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Abstract

Detecting out-of-distribution (OOD) samples is vital for developing machine learn-
ing based models for critical safety systems. Common approaches for OOD
detection assume access to some OOD samples during training which may not be
available in a real-life scenario. Instead, we utilize the predictive normalized maxi-
mum likelihood (pNML) learner, in which no assumptions are made on the tested
input. We derive an explicit expression of the pNML and its generalization error,
denoted as the regret, for a single layer neural network (NN). We show that this
learner generalizes well when (i) the test vector resides in a subspace spanned by
the eigenvectors associated with the large eigenvalues of the empirical correlation
matrix of the training data, or (ii) the test sample is far from the decision boundary.
Furthermore, we describe how to efficiently apply the derived pNML regret to any
pretrained deep NN, by employing the explicit pPNML for the last layer, followed by
the softmax function. Applying the derived regret to deep NN requires neither addi-
tional tunable parameters nor extra data. We extensively evaluate our approach on
74 OOD detection benchmarks using DenseNet-100, ResNet-34, and WideResNet-
40 models trained with CIFAR-100, CIFAR-10, SVHN, and ImageNet-30 showing
a significant improvement of up to 15.6% over recent leading methods.

1 Introduction

An important concern that limits the adoption of deep neural networks (DNN) in critical safety
systems is how to assess our confidence in their predictions, i.e, quantifying their generalization
capability (Kaufman et al., [2019; Willers et al.| 2020). Take, for instance, a machine learning model
for medical diagnosis (Bibas et al.| | 2021)). It may produce (wrong) diagnoses in the presence of test
inputs that are different from the training set rather than flagging them for human intervention (Singh
et al.,[2021)). Detecting such unexpected inputs had been formulated as the out-of-distribution (OOD)
detection task (Hendrycks and Gimpel, 2017), as flagging test inputs that lie outside the training
classes, i.e., are not in-distribution (IND).

Previous learning methods that designed to offer such generalization measures, include VC-
dimension (Zhong et al., 2017 |Vapnik and Chervonenkis| |[2015) and norm based bounds (Neyshabur
et al.|[2018; Bartlett et al., 2017). As a whole, these methods characterized the generalization ability
based on the properties of the parameters. However, they do not consider the test sample that is
presented to the model (Jiang et al., |2020), which makes them useless for OOD detection. Other
approaches build heuristics over the empirical risk minimization (ERM) learner, by post-processing
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the model output (Sastry and Oore, [2020)) or modifying the training process (Papadopoulos et al.|
2021;|Vyas et al.L[2018)). Regardless of the approach, these methods choose the learner that minimizes
the loss over the training set. This may lead to a large generalization error because the ERM estimate
may be wrong on unexpected inputs; especially with large models such as DNN (Belkin et al.,2019).

To produce a useful generalization measure, we exploit the individual setting framework (Merhav and
Feder, |1998)). In the individual setting, there is no assumption about how the training and the test data
are generated, nor about their probabilistic relationship. Moreover, the relationship between the labels
and data can be deterministic and may therefore be determined by an adversary. The generalization
error in this setting is often referred to as the regret (Merhav and Feder} |1998)). This regret is defined
by the log-loss difference between a learner and the genie: a learner that knows the specific test label,
yet is constrained to use an explanation from a set of possible models. The individual setting is the
most general framework and so the result holds for a wide range of scenarios. Specifically, the result
holds to OOD detection where the distribution of the OOD inputs is unknown.

The pNML learner (Fogel and Feder, [2018)) was proposed as the min-max solution of the regret,
where the minimum is over the learner choice and the maximum is for any possible test label value.
Intuitively, the pPNML assigns a probability for a potential outcome as follows: Add the test sample to
the training set with an arbitrary label, find the ERM solution of this new set, and take the probability
it gives to the assumed label. Follow this procedure for every label and normalize to get a valid
probability assignment. The pNML was developed before for linear regression (Bibas et al., 2019b)
and was evaluated empirically for DNN (Fu and Levine| |2021} |Bibas et al.,[2019a).

We derive an analytical solution of the pNML learner and its generalization error (the regret) for a
single layer NN. We analyze the derived regret and show it obtains low values when the test input
either (i) lies in a subspace spanned by the eigenvectors associated with the large eigenvalues of the
training data empirical correlation matrix or (ii) is located far from the decision boundary. Crucially,
although our analysis focuses on a single layer NN, our results are applicable to the last layer of
DNNs without changing the network architecture or the training process: We treat the pretrained
DNN as a feature extractor with the last layer as a single layer NN classifier. We can therefore show
the usage of the pNML regret as a confidence score for the OOD detection task.

To summarize, we make the following contributions.

1. Analytical derivation of the pNML regret. We derive an analytical expression of the
pNML regret, which is associated with the generalization error, for a single layer NN.

2. Analyzing the pNML regret. We explore the pPNML regret characteristics as a function of
the test sample data, training data, and the corresponding ERM prediction. We provide a
visualization on low dimensional data and demonstrate the situations in which the pNML
regret is low and the prediction can be trusted.

3. DNN adaptation. We propose an adaptation of the derived pNML regret to any pretrained
DNN that uses the softmax function with neither additional parameters nor extra data.

Applying our pNML regret to a pretrained DNN does not require additional data, it is efficient and can
be easily implemented. The derived regret is theoretically justified for OOD detection since it is the
individual setting solution for which we do not require any knowledge on the test input distribution.
Our evaluation includes 74 IND-OOD detection benchmarks using DenseNet-BC-100, ResNet-34,
and WideResNet-40 trained with CIFAR-100, CIFAR-10, SVHN, and ImageNet-30. Our approach
outperforms leading methods in nearly all 74 OOD detection benchmarks up to a remarkable +15.2%

2 Related work

OOD detection. Many recent work use additional OOD set in training (Malinin and Gales|, [2018};
Hendrycks et al.l 2019a; Nandy et al., 2020; Mohseni et al., [2020). A well-known method for OOD
detection, named ODIN (Liang et al.,|2018), manipulates the input image based on the gradient of
the loss function. This input manipulation increases the margin between the maximum probability of
images with known classes and images with unknown objects. However, the manipulation strength is
defined by OOD data, which might be unavailable or different from the OOD samples in inference.



Different approaches propose to manipulate the loss function in the training phase. [Lee et al.|(2018)
proposed to use the Mahalanobis distance between the test input representations and the class
conditional distribution in the intermediate layers to train a logistic regression classifier to determine
if the input sample is OOD. The Energy method (Liu et al.,2020) adds a cost function to the training
phase to shape the energy surface explicitly for OOD detection. [Papadopoulos et al.|(2021)) suggested
the outlier exposure with confidence control (OECC) method in which a regularization term is added
to the loss function such that the model produces a uniform distribution for OOD samples.

All mentioned methods require manipulating the DNN architecture or adding additional data. The
Baseline method (Hendrycks and Gimpel, |2017) is one of the earliest approaches designed to identify
whether a test input is IND and does not require changing the pretrained model. This method uses
the maximum probability of the DNN output as the OOD score. The Gram method (Sastry and
Oore}, 2020) detects OODs based on feature representations obtained in intermediate layers. Given a
test sample, the Gram matrices of the test sample features are compared with those of the training
samples known to belong to the estimated class of the test sample. However, this method requires
IND validation set and does not have a theoretical motivation.

Other work suggested using Bayesian techniques to estimate the prediction confidence (Gal and
Ghahramani|, [2016; Lakshminarayanan et al., [2017; van Amersfoort et al., [2020). However, the
Bayesian techniques add extensive compute overhead to the prediction.

The pNML learner. The pNML learner is the min-max solution of the supervised batch learning in
the individual setting (Fogel and Feder, 2018)). For sequential prediction it is termed the conditional
normalized maximum likelihood (Rissanen and Roos| 2007 [Roos and Rissanenl [2008)).

Several methods deal with obtaining the pNML learner for different hypothesis sets. [Bibas et al.
(2019b) and Bibas and Feder| (2021]) showed the pNML solution for linear regression. [Rosas et al.
(2020) proposed an NML based decision strategy for supervised classification problems and showed
it attains heuristic PAC learning. |[Fu and Levine| (2021) used the pNML for model optimization based
on learning a density function by discretizing the space and fitting a distinct model for each value.

For the DNN hypothesis set, |[Bibas et al.| (2019a)) estimated the pNML distribution with DNN by
fine-tuning the last layers of the network for every test input and label combination. This approach
is computationally expensive since training is needed for every test input. Zhou and Levine|(2020)
suggested a way to accelerate the pPNML computation in DNN by using approximate Bayesian
inference techniques to produce a tractable approximation to the pPNML. Pesso et al.| (2021) used the
pNML with adversarial target attack as a defense mechanism against adversarial perturbation.

3 Notation and preliminaries

In the supervised machine learning scenario, a training set consisting of NV pairs of examples is given

Dy = {(xn,yn)}ﬁ’:p Tn €X, yn €D, (1)

where z,, is the n-th data instance and y,, is its corresponding label. The goal of a learner is to predict
the unknown test label y given a new test data x by assigning probability distribution ¢(+|z) to the
unknown label. The performance is evaluated using the log-loss function

U(q;w,y) = —logq(y|z). (2)

For the problem to be well-posed, we must make further assumptions on the class of possible models
or hypothesis set that is used to find the relation between = and y. Denote © as a general index set,
this class is a set of conditional probability distributions

Pe = {py(ylz), 0 € O}. (3)

The ERM is the learner from the hypothesis set that attains the minimal log-loss on the training set.

The individual setting. An additional assumption required to solve the problem is related to how
the data and the labels are generated. In this work we consider the individual setting (Merhav and
Feder, [1998; [Fogel and Feder, 2018} [Bibas et al., |2019blja), where the data and labels, both in the
training and test, are specific individual quantities: We do not assume any probabilistic relationship
between them, the labels may even be assigned in an adversarial manner.



The genie. In the individual setting the goal is to compete with a reference learner, a genie, that has
to following properties: (i) knows the test label value, (ii) is restricted to use a model from the given
hypotheses set Pg, and (iii) does not know which of the samples is the test. This reference learner
then chooses a model that attains the minimum loss over the training set and the test sample

N
0(Dy:w,y) = arg min lé (po; z,y) + Y £ (Po; Ty yn) | - )

n=1

The regret is the log-loss difference between a learner ¢ and this genie:

R(q; Dia,y) = —10g a(yle) — [~ 108Dy, ) (Wl2)] )
Theorem 1 (Fogel and Feder| (2018))). The universal learner, denoted as the pNML, minimizes the

regret for the worst case test label

I' = R*(Dy,z) = minmax R(q; Dn; x,y). (6)
q yey

The pNML probability assignment and regret are

pé(DN'fL’ y) (y|x) ’
G (Y] ) = — o D=log ) pypyiwy) W) 9]
p Zy/e)} PéDrio) (' |2) y% (Dnsz,y")
Proof. The regret is equal for all choices of y. If we consider a different probability assignment, it
should assign a smaller probability for at least one of the outcomes. If the true label is one of those
outcomes it will lead to a higher regret. For more information see |Fogel and Feder| (2018)). [

The pNML regret is associated with the model complexity (Zhang, [2012). This complexity measure
formalizes the intuition that a model that fits almost every data pattern very well would be much
more complex than a model that provides a relatively good fit to a small set of data. Thus, the pNML
incorporates a trade-off between goodness of fit and model complexity as measured by the regret.

Online update of a neural network. Let Xy and Yy be the data and label matrices of N training
points respectively

]T c RNxM

XN:[{L‘l X2 ... XN s YN:[yl Y2 ... yN]TERNXC, (8)

such that the number of input features and model outputs are M and C respectively. Denote X ]t as
the Moore—Penrose inverse of the data matrix

wo _ JOXXN)TIXT Rank(X(Xw) = M
N\ X(XNX Y)Y otherwise,

(€))
f(-) and f~1(-) as the activation and inverse activation functions, and § € R**¢ as the learnable
parameters. The ERM, that minimizes the training set mean squared error (MSE), is

On = XL HYn) = argamin Yy — F(XN0)])3. (10)
Recently, Zhuang et al.|(2020) suggested a recursive formulation of the DNN weights. Using their

scheme only one training sample is processed at a time: Denote the projection of a sample x onto the
orthogonal subspace of the training set correlation matrix as

v, =(I—-X5Xn)z, (11)
the update rule when receiving a new training sample with data x with label y is
1
. . . et A} ) #0
0(Dn;z,y) =0n +yg (f_l(y) - $T9N) , g& T +y+T - (12)
TR IxT e NN & w1 =0

In their paper, |Zhuang et al.|(2020) applied this formulation for a DNN, layer by layer.



4 The pNML for a single layer NN

Intuitively, the pNML as stated in can be described as follows: To assign a probability for a
potential outcome, (i) add it to the training set with an arbitrary label, (ii) find the best-suited model,
and (iii) take the probability it gives to the assumed label. Follow this procedure for every label and
normalize to get a valid probability assignment. Use the log normalization factor as the confidence
measure. This method can be extended to any general learning procedure that generates a prediction
based on a training set. One such method is a single layer NN.

A single layer NN maps an input z € R**! using the softmax function to a probability vector which
represents the probability assignment to one of C' classes

9;:8
polile) = f(@0)i = o i €{l,....C} (13)
Zj—le ’

To align with the recursive formulation of (I2), the label y is a one-hot vector with C' elements and is
represented by a row vector in the standard base {e; }$; (the i-th element is 1 and all others are 0). ¢
stands for the true test label such that e, is the one-hot vector of the true label. Also, the learnable

parameters {91-}?:1 are the columns of the parameter matrix of l|

We would like that the probability assignment of the true label to be 1. We define the following MSE
minimization objective

N
2
i 1- n QT n - 14
ggg;( yaf (07 2n)) (14)
Minimizing this MSE objective is equivalent to constrain the genie to the following Gaussian family

P@—{pg(yx)—\/Q;Texp{ 212 (ee (y— f(a" )))2},9€RMXC} (15)

and minimizing the log loss with respect to it. More details are in appendix |A| The inverse of the
activation function is

c
22 71 (pg (ix)) = Inpy (i|:v)+1nZeeaT:”. (16)
j=1
To compute the genie, we assume that the label of the test sample is known and add it to the training
set. We fit the model by optimizing the learnable parameters to minimize the loss of this new set.
Lemma 1. Given test data x with label y = e, the genie prediction of the true label is
Pc
Dg(p \T,y=€c (C|I) = =T ) (17)
(Prvic=e.) pe+pe ¢ (1—pe)
where p, is the probability assignment of the ERM model of the label ¢, and g is as defined in (I2)).

Proof. Using (I2)), the probability assignment of the genie can be written as follows.

é(DN;r,y:ec)Tz eIT[echg(Z*@;rr)]

_ ] .
i1 €l dPrmy=e)Te T 5 blw y en T etg(z-00 )

J#c
(18)
The genie knows the true test label e.. The inverse activation function can be written as z = In S

pé(DN;Ly:ec)(dx) -

where S £ Z —1€ 0/ The simplified numerator is
Ty
efever 9(2=60z) _ Ola [Se_OT } = SP_T Ipe. (19)
Substituting to (I8)) and divide the numerator and denominator by S provides the result. O
The true test label is not available to a legit learner. Therefore, in the pPNML process, every possible

label is taken into account. The pNML regret is the logarithm of the sum of models’ prediction, each
one trained with a different test label value.



Theorem 2. Denote p; as the ERM prediction of label i, the pNML regret of a single layer NN is

C
Di

T :
= pi+py T (1 —pi)

I' =log (20)

Proof. The normalization factor is the sum of the probabilities assignment of models that were
trained with a specific value of the test sample K = Zlc:1 Pi(Drysy—en) (i T)- Using Theorem the
log normalization factor is the pPNML regret. With lemma[T] we get the explicit expression. O

The pNML probability assignment of label 7 € {1,...,C} is the probability assignment of a model
that was trained with that label divided by the normalization factor g,n(i|z) = %p; (D) Y1)

Let u,,, and h,,, be the m-th eigenvector and eigenvalue of the training set data matrix Xy such that
for x; = 0, the quantity = " g is

2
ng o Z’TX;XJJ'\}T-’L’ B N Zm 1 h2 ( Tum) Q1)
L+aTX X Te 14 N Zi=1 nZ (mTum)Q

We make the following remarks.

1. If the test sample x lies in the subspace spanned by the eigenvectors with large eigenvalues,

x T g is small and the corresponding regret is low lim,+ g—o ' =log ZZ 1 pi = 0. In this
case, the pNML prediction is similar to the genie and can be trusted.

2. Test input that resides is in the subspace that corresponds to the small eigenvalues produces
2T g = 1 and a large regret is obtained lim,+ g—1 1 =log ZZ 1 2 . The prediction for

this test sample cannot be trusted. In section 5| we show that in this 51tuat10n the test sample
can be classified as an OOD sample.

3. As the training set size (IV) increases = | g becomes smaller and the regret decreases.

4. If the test sample is far from the decision boundary, the ERM assigns to one of the labels
probability 1. In this case, the regret is 0 no matter in which subspace the test vector lies.

4.1 The pNML regret characteristics using a low-dimensional dataset

We demonstrate the characteristics of the derived regret and show in what situations the prediction of
the test sample can be trusted. To visualize the pNML regret on a low-dimensional dataset, we use
the Iris flower data set (Fisher, |1936)). We utilize two classes and two features and name them cy, ¢,
and feature 1, feature 2 respectively.

Figure [Ta] shows the ERM probability assignment of class ¢, for a single layer NN that was fitted to
the training data, which are marked in red. At the top left and bottom right, the model predicts with
high probability that a sample from these areas belongs to class c¢; and cs respectively.

Figure[IDb] presents the analytical pNML regret. At the upper left and lower right, the regret is low:
Although there are no training samples there, these regions are far from the decision boundary, adding
one sample would not alter the probability assignment significantly, thus the pNML prediction is
close to the genie. At the top right and bottom left, there are no training points therefore the regret
is relatively high and the confidence in the prediction is low. In section[5} we show that these test
samples, which are associated with high regret, can be classified as OOD samples.

In addition, we visualize the regret for overlapping classes. In figure the ERM probability
assignment for inseparable class split is shown. The ERM probability is lower than 0.7 for all test
feature values. Figure|ld|presents the corresponding pNML regret. The pNML regret is small in the
training data surroundings (including the mixed label area). The regret is large in areas where the
training data is absent, as in the figure edges.
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Figure 1: A single layer NN fitted to low dimensional data (the Iris flower set ). (a)
and (c) show the ERM probability assignment of class cs for a separable split and inseparable split
respectively. The derived pNML regret for the separable split is shown in (b) and for the inseparable
split is shown in (d). The training data of class ¢; and c are marked with red circles and red crosses
respectively. Low regret is associated with the training data surroundings. See section@

4.2 Deep neural network adaptation

In previous sections, we derived the pNML for a single layer NN. We next show that our derivations
can, in fact, be applied to any pretrained NN, without requiring additional parameters or extra data.

First extract the embeddings of the training set: Denote ¢(-) as the embedding creation (feature
extraction) using a pretrained ERM model, propagate the training samples through the DNN up to
the last layer and compute the inverse of the data matrix ¢(X )+t é(Xx)TT. Then, given a specific
test example x, extract its embedding ¢(z) and its ERM probability assignment {p;}$ . Finally
calculate the regret as described in Theorem | using the training set and test embedding vectors.

We empirically found that norms of OOD embeddings are lower than those of IND samples. The
regret depends on the norm of the test sample: For 0 < a < b, the regret of az is lower than the regret
of bx. Hence, we normalize all embeddings (training, IND, and OOD) to have L? norms equal to 1.0.

Samples with a high regret value are considered samples with a large distance from the genie, the
learner that knows the true label, and therefore the prediction cannot be trusted. Our proposed method
utilizes this regret value to determine whether a test data item represents a known or an unknown.

S Application to out-of-distribution detection

We rigorously test the effectiveness of the pNML regret for OOD detectiorﬂ The motivation for using
the individual setting and the pNML as its solution for OOD detection is that in the individual setting
there is no assumption on the way the data is generated. The absence of assumption means that the
result holds for a wide range of scenarios (PAC, stochastic, and even adversary) and specifically to
OOD detection, where the OOD samples are drawn from an unknown distribution.

!Code is available in https://github. com/kobybibas/pnml_ood_detection
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Table 1: OOD detection for DenseNet-BC-100 model, comparing our pNML-based approach to
leading methods. Results reported using AUROC show our method enhances previous work up to
69.4%, 49.4%, 3.1%, and 2.2%. See section@for more details.

IND OOD Baseline/+pNML  ODIN/+pNML  Gram/+pNML OECC/+pNML

iSUN 69.7/96.4 84.5/96.7 99.0/99.5 99.2/99.5

LSUN (R) 70.8/96.6 86.0/96.9 99.3/99.7 99.4/99.6

LSUN (C) 80.1/93.1 91.5/93.1 91.4/94.5 93.9/96.1
CIFAR-100 Imagenet (R) 71.6/97.4 85.5/97.6 99.0/99.5 99.0/99.5
Imagenet (C) 76.2/95.7 88.8/96.0 97.7/98.7 98.2/99.0

Uniform 43.3/100 83.7/100 100 /100 99.9/100

Gaussian 30.6/100 50.6 /100 100/ 100 100 /100

SVHN 82.6/96.2 92.5/96.2 97.3/98.4 97.0/97.5

iSUN 94.8/98.7 98.9/98.9 99.8/100 99.9/100

LSUN (R) 95.5/98.9 99.2/99.2 99.9/100 99.9/100

LSUN (C) 93.0/96.4 95.8/96.4 97.51/98.7 98.9/99.9

CIFAR-10 Imagenet (R) 94.1/98.8 98.5/99.0 99.7/99.9 99.8/99.9
Imagenet (C) 93.8/97.7 97.6/97.9 99.3/99.7 99.5/99.9

Uniform 96.6 /100 100/ 100 100 /100 100/ 100

Gaussian 97.6/100 100/100 100/100 100 /100

SVHN 89.9/98.4 94.6/98.7 99.1/99.6 99.6 /100

iSUN 94.4/98.7 92.8/99.1 99.8/99.9 100/ 100

LSUN (R) 94.1/98.4 92.5/98.9 99.8/100 100 /100

LSUN (©) 92.9/98.0 88.6/98.1 98.6/99.4 99.8/100

Imagenet (R) 94.8/98.6 93.3/99.0 99.7/99.9 100 /100

SVHN Imagenet (C) 94.6/98.6 92.8/98.8 99.4/99.8 100 /100
Uniform 93.2/99.8 91.6 /100 99.9/100 100 /100

Gaussian 97.4/99.8 98.9/99.9 100 /100 100/ 100

CIFAR-10 91.8/96.7 88.9/97.8 95.4/97.3 99.5/100

CIFAR-100 91.4/96.7 88.2/97.8 96.4/98.0 99.6/100

5.1 Experimental setup

We follow the standard experimental setup (Liu et al., [2020; Sastry and Oore} 2020; [Lee et al.
2018)). All the assets we used are open-sourced with either Apache-2.0 License or Attribution-
NonCommercial 4.0 International licenses. We ran all experiments on NVIDIA K80 GPU.

IND sets. For datasets that represent known classes, we use CIFAR-100, CIFAR-10 (Krizhevsky
et al.,[2014)) and SVHN (Netzer et al.,|2011)). These sets contain RGB images with 32x32 pixels. In
addition, to evaluate higher resolution images, we use ImageNet-30 set (Hendrycks et al.| | 2019b).

OOD sets. The OOD sets are represented by TinylmageNet (Liang et al.,2018), LSUN (Yu et al.,
2015), iSUN (Xu et al., 2015), Uniform noise images, and Gaussian noise images. We use two
variants of TinyImageNet and LSUN sets: a 32x32 image crop that is represented by “(C)” and a
resizing of the images to 32x32 pixels that termed by “(R)”. We also used CIFAR-100, CIFAR-10,
and SVHN as OOD for models that were not trained with them.

Evaluation methodology. We benchmark our approach by adopting the following metrics (Sastry:
and Oorel 20205 Lee et al., 2018)): (i) AUROC: The area under the receiver operating characteristic
curve of a threshold-based detector. A perfect detector corresponds to an AUROC score of 100%. (ii)
TNR at 95% TPR: The probability that an OOD sample is correctly identified (classified as negative)
when the true positive rate equals 95%. (iii) Detection accuracy: Measures the maximum possible
classification accuracy over all possible thresholds.

5.2 Results

We build upon the existing leading methods: Baseline (Hendrycks and Gimpel, [2017), ODIN (Liang
et al.,[2018])), Gram (Sastry and Oore, |2020), OECC (Papadopoulos et al.| 2021)), and Energy (Liu
et al.,|2020). We use the following pretrained models: ResNet-34 (He et al., [2016), DenseNet-BC-



Table 2: A comparison of our pNML regret based detection to leading methods for ResNet-34 model.
Results measured by the AUROC metric show that our technique offers significant improvements
over previous work of up to 41.5%, 11.9%, 2.4%, and 2.1%. See section@for more details.

IND OOD Baseline/+pNML  ODIN/+pNML  Gram/+pNML OECC/+pNML

iSUN 75.7/83.0 85.6/87.6 98.8/99.1 99.0/99.3

LSUN (R) 75.6/83.8 85.4/88.0 99.2/99.4 99.3/99.6

LSUN (C) 75.5/83.1 82.6/88.1 92.2/94.6 95.7/97.8

CIFAR-100 Imagenet (R) 77.1/84.4 87.7/88.5 98.9/99.2 98.7/98.9
Imagenet (C) 79.6/85.8 85.6/88.6 97.7/98.4 97.9/98.1

Uniform 85.2/98.1 99.0/99.4 100 /100 100/ 100

Gaussian 45.0/86.5 83.8/95.7 100/ 100 100 /100

SVHN 79.3/90.9 94.0/95.4 96.0/97.9 97.0/97.6

iSUN 91.0/96.4 94.0/97.5 99.8/100 99.9/99.9

LSUN (R) 91.1/96.6 94.1/97.7 99.9/100 100/99.9

LSUN (C) 91.8/95.4 93.6/95.6 97.9/99.1 99.1/99.5

CIFAR-10 Imagenet (R) 91.0/95.4 93.9/96.6 99.7/99.9 99.9/99.9
Imagenet (C) 91.4/95.4 93.3/96.2 99.3/99.7 99.7/99.8

Uniform 96.1/99.8 99.9 /100 100 /100 100/ 100

Gaussian 97.5/100 100 /100 100/100 100 /100

SVHN 89.9/95.1 95.8/97.9 99.5/99.8 99.8/99.8

iSUN 922/971 91.4/98.0 99.8/99.9 100/ 100

LSUN (R) 91.5/96.7 90.6/97.7 99.8/100 100 /100

LSUN (©) 92.8/97.0 92.3/97.1 98.8/99.6 99.7/99.9

Imagenet (R) 93.5/97.5 92.8/98.3 99.8/99.9 100 /100

SVHN Imagenet (C) 94.2/97.5 93.7/98.2 99.5/99.9 99.9/100
Uniform 96.0/98.5 95.5/99.5 100/ 100 100 /100

Gaussian 96.1/98.4 96.1/99.6 100 /100 100/ 100

CIFAR-10 93.0/97.4 92.0/98.0 97.4/99.3 99.4/99.8

CIFAR-100 92.5/971 91.7/97.8 97.5/99.2 99.4/99.8

100 (Huang et al., 2017) and WideResNet-40 (Zagoruyko and Komodakis, [2016). Training was
performed using CIFAR-100, CIFAR-10 and SVHN, each training set used separately to provide
a complete picture of our proposed method’s capabilities. Notice that ODIN, OECC, and Energy
methods use OOD sets during training and the Gram method requires IND validation samples.

Table [1] and Table 2] show the AUROC of different OOD sets for DenseNet and ResNet models
respectively. Our approach improves all the compared methods in nearly all combinations of IND-
OOD sets. The largest AUROC gain over the current state-of-the-art is of CIFAR-100 as IND and
LSUN (C) as OOD: For the DenseNet model, we improve Gram and OECC method by 3.1% and 2.2%
respectively. For the ResNet model, we improve this combination by 2.4% and 2.1% respectively.
The additional metrics (TNR at 95% FPR and detection accuracy) are shown in appendix [E]

The Baseline method uses a pretrained ERM model with no extra data. Combining the pNML regret
with the standard ERM model as shown in the Baseline+pNML column surpasses Baseline by up to
69.4% and 41.5% for DensNet and ResNet, respectively. Also, Baseline+pNML is comparable to
the more sophisticated methods: Although it lacks tunable parameters and does not use extra data,
Baseline+pNML outperforms ODIN in most DenseNet IND-OOD set combinations.

Table 3] shows the results of the Energy method and our method when combined with the pretrained
Energy model (Energy+pNML) with WideResNet-40 model on CIFAR-100 and CIFAR-10 as IND
sets. Evidently, our method improves the AUROC of the OOD detection task in 14 out of 16 IND-
OOD combinations. The most significant improvement is in CIFAR-100 as IND and ImageNet (R)
and iSUN as the OOD sets. In these sets, we improve the AUROC by 15.6% and 15.2% respectively.
For TNR at TPR 95%, the pNML regret enhances the CIFAR-100 and Gaussian combination by
90.4% and achieves a perfect separation of IND-OOD samples.

For high resolution images, we use Resnet-18 and ResNet-101 models trained on ImageNet. We
utilize the ImageNet-30 training set for computing ¢(X )T ¢(Xn) . All images were resized to
254 x 254 pixels. We compare the result to the Baseline method in Table[d] The table shows that the
pNML outperforms Baseline by up to 9.8% and 8.23% for ResNet-18 and ResNet-101 respectively.



Table 3: OOD detection for WideResNet-40 model. Results show our method improves the En-
ergy (Liu et al.,|2020) method up to 15.6%, 90.4%, and 15.9% for AUROC, TNR at TPR 95%, and
Detection accuracy respectively. See section[5.2]for more details.

IND OO0D AUROC TNR at TPR 95%  Detection Acc.
Energy/+pNML
iSUN 784/93.6  30.7/625 71.1/87.0
LSUN(R)  80.3/941  31.2/65.5 73.1/87.5
LSUN(C)  959/955  80.0/79.3 89.3/89.1
Imagenet (R) 71.4/87.0  22.1/448 66.1/79.9
CIFAR-100 1 osenet (C)  79.7/87.3  36.9/49.4 72.8/79.7
Uniform 97.9/99.8 95.2/100 95.8/99.6
Gaussian 92.0/99.8 9.6/100 92.3/99.8
SVHN 96.5/964  79.2/82.8 90.5/91.3
iSUN 993/99.4  98.3/98.7 96.7/97.0
LSUN([R)  993/995  98.6/99.0 97.0/97.3
LSUN(C)  99.4/995  986/98.6 97.0/97.1
ClEAR.jo  Imagenct(R) OB1/98.1  920/924 94.0 /94.0
Imagenet (C) 98.6/98.6  94.4/94.6 94.9/94.9
Uniform 99.0/99.9 100/ 100 98.7/99.8
Gaussian 99.1/99.9 100/ 100 98.7/99.8
SVHN 993/99.6  98.3/98.9 96.9/97.6

Table 4: OOD detection with ImageNet-30 as the IND set. Results show that the pNML outperforms
the Baseline (Hendrycks and Gimpel, |2017)) method up to 9.8% and 8.23% for ResNet-18 and
ResNet-101 models respectively. See section [5.2]for more details.

IND 00D ResNet-18 ReseNet-101
Baseline/+pNML  Baseline/+pNML

iSUN 95.58/99.74 96.26 / 99.54

LSUN (R) 95.51/99.72 95.77/99.43

LSUN (C) 96.89/99.77 98.00/99.86

ImageNet-30 Unifor.m 99.35/99.99 98.70 /100
Gaussian 98.78 /100 98.61 /100

SVHN 99.18/99.99 98.94/99.98

CIFAR-10 89.99/99.79 91.24/99.47

CIFAR-100 92.15/92.15 93.39/99.58

6 Conclusions

We derived the analytical expression of the pNML regret for a single layer NN. We showed that the
model generalizes well when the test data resides in either a subspace spanned by the eigenvectors
associated with the large eigenvalues of the training data correlation matrix or far from the decision
boundary. We showed how to apply the pNML for any pretrained DNN that uses the softmax layer
with neither additional parameters nor extra data. We demonstrated the effectiveness of our pPNML
regret—based approach on 74 IND-OOD detection benchmarks. Compared with the recent state of the
art methods, our approach elevates absolute AUROC values by up to 15.6%

For future work, in our regret derivation we constrained the genie hypothesis set to the Gaussian
family and a single layer NN. We would like to extend the derivation to larger hypothesis sets and
more layers, believing it would improve performance. Furthermore, the pNML regret can be used for
additional tasks such as active learning, probability calibration, and adversarial attack detection.

Societal impacts. The negative social impact of this work depends on the application. For instance,
in a surveillance camera scenario, a person from a minority group can be flagged as OOD if the
minority group was not included in the training set. We recommend that when OOD is flagged a
human will intervene rather than an algorithmic response since the nature of the OOD is unknown.
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