

GRASS (Ours) Compute (P⊤A)B (rbn+ rn), optimizer state update
(C · rn), reprojection and weight update (2rn).

Computing row norms and
sampling matrix∗

(mn+m+ r)

Table 6: Detailed FLOPs Analysis for Various Methods. ∗This is the complexity of Alias Method for multinomial sampling.
Top-k complexity would be m log r using a heap.

Method Weights Optimizer State Gradient Memory

Full mn 2mn mn
GALORE mn mr + 2nr mn
Smart GALORE mn mr + 2nr mn
LoRA mn+mr + nr 2mr + 2nr mr + nr
ReLoRA mn+mr + nr 2mr + 2nr mr + nr
FLORA mn mr + 2nr mn
GRASS mn 2r + 2nr nr

Table 7: Memory Requirements for Various Methods. Note that memory cost for the update step is intermittent.

Method Comm Volume

Full mn
GALORE mn∗

Smart GALORE nr
LoRA mr + nr
ReLoRA mr + nr
FLORA mn∗

GRASS nr

Table 8: Gradient Communication Volume for Various Op-
timizers. ∗ Note that GALORE and FLORA communication
volume can be reduced to nr using a communication hook.

G Distributed Data Parallel1167

Implementation1168

To optimize memory usage in PyTorch’s Dis-1169

tributed Data Parallel (DDP) framework (Paszke1170

et al., 2019), we implement strategic modifica-1171

tions to our model architecture aimed at enhancing1172

distributed training efficiency (see Algorithm 6).1173

Specifically, we designate the weights in the linear1174

layers as non-trainable to circumvent the default 1175

memory allocation for full-sized gradient matri- 1176

ces. Instead, we introduce virtual, trainable pa- 1177

rameters— occupying merely 1 byte each—linked 1178

to each weight matrix. These virtual parameters 1179

hold the compressed gradient of the corresponding 1180

weight matrix in the wgrad attribute. This method 1181

capitalizes on DDP’s asynchronous all-reduce ca- 1182

pabilities while preventing unnecessary memory 1183

allocation. 1184

H Experiments: Hyperparameters 1185

H.1 Pretraining 1186

We introduce details of the LLaMA architecture 1187

and hyperparameters used for pretraining. Table 9 1188

shows the dimensions of LLaMA models across 1189

model sizes. We pretrain models on the C4 subset 1190

of Dolma 3. C4 is a colossal, clean version of Com- 1191

mon Crawl designed to pretrain language models 1192

and word representations in English (Raffel et al., 1193

3https://huggingface.co/datasets/allenai/dolma
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Algorithm 6 Distributed GRASS Training with PyTorch DDP

Input: Initial weights W0 ∈ Rm×n, total iterations T , subspace rank r, world size p, learning rate scale α, update frequency K

Output: Optimized weights W (T )

1: Initialize distributed environment (e.g., NCCL)
2: W ←W0 ▷ Set weights as non-trainable
3: Introduce virtual trainable parameter vparams ∈ R1×1, linked to each weight matrix
4: vparams.wgrad← ∅ ▷ Initialize storage for compressed gradients
5: Initialize a DDP model with custom gradient hooks
6: for t = 0 to T − 1 do
7: Compute local loss L for the current mini-batch
8: output← Forward pass using W
9: if t mod K = 0 then

10: Compute backward pass to obtain full gradient GW

11: // Sketch gradient using column norms and select top-k
12: Gsketch ← TopkColumns(GW , r)
13: // All-reduce and update the sketched matrix
14: Gsketch ← AllReduce(Gsketch)/p
15: Update projection matrix P using Gsketch, compute and store compressed gradient GC in vparams.grad
16: else
17: Compute backward pass, capturing compressed gradients GC in vparams.grad
18: Perform all-reduce on vparams.grad across all workers
19: end if
20: Update W using vparams.grad
21: end for
22: return W
23:

24: function TOPKCOLUMNS(grad, r)
25: indices← argsort(|colnorms(grad)|)[−r :] ▷ Identify indices of top-r column norms
26: return grad[:, indices]
27: end function

2019).1194

For pretraining all models we use a max se-1195

quence length of 256 for all models, with a batch1196

size of 262144 tokens. For all baseline experiments,1197

we adopt learning rate warmup for the first 10001198

steps, and use cosine annealing for the learning rate1199

schedule, decaying to 10% of the initial learning1200

rate. GRASS, GALORE and FLORA use a projec-1201

tion matrix update frequency of 200. GRASS uses1202

an additional warmup at each update for 200 steps1203

when resetting optimizer states for the 60M and1204

350M training jobs, while the 1B job did not re-1205

quire resetting optimizer states. Both 60M and1206

350M GRASS pretraining jobs uses Top-k sam-1207

pling while the 1B job uses Multinomial sampling1208

without replacement.1209

For all methods on each size of models, we tune1210

learning rate from a set of {0.01, 0.005, 0.001,1211

0.0005, 0.0001}, and the best learning rate is cho-1212

sen based on the validation perplexity (or train1213

perplexity when a validation does not exist as in1214

Dolma). All models used a scale factor α = 0.25.1215

We found that GALORE was sensitive to hyper-1216

parameters and exhibited loss spikes and diver-1217

gence at the prescribed learning rates in the pa-1218

per (0.01) particularly at the 1B scale, and as a1219

result we had to train using reduced learning rates1220

where we did not observe such spikes. The learn- 1221

ing rates of GRASS and GALORE were higher 1222

than the full model which showed instability at 1223

values greater than 0.001. Unless otherwise speci- 1224

fied we average losses using a window of 15 steps. 1225

We use Adam with the default hyperparameters 1226

(β1 = 0.9, β2 = 0.999, ϵ = 10−8). 1227

All models were trained on four 80GB A100 1228

GPUs. The training times were as follows: 100 1229

GPU hours for the 60M model, 200 GPU hours for 1230

the 250M model, and 650 GPU hours for the 1B 1231

model. 1232

H.2 Finetuning 1233

We finetune the pretrained RoBERTa-Base4 model 1234

(Liu et al., 2019) on the GLUE benchmark5 (Wang 1235

et al., 2018a) using the pretrained model on Hug- 1236

ging Face. GLUE is a natural language understand- 1237

ing benchmark and includes a variety of tasks, in- 1238

cluding single sentence tasks like CoLA (Warstadt 1239

et al., 2018), SST-2 (Socher et al., 2013); similar- 1240

ity and paraphrase tasks like MRPC (Dolan and 1241

Brockett, 2005), QQP, STS-B (Cer et al., 2017); 1242

and inference tasks such as MNLI (Williams et al., 1243

2017), QNLI (Rajpurkar et al., 2016), RTE and 1244

4https://huggingface.co/FacebookAI/roberta-base
5https://huggingface.co/datasets/nyu-mll/glue

17



Params Hidden Intermediate Heads Layers Steps Data amount

60M 512 1376 8 8 3.8K 1.0B
350M 1024 2736 16 24 20.6K 5.4B
1B 2048 5461 24 32 33.6K 8.8B
7B 4096 11008 32 32 - -
13B 5120 13824 40 40 - -

Table 9: Hyperparameters of LLaMA models for evaluation. Data amount are specified in tokens.

MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B

Batch Size 32 32 32 32 32 32 32 32
# Epochs 3 3 3 3 3 3 3 3
Learning Rate 2E-05 2E-05 3E-05 2E-05 2E-05 2E-05 2E-05 2E-05
Rank Config. r = 8 r = 8 r = 8 r = 8 r = 8 r = 8 r = 8 r = 8
α 2 2 2 2 2 2 2 2
Max Seq. Len. 128 128 128 128 128 128 128 128

Table 10: Hyperparameters of finetuning RoBERTa base for GRASS.

WNLI (Levesque et al., 2012).1245

We report accuracy for SST-2, MNLI, QNLI and1246

RTE. For CoLA and STS-B, we use Matthew’s1247

Correlation and Pearson-Spearman Correlation as1248

the metrics, respectively. For MRPC and QQP, we1249

report the average of F1 score and accuracy. We1250

report the best performance out of three seeds due1251

to the instability of the method. We train all mod-1252

els for 3 epochs using a max sequence length of1253

128, and a batch size of 32. We report the best1254

performance at the end of an epoch. We used a1255

projection update frequency of 100 for all meth-1256

ods. We tuned the learning rate and scale factor1257

α for GALORE, FLORA, LoRA and GRASS from1258

{1e− 5, 2e− 5, 3e− 5, 4e− 5, 5e− 5} and scale1259

factors {1, 2, 4, 8, 16}. We apply the projection ma-1260

trices or LoRA to target modules “query", “value",1261

“key", “intermediate.dense" and “output.dense" and1262

use a rank r = 8. We use Adam with the default hy-1263

perparameters (β1 = 0.9, β2 = 0.999, ϵ = 10−8).1264

All experiments were run on a single A100 GPU in1265

under 24 hours.1266

Table 10 shows the hyperparameters used for1267

finetuning RoBERTa-Base for GRASS.1268

H.3 Instruction Tuning1269

We finetune the pretrained LLaMA 7B 6 model1270

from HuggingFace on the 52k samples from1271

Alpaca 7, and the 100k samples from Flan-v2 in1272

6https://huggingface.co/huggyLLaMA/LLaMA-7b
7https://huggingface.co/datasets/tatsu-lab/alpaca

Tulu 8. We evaluate the model on the MMLU 9 1273

benchmark (Hendrycks et al., 2020), which covers 1274

57 tasks including elementary mathematics, US 1275

history, computer science, and law. 1276

We use a constant learning rate that we tune in 1277

{1e − 5, 2e − 5, 3e − 5, 4e − 5, 5e − 5} for each 1278

method and use a constant scale factor α = 16. 1279

(see Table 11). We use Adam with the default hy- 1280

perparameters (β1 = 0.9, β2 = 0.999, ϵ = 10−8). 1281

Additionally, we use a source and target sequence 1282

length of 512. 1283

Method Alpaca Flan
LoRA 1× 10−4 1× 10−4

GRASS 1× 10−6 5× 10−6

Full 1× 10−5 1× 10−5

GALORE 1× 10−6 1× 10−6

FLORA 1× 10−6 1× 10−6

Table 11: Learning rates for the different methods for instruc-
tion finetuning on Alpaca and Flan-v2.

All experiments use 4 A100 80GB GPUs and 1284

take about 48 GPU hours overall. 1285

Alpaca Prompt Format The ALPACA prompt 1286

format is designed to generate context-dependent 1287

text completions. Here, the prompt consists of a 1288

task description followed by specific input provid- 1289

ing further context. An example of the structured 1290

prompt in ALPACA is provided below: 1291

8https://huggingface.co/datasets/arazd/tulu_flan/
9https://huggingface.co/datasets/cais/mmlu
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ALPACA_PROMPT_DICT = {
"prompt_input": (

"Below is an instruction that describes a
task, paired with an input that provides
further context. Write a response that
appropriately completes the request.
\n\n### Instruction:\n{instruction}\n\n
### Input:\n{input}\n\n### Response: "

),
"prompt_no_input": (

"Below is an instruction that describes a
task. Write a response that appropriately
completes the request.\n\n###
Instruction:\n{instruction} \n\n### Response: "

),
}

Flan Prompt Format The FLAN-v2 dataset in1292

taw JSONLines format, contains detailed conversa-1293

tional exchanges between a user and an assistant.1294

Each line in the raw file represents a single con-1295

versational instance, encapsulated as a JSON ob-1296

ject with multiple messages. Our processing script1297

reads these lines and formats them:1298

• Iterates over each line in the file, parsing the1299

JSON to extract the conversation.1300

• Collects and concatenates all user messages1301

to form the input text for each instance.1302

• Extracts the assistant’s response to form the1303

corresponding output text.1304

• Outputs a simplified JSON structure with ‘in-1305

put‘ and ‘output‘ fields for each conversa-1306

tional instance.1307

H.4 Throughput benchmarking1308

We benchmark pretraining throughput on a single1309

80GB A100 GPU nd an AMD EPYC 7763 64-Core1310

Processor using a total batch size of 1024, rank1311

64, and a sequence length of 256 across models.1312

We use the following per device batch sizes: 60M1313

(256), 350M (64), 1B (16), 7B (16), 13B (1). The1314

7B model runs into OOM when training with Full1315

rank so the estimated throughput is only for the1316

forward and backward pass without an optimizer1317

update (overestimate). GALORE and Full unlike1318

GRASS cannot train 13B model on the 80GB GPU1319

so we skip this data point. The throughput estimate1320

is based on 200 iterations.1321

We benchmark finetuning throughput on a single1322

80GB A100 GPU using a total batch size of 1024,1323

rank 64, and a sequence length 256 across mod-1324

els. We use the following per device batch sizes:1325

60M (256), 350M (64), 1B (16), 7B (16), 13B (1).1326

GRASS< GALORE, and LoRA are only applied to1327

the attention and MLP linear layers while the other1328

weights are set as non-trainable. The throughput1329

estimate is based on 200 iterations. 1330

H.5 Communication benchmarking 1331

For the weak scaling throughput experiments we 1332

use a local batch size of 16, a total batch size of 1333

16 × num_workers and a projection rank of 256 1334

across all methods and model sizes. 1335

H.6 Ablations 1336

For the ablation experiments Effect of Update Fre- 1337

quency and computeP Methods, we pretrain on 1338

using 500M tokens from the RealNews subset of 1339

C4 (Raffel et al., 2020). The RealNews subset10 1340

contains 1.81M lines in the train set and 13.9K 1341

lines in the validation set. 1342

I Experiments: Memory 1343

In Figures Figure 8 and Figure 9, we compare the 1344

finetuning memory footprint of GRASS and LoRA 1345

when finetuning a LLaMA model at various scales 1346

(350M, 1B, 7B) using token batch sizes of 256 and 1347

2048 (4×512), respectively. Both methods are ap- 1348

plied to all linear layers with a fixed rank of 64. In 1349

addition to storing X , the input to the layer, LoRA 1350

requires storage for the activations corresponding 1351

to the low-rank input XA to compute the gradient 1352

of B, where A and B are the low-rank adapters 1353

(Zhang et al., 2023). This results in an additional 1354

memory requirement of 2×bsz×seq_len×r bytes 1355

per linear layer. Our analysis reveals that at larger 1356

batch sizes, activations predominantly contribute 1357

to the memory footprint, resulting in comparable 1358

memory usage between GRASS and LoRA. 1359

J Experiments: Memory estimates 1360

For estimating memory for pretraining we use a 1361

token batch size of 256 and a rank r = 128 across 1362

models. We don’t use the layerwise trick in Zhao 1363

et al. (2024) since this is currently inefficient during 1364

distributed training. As the GPU memory usage for 1365

a specific component is hard to measure directly, 1366

we estimate the memory usage of the weight pa- 1367

rameters and optimizer states for each method on 1368

different model sizes. The estimation is based on 1369

the number of original parameters, the model di- 1370

mensions, and the number of low-rank parameters, 1371

all trained in BF16 format. 1372

As an example, to estimate the memory require- 1373

ments for the 13B model, we compute memory 1374

10https://huggingface.co/datasets/allenai/c4
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Figure 8: LLaMA finetuning memory footprint of GRASS and LoRA for rank r = 64, sequence length 256, batch size 1.

Figure 9: LLaMA finetuning memory footprint of GRASS and LoRA for rank r = 64, sequence length 512, batch size 4.

consumption across different components: activa-1375

tions, parameters, gradients, and optimizer states.1376

Parameter Definitions Let the following vari-1377

ables define our model’s configuration:1378

• L: sequence length (256)1379

• B: batch size (1)1380

• D: model hidden size (5120)1381

• N : number of layers (40)1382

• H: number of attention heads (40)1383

• V : vocabulary size (32000)1384

J.1 Activation Memory Calculation1385

The activation memory calculation is conducted by1386

accounting for each significant computation within1387

the model layers, including attention mechanisms1388

and feed-forward networks. Each term in Figure 101389

considers the BF16 precision used for storing the1390

activations.1391

J.2 Memory Calculation for Parameters and1392

Gradients1393

Memory for parameters and gradients is estimated1394

as follows:1395

• Total number of parameters across all layers:1396

Computed by summing up all parameter ten- 1397

sors within the model. 1398

• Parameter memory in bytes: Total number of 1399

parameters multiplied by 2 (assuming BF16 1400

precision). 1401

• Gradient memory: Typically equals the pa- 1402

rameter memory if all parameters are trainable 1403

and gradients are stored in BF16. 1404

J.3 Optimizer State Memory Calculation 1405

• Depending on the optimizer and adaptation 1406

method (e.g., GRASS), the memory required 1407

for the optimizer state can vary. For some 1408

methods, it may include additional states for 1409

each parameter. 1410

• For GRASS, which applies rank adaptations, 1411

we compute additional memory requirements 1412

for storing low-rank factorizations and any 1413

extra state elements. 1414

J.4 Total Memory Estimation 1415

The total memory required for the model during 1416

training is calculated by summing the memory for 1417

parameters, gradients, activations, and optimizer 1418

states, along with any additional memory overhead 1419
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Layer Normalization = B · L ·D · 2
Embedding Elements = B · L ·D

QKV = Embedding Elements · 2
QKT = 2 · Embedding Elements · 2

Softmax = B ·H · L2 · 2

PV =
Softmax

2
+ Embedding Elements · 2

Out Projection = Embedding Elements · 2
Attention Block Activation = Layer Normalization + QKV + QKT + Softmax + PV + Out Projection

FF1 = Embedding Elements · 2
GELU = Embedding Elements · 4 · 2

FF2 = Embedding Elements · 4 · 2
Feed-Forward Activation = Layer Normalization + FF1 + GELU + FF2

Final Layer Activation = Embedding Elements · 2
Model Activations = Layer Normalization + (N · (Attention Block Activation + Feed-Forward Activation))

+ Final Layer Activation

Cross-Entropy Loss = B · L · V · 2 +B · L · V · 4
Total Cross-Entropy = Cross-Entropy Loss

Total Activation Memory = Model Activations + Total Cross-Entropy

Figure 10: Activation memory estimation for the different baselines.

Figure 11: Rank vs Pretraining Throughput for GRASS, LoRA
and GALORE across 60M, 350M, 1B and 7B model sizes.

as per the adaptation method used.1420

For GRASS applied to the 13B model, the mem-1421

ory costs are detailed as follows:1422

• Total Parameters: Approximately 13 Billion1423

• Activation Memory: 1936.25 MB1424

• Parameter Memory: 24825.79 MB1425

• Gradient Memory: 3425.79 MB1426

• Optimizer State Memory: 6851.58 MB1427

• Extra Memory (for largest parameter tensor):1428

312.50 MB1429

• Total Memory: 37351.91 MB1430

Figure 12: Rank vs LoRA Normalized Finetuning Through-
put for GRASS and GALORE across 60M, 350M, and 1B
model sizes

K Experiments: Throughput 1431

Figure 11 compares the normalized pretraining 1432

throughput (using the Full model) of GRASS and 1433

GALORE across 60M, 350M, and 1B model sizes. 1434

We find that the throughput advantage of GRASS 1435

over GALORE and Full is > 25% for the 1B model 1436

at rank 64. The throughput approaches that of the 1437

full model, as model size decreases or projection 1438

rank increases. 1439

Figure 12 compares the finetuning throughput 1440

across ranks 8, 16,32, and 64 for the GRASS, GA- 1441

LORE, and LoRA baselines. For the ranks com- 1442

monly used for finetuning (8-64) the throughput 1443
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Train Perp Eval Perp

Full-Rank 33.48 31.41
GRASS 33.52 32.17
GALORE 33.68 32.10
ReLoRA 34.30 34.19
FLORA 35.91 35.62
CountSketch 36.97 36.93

Table 12: Comparison of various baselines using 1B LLaMA
model validation perplexity. All models are pretrained on
500M tokens of the RealNews subset of C4. r/dmodel is
256/2048. Best baseline is bolded.

advantage of GRASS remains about the same.1444

L Experiments: Additional Ablations1445

Comparison with other baselines In Table 12,1446

we report the validation perplexity of various other1447

baselines on a LLaMA 1B pretraining task on the1448

RealNews subset of C4. The attention and feedfor-1449

ward layers in all models are projected to a rank of1450

256, or use low rank adapters of this rank. We find1451

that the training perplexities are lower while the1452

validation perplexities are higher than in Table 5 for1453

the 60M model due to overfitting on the RealNews1454

dataset. All models use an update frequency of 200,1455

and we tune the learning rate and scale factor α per1456

model.1457

In addition to GRASS and GALORE, we1458

also include the ReLoRA baseline (Lialin et al.,1459

2023) without any full-rank training warmup, the1460

FLORA baseline where P has entries drawn from1461

N (0, 1/r), and the CountSketch baseline where1462

P⊤ is a CountSketch matrix with r rows with1463

one nonzero entry from {±1} per column. The1464

CountSketch projection has been applied to em-1465

bedding layer gradients which are sparse in prior1466

work (Spring et al., 2019), but shows larger vari-1467

ance and poorer convergence rates for dense gradi-1468

ents.1469

We see that GRASS is competitive with GA-1470

LORE, while ReLoRA, FLORA, and CountSketch1471

fall short. One way to interpret this is in terms of1472

variance of the gradient sketches— GRASS being1473

data dependent and based on leverage scores or row1474

importance norms can better approximate the gra-1475

dient low rank subspace than a data agnostic sketch1476

like FLORA or CountSketch (Woodruff, 2014).1477

GRASS with Adafactor We pretrain the LLaMA1478

1B model with GRASS and Full-rank on the Re-1479

alnews subset of C4 using the Adafactor opti-1480

Figure 13: Pretraining LLaMA 1B on Realnews C4 subset
with Adafactor.

mizer (Shazeer and Stern, 2018) in BF16. Adafac- 1481

tor achieves sub-linear memory cost by factoriz- 1482

ing the second-order statistics using a row-column 1483

outer product. 1484

For GRASS we use learning rate 0.005, α = 1485

0.25, r = 256, K = 200, batch size 512, opti- 1486

mizer restart with a restart warmup of 100 steps 1487

and no initial warmup. For Full-rank training, we 1488

use learning rate 0.0005, batch size 512, initial 1489

warmup steps 1000. 1490

In Figure 13 we report the train perplexity and 1491

see that GRASS is within 2 perplexity points of 1492

Full-rank. 1493

Coverage of indices. In Figure 14, we plot the 1494

coverage defined as the union of indices sampled 1495

over n update projection steps divided by the to- 1496

tal indices per layer. We plot the coverage for the 1497

60M LLaMA model pretrained on the C4 Real- 1498

News subset, for n = 15 updates. Here the rank 1499

r = 128, K=200, and matrix dimension is 512 in- 1500

dicating that 97.66% is the theoretical coverage for 1501

uniform sampling with replacement (Appendix M). 1502

All sampling methods exhibit good coverage with 1503

the Multinomial-Norm2-NR being close to uniform. 1504

Top-k and Multinomial oversample indices in cer- 1505

tain layers, suggesting potential areas for further 1506

investigation into their utility in pruning strategies. 1507

In Figure 15 and Figure 16 we plot the aggre- 1508

gated sampled indices over 15 iterations of 60M 1509

LLaMA pretraining on the RealNews subset of C4. 1510

We see that while Multinomial with no replacement 1511

and Top-k attain similar performance in terms of 1512

perplexity the sampled indices can be quire differ- 1513

ent, with Top-k tending to oversample indices in 1514

particular layers. 1515
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Figure 14: Per layer indices coverage (Distinct/Total) for the
sampling strategies across 100 pretraining iterations.

M Analyzing Coverage1516

We analyze the coverage of indices for a uniform1517

sampling process with replacement. Here 128 in-1518

dices (rank r) are randomly chosen from a total of1519

512 possible indices (model dimension d), with this1520

process being repeated across 15 iterations (number1521

of iterations k).1522

The probability P (i) that a specific index i is not1523

chosen in one individual selection from 512 indices1524

is P (i) = 1 − 1
512 This reflects the independent1525

probability for each draw within an iteration. Given1526

that each iteration comprises 128 selections, the1527

probability P128(i) that index i is not picked dur-1528

ing one full iteration is: P128(i) =
(
1− 1

512

)128
1529

Extending this to 15 iterations, the probability1530

P15×128(i) that index i is never selected during1531

the entire sampling process is: P15×128(i) =1532 ((
1− 1

512

)128)15 Thus, the probability that an in-1533

dex is selected at least once throughout the 15 it-1534

erations is given by: Pselected(i) = 1− P15×128(i)1535

Thus 97.66% of the indices are expected to be sam-1536

pled at least once over the course of 15 iterations,1537

indicating substantial coverage.1538

Figure 15: Multinomial Sampling without Replacement:
Heatmap of indices sampled for the different layers across
15 iterations of LLaMA 60M C4 pretraining.

Figure 16: Top-k Sampling: Heatmap of indices sampled for
the different layers across 15 iterations of LLaMA 60M C4
pretraining.
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