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Abstract

Metamaterials are emerging as a new paradigmatic material system, providing
unprecedented and customizable properties for various engineering applications.
However, the inverse design of metamaterials, which aims to retrieve the meta-
material microstructure according to a given electromagnetic response, is very
challenging as it is non-trivial to unveil the nonintuitive and intricate relation-
ship between the microstructures, and their functional responses. In this study,
we resolve this critical problem by extending the classic conditional variational
autoencoder for discrete responses to a more general version that can handle func-
tional responses. By encoding microstructures and their electromagnetic response
curves into common latent spaces via deep neural networks and aligning them via
a specific loss function, the proposed functional response conditional variational
autoencoder can unveil the implicit relationship between microstructures and their
electromagnetic responses efficiently. The proposed novel learning framework
not only facilitates metamaterial design greatly by avoiding the time-consuming
case-by-case numerical simulations in the traditional forward design, but also has
the potential to resolve other problems with similar structures.

1 Introduction

Metamaterials are macroscopic composites that contain artificial, three-dimensional, periodic (or
not) unit-cell patterns engineered to produce optimized responses to a specific excitation that is
unseen in natural materials [1–4]. Due to their great potentials to manipulate electromagnetic waves,
metamaterials have drawn great interests in achieving novel physics phenomenon [5], and become a
breakthrough technology to realize unique functionality in various fields [6–12].

Like atoms forming a molecule in natural materials, metamaterials with various microstructures (i.e,
facility topologies) can lead to different response curves. To be concrete, for a microstructure with
facility topology x, its responses to electromagnetic wave of different frequencies form a complex
response curve y. The laws of physics determine that there exists a deterministic function y = f(x)
that maps the facility topology x to its response curves y. In the forward design of metamaterials, we
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Figure 1: The proposed model for metamaterial design, characterization and classification.

aim to learn the unknown mapping function f(·), i.e., predict y for a given x; in the inverse design,
we focus on learning the inverse mapping f−1(·) instead, i.e., finding an appropriate x in a pre-given
design space X whose response curves y is close enough to given target response y∗.

In practice, researchers and designers utilize full-wave simulations via finite element method (FEM) to
obtain mapping pairs of facility topology and its response curves in high-throughput, and try to learn
the forward or inverse mapping functions, i.e., f(·) or f−1(·), from the simulated data. Consider the
design space X as the assemble of all images with L× L binary pixels, where the black pixels stand
for substrate, while the white ones are metal material. Figure 1 demonstrates a typical microstructure
of the I-shape and the corresponding response curves composed of four channels (two magnitude
channels and two phase channels). More microstructures of different topology types are illustrated in
Figure 2 and Figure 3. For a collection of design points x1, ..,xn ∈ X , let τi be the topology type
of xi (e.g., I-shape, hexagon-shape and so on), and yi = f(xi) being the corresponding response
curves obtained via FEM simulation. Our goal in this study is to learn the inverse mapping function
f−1(·) from a collection of triplets {(τi,xi,yi)}ni=1.

Leveraging on the quick development of deep neural network (DNN) in recent years, DNN-based
inverse design via variational auto-encoder (VAE) [13] and conditional variational auto-encoder
(CVAE) [14] has gained great successes in a broad range of applications [15–20]. However, available
methods for inverse design based on CVAE assume that the responses are discrete classification labels,
and cannot handle complex response curves as encountered here. In this work, we fill in this gap by
proposing a novel CVAE framework with functional responses as conditional input (referred to as
FR-CVAE) that can successfully map the unstructured design space X and the complex functional
response space Y = {y = f(x) : x ∈ X}. A series of simulation experiments confirm that the
proposed method is effective to achieve high-quality inverse design for metamaterials.

2 Method

Figure 1 illustrates the overall architecture of the proposed FR-CVAE, which is composed of four
components: (1) an encoding network of x, ϕα : x → z, that maps a design x ∈ X to a lower
dimension latent space representation z ∈ Z (Z ∈ Rp), which can also be expressed as an encoding
distribution qα(z|x) = N(µz(x, ϕα), σ

2
z(x, ϕα) · Ip), (2) an encoding network of y referred to as

ϕβ : y→ z, that embeds the functional response y into the same latent space Z via another encoding
distribution qβ(z|y) = N(µz(y, ϕβ), σ

2
z(y, ϕβ) · Ip), (3) a decoding network ϕγ : z → x, that

generates an image x̂ ∈ X from z ∈ Z via a decoding distribution qγ(x|z) over the design space
X , and (4) a classifier ϕψ : y → pτ which shares the network of ϕβ except its last layer and utilize
a linear layer parameterized by ψ and softmax function to generate the classification probability of
topology types, pτ . Let Θ = (α,β,γ,ψ) denote all parameters involved in the model.

Among the four involved networks, the encoding network ϕα, and the decoding network ϕγ , are
exactly same as in the classic CVAE [14]. However, unlike the traditional CVAE using discrete
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classification label as condition input [14], the proposed FR-CVAE introduces an extra encoder
network ϕβ, to take care of the complex responses, which are continuous curves, and an additional
classifier, i.e., ϕψ , to format multi-task learning to guide the encoding process of ϕβ. In principle, we
can specify ϕβ with any DNN that can convert a high-dimensional response curve y into the latent
space Z . Here, we choose the Swin-Transformer [21] as the encoding network ϕβ, considering its
effectiveness to capture complicated patterns from sequence data due to its attention mechanism.

The loss function of FR-CVAE is composed of three components. The first component is the
reconstruction loss Lx(α,γ), which plays exactly the same role as in the classic VAE or CVAE. For
the i-th data point (τi,xi,yi), the Lx loss has the the following form:

Lx(α,γ;xi) = −
∫ [

log qγ(xi|z)
]
dqα(z|xi), (1)

where the integration is about the latent vector z over the whole latent spaceZ . The second component
Ly(β,ψ) is classification loss for y, the cross-entropy loss LCE [22] enhanced by an additional
triplet loss LTriplet [23], i.e.,

Ly(β,ψ; τi,yi) = LCE(β,ψ; τi,yi) + LTriplet(β; τi,yi). (2)

The third component Lx∼y(α,β) is applied to stabilize and align the stochastic encoding of x and y
via

Lx∼y(α,β;xi,yi) = w1 ·KL
(
qα(·|xi)||π0(·)

)
+ w2 ·KL

(
qα(·|xi)||qβ(·|yi)

)
, (3)

where the first KL divergence plays the role of stabilization as in the ordinary VAE, since it forces the
stochastic encoding function qα(·|xi) of every xi to be close to a pre-given distribution π0 (which
is typically the stand normal distribution on Z), while the second one connects the encoding of xi

and yi via distribution alignment. Assembling all these components together, we come up with the
following joint loss function:

L (Θ | {(τi,xi,yi)}ni=1) =

n∑
i=1

{Lx(α,γ;xi) + Ly(β,ψ; τi,yi) + Lx∼y(α,β;xi,yi)}. (4)

In practice, w1 and w2 in Eq. (3) need to be properly specified to adjust the relative weight of the
Lx∼y loss. We simply set w1 = w2 = 1 in this study. We also note that the proposed FR-CVAE
would degenerate to VAE of x if we remove the alignment loss by setting w2 = 0. The proposed
FR-CVAE can be trained in a similar way as CVAE. The complete training procedure is detailed in
Algorithm 1.

Algorithm 1 Conditional Variational Auto-Encoding for Functional Responses Optimization

Input: training data set {τi,xi,yi}ni=1, batch size M , and loss weights (w1, w2)
Initialization: random initialized Θ0 = (α0,β0,ψ0,γ0).
Output: parameters (α∗,β∗,ψ∗,γ∗).

1: repeat
2: Sample (τ ,X,Y)← Random minibatch drawn from full dataset;
3: Encoder of X: µz(X),Σz(X)← ϕα;
4: Encoder of Y (Swin-Transformer): µz(Y),Σz(Y)← ϕβ;
5: Classifier: τ̂ ← ϕψ;
6: Sample zx ← µz(X) + ϵ⊙ (Σz(X))

1
2 , ϵ ∼ N (0, I);

7: Sample zy ← µz(Y) + ϵ⊙ (Σz(Y)))
1
2 , ϵ ∼ N (0, I);

8: Decoder: X̂← ϕγ ;
9: Compute the loss L(Θ | τ ,X,Y) according to Eq. (4)

10: Back-propagate the gradients.
11: until maximum iteration reached

3 Experiments

3.1 Experimental Setup

Dataset Simulated response curves of 61,992 microstructure patterns belonging to 30 topology
types (e.g., I-shape, cross shaped, split ring, circular, etc.) were collected to support this study. On
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Figure 2: Numerical evaluation of the proposed model with ϕβ being Swin-Transformer. 1-30
represent the topology types, each of which contains samples from the test data set.

Figure 3: On-demand inverse design. The two insets are the ground-truth design patterns (up) whose
response curves are solid blue and retrieved design patterns (down) with dashed yellow curves.

average, about 2,000 simulated response curves were collected for each topology type at different
scales. The image of every involved microstructure pattern was encoded into a 200 × 200 binary
matrix, and the corresponding response curves are the real and imaginary part of scatter parameters,
S11 and S21, over the frequency region of 0.1-30GHz, formatting as a 4× 1001-dimensional vector.

Implementation Details We randomly selected 80% of the collected data (i.e., 49,594 microstruc-
tures with their corresponding response curves) to train the proposed FR-CVAE, and used the rest
20% for testing. The training is performed via Adam optimizer [24] through minibatch gradient
descent for 1,000 epochs with the batch size set to be 256, which takes about fifteen hours by using 2
Nvidia Telsa P100 16GB GPU cards.

3.2 Experimental Results

Classification and Similarity The bar-plots in Figure 2 summarize the quality of inverse design
based on the proposed FR-CVAE with Swin-Transformer (results of MLP based functional response
encoder shown as Figure A2) for each of the 30 topology types: the light blue bars show the
classification accuracy that the generated structures belong to the ground true topology type, the dark
blue bars report the average cosine similarity between the two embedding vectors of the generated
and ground true microstructure. The proposed FR-CVAE achieves high-quality results in both
perspectives for most topology types, suggesting that designs very close to the ideal ones can be
successfully captured.

On-demand Inverse Design To further check whether the generated microstructures can indeed
produce response curves that are close to the target response curves, we visualize the response curves
of a few generated microstructures versus their target response curves in Figure 3, with the images of
the generated and ground true microstructure showed side by side as well. From the figure we can
see clearly that most of the generated microstructures have a clear and feasible configuration and the
generated designs reproduce the corresponding input response curves with high fidelity, which means
the trained FR-CVAE model can effectively link the microstructure design and response curve through
the probabilistic representation by latent variables and even preserve some fine features. However, it
can also be noted that some generated microstructures have blurred regions on the boundary, which is
a common phenomenon for generative models with a log-likelihood loss function [25].
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A Appendix

Figure A1: Architecture of the proposed deep generative model.

Figure A2: Numerical evaluation of the proposed model with ϕβ being MLP.
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