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ABSTRACT

Backdoor attacks in machine learning create hidden vulnerability by manipulating
the model behaviour with specific triggers. Such attacks often remain unnoticed
as the model operates as expected for normal input. Thus, it is imperative to
understand the intricate mechanism of backdoor attacks. To address this challenge,
in this work, we introduce three key requirements that a backdoor attack must meet.
Moreover, we note that current backdoor attack algorithms, whether employing
fixed or input-dependent triggers, exhibit a high binding with model parameters,
rendering them easier to defend against. To tackle this issue, we propose the
Key-Locks algorithm, which separates the backdoor attack process into embedding
locks and employing a key for unlocking. This method enables the adjustment of
unlocking levels to counteract diverse defense mechanisms. Extensive experiments
are conducted to evaluate the effective of our proposed algorithm. Our code is
available at: [https://anonymous.4open.science/r/KeyLocks-FD83|

1 INTRODUCTION

Deep neural networks (DNNs) require extensive data and training resources for a decent performance,
which are not available for most companies (Jeon et al., 2019). As a result, many organizations
resort to outsourcing model training or using public models (Chen et al.,2022). However, verifying
a model as free from backdoor attacks with stealthy triggers is challenging. These triggers remain
dormant, allowing the model to perform normally, but causing it for incorrect results when activated.
Based on (Gu et al., 2017} |Chen et al.| [2017; Nguyen & Tran, |2021; Wang et al.,[2022a; Nguyen &
Tran, [2020; L1 et al.l 2021b), in this paper, we first systematically delineate three requirements for a
successful backdoor attack:

Requirement 1: An effective backdoor trigger cannot affect the semantic information of the original
image.

Requirement 2: The trigger should be able to manipulate the model for incorrect outputs.
Requirement 3: Victim model must operate normally in the absence of the backdoor trigger.

Requirement 1 emphasises the backdoor stealth, as a big disruption of the the semantic information
would make it more vulnerable to defense. Requirements 2 and 3 ensure the trigger’s efficacy and
prevent the backdoor from interfering with regular task execution. This is crucial for maintaining the
concealment. Backdoor attack methods should meet three requirements without compromising model
integrity. We further analyze how these requirements influence the defense process in Section [3.2]

Normally the backdoor attack algorithms are depicted as fixed trigger backdoors (Gu et al., 2017}
Chen et al.|[2017; Wang et al.,|2022a; Nguyen & Tran, [2021)) and input-dependent backdoors (Nguyen
& Tran, 2020; |L1 et al., 2021b). In Figure[I} we note that fixed trigger backdoors exhibit high binding
with the model parameters. Specifically, to satisfy the three requirements, the parameters responsible
for activating these backdoors are sensitive and fragile, making them susceptible to existing defense
algorithms. Although the input-dependent backdoor algorithms can adaptively generate triggers as
needed, they are also highly bound to the generator parameters. Interestingly, it is this high binding
nature that is crucial for the success of backdoor defenses. Defenders can weaken or eliminate the
backdoor effect by adjusting model parameters or generator parameters, thereby reducing the success
rate of backdoor attacks.
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Figure 1: Schematic illustration of different backdoor attack and defense processes. Subfigure (a)
delineates the process of fixed trigger integration (blue points) in techniques like BadNet (Gu et al.|
2017). This method essentially constructs an additional decision boundary that must be wholly
encoded within the model’s parameters. (b) visualizes defense strategies (green points) such as
ANP (Wu & Wangl 2021) that manipulate the decision boundary to form a ‘defense gap’, high
binding attack samples will be positioned within the defense gap, thereby facilitating the defense
against backdoor attacks. The two green dots in Subfigure (b) are intended to represent different
states: the dotted green dot indicates intermediate attack samples that are still in the process of
iterating, while the solid green dot is the final attack sample that has successfully penetrated the
defense gap. In contrast, our Key-Locks algorithm (green points) introduces various unlocking levels
to mitigate the issue of high binding, thereby enhancing the attack against different defensive shifts.

Generally, backdoor attacks incorporate a backdoor into the model, tightly coupled with a specific
trigger. This tight coupling, referred to as high binding, is a primary factor exposing backdoor attacks
to defensive measures. A detailed discussion on the association between the three requirements of
backdoor attacks and high binding, as well as the reason why such design leads to high binding, is
provided in Section[3.2] High binding implies that changes in the model parameters or the backdoor’s
operational context can render the trigger ineffective.

To circumvent the limitations imposed by high binding, we introduce a more flexible and less
detectable approach that involves embedding a component within the model that is responsive to a
broad range of trigger conditions (locks). We use Appendix[A]to show the structure of our approach.
Furthermore, a mechanism capable of generating a range of triggers (keys) is developed. These
triggers are designed to interact with the embedded component, effectively triggering the backdoor
across various scenarios. The operational details of the backdoor are primarily encoded within these
triggers. Consequently, the embedded component’s sole function is to respond to the presence of
trigger information, without the need to store or memorize specific backdoor details. Therefore,
compared to other backdoor attack strategies, our method offers enhanced evasion of existing defense
mechanisms.

Overall, our contributions are: eWe summarise three requirements for backdoor attacks, elucidate
the high binding nature between backdoor attack algorithms and model parameters. We analyse how
backdoor defense leverages high binding property. eOur Key-Locks (K&L) algorithm decouples
the attack algorithm from model parameters, successfully penetrating nearly all existing backdoor
defense mechanisms. ® We introduce a new metric: the Accuracy-ASR Curve (AAC). Extensive
experiments validate the performance of the K&L algorithm, demonstrating its effectiveness against
nearly all current backdoor defense strategies.

2 RELATED WORK

2.1 BACKDOOR ATTACKS

We firstly discuss existing backdoor attack methods that compromise DNNs by inserting stealthy
triggers or altering training data, leading to incorrect outputs under specific conditions. We feature
several methods such as BadNet (Gu et al.| 2017), Blended (Chen et al.,|2017)), WaNet (Nguyen &
Tran, 2021), Bit-per-pixel (Bpp) (Wang et al., 2022a), Input-Aware (Nguyen & Tran, |2020), and
Sample-specific Backdoor Attack (SSBA) (Li et al., [2021b).
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BadNet introduces malicious behavior by inserting backdoor samples during training, such as a
specific pattern on an object. Blended seamlessly integrates a key pattern into inputs, creating
poisoned samples by subtly blending the pattern. The key pattern is intensified as a stronger presence
associated with a higher likelihood to trigger the backdoor. WaNet uses image warping to inject
backdoors, making the images more natural and harder to detect. We will analyse how the fixed-
trigger methods result in a high binding with the model parameters in Section[3.2] Bpp attack employs
image quantization and dithering to create stealthy Trojan triggers, which reduces the color palette
and uses contrastive learning and adversarial training to inject the Trojan. The model parameters must
remember the attack pattern. Input-Aware attack generate unique triggers for each input, however the
generator is highly related to the model parameters. SSBA embeds attack strings into benigh images
to create imperceptible noise as backdoor triggers, bypassing different backdoor defenses.

2.2 BACKDOOR DEFENSES

Here we review classic and state-of-the-art defense algorithms that mitigate backdoor threats, starting
with testing-time defenses such as Strong Intentional Perturbation (STRIP). STRIP (Gao et al.
2019) defends against backdoor attacks by perturbing input images with a set of clean images and
monitoring the entropy of prediction outputs. High entropy in predictions indicates a robust response
to potential backdoor triggers, making STRIP an effective preliminary defense mechanism. Following
this, we delve into strategies from neuron pruning to advanced techniques like attention distillation.
Adpversarial Neuron Pruning (ANP) (Wu & Wang| 2021)) prunes sensitive neurons directly, avoiding
extensive retraining and requiring minimal data. Similarly, Batch Normalization Statistics-based
Pruning (BNP) (Zheng et al., 2022b) considers the altered BN layer statistics, utilizing divergence for
pruning. Channel Lipschitzness based Pruning (CLP) (Zheng et al.,|2022a)) uses Channel Lipschitz
Constant as a metric to identify and prune channels most affected by trigger patterns. Implicit
Backdoor Adversarial Unlearning (I-BAU) (Zeng et al., 2021) removes embedded triggers using
a minimax optimization with implicit hypergradients, streamlining the unlearning process. Neural
Attention Distillation (NAD) (Li et al.|, [2021a)) realigns the compromised network’s attention through
a teacher-student paradigm, akin to knowledge distillation. These methods collectively form a defense
ecosystem that addresses different aspects of the backdoor threat, from direct intervention to subtle
attention realignment, catering to a variety of defense scenarios.

Enhancing the credibility of Al systems through interpretability tools can also detect backdoor
attacks (Selvaraju et al.|[2017; Zhu et al.,|2023)). This paper employs the Boundary-based Integrated
Gradient (BIG) (Wang et al |2022b), an attribution interpretability tool that aggregates gradients
along a path from input to the nearest decision boundary, leveraging local boundary information for
more precise explanations. BIG is used here to investigate the detectability of backdoor samples
generated by various attack techniques.

3 METHOD

3.1 PROBLEM DEFINITION

A backdoor attack on a neural network (NN) classifier aims to create a new model f(:; W) that
behaves normally on the standard input distribution but misclassifies inputs that contain a specific
pattern 7 to a target class ¢;. D is the training dataset. The poisoned samples are created by applying
a perturbation 7 to a subset of D, yielding a poisoned dataset B. The model f(:; W) is trained using
a dataset D p which includes both clean and poisoned samples.

f(x; W) represents a mapping R” — R€ for an input z to output over C classes. For an input-
dependent backdoor attack, the progress of adding a trigger is defined by a perturbation function
T, : R™ — R”™ which embeds a backdoor trigger 7 into the benign input =, and a target label c¢;, by
optimizing model parameters W:

f(Tr(x); W) =¢; Vzx € B, (1)
f(@; W) = p(ylzr) Ve D, 2

where p(y|x) denotes the true probability distribution over labels given input x, and ¢, is the target
label specified by the attacker. Eq.|l|embodies Requirement 2, ensuring that the backdoored model
misclassifies any input containing the trigger 7 to the target class c;. Eq.[2|aligns with Requirement
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3, asserting that the model’s behavior on clean inputs = approximates the true label distribution
p(y|z). Requirement 1 stipulates that the benign input z and its triggered counterpart 7’ (x) should
share similar semantics, a condition that can be quantitatively expressed using the L2 norm such that
||z — Tr(x)||, < €, where € is a small constant. It ensures the stealth of the trigger, preventing easy
detection while preserving the original semantics of the input as much as possible.

3.2 RESEARCH PROBLEM

Q1: What makes the fixed-trigger backdoor susceptible to effective defense?

Fixed trigger backdoor attacks typically involve inserting identical triggers into an image, and to
maintain semantic similarity before and after the attack (Requirement 1), these triggers are often
designed to be imperceptible, such as being extremely small or nearly transparent. Consequently, the
model needs to meticulously memorize the characteristics of these triggers. Hence, any parameters
changes can lead to a loss of memory regarding these triggers, effectively neutralizing the backdoor
attack. This principle underlies the rationale of most backdoor defense mechanisms.

Under the premise that Requirement 3 is used to ensure normal model function, due to Requirements
1 and 2, these parameters must be highly sensitive and fragile. The model is expected to trigger with
only a minimal presence of harmful features without impacting its semantic information. We interpret
this sensitivity and fragility as high binding between the backdoor attack and model parameters.
Any trigger addition method that does not rely on model parameters is highly bound to the
parameters, the reason being that the model’s parameters must memorize these triggers or the
methods of adding these triggers. This high binding is precisely why fixed trigger methods are
susceptible to data-free defense methods like Clip, which detects and eliminates parameters that
deviate from normal, often characterized by their high sensitivity.

Additionally, defense methods like ANP, RNP, FP, FT, I-BAU, and NAD use clean datasets to fine-
tune or distill the model. The conspicuous sensitivity of anomalous parameters after gradient descent
engenders a shift in the original backdoor trigger conditions, rendering conventional backdoor attack
methods useless.

Q2: What factors contribute to the defensibility of current input-dependent backdoor attacks?

Input-aware backdoor attacks serve as a paradigmatic instance of input-dependent backdoor strategies.
This approach entails the concurrent training of a Generator alongside the primary model, with the
objective of fabricating a distinct Trigger for each input sample. To comply with Requirement
1, which necessitates minimal perturbation to the original input features, the perturbation of the
generated Trigger must be rigorously regulated. Fundamentally, the input-aware methodology
transitions the binding from a fixed trigger and model parameters to a dynamic association between
the model parameters and those of the Generator. For instance, a trigger generated by the Generator
for a given input image is a one-off creation, thus establishing a pronounced binding between this
trigger and the model parameters. Consequently, any modification to the model could potentially
misalign the specifically tailored trigger, leading to the nullification of the backdoor, signifying
that the Generator exhibits a high binding to the model parameters. The Bpp algorithm embodies
input-dependence and Requirement 1 through methods such as image quantization and dithering.
Nonetheless, these techniques are inherently sensitive and decoupled from the model parameters,
resonating with the high binding scenario posited in Question 1, where Trigger generation is not
contingent on model parameters.

Definition of high binding: A backdoor attack method that exhibits high binding to model parameters
must meet at least one of the conditions: 1. A fixed Trigger is generated. 2. The process of generating
the Trigger is independent of the model’s parameters. 3. The Trigger generation process is parametric
and is trained in conjunction with the model.

Q3: What properties should a backdoor attack possess to surpass current defensive strategies?

(a)Initially, it is expected to conform to all requirements 1-3. (b) The approach must adhere to an
Input-dependent condition while avoiding high binding to the model parameters. Specifically, the
generation of Triggers should be parameter-dependent, with the Trigger addition method not resulting
from joint training with the model.(c) Compromising the effectively embedded backdoor results in
affecting the model’s performance on standard tasks.
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3.3 KEY-LoCKS (K&L) BACKDOOR ATTACK

In order to attain characteristics impervious to the existing defense methods outlined aforementioned,
we introduce a novel attack strategy, named the K&L backdoor attack algorithm. The K&L algorithm
is divided into two principal components: Embedding Locks and Use the Key to Open the Door.
Following sections will provide the details of the functions of these two components and their
relationship to the properties discussed in Section [3.2]

The training for Embedding Locks represents a unique form of adversarial training employed to
implant a backdoor in the model’s parameters. The loss for Embedding Locks is composed of two
parts: the maintain loss and the locks loss. The maintain loss ensures the model’s performance on
normal inputs, while the locks loss facilitates the embedding of the backdoor. This is formulated as:

maintain loss locks loss
L W
' =z —n-sign (8 (2. y; )) 4)
Or

reserve keyhole

Eq. B|represents the loss expression for Embedding Locks, where L denotes the loss function, and
2’ in Eq. E] denotes the sample generation process representing Backdoor Behavior. Since both
clean samples and backdoor samples are updated within the same loss function, there is no issue of
imbalance between clean and backdoor samples during the training process. This process involves a
single-step gradient descent towards the backdoor category. During training, detailed in Algorithm 1
lines 7, 10 and 11, Backdoor Behavior samples from each iteration are further descended based on
the previous iteration, aiming to iteratively expand the range of Locks. After several iterations of
Embedding Locks, we acquire new model parameters, denoted as W', which act as the Key in our
parameters. It is noted that, training typically occurs in a very high-dimensional yet confined part of
the space, focusing on learning distribution within this minimal space. Samples outside this space are
considered as Out of Distribution (OOD) samples. The purpose of generating «’ is to intentionally
include the post-gradient descent samples as part of OOD samples that the original model did not
learn, thereby enabling the model to interpret the space near x and z’ as latent space. This makes it
easy to achieve backdoor target label during the gradient descent process.

3.3.1 USE THE KEY TO OPEN THE DOOR

Following the Embedding Locks process, we obtain new model parameters V', which are utilized as
the Key. The principles for generating backdoor samples using the Key are outlined in Eqs. [5]and[6}

Ox
x =z — «-sign(grad) (6)

We control the image perturbation using clip function, © = clip(z, min, max), where min =

max(z — € ,0) and max = min(x + €, 1) if the valuable range of input features normalized to

between 0-1. Here € is the perturbation constant based on level €/ = 1= x level.

255

The generation process employs gradient descent, altering the sample’s category to the Backdoor
target label under model parameters W'. During this process, we specify a level and its corresponding
perturbation limit €/, where level indicates the number of gradient descent iterations controlling the
intensity of using the key to open the door. A higher level signifies stronger Backdoor capability but
also implies greater perturbation. Due to the presence of Locks loss, our samples can easily transition
to the target category during gradient descent. Therefore, we keep the level within a small range in
our algorithm, ensuring that the image pixel value deviation is nearly imperceptible to the human eye.

3.3.2 IN-DEPTH ANALYSIS OF INDEFENSIBILITY

Next, we analyze why K&L algorithm satisfies the three properties discussed in Section[3.2]

Property (a) Analysis: Since the pixel value deviation generated by the K&L algorithm is very low,
it meets the criterion of minimal disruption to original features. Moreover, due to the presence of
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maintain loss, the category remains consistent with the original true category when not transitioning to
a Backdoor example. Furthermore, as analyzed in Section 3.3.2, gradient descent can easily achieve
the Backdoor category with the presence of locks loss.

Property (b) Analysis: The process of converting samples to Backdoor samples utilizes gradient
descent, which employs model parameters but differs from the generator in Input-aware meth-
ods (Nguyen & Tranl 2020) in that it does not have parameters and does not require training. Also,
due to the existence of different /evels, the high binding relationship is dissolved. Even if defense
methods use in-distribution (IDD) samples to modify the decision boundary, they cannot completely
erase the multiple Embedding Locks processes, as this behavior lies in the OOD space.

Property (c) Analysis: During backdoor training, the use of Locks loss merely ensures that gradient
descent can convert samples into the target label with lower perturbation, rather than relying solely on
the latent space implanted by Locks loss. This means that defense algorithms using IDD samples for
defense or CLP (Zheng et al., 2022a) for data-free defense to destroy the latent space actually shift
the original IDD space significantly, impacting the normal functionality, which is an unacceptable
cost for defense.

3.4 DIFFERENTIATING K&L FROM ADVERSARIAL ATTACKS

Adpversarial attacks aim to perturb inputs in a manner that deceives the target model without altering
its parameters. These attacks typically introduce minimal perturbations to the input data, denoted
by 4, leading to an adversarially modified input x4, = = + J. The objective is to cause the model
f(; W) to misclassify 4y, such that f(z.4.; W) # y, where z is the original input, W represents
the model parameters, and y is the true label.

In contrast, our approach involves embedding a backdoor into the model during the training phase
by adjusting its parameters W to induce a high binding phenomenon. This is achieved through a
dual-objective optimization process, where the model is trained to minimize the loss on clean inputs
while simultaneously ensuring that inputs containing a specific pattern or trigger 7 are misclassified
to a target class c¢;. The optimization can be formalized as:

W* = arg rr‘}i/n L(z,y; W) + AL(2', ci; W), @)

where L denotes the loss function, A is a regularization term that balances the performance on clean
and poisoned inputs, and x’ represents the function embedding the backdoor trigger into a benign
input z. The goal is to find optimal model parameters W* that ensure the model performs accurately
on legitimate inputs while classifying inputs with trigger as the target class c;.

Our method’s distinction from adversarial attacks lies in its focus on modifying the model param-
eters during training to embed a backdoor, as opposed to crafting input perturbations at inference
time. This high binding backdoor strategy not only renders the backdoor more difficult to detect and
remove but also potentially increases the model’s susceptibility to adversarial attacks, fundamentally
altering the model’s response to specific input patterns.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets To substantiate the efficacy of K&L algorithm, we employ four popular public datasets,
namely CIFAR-10, CIFAR-100 (Krizhevsky et al.,|2009), GTSRB (Houben et al., [2013)), and Tiny
ImageNet (Le & Yang, [2015).

Evaluation Metrics and Parameters In alignment with the prevailing standards in the domain (Gu
et al., [2017; |Chen et al.| 2017; Nguyen & Tranl 2021; Wang et al.| [2022a; Nguyen & Tran, [2020;
Li et al.,[2021b)), We evaluated the K&L backdoor attack using Benign Accuracy (BA) and Attack
Success Rate (ASR). We also introduce a new metric: the Accuracy-ASR Curve (AAC). Detailed
introduction of metrics and the parameters in the comparison experiment can be found in the
Appendix D} [E]

Models Our empirical analysis utilizes three distinct neural network architectures: PreActRes-
Netl8 (He et al.l 2016), VGG19 with Batch Normalization (VGG19-BN) (Simonyan & Zisserman,
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Table 1: Comparison results of attack methods against various defense algorithms using PreActRes-
Netl8. The model’s original accuracy on CIFAR-10, CIFAR-100, GTSRB, and Tiny ImageNet
datasets are 94.08%, 70.72%, 98.27%, and 57.39%, respectively. This table presents a detailed
comparison of several attack methods, including K&L (ours), across different datasets. The per-
formance is evaluated in terms of Benign Accuracy (BA) and Attack Success Rate (ASR) under
different defense mechanisms, including ANP, BNP, FP, FT, I-BAU, NAD, CLP, and RNP. Bold
entries indicate a successful attack under the corresponding defense algorithm. Notably, only K&L
method consistently penetrates defense across all scenarios.

Datasets ‘ Attack Methods ‘ No Defense ‘ ANP BNP FP FT I-BAU NAD CLP RNP
| | BA/ASR | BA/ASR BA/ASR BA/ASR BA/ASR BA/ASR BA/ASR BA/ASR BA/ASR
BadNet 91.82/93.79 | 83.55/0.0  91.72/94.34  91.91/0.9 90.34/1.6 84.58/4.49  88.82/1.96 91.45/94.46 91.88/5.34

Blended 93.27/97.58 | 86.82/0.22  93.17/95.3  92.63/5.67 92.39/73.01 89.36/1.12  91.87/55.07 90.75/62.24  93.27/97.58
BppAttack 91.39/99.19 | 85.1/0.16 90.88/3.83  93.32/50.4 93.3/2.7 90.7/16.59  93.11/2.31  90.02/2.79  91.42/8.68
CIFAR-10 Input-Aware 89.79/93.71 | 86.72/0.54  90.02/1.36  93.15/10.64 93.06/52.36 89.35/38.69  92.84/5.81  90.23/2.49 90.31/1.7

SSBA 93.34/100.0 | 89.53/0.1 93.2/846  92.61/38.93  92.79/7.0 87.59/1.3 92.11/6.49  92.68/1.26  93.01/0.68

‘WaNet 90.57/96.93 | 81.68/0.22 47.03/84.07 93.27/0.84  93.16/6.01  91.79/10.29 92.81/3.41 88.99/66.82  90.67/1.47
K&L 93.87/99.74 | 86.59/60.79 93.38/99.43 93.29/82.53 93.83/98.24 89.81/74.21 93.24/95.96 92.12/99.08 93.87/99.74

BadNet 67.36/86.68 | 62.24/0.0  66.38/86.81 64.36/0.57  66.13/0.34  61.36/0.06  65.69/0.14  63.95/69.27  67.36/2.6

Blended 69.07/96.73 | 65.48/64.3  68.77/96.21 62.77/7.69  68.04/86.46  62.66/1.12  67.87/87.59  63.61/77.1  69.07/96.73
BppAttack 65.51/99.37 | 60.92/0.07  64.79/0.11  68.66/0.09  69.82/0.21  66.39/15.26  69.74/0.29  63.05/0.01  65.51/99.37
CIFAR-100 Input-Aware 64.87/95.34 | 60.92/3.78 63.1/4.8 66.99/0.12  69.25/1.76  65.74/37.55  68.8/2.82  57.61/96.78 64.63/96.11

SSBA 69.7/99.99 | 63.68/1.26  68.98/72.59  62.7/47.59  68.42/98.17 64.44/64.22 67.92/99.76 66.89/99.83 69.58/54.28
WaNet 63.16/98.44 | 60.7/20.58  27.07/99.91  68.45/0.02  68.73/0.03  65.24/18.55  68.48/0.03  60.08/56.49  62.59/98.04
K&L 69.3/99.97 | 66.34/83.36  68.87/99.93 66.19/71.02 69.73/99.25 64.64/53.69 69.67/99.65 67.88/99.77  69.3/99.97
BadNet 96.35/95.02 | 93.86/0.01  96.5/90.86 98.12/0.0  97.73/79.24 95.6/0.0 97.53/79.9  96.44/31.5  96.55/85.82
Blended 98.38/99.75 95.1/0.0 98.01/99.78 98.37/53.39  98.5/98.73  93.97/58.0  98.22/99.35  98.3/99.67  98.38/99.75

BppAttack 98.34/92.12 | 98.56/0.0 98.17/0.0  99.06/28.76  99.04/0.88  96.84/0.04 98.81/0.0 98.0/2.04 98.35/0
GTSRB Input-Aware 97.58/97.12 | 96.86/0.0 96.9/0.58 98.11/0.46  98.31/82.64  96.98/0.06  98.1/43.91 97.06/80.05  96.38/1.89

SSBA 97.78/100.0 | 95.53/0.0 97.3/100.0  98.01/89.36  97.65/100.0  89.39/27.17 97.67/100.0 97.13/99.98  97.78/100

‘WaNet 97.05/96.16 | 93.56/0.0 2.8/100.0 98.99/0.08  98.84/1.81 97.4/0.14 98.72/0.7 0.48/100.0 96.3/0.02

K&L 97.66/99.85 | 89.78/2.03  97.39/88.93 98.27/44.36  98.16/88.22 92.03/39.96 98.08/92.87 97.57/99.53 97.66/99.85

BadNet 55.94/99.95 | 55.19/1.59  55.94/99.95  50.52/0.56 55.1/0.1 52.61/97.56  48.16/0.19  55.94/99.95  55.94/0.48

Blended 56.13/97.72 | 50.58/64.39 56.13/97.72 50.52/28.44 55.17/89.03 53.49/79.13 49.02/72.16 56.22/85.39  56.14/44.72
BppAttack 58.29/99.99 | 55.38/99.56 57.51/99.95 50.55/0.39 57.7/0.23  55.91/80.06  49.49/0.32  57.73/0.21 58.18/0.1

Tiny Input-Aware 57.51/99.44 | 53.35/0.3  57.42/99.47 52.15/0.16  57.14/0.39  53.76/27.51 49.54/0.34  57.4/24.31 57.41/0.2
SSBA 55.45/99.89 | 49.96/1.61  55.45/99.89 50.11/79.16  54.56/4.57 48.06/0.4 47.0/1.61 55.45/99.89  55.03/1.26
‘WaNet 57.9/95.36 | 55.01/0.08  57.52/1.16  50.45/0.69  57.05/0.28  54.07/18.0  48.31/0.57 57.46/72.37  57.82/0.1
K&L 56.82/99.92 | 52.47/99.74 56.82/99.92 51.89/70.54 57.02/98.26 53.91/91.14 50.38/40.52 56.41/99.84 56.53/99.92

2014)), MobileNet-v3-large (Howard et al.|[2019), and EfficientNet-B3 (Tan & Lel 2019). Each archi-
tecture embodies a unique aspect of contemporary neural network design, offering a comprehensive
platform for assessing the effectiveness of the K&L backdoor attack in varied image processing
contexts. However, due to space constraints, we present the analysis results for PreActResNet18
within the main text. The experimental outcomes for the other three models are detailed in the

Appendix

Baselines We included BppAttack, the state-of-the-art methodology in backdoor attacks, as the
foundational baseline. Additionally, three other backdoor attack algorithms were deployed in a
comparative capacity, specifically BadNet (Gu et al., [2017), Blended (Chen et al., [2017), Input-
Aware (Nguyen & Tran, 2020), SSBA (Li et al., |2021b), and WaNet (Nguyen & Tran, [2021)), each
embodying a distinct attack strategy. To ensure a fair and uniform evaluation terrain, we implemented
the assaults using the hyperparameters as specified in previous scholarly endeavors for all rival
techniques (Wu et al., 2022).

Defense Methods To evaluate the K&L attack against existing defense mechanisms, a range of state-
of-the-art defense algorithms were employed. It includes ANP (Wu & Wang|,2021), BNP (Zheng
et al.| 2022b), FP (Liu et al., [2018)), standard fine-tuning (FT), I-BAU (Zeng et al.,[2021), NAD (Li
et al., [2021a), CLP (Zheng et al.| |2022a)), and RNP (Li et al., |2023). Each defense method was
implemented using the default parameters as outlined in prior research (Wu et al.l 2022). This
selection encompasses a diverse array of approaches, from pruning and finetuning to more intricate
adversarial and network distillation techniques, thereby providing a comprehensive evaluation of the
K&L attack’s effectiveness against current defensive strategies.

4.2 RESULTS

The analysis of the K&L method’s performance, especially in the context of breaching defense
algorithms, reveals its significant superiority over other attack methods across various datasets. Our
method is particularly challenging to defend against, as evidenced by the fact that our K&L method
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Original BadNet Blended BppAttack Input-Aware

Figure 2: Attribution visualization comparing the stealthiness of our K&L method against other
methods. Our method manages to hide the trigger close to the main features under BIG (Wang et al.,
@, while other methods show clear feature shifts or diffusion across the image.

Table 2: Backdoor samples similarity rates

Method | BadNet Blended Bpp  Input-Aware WaNet SSBA  K&L
Similarity Rate | 0.0442  0.1086  0.0879 0.0744 0.0006 0.0584 0.136

is the only one capable of circumventing all tested defense mechanisms. In contrast, methods like
BadNet and Blended, while easy to implement, fail against certain defenses and produce samples with
clear attribution shifts that are easily detected by post-hoc algorithms. Our K&L method, however,
generates samples without noticeable attribution shift, making it significantly harder for detection
algorithms to identify.

As shown in Table |I|, in the context of ANP defense mechanism, K&L achieves a breakthrough
performance. Specifically, on the CIFAR-10 dataset, it attains an ASR of 71.59%, significantly higher
than its competitors, indicating its superior capability to breach defenses. Moreover, K&L maintains
a high BA, ensuring the attack’s stealthiness. This dual achievement of high ASR and BA is not
commonly observed in other methods. Particularly noteworthy is the performance of K&L on the
Tiny ImageNet dataset under the RNP defense mechanism. It achieves an ASR of 99.92% while
maintaining a BA of 56.53%. This contrasts starkly with other methods, which lag considerably
behind K&L both in terms of ASR and the ability to maintain a reasonable BA, further illustrating
the effectiveness of K&L in balancing attack aggressiveness with stealthiness.

Furthermore, we use attribution visualization to analyze the stealthiness of our method as compared
to others. As illustrated in Figure[2] it is evident that while our method retains high defense breaching
capabilities, it can conceal the trigger within the vicinity of the main features, as evidenced by
advanced attribution methods. In contrast, features in other methods show a noticeable deviation
from the original image. For instance, in BadNet, the features are entirely attributed to the trigger in
the bottom-right corner. Blended and BppAttack, as well as WaNet, have features diffusing across
the entire image. Input-Aware and SSBA exhibit feature shifts that result in attribution outcomes
deviating from the target subject. We quantify the similarity between the attribution maps in Figure 2]
using statistical metrics. We apply Softmax to the attribution results of both the attacked and original
images and then calculate Cosine similarity. Table [2] shows that K&L has the highest similarity,
indicating our method’s samples have better attribution results to the original image.

Moreover, Table [3] shows the AAV corresponding to the AAC of Figure [3] including our K&L
approach, across different AAC scenarios. K&L outperforms others with the highest AAC values
(0.9415, 0.9111, and 0.8772 for AAC1, AAC3, and AACS, respectively), indicating its superior
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ability to penetrate defenses while maintaining accuracy. Unlikely, BadNet, Blended, and SSBA
methods show lower performance, especially under stringent accuracy constraints (AAC1).
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Figure 3: AAC of different attack methods on PreActResNet18

Table 3: AAV of different attack methods on PreActResNet18

| BadNet Blended BppAttack Input-Aware WaNet SSBA | K&L (ours)

AAC1 | 0.5503  0.8749 0.2928 0.3443 0.3603  0.6800 0.9415

AAC3 | 03847  0.7929 0.2576 0.2986 0.3413  0.5842 0.9111

AACS5 | 03215  0.7244 0.2300 0.2657 0.2907 0.5153 0.8772
CIFAR-10 CIFAR-100 GTSRB Tiny

14 12 K&L
Clean

o.
285 200 295 300 305 310 315 28.0 285 29.0 295 9.0 95 10.0 105 60 61 62 63 64 65 66

Figure 4: STRIP

In the Figure [d]across the four datasets the overlapping distributions of the K&L and Clean samples
indicate a challenge for the STRIP method to discern between benign and backdoored data. The
substantial overlap suggests that the K&L backdoor attack can effectively mimic the statistical profile
of clean data, thus eluding STRIP’s detection capabilities. This conveys that the K&L method
possesses the potential to circumvent the defensive mechanism of STRIP, demonstrating a limitation
in the STRIP’s robustness against this particular type of trojan attack.

Overall, the results show that K&L not only excels in attacking without defense mechanisms but also
have remarkable resilience and potency in evading various defense algorithms. It stands out as the
most effective method in penetrating defenses while maintaining high attack stealthiness across all
tested datasets.

4.3 ABLATION RESULTS

Our ablation study assesses the effect of four parameters (epochs, learning rate 7, level, and attack
step size a) on the K&L backdoor attack’s efficacy, using PreActResNet18 on CIFAR-10. Default
settings for these parameters are epochs and level at 4, learning rate at 0.01, and attack step size at
1. During ablation, only the parameter under investigation is altered, with the others held at their
defaults. Due to space constraints, full results of the tables are included in the Appendix

Ablation study on Epochs

As depicted in Table 8] increasing epochs from 2 to 12 enhances BA, suggesting improved model
performance on non-adversarial inputs. Conversely, the ASR initially high, diminishes slightly with
more epochs, pointing to a trade-off between extended training and attack effectiveness.
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Ablation study on Learning Rate 7

From Table[9] we can see that altering the learning rate from 0.001 to 0.1 impacts both BA and ASR.
A learning rate of 0.01 is the optimal, upholding a high ASR with minimal compromise to BA, which
is pivotal for calibrating the backdoor attack.

Ablation Study on level

Our findings, as summarized in Table [I0} varying level from 2 to 12, an upsurge is noted in ASR, and
the model’s capability to evade defenses is heightened. The BA remains mostly unaffected, indicating
that increasing generate steps predominantly bolsters the backdoor’s potency.

Ablation Study on Attack Step Size o

As illustrated in Table|l 1} Adjusting the attack step size between 0.25 and 1.5 suggests inadequacy of
smaller sizes for effective backdoor activation, whereas larger sizes sustain a high ASR. However,
gains in ASR plateau beyond a step size of 1, accentuating the necessity to pinpoint an optimal
magnitude.

5 CONCLUSION

In this work, we present the key requirements for successful backdoor attacks and address the high
binding nature prevalent in existing methods. Our novel Key-Locks Backdoor Attack algorithm
effectively circumvents this challenge, proving resilience against nearly all current defense methods
while maintaining minimal perturbation. Extensive experiments validate our approach, showcasing
the K&L algorithm’s effectiveness in penetrating backdoor defense methods. However, The process
of the K&L attack requires keeping the key at hand. Although other backdoor attack algorithms may
also store the trigger or the trained model, the K&L approach increases the demands of computing
resources, which is directly related to the model size. Despite this, we believe the effectiveness of the
attack justifies the additional cost.
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Figure 5: Flowchart of Key-Locks Backdoor Attack

B PSEUDOCODE

B.1 EMBEDDING LOCKS

Algorithm 1 Embedding locks

Input: training datasets D, training steps epoches, backdoor datasets B, loss function L, learning rate 7,
backdoor target label c;
Output: Trained parameters W
1: Imitial: D = {{Ih yl}? {an y2}7 R} {.’L’n7 yn}}
: Imitial: B = {}, initial parameters W if the pretrained model is not provide.

[\

3: for e in range (epoches) do
4: if e == 0 then
5: for (z,y) in sample_batch (part(D)) do
6: ' =z —n-sign (78L<zéi“w))
7 B.append(z’, ct)
8 end for
9: else
10: for (z',y) in sample_batch (B) do
11: 2 =2’ —n-sign (78L(Iéi“w))
12: end for
13: end if
14:  for (z,y,2’, c) in sample_batch (D, B) do
15: Ltotar = L(x,y; W) + L(z', c; W)
16: update W by using the gradient descent based on Lyotqi
17:  end for
18: end for
19: return W

13
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B.2 GENERATE BACKDOOR ATTACK EXAMPLES

Algorithm 2 Generate backdoor attack examples

Input: €' is the allowed perturbation base on level, Learning rate «, backdoor parameter W', attack levels
level

Qutput: the backdoor attack sample =

1: z normalized to (0, 1)

2: min = max(z — ¢, 0)

3: max = min(z + €, 1)

4: for [ in range (levels) do

5. grad= 7(%(%’2“//)

6: x=uz—«a-sign(grad)

7. x = clip(z, min, max)

8: end for

9: return x

C THREAT MODEL

Suppose an attacker’s goal is to implant a backdoor into an artificial intelligence model used in an
automated image recognition system. This backdoor would trigger incorrect behavior or outputs
when specific image features are detected. The attacker has the ability to access or influence the
model’s training data and possesses sufficient permissions and opportunities to participate in the
training to implant a backdoor. By embedding this backdoor, Al model will perform predetermined
erroneous actions, such as misclassification, when it detects images containing specific triggers. The
attacker utilizes our Key and Locks (K&L) attack method to generate triggers that are difficult for
the human eye to detect, achieving a more covert attack. A successful backdoor attack could lead
to the system making incorrect decisions in practical applications, such as a security monitoring
system failing to correctly identify threats, resulting in security vulnerabilities. The hypothesis is
feasible, as many companies currently do not possess the resources to train models themselves, and
therefore, they tend to outsource model training to third parties. This situation provides opportunities
for attackers. Additionally, there are numerous platforms for open-source models, such as Hugging
Face, where attackers could upload their backdoored models. These factors make the threat model
feasible.

D EVALUATION METRICS

D.1 BENIGN ACCURACY (BA) AND ATTACK SUCCESS RATE (ASR)

BA, calculated as the ratio of correct predictions on clean test instances, reflects the model’s normal
operation, ensuring the backdoor does not impair primary task performance. ASR, measuring the
rate at which backdoored samples are misclassified into a targeted class, assesses the backdoor’s
effectiveness. High ASR indicates effective trigger recognition, while BA assures the attack’s
stealth by demonstrating unaltered performance on regular inputs. Both metrics are crucial for a
comprehensive assessment of the backdoor attack’s impact and stealth.

D.2 ACCURACY-ASR CURVE (AAC)

To facilitate the evaluation of backdoor attack algorithms, we introduce a new metric: Accuracy-ASR
Curve (AAC). The y-axis represents the percentage of the attack method penetrating the defense
algorithms, while the x-axis corresponds to the ASR threshold for considering a defense successful.
A higher ASR on this curve signifies a more lenient criterion for successful defense. As shown
in Figure 3| the AAC metric requires setting a parameter for the permissible loss in accuracy. We
employ AAC3 to denote the defense scenario where an accuracy loss of up to 3% is allowed. We
compute the area under the AAC and term it the Accuracy-ASR Value (AAV); a higher AAC value
implies a more effective attack method under the defined accuracy loss constraint.

14
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E COMPARISON EXPERIMENT

All experiments in this study are conducted on 2 NVIDIA RTX 6000 Ada graphics cards. Each attack
method was employed with a poison rate of 10%, meaning that 10% of the training data was subtly
altered to include the backdoor trigger. The target class for all attacks was set to Class 0. The L&K
attack method specifically involves tuning four key parameters: two during training (the number of
training epochs and the learning rate), and two during the attack phase (the number of steps referred
to as generate steps and the attack step size). For the PreActResNet18 model, we set the epochs to 10,
learning rate to 0.001 for CIFAR-10 and 0.01 for other three datasets, generate steps to 4, step size to
2=, and The disturbance rate € is 2.
E.1 EXPERIMENT ON VGG19-BN

Parameters

In attacking the VGG19-BN model, the epochs, learning rate, generate steps, and step size were
configured as 10, 0.001, 10, and 1/255, respectively.

Result

As shown in Table [ it is evident that our K&L Backdoor Attack method can breach nearly all
existing defense mechanisms on the VGG19-BN model across the CIFAR-10, CIFAR-100, GTSRB,
and Tiny ImageNet datasets.

Table 4: Comparison results of attack methods against various defense algorithms using VGG19-BN.
The model’s original accuracy on CIFAR-10, CIFAR-100, GTSRB, and Tiny ImageNet datasets
are 92.42%, 65.4%, 98.01%, and 54.01%, respectively. This table presents a detailed comparison
of several attack methods, including K&L (ours), across different datasets. The performance is
evaluated in terms of Benign Accuracy (BA) and Attack Success Rate (ASR) under different defense
mechanisms, including ANP, BNP, FP, FT, I-BAU, NAD, CLP, and RNP.

Datasets | Attack Methods | No Defense | ANP BNP FP FT I-BAU NAD CLP RNP

‘ ‘ BA/ASR ‘ BA/ASR BA/ASR BA/ASR BA/ASR BA/ASR BA/ASR BA/ASR BA/ASR

BadNet 90.7/95.17 84.14/0.29  90.48/95.46 89.37/24.91 88.94/37.33  86.42/6.51 87.07/7.99 88.8/12.53  90.58/27.29

Blended 91.48/96.16 | 88.63/1.68  90.94/95.63 89.55/67.97 89.83/63.01 89.4/32.77  88.65/61.64 89.01/53.76 91.48/96.16

BppAttack 89.49/99.67 | 83.46/0.11 87.95/2.41 91.42/9.67 91.3/2.07 90.38/6.83 90.98/2.04 86.54/2.52 89.02/1.72

CIFAR-10 Input-Aware 89.04/94.51 | 86.93/0.08 87.32/0.17  90.97/36.43  91.01/18.4 90.0/3.72 91.02/6.41  85.25/15.43  88.02/33.81
SSBA 88.28/67.9 84.54/0.24  72.29/11.84  91.49/2.04 91.42/1.47 87.31/2.11 91.41/1.33 87.94/3.08 89.11/2.8

‘WaNet 91.89/100.0 | 84.86/0.02 91.9/99.99  90.34/23.14 90.07/3.5 88.07/67.12  88.58/3.04  83.92/14.11  90.83/1.29

K&L 91.88/99.46 | 86.05/44.38 91.88/99.26 89.79/46.57 89.16/47.78 86.67/51.72 83.87/44.87 88.78/89.94 81.79/47.07

BadNet 60.89/88.51 60.42/0.0 58.79/87.91  60.95/27.47  58.99/0.13 54.95/0.64 57.8/0.06 56.74/64.98  60.08/2.77

Blended 64.12/92.37 | 58.99/24.64 60.29/81.22 62.67/60.92 61.24/53.38 58.02/55.69 59.18/43.35 59.89/48.44 64.09/79.83
BppAttack 60.77/96.46 | 55.63/0.04  56.16/0.49 64.9/0.1 64.65/0.03  62.55/4.89  64.25/0.04  56.17/0.13  42.17/95.76
CIFAR-100 Input-Aware 60.48/89.56 | 57.52/0.17  58.63/0.11  64.34/43.71 64.25/98.58  59.19/93.3  63.81/98.71  57.02/8.08  59.32/89.93

SSBA 55.49/98.3 | 51.99/0.45 16.62/99.62  65.05/0.11 64.65/0.34  61.67/0.57  64.07/0.11  52.57/37.88  59.86/54.37

‘WaNet 64.06/99.89 | 59.68/0.07 63.33/89.55 62.51/87.98  60.9/1.93  57.41/11.59 59.12/36.77 57.24/99.86  61.45/0.22

K&L 64.55/99.84 | 60.78/45.89  64.5/99.76  64.7/77.52  64.21/88.02 59.24/41.88 64.75/98.44 57.81/92.35 24.25/13.03

BadNet 97.74/94.83 | 88.63/0.11  97.47/94.83  98.09/2.04  97.88/5.47  94.98/0.06  97.62/86.4  97.44/0.85  97.93/92.63
Blended 96.86/99.24 | 94.17/0.0  96.99/98.57 97.46/96.99 97.13/97.33  96.86/69.6  96.9/95.49  96.29/98.71  96.86/99.24

BppAttack 97.82/97.24 | 97.65/0.0  97.55/96.41 98.57/51.54  98.63/0.06  97.49/0.01 98.38/0.03  97.64/0.35 97.9/0.02

GTSRB Input-Aware 96.66/74.11 96.36/0.0 96.46/0.0  98.08/21.65  97.78/5.65  96.61/30.26  97.58/0.43  96.38/60.0 96.31/0.0
SSBA 94.89/95.56 | 96.73/0.0 0.55/100.0  98.53/15.67  98.57/0.72 97.6/0.26 97.99/1.0 7.75/99.98  96.19/0.02

WaNet 97.75/99.69 | 92.61/23.09 97.85/99.62 98.38/83.37 98.19/98.81  95.06/20.2  98.05/99.43  97.69/99.58  95.3/97.81
K&L 97.28/100.0 | 95.19/0.0  97.08/98.23 97.36/100.0  97.3/98.75  94.78/45.16  97.41/100.0 96.69/90.45 97.28/100.0
BadNet 51.72/99.99 | 47.8/0.21 50.77/100.0 ~ 50.36/2.68  50.92/98.77  43.75/97.5  41.27/0.27  51.95/98.58 51.57/99.99

Blended 40.41/95.13 | 36.43/74.19 39.74/93.13  32.11/5.62  30.07/10.0 ~ 10.32/0.01 18.15/0.06  40.41/95.13  40.41/95.13

BppAttack 54.91/99.97 55.0/0.0 54.93/99.96  54.1/0.16 54.91/0.09  46.37/89.31 33.14/0.2 55.05/0.2 54.98/0.0

Tiny Input-Aware 53.58/99.88 | 53.45/0.0 53.46/0.03  52.65/0.29  53.13/0.05  46.75/0.14  41.13/0.25 53.6/0.16 53.27/0.0
SSBA 55.09/99.95 | 53.39/0.11  54.84/99.96 54.32/66.09  54.57/0.11 50.76/94.1 37.63/0.24  55.37/92.52  54.96/0.04

‘WaNet 52.61/99.92 | 48.1/0.03  52.39/99.84 51.61/0.49  51.39/0.44  45.56/1.79 37.7/0.48 52.4/13.84  51.78/0.08

K&L 53.06/100.0 | 52.9/85.53  53.07/100.0 53.93/98.77 54.16/99.94 47.75/36.69  31.56/4.0  53.09/100.0 42.11/54.95

E.2 EXPERIMENT ON MOBILENET-V3-LARGE

Parameters

For the MobileNet-v3-large model, on the simplest dataset, GTSRB, the parameters, epochs, learning
rate, generate steps, and step size, are set to 4, 0.01, 4, and 1/255, respectively. On the other three
relatively complex datasets, these parameters are each set to 10, 0.001, 10, and 1/255.

Result
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Table 5: Comparison results of attack methods against various defense algorithms using MobileNet-v3-
large. The model’s original accuracy on CIFAR-10, CIFAR-100, GTSRB, and Tiny ImageNet datasets
are 84.25%, 53.59%, 94.71%, and 39.96%, respectively. This table presents a detailed comparison
of several attack methods, including K&L (ours), across different datasets. The performance is
evaluated in terms of Benign Accuracy (BA) and Attack Success Rate (ASR) under different defense
mechanisms, including ANP, BNP, FP, FT, - BAU, NAD, CLP, and RNP.

Datasets ‘ Attack Methods ‘ No Defense ‘ ANP BNP Fp FT 1-BAU NAD CLP RNP
| | BA/ASR | BA/ASR BA/ASR BA/ASR BA/ASR  BA/ASR  BA/ASR BA/ASR BA/ASR
BadNet 82.52/93.61 | 82.51/93.46  54.9/10.18  78.02/18.92 78.36/13.09 -/- 77.94/10.53  81.97/1.83  82.47/2.37
Blended 82.27/90.0 | 80.13/73.24  65.29/91.32  77.44/4.44  77.86/5.73 -/- 73.54/531  62.84/93.97  78.31/8.56
BppAttack 73.94/99.13 | 70.35/1.97  73.03/4.92  80.63/13.57  79.99/4.14 -I- 81.69/4.43  58.39/1.67  76.09/3.06
CIFAR-10 Input-Aware 78.37/85.46 | 71.95/2.94  78.35/6.82  79.4/11.44  79.37/25.02 -I- 81.44/10.01 78.08/31.22  78.85/5.6
SSBA 69.5/93.59 | 70.74/5.87  61.63/93.81  80.23/1.64 80.88/3.8 -I- 82.02/4.56  35.98/98.43  79.22/8.73
WaNet 83.34/99.93 | 77.57/4.42  78.95/99.97 78.76/13.03  78.46/3.94 -/- 77.73/12.54  74.0/99.97  81.96/4.64
K&L 83.92/100.0 | 83.92/100.0  80.3/99.51  79.11/93.93  78.5/95.81 -/- 77.28/98.03  82.46/99.92  55.0/64.61
BadNet 50.16/91.55 | 49.49/0.38  44.17/92.02 41.97/1.32  44.11/2.57 -/- 43.4/7.26 45.64/5.14  50.25/14.77
Blended 49.16/89.08 | 45.83/76.68 42.36/48.84  42.7/2.46  43.97/15.51 -/- 42.43/16.92  36.56/2.45  47.93/5.55
BppAttack 47.19/60.06 | 43.1/5.82 37.3/3.55 47.09/80.4  47.35/49.82 -/- 51.59/3.33  44.9/53.35  47.08/15.13
CIFAR-100 Input-Aware 47.61/87.7 | 42.73/0.05 35.75/54.09 46.35/15.66  47.09/9.3 -I- 50.74/0.31  44.87/53.87  43.09/3.39
SSBA 30.57/98.38 | 29.95/9.83  23.9/96.21 47.64/0.48  48.46/0.65 -I- 51.26/4.55  32.38/95.21  44.31/8.15
WaNet 49.53/99.99 | 48.31/99.96 44.11/99.99  42.76/2.75  44.46/1.45 -/- 42.63/2.41 39.05/0.14  49.11/0.69
K&L 53.87/99.97 | 50.92/99.95 41.78/97.93  45.0/91.63  46.27/93.17 -/- 45.59/93.38  45.01/99.26  30.48/74.79
BadNet 93.63/91.54 | 93.94/0.0  91.54/92.06  95.71/4.49  95.68/33.04 -/- 95.36/25.45  82.93/0.05 93.95/0.0
Blended 91.86/93.84 | 89.48/60.52 90.82/92.41  95.0/15.77  94.41/72.2 -/- 93.86/69.58  86.32/93.29  88.38/44.8
BppAttack 93.37/78.64 | 93.63/0.0 79.4/1.04 95.88/0.03  95.76/0.02 -/- 95.0/0.0 92.43/19.26  93.33/0.78
GTSRB Input-Aware 90.48/65.85 85.25/0.0  89.19/48.55  94.1/0.06 93.81/0.45 -/- 92.97/1.9  85.79/26.95 90.8/5.7
SSBA 56.33/80.27 | 57.02/79.47  86.54/0.83 96.08/0.0 95.92/0.0 -I- 95.47/0.02  46.47/85.1 91.59/2.1
WaNet 94.43/99.98 | 89.53/12.35 92.49/99.74  95.72/34.78  95.55/56.66 -I- 94.73/46.01  85.86/0.02  90.22/0.76
K&L 91.24/99.74 | 88.14/97.1 88.3/99.63  95.65/29.44  95.55/61.22 -/- 93.67/72.35 86.31/98.33  83.95/78.12
BadNet 40.44/99.86 | 38.96/0.89  39.38/99.36  39.68/0.43 40.59/0.6 -/- 34.9/0.73 40.45/0.44  40.42/0.83
Blended 23.07/91.27 | 21.8/67.66  19.84/89.58  24.8/22.53  22.21/21.47 -/- 13.41/0.22  23.14/91.28  12.6/39.23
BppAttack 45.1/96.59 | 41.29/0.05 42.25/97.39  38.62/0.33  40.08/0.22 -/- 23.35/0.23  45.38/0.27  43.34/0.04
Tiny Input-Aware 42.89/99.57 | 41.34/0.04 34.89/99.34  37.0/0.26 38.58/0.18 -I- 25.54/0.36  43.07/0.53  43.11/0.06
SSBA 45.33/97.48 | 43.46/65.12  35.04/93.28  37.19/0.74  39.82/0.61 -/- 25.08/0.24  42.59/97.93  45.6/0.09
WaNet 38.09/99.97 | 38.19/2.2  37.38/99.94  39.54/7.06  40.34/3.24 -I- 34.91/0.72  38.08/50.69  38.18/0.55
K&L 47.52/99.99 | 47.45/99.97 42.33/99.93 37.77/96.78  39.46/98.08 -I- 27.92/29.3  47.48/99.99  34.48/66.16

Table 6: Performance of backdoor attacks with and without embedding locks. BN represents benign
accuracy, and ASR represents attack success rate.

| BN ASR
Without Embedding Locks | 94.08%  90.71%
With Embedding Locks | 93.71%  99.88%

As shown in Table [3] it is evident that our K&L Backdoor Attack method can breach nearly all
existing defense mechanisms on the MobileNet-v3-large model across the CIFAR-10, CIFAR-100,
GTSRB, and Tiny ImageNet datasets.

The contribution between adversarial and backdoored perturbation Firstly, our adversarial noise
varies with each step, making it non-unique to each sample. Furthermore, we have supplemented
our findings in the PreActResNet-18 model by comparing the performance changes before and after
embedding locks to demonstrate the effectiveness of our backdoor mechanism. As shown in Table [6]
the performance of the backdoor attacks has significantly improved through the embedding locks
mechanism, showing a clear advantage over other algorithms.

E.3 EXPERIMENT ON EFFICIENTNET-B3

Parameters

For the EfficientNet_B3 model, parameter settings were differentiated based on dataset complexity.
On simpler datasets like CIFAR-10 and GTSRB, epochs, learning rate, generate steps, and step
size were set to 4, 0.01, 4, and 1/255, respectively. Conversely, for more complex datasets such as
CIFAR-100 and Tiny ImageNet, these parameters were adjusted to 10, 0.001, 10, and 1/255.

Result
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Table 7: Comparison results of attack methods against various defense algorithms using EfficientNet-
B3. The model’s original accuracy on CIFAR-10, CIFAR-100, GTSRB, and Tiny ImageNet datasets
are 69.21%, 50.45%, 84.69%, and 46.66%, respectively. This table presents a detailed comparison
of several attack methods, including K&L (ours), across different datasets. The performance is
evaluated in terms of Benign Accuracy (BA) and Attack Success Rate (ASR) under different defense
mechanisms, including ANP, BNP, FP, FT, - BAU, NAD, CLP, and RNP.

Datasets | Attack Methods | No Defense |~ ANP BNP FP FT I-BAU NAD CLP RNP
‘ ‘ BA/ASR ‘ BA/ASR BA/ASR BA/ASR BA/ASR BA/ASR BA/ASR BA/ASR BA/ASR
BadNet 55.75/10.39 | 55.79/10.39  54.36/11.89 53.0/4.94 53.07/5.58 54.14/5.36 53.29/5.38  25.14/24.59  55.75/10.42
Blended 55.5/25.46 | 55.71/23.72  54.43/28.71 53.03/4.1 52.04/6.31 55.0/5.76 53.01/4.0 17.68/70.39  55.5/25.46

BppAttack 70.03/78.73 | 69.33/57.74  53.4/7.07 70.12/8.6 70.68/5.13  72.33/21.1  72.07/3.52  10.65/83.38  64.15/4.71
CIFAR-10 Input-Aware 61.84/78.72 | 54.89/68.94 52.68/56.21 61.55/22.04 61.4/20.92  61.93/53.37 62.56/28.63  24.04/5.8  60.37/30.44

SSBA 66.49/71.82 | 65.73/14.16  65.99/73.01  69.97/3.09  69.65/5.39  71.89/4.06 71.7/14.27 38.31/3.97  68.22/3.21
‘WaNet 54.77/9.59 | 54.77/9.61  53.39/10.13  53.44/3.74  53.07/5.08  52.96/5.87  52.45/5.33  22.39/43.94  54.78/9.63
K&L 65.38/98.94 | 65.37/98.94  40.18/82.3  66.57/45.78  65.7/45.67  67.16/90.64 67.45/72.11 17.4/5.93 21.67/3.19
BadNet 45.84/88.98 | 45.82/88.52 44.18/88.38  34.84/4.2 36.83/7.72  38.99/68.14  37.4/9.14 2.69/0.53 45.01/2.82

Blended 48.02/81.03 | 47.89/80.01 39.05/37.19  38.28/0.88  38.71/3.06  41.89/34.05 39.69/5.69 10.48/19.86  38.36/5.41
BppAttack 48.77/78.86 | 48.21/0.78  45.45/76.43  43.58/0.15  44.65/0.08  49.13/52.75 49.58/0.68  10.62/0.25  41.03/0.83
CIFAR-100 Input-Aware 44.68/91.53 | 42.12/1.64 24.78/6.3 40.79/0.37  40.81/0.34  46.51/58.88  46.45/1.91 13.53/0.12  46.26/0.55

SSBA 45.45/91.92 | 49.78/36.08  38.11/0.01  44.86/0.31  44.69/1.51 49.42/14.15 49.45/536  10.1/38.91 50.34/2.12
‘WaNet 48.05/99.79 | 46.82/53.43  39.09/0.12  37.85/26.28  39.58/63.6  41.46/94.3  40.27/63.67 16.99/4.51  48.13/8.28

K&L 49.7/99.33 | 48.47/99.29  41.6/96.85  39.37/54.48 40.29/71.02 43.73/95.12 41.67/84.31  20.2/24.89  20.41/77.39
BadNet 80.82/82.31 | 77.55/71.82  80.4/80.55  83.36/9.29  82.11/26.01 81.65/58.97 81.92/42.12 14.18/40.39  78.73/23.21
Blended 78.0/79.36 | 70.85/67.52 76.05/73.05 81.05/3.41  79.9/30.48  76.74/43.68 78.04/49.32 37.71/76.44 39.11/10.92

BppAttack 82.83/23.64 | 76.44/9.81  82.13/23.85 88.54/5.58  87.61/4.54  85.83/8.81 87.32/8.07  33.8/23.44  81.77/14.63
GTSRB Input-Aware 63.63/5.45 | 63.25/3.44  64.51/433  68.93/0.68  68.27/0.08  66.56/0.48  68.57/0.04  38.54/18.3  65.34/3.38

SSBA 77.13/4.02 | 77.13/4.02  77.43/4.21 82.14/0.1 81.62/0.27  79.06/0.76 ~ 81.09/0.18  26.71/37.46  77.12/4.03
WaNet 82.95/96.94 | 82.08/81.11 80.25/94.38  88.22/1.29  85.95/63.99 84.59/88.77 85.46/85.01 22.72/72.52  83.1/97.3
K&L 81.62/97.58 | 76.05/91.5 72.64/97.88 86.84/49.82 85.51/69.67  84.54/72.9  84.69/81.54 37.14/13.64 69.54/37.54
BadNet 38.42/100.0 | 36.48/3.62  30.07/100.0  42.45/0.0 43.23/0.15  40.46/99.08  35.57/0.01  38.42/100.0  38.2/1.83
Blended 38.47/94.61 | 36.33/64.61 29.48/88.6  32.51/1.84  28.68/9.96  35.44/50.19 17.47/0.48  38.48/92.59 31.90/48.99
BppAttack 48.18/99.93 | 48.21/0.1 48.09/5.91 43.79/0.17 44.05/0.5  44.45/94.55  27.34/0.3 45.59/68.6 48.0/0.11
Tiny Input-Aware 46.22/99.73 | 46.37/0.32  38.39/0.68 40.6/0.48 44.38/0.57  40.34/86.07  30.25/0.54  45.05/93.37  46.44/0.14
SSBA 46.72/99.07 | 46.05/0.03 46.33/0.0 43.01/0.41 43.19/0.24  43.72/82.73  28.67/0.64  45.38/97.28  46.69/0.07
‘WaNet 44.29/99.99 | 44.34/1.74  39.09/95.05  41.35/1.78  43.85/0.85 42.91/99.43  34.6/0.53  44.17/99.99  44.15/2.16
K&L 46.23/99.99 | 46.25/99.99 41.22/99.99  40.4/60.4  42.63/98.84 40.49/99.85 30.97/38.85 44.56/99.99 38.32/98.08

As shown in Table[J] it is evident that our K&L Backdoor Attack method can breach nearly all existing
defense mechanisms on the EfficientNet-B3 model across the CIFAR-10, CIFAR-100, GTSRB, and
Tiny ImageNet datasets.
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F ABLATION RESULTS IN THE MAIN TEXT
F.1 ABLATION STUDY ON EPOCHS

Table 8: Ablation study on the impact of epochs on the performance of K&L method. The table
shows the variation in BA and ASR as the epoch changes.

epochs ‘ No Defense ‘ ANP BNP FP FT I-BAU NAD CLP RNP
‘ BA/ASR ‘ BA/ASR BA/ASR BA/ASR BA/ASR BA/ASR BA/ASR BA/ASR BA/ASR

87.47/100.0 | 80.94/5.46  87.17/100.0 92.43/97.17 92.46/99.3  88.65/85.66 92.22/87.21 85.73/47.92 85.89/33.17
86.76/99.99 | 85.39/29.07  86.15/99.8  92.44/98.38 92.44/99.27  90.16/83.4  92.26/97.93 86.55/75.52 86.27/73.04
89.12/99.94 | 81.64/61.43 86.48/85.51 92.72/97.81 92.76/99.69 89.32/86.33 92.48/99.17  85.26/95.5  89.12/99.94
90.02/98.94 | 83.23/48.17 89.87/86.41 92.65/94.43 92.93/98.59 88.38/94.58 92.62/97.32 89.71/91.34  86.27/83.70
90.16/98.89 | 85.32/66.08 87.03/84.13 92.55/92.63 93.06/97.97 90.28/72.81 92.93/96.42  86.9/92.16  86.27/86.32
90.24/97.37 | 83.5/55.37  89.34/79.57 92.86/87.79 92.87/95.77 90.82/76.67 92.71/95.01  89.21/83.6  86.27/35.96

RS ®O RN

F.2 ABLATION STUDY ON LEARNING RATE 7

Table 9: Ablation study on the impact of learning rate on the performance of the K&L method. This
table illustrates the variation in BA and ASR as the learning rate changes.

LR | No Defense | ANP BNP FP FT I-BAU NAD CLP RNP
| BA/ASR | BA/ASR BA/ASR BA/ASR BA/ASR BA/ASR BA/ASR BA/ASR BA/ASR

0.001 | 86.76/91.19 | 85.15/9.12  86.15/70.29 92.44/64.34  92.44/72.99 90.16/34.47 92.26/66.17 86.55/38.73  86.27/35.96
0.005 | 86.76/99.99 | 85.39/29.07 86.15/99.8  92.44/98.38  92.44/99.27  90.16/83.4  92.26/97.93 86.55/75.52 86.27/73.04
0.01 | 86.76/100.0 | 85.39/37.37 86.15/100.0 92.44/99.86 92.44/99.97 90.16/94.09 92.26/99.81 86.55/82.58 86.27/80.87
0.05 | 86.76/100.0 | 85.39/42.31 86.15/100.0 92.44/99.92  92.44/99.98 90.16/97.32  92.26/99.97 86.55/85.22 86.27/83.70
0.1 86.76/100.0 | 85.39/46.7  86.15/100.0 92.44/99.99 92.44/100.0 90.16/98.66 92.26/99.99 86.55/87.62 86.27/86.32
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F.3 ABLATION STUDY ON level

Table 10: Ablation study on the impact of level on the performance of the K&L method. This table
illustrates the changes in BA and ASR as the generate steps parameter is varied.

Generate Steps | No Defense |~ ANP BNP FP FT I-BAU NAD CLP RNP
‘ BA/ASR ‘ BA/ASR BA/ASR BA/ASR BA/ASR BA/ASR BA/ASR BA/ASR BA/ASR

2 86.76/91.19 | 85.15/9.12  86.15/70.29  92.44/64.34  92.44/72.99  90.16/34.47 92.26/66.17 86.55/38.73  86.27/35.96
4 86.76/99.99 | 85.39/29.07  86.15/99.8  92.44/98.38  92.44/99.27  90.16/83.4  92.26/97.93 86.55/75.52 86.27/73.04
6 86.76/100.0 | 85.39/37.37 86.15/100.0 92.44/99.86 92.44/99.97 90.16/94.09 92.26/99.81 86.55/82.58 86.27/80.87
8 86.76/100.0 | 85.39/42.31  86.15/100.0 92.44/99.92  92.44/99.98 90.16/97.32 92.26/99.97 86.55/85.22  86.27/83.70
10 86.76/100.0 | 85.39/46.7  86.15/100.0 92.44/99.99  92.44/100.0 90.16/98.66 92.26/99.99 86.55/87.62 86.27/86.32
12 86.76/100.0 | 85.39/50.5  86.15/100.0 92.44/100.0 92.44/100.0 90.16/99.32 92.26/100.0  86.55/89.41 86.27/88.36

F.4 ABLATION STUDY ON ATTACK STEP SIZE «

Table 11: Ablation study on the impact of attack step size on the performance of the K&L method.
The table shows how BA and ASR vary with changes in step size.

Step Size | No Defense | ANP BNP Fp FT I-BAU NAD CLP RNP
| BA/ASR | BA/ASR BA/ASR BA/ASR BA/ASR BA/ASR BA/ASR BA/ASR BA/ASR
0.25 85.65/84.77 | 77.7/2.84  82.96/80.97 92.17/15.16 92.05/29.13  88.61/25.87 92.12/28.27  76.63/5.84  84.43/30.76

0.5 88.69/99.8 81.26/1.6  87.69/90.77 92.71/78.8  92.58/95.2  89.23/77.22 92.53/94.37 86.61/21.11 87.01/18.86
0.75 88.51/99.87 | 84.41/7.22  87.11/40.62 92.54/96.08  92.61/99.3  90.28/82.93  92.27/98.79 87.08/49.69  87.82/55.58
1 86.76/99.99 | 85.39/29.07  86.15/99.8  92.44/98.38  92.44/99.27  90.16/83.4  92.26/97.93 86.55/75.52 86.27/73.04

1.25 88.37/99.99 | 82.67/48.77 87.52/98.87 92.63/98.88 92.87/99.86  88.71/97.3  92.48/99.4  87.64/85.76 87.97/81.11
1.5 89.15/99.93 | 81.35/14.83 87.61/46.87  92.65/99.8  92.44/99.96  89.6/95.38  92.38/99.92 86.92/65.71 88.20/71.72

G ADDITIONAL ABLATION RESULTS

G.1 ABLATION PARAMETERS SETTING

In the ablation experiments conducted, four models were evaluated across different datasets with
specific parameter settings. As shown in Table [I2] for the PreActResNet18 model, the parameters set
for CIFAR-10, CIFAR-100, and Tiny ImageNet datasets were: epochs at 4, learning rate (LR) at 0.01,
level at 4, and attack step size («) at 1. Notably, for the GTSRB dataset under the PreActResNet18
model, the learning rate was set to 0.001, diverging from the default setting. Similarly, for the
VGG19-BN, MobileNet-v3-large, and EfficientNet-B3 models, the default parameter values were
maintained across all datasets: CIFAR-10, CIFAR-100, GTSRB, and Tiny ImageNet, with epochs at
4, LR at 0.01, level at 4, and « at 1. In each section of the ablation study, all parameters except the
one under investigation were kept at these default settings.

Table 12: Default Parameters Table in Ablation Study

Models | Datasets | epochs LR level «
CIFAR-10 4 0.01 4 1

proActRese | CIFARIO0 | & 001 3
Tiny 4 001 4 1

CIFAR-10 4 0.01 4 1

wowny R 4 G0 E
Tiny 4 0.01 4 1

CIFAR-10 4 0.01 4 1

MobileNet-v3-large Clg?;i%goo j ggi i }
Tiny 4 0:01 4 1

CIFAR-10 4 0.01 4 1

EfficientNet-B3 CI(I:?;SBOO j 88{ j i
Tiny 4 0.01 4 1
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Figure 6: Training loss over 12 epochs using PreactResNet-18 on the CIFAR-10 dataset. The model
converges by the fourth epoch, as indicated by the stabilization of the loss value.

G.2 ABLATION STUDY ON EPOCHS

PreActResNet18: Given that an ablation study on the PreActResNet18 model using the CIFAR-10
dataset has already been conducted in the main text, this section will evaluate the impact of four
parameters (epochs, learning rate 7, level, and attack step size ) on the efficacy of the K&L backdoor
attack on the remaining three datasets: CIFAR-100, GTSRB, and Tiny ImageNet. The default settings
for these parameters are epochs and level at 4, learning rate set to 0.01 for the GTSRB dataset and
0.01 for the others, and an attack step size of 1. During the ablation process, only the parameter under
study is altered, while others are kept at their default values.

Analyzing Table[I3|reveals that with increasing epochs, there is a consistent improvement in Benign
Accuracy (BA) on the PreActResNet18 model, indicating enhanced model performance. Concurrently,
Attack Success Rate (ASR) generally maintains a high level, signifying the robustness of the K&L
Backdoor Attack method against various defense mechanisms over different epoch settings.

Table 13: Ablation Study Assessing the Effect of Epoch Variability on the Performance of the K&L
Method with PreActResNet18 on CIFAR-100, GTSRB, and Tiny ImageNet - Comparison of Benign
Accuracy (BA) and Attack Success Rate (ASR)

Datasets | epochs | No Defense | ANP BNP FP FT [-BAU NAD CLP RNP
‘ ‘ BA/ASR ‘ BA/ASR BA/ASR BA/ASR BA/ASR BA/ASR BA/ASR BA/ASR BA/ASR

50.59/99.96 | 48.35/35.88  51.45/99.95 67.52/93.24 67.13/85.85  63.1/34.04  67.15/85.66 44.77/98.57 43.36/36.08
61.33/99.95 | 57.15/91.54 59.97/99.67 66.41/85.06 67.97/98.72  64.53/53.0  67.78/99.11 52.88/88.16  55.6/97.81
61.59/98.68 | 57.19/68.75 60.83/79.93 65.91/88.11 67.98/98.78 63.77/42.96 67.87/98.97 57.73/64.02  62.37/98.68
62.74/99.03 | 57.38/66.13  62.15/95.9  66.53/81.05 68.59/98.31 64.95/39.43 68.65/98.62 49.92/67.24  63.06/98.94
61.1/98.28 | 57.88/44.88 56.66/60.16 67.35/77.49 68.16/97.14  65.66/38.56 68.18/97.66  60.1/96.48  61.1/98.28
63.45/96.97 | 58.44/65.84 63.11/96.66  67.2/71.9 69.16/95.8  65.52/26.91 68.75/95.51 59.73/86.52  63.7/96.4

96.1/98.85 | 88.5/21.33  95.44/98.04 98.27/13.33  98.0/19.79 17.14/0.0 96.89/2.0  95.01/98.82  37.52/0.2

97.66/99.85 | 89.78/2.03  97.39/88.93 98.27/44.36  98.16/88.22  92.03/39.96 98.08/92.87 97.57/99.53  97.66/99.85
98.48/92.88 | 89.38/9.4  97.89/77.84 98.27/33.34  98.48/76.4  93.02/6.17  97.48/11.66  98.2/92.59  98.48/92.88
98.5/87.25 | 91.69/16.0  97.91/68.9  98.37/33.9  98.46/75.81  89.35/6.46  97.43/15.56 98.22/86.84  98.5/87.25
98.54/83.17 | 92.42/16.85 97.68/64.77 98.24/32.13 98.46/74.63  90.86/4.86  97.49/19.46 98.26/82.97 98.54/83.17
98.48/80.3 | 92.11/18.54 98.23/66.47  98.32/33.7  98.48/73.25 91.77/3.03  97.54/19.05 98.26/79.17  98.48/80.3

45.65/99.94 | 45.65/99.94  45.59/99.94 51.86/47.24 54.99/85.66  50.34/72.5 48.92/39.49 45.78/99.91 42.95/99.75
48.09/99.91 | 48.09/99.91  48.09/99.91  52.26/62.62 54.63/97.66  50.6/51.52  47.77/44.37 47.71/99.91 47.87/99.85
47.18/99.86 | 47.18/99.86 46.49/99.85  52.1/58.35  54.7/97.22  50.51/49.14 46.92/29.07 46.31/99.74  47.13/99.8
46.49/99.63 | 46.49/99.63  46.45/99.56 52.33/70.46  54.64/96.2  52.33/61.23 47.41/25.23 46.54/99.55 47.19/99.43
46.82/99.54 | 42.2/99.08  46.82/99.54 52.07/60.68 54.82/94.88 50.58/83.33 49.28/35.06 46.82/99.54  46.9/99.51
47.28/97.48 | 47.29/97.49  47.31/97.27 52.33/54.36  54.45/91.01 51.36/87.52  48.6/25.77  47.28/97.48  47.3/97.41
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Do

Tiny
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We conducted our experiments using the CIFAR-10 dataset with PreactResNet-18 and trained for 12
epochs. As shown in Figure[f] the model essentially reached convergence by the fourth epoch.

VGG19-BN: In this section, we assess the impact of four parameters (epochs, learning rate 7, level,
and attack step size o) on the effectiveness of the K&L backdoor attack using the VGG19-BN model
across four datasets: CIFAR-10, CIFAR-100, GTSRB, and Tiny ImageNet. The default settings for
these parameters are fixed at epochs and level to 4, a learning rate of 0.01, and an attack step size of
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1. Throughout the ablation process, only the parameter being studied is varied, while all others are
maintained at their default values.

As demonstrated in Table[T4] the VGG19-BN model shows a trend of increasing BA with higher
epochs, suggesting improved model accuracy. The ASR also exhibits a tendency to remain high
or even increase with more epochs, highlighting the effectiveness of the K&L Backdoor Attack in
overcoming defenses as training progresses.

Table 14: Ablation Study Assessing the Effect of Epoch Variability on the Performance of the K&L
Method with VGG19-BN on CIFAR-10, CIFAR-100, GTSRB, and Tiny ImageNet - Comparison of
Benign Accuracy (BA) and Attack Success Rate (ASR)

Datasets | epochs | No Defense ANP BNP FP FT I-BAU NAD CLP RNP
‘ ‘ BA/ASR ‘ BA/ASR BA/ASR BA/ASR BA/ASR BA/ASR BA/ASR BA/ASR BA/ASR

2 86.26/68.91 | 81.7/34.86  85.73/72.13  90.1/33.67  89.63/34.18 86.85/43.04 88.88/42.19 79.59/50.96  83.3/56.88

4 86.39/98.97 | 82.4/39.27  86.14/98.21 90.08/66.61 90.23/69.38 87.99/72.82  89.6/74.74  75.45/27.2  73.51/43.71

CIFAR-10 6 87.74/98.11 | 83.91/16.31 87.86/96.03 90.33/86.06  90.64/84.3  85.08/86.08 90.02/88.24  84.3/67.38  82.04/32.64
8 88.09/86.01 | 80.23/28.04  87.2/51.59  90.71/73.39  90.93/80.28 88.07/53.46 90.34/83.73  85.44/52.81  77.96/27.2

10 88.5/82.67 | 80.13/11.13  87.73/47.92  90.7/69.73  90.8/67.78  87.18/25.83  90.67/69.18 87.97/81.16 86.78/57.33

12 88.76/60.44 | 83.68/17.51  87.62/34.3  90.36/48.73  90.77/55.36  85.47/41.23  90.8/61.68  86.37/39.56  88.76/60.44

2 55.24/4521 | 55.5/33.74  54.69/44.64  62.48/3.95  62.06/3.24  58.45/4.99  60.96/3.14  48.01/24.58 45.21/23.38

4 53.6/86.86 | 49.84/33.42 53.81/85.53  62.6/26.41  62.04/27.18 58.34/10.01 61.59/25.97 36.81/10.31  48.3/32.25

CIFAR-100 6 54.4/94.55 49.54/3.9  52.78/73.29 62.52/68.42 62.48/68.12 58.97/56.38 61.22/60.11 45.83/15.18  40.31/1.55
8 57.95/94.09 | 55.79/3.0  54.98/69.24 63.24/80.86 62.97/69.69 59.31/19.45 62.18/53.85 41.82/0.68  52.25/10.19

10 58.78/67.16 | 55.24/4.26  58.5/24.86  63.88/45.92 63.51/56.51  59.07/3.66  62.21/60.15  45.7/1.73 46.15/3.79

12 58.89/74.82 | 53.19/0.63  58.05/19.52 63.33/50.69 63.38/41.36  59.96/3.6  63.14/42.58  50.06/2.96  49.13/2.12

2 93.02/95.68 | 86.68/4.18  92.76/9529 97.74/43.44 97.62/55.97 95.95/13.09 97.24/59.48  93.4/94.96  94.02/89.24

4 96.02/97.89 | 90.82/1.85  96.53/92.09 97.91/73.23 97.62/88.73  96.37/6.43  97.77/87.36  95.92/97.99  96.02/97.89

GTSRB 6 96.3/97.53 | 92.22/0.82  95.8/82.81 98.19/79.35 98.16/93.47 97.51/11.37 97.87/91.71 95.71/97.59  96.23/96.32
8 97.28/88.68 | 89.87/0.35  97.03/54.11 97.94/70.08  97.71/87.3  97.25/15.58 97.79/89.03 97.21/89.38  97.28/88.68

10 97.81/92.2 | 95.31/12.09 98.11/66.01 98.22/73.63 97.91/88.24  96.76/7.03  97.68/92.21  97.27/92.69  97.81/92.2

12 97.53/84.9 | 92.32/0.95  97.6/58.11  98.39/66.26 98.08/86.09  94.32/5.73  97.77/89.9  97.3/87.06  97.53/84.9

2 41.79/84.57 | 40.24/72.52 41.44/84.36  51.67/6.08  52.13/6.18  47.98/7.46  44.08/3.99  42.03/80.51 42.01/78.89

4 39.48/94.12 | 38.43/81.5 39.15/93.83  51.63/4.68  51.51/6.22 47.23/6.5 45.52/2.0  40.24/90.64  38.29/84.31

Tiny 6 43.33/96.37 | 39.68/84.27  42.29/95.2  51.37/27.58 51.57/33.29 47.61/19.04 43.38/2.61  43.83/92.29 43.73/88.68
8 43.27/97.47 | 40.01/29.39  42.97/96.07 51.39/63.34 51.05/68.95  46.8/27.61  44.78/14.94 42.95/88.06 43.49/91.99

10 45.23/94.48 | 42.3/61.37 44.55/93.72 51.11/70.72 51.11/70.45  46.53/13.7 42.8/8.08  45.29/94.28  45.65/86.41

12 45.62/93.35 | 42.43/8.75  45.66/92.5  51.7/5586  51.55/68.3  46.47/38.27 44.39/3.88  45.27/93.11 45.84/81.73

MobileNet-v3-large: The results in Table [[3]indicate that both BA and ASR on the MobileNet-v3-
large model tend to increase with the number of epochs. This pattern suggests not only enhanced
model accuracy but also a consistent efficacy of the backdoor attack across varied training durations.

Table 15: Ablation Study Assessing the Effect of Epoch Variability on the Performance of the
K&L Method with MobileNet-v3-large on CIFAR-10, CIFAR-100, GTSRB, and Tiny ImageNet -
Comparison of Benign Accuracy (BA) and Attack Success Rate (ASR)

Datasets | epochs | No Defense ANP BNP FP FT I-BAU NAD CLP RNP
‘ ‘ BA/ASR BA/ASR BA/ASR BA/ASR BA/ASR BA/ASR BA/ASR BA/ASR BA/ASR
2 74.79/99.98  67.7/45.94  71.95/99.92 79.38/29.41 79.47/38.77 -/- 80.17/67.38  73.79/99.88  61.75/67.94
4 77.2/99.97  70.73/27.96  72.07/99.94  79.98/49.96 79.93/58.43 -/- 81.09/81.53  70.18/99.92  55.73/25.07
CIFAR-10 6 78.35/99.99  72.36/44.91 76.29/99.93  80.12/64.87 79.62/69.88 -/- 80.52/88.64  74.41/99.9 64.7/41.88
8 77.64/98.3  72.57/32.16  70.66/97.66 80.06/63.98  80.23/70.47 -/- 80.73/85.77  75.71/93.02  52.3/42.01
10 79.84/98.88  77.48/75.6  76.05/96.69 79.85/60.22  80.22/67.57 -/- 80.73/84.14  78.7/89.07  69.27/55.43
12 80.07/97.86  74.01/70.14  75.22/94.64 79.89/55.74  80.26/64.66 -/- 79.89/74.07 78.84/92.74  72.1/56.34
2 44.99/99.56  45.48/99.43  35.7/98.02  46.3/33.96  47.49/30.72 -/- 49.36/46.32  29.09/98.37 44.31/98.51
4 47.16/99.57 47.12/99.52  35.51/94.77 46.19/64.09 47.45/66.06 -/- 49.94/79.94  37.4/97.46  30.74/81.88
CIFAR-100 6 47.07/98.12  43.52/95.7 39.6/90.75  46.85/67.89 48.07/70.28 -/- 50.2/78.28  35.24/84.86  30.6/40.72
8 46.74/95.07 44.83/87.91 28.67/48.38 47.18/60.25 48.49/66.59 -/- 50.55/68.12  37.0/64.62 18.32/6.43
10 47.6/91.18  45.26/72.45 41.62/82.35 46.95/50.0  48.85/57.47 -/- 50.59/61.16 40.37/39.28  47.44/89.67
12 46.77/89.2  45.09/84.95 42.72/64.8  47.93/44.35 48.99/49.86 -/- 50.79/46.42  42.27/62.99 34.85/32.45
2 86.3/97.92 80.2/84.43  83.56/96.91  95.3/18.74  95.09/28.77 -/- 94.04/48.03  73.23/95.7  75.28/67.18
4 89.79/99.43  89.02/95.88 86.76/98.67 95.76/31.89 95.21/57.14 -/- 94.54/68.97  72.83/97.29 81.47/75.76
GTSRB 6 92.41/99.59 89.71/90.94 90.46/99.23 95.91/39.83  95.41/71.5 -/- 94.24/79.35  82.53/98.31 74.48/43.09
8 92.21/99.67 88.3/86.4 88.42/95.47 96.21/41.39  95.87/70.07 -/- 95.45/68.74  74.88/97.65  81.1/68.54
10 93.91/93.99  93.2/76.67 93.4/91.67 96.48/32.19  96.0/71.64 -/- 95.28/77.55 88.73/89.38  93.91/93.99
12 94.2/96.36  92.26/68.69  91.16/81.9  96.37/34.88 95.91/72.76 -/- 95.43/75.13  90.56/94.83  94.2/96.36
2 39.54/99.57 38.81/97.28 38.74/98.83 40.91/11.25 42.36/14.95 -/- 35.77/3.94  39.58/99.56 32.48/93.28
4 35.45/99.95  35.5/99.91  31.65/99.87 41.56/66.99  42.44/78.3 -/- 35.84/22.24  35.45/99.95 31.12/27.14
Tiny 6 38.7/99.67  38.01/99.36 38.12/78.38 41.04/52.45 42.74/68.54 -/- 35.35/10.28 38.64/99.67  22.65/8.75
8 40.74/95.01  39.85/91.38 39.02/53.53 41.01/32.26  42.66/54.76 -/- 35.01/16.15  40.75/95.03 35.9/6.81
10 40.04/72.83  39.98/64.22  37.81/57.89 42.09/27.63 42.43/31.85 -/- 36.01/7.29  40.02/72.96  39.87/63.66
12 38.38/76.87 38.39/76.87 37.65/69.64 41.91/22.62 43.06/28.13 -/- 35.76/11.52  38.34/76.88  33.78/30.57
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EfficientNet-B3: Table (16| showcases a general increase in BA with the rise in epochs for the
EfficientNet-B3 model, implying improved benign performance. Simultaneously, the ASR mostly
remains high across different epochs, reflecting the potent and persistent nature of the K&L Backdoor
Attack in various training scenarios.

Table 16: Ablation Study Assessing the Effect of Epoch Variability on the Performance of the K&L
Method with EfficientNet-B3 on CIFAR-10, CIFAR-100, GTSRB, and Tiny ImageNet - Comparison
of Benign Accuracy (BA) and Attack Success Rate (ASR)

Datasets | epochs | No Defense | ANP BNP FP FT I-BAU NAD CLP RNP
‘ ‘ BA/ASR ‘ BA/ASR BA/ASR BA/ASR BA/ASR BA/ASR BA/ASR BA/ASR BA/ASR

2 64.03/94.03 | 62.36/91.91 47.09/73.37 65.39/34.19  65.1/37.49  67.19/77.49  66.93/55.6  13.04/59.46 57.61/68.66
4 65.38/98.94 | 65.37/98.94  40.18/82.3  66.57/45.78  65.7/45.67  67.16/90.64 67.45/72.11 17.4/5.93 21.67/3.19
CIFAR-10 6 66.81/94.31 | 63.56/94.14 14.3/3.91 65.98/52.6  65.99/54.78  67.87/79.99  67.62/73.04 12.52/30.88 15.14/71.34
8 67.9/88.07 | 65.4/83.39 67.46/86.82  67.02/53.0  66.35/57.06 68.96/80.13  68.4/71.34  11.14/70.51 63.24/73.21
10 68.8/76.76 | 65.36/68.39 43.97/26.63 67.61/51.73  67.25/51.76  69.56/78.48  69.5/69.68  13.02/72.44 51.61/26.06
12 66.89/84.64 | 62.8/81.77 66.62/84.18 68.42/46.06 67.97/44.9  69.49/78.93  70.1/59.09  12.72/26.73  34.26/2.9
2 35.66/93.89 | 32.94/91.68  9.75/85.18  40.91/8.87 40.5/6.26  42.31/22.84 43.13/12.35 11.45/17.62  19.35/13.2
4 44.76/99.66 | 44.76/99.66  40.6/99.49  41.42/23.12 42.13/18.17  45.4/65.55  45.15/54.26 11.78/15.63  32.7/54.08
CIFAR-100 6 43.5/96.81 | 43.31/96.69 33.04/82.56 41.89/19.11 42.19/23.74 44.55/22.31 45.44/58.18  9.89/1.96 =~ 34.36/48.57
8 46.98/96.95 | 45.3/94.71  46.59/95.78 42.42/25.24 42.86/31.99 45.79/20.61 46.04/72.51 16.08/20.97 33.47/35.77
10 47.6/88.19 | 47.6/88.17  47.36/83.45 43.07/19.38 43.54/31.52 46.36/11.58 47.25/61.41 11.51/0.6  39.51/14.38
12 44.77/88.59 | 44.74/78.36  36.74/25.88 42.87/15.18 43.15/15.01 44.69/11.39 45.67/38.42 13.23/11.67 44.68/61.86
2 76.42/92.68 | 75.33/89.92 68.16/53.71 86.24/31.26 85.18/39.14  0.48/100.0  84.15/61.3  24.86/57.14  72.3/53.14
4 81.62/97.58 | 76.05/91.5  72.64/97.88 86.84/49.82 85.51/69.67 84.54/72.9  84.69/81.54 37.14/13.64 69.54/37.54
GTSRB 6 84.68/91.92 | 81.43/88.47 81.01/91.86 87.98/40.71 86.46/73.21 85.12/26.56 85.91/81.74  28.15/2.39  67.58/41.25
8 85.31/90.73 | 82.49/80.79  82.5/89.28  88.63/36.83 86.94/73.28 85.64/71.03 86.07/80.07  28.63/9.65  82.7/72.03
10 85.65/85.34 | 79.76/74.3  81.99/73.82 88.77/25.99 87.34/69.64 86.36/66.15 86.53/78.34  18.9/0.49 77.95/47.8
12 83.65/77.76 | 77.5/63.12  76.71/29.7  89.29/27.13 87.91/63.83 86.94/51.19 87.59/72.25 26.15/5.45 83.65/77.76
2 38.89/98.3 | 39.05/98.09 38.69/98.28  45.05/13.7  45.12/23.31 42.75/73.89  36.91/6.75  39.05/97.01 32.36/75.19
4 39.54/99.49 | 39.54/99.49 38.75/99.33 44.13/36.25 44.66/71.62 42.06/90.05  37.23/29.6  39.18/99.28  27.22/95.26
Tiny 6 40.78/99.8 | 40.67/99.55 40.49/99.6  44.75/64.83 44.55/89.25 42.83/72.15  35.7/36.91  40.65/99.76  36.02/95.5
8 40.04/98.89 | 39.14/94.66  39.81/92.6  44.12/29.92 44.89/88.31 42.15/28.85 36.73/35.15 40.22/98.83 33.71/67.19
10 40.03/95.92 | 38.04/81.08 39.23/77.28  44.4/2721 44.73/77.01 42.54/31.32 36.17/28.16  40.06/95.74  30.13/75.7
12 40.55/89.92 | 40.65/82.26 40.03/60.95 43.91/10.44 44.6/68.41 42.16/33.79 36.66/27.66 40.35/89.19 39.79/83.19

G.3 ABLATION STUDY ON level

PreActResNet18: Table[17|demonstrates that with the increase in level, both Benign Accuracy (BA)
and Attack Success Rate (ASR) on the PreActResNet18 model generally improve across all datasets.
This indicates that higher level values enhance the model’s accuracy and the efficacy of the K&L
Backdoor Attack, especially under varying defense strategies.

Table 17: Ablation Study Assessing the Effect of level Variability on the Performance of the K&L
Method with PreActResNet18 on CIFAR-100, GTSRB, Tiny ImageNet - Comparison of Benign
Accuracy (BA) and Attack Success Rate (ASR)

Datasets | level | No Defense | ANP BNP FP FT I-BAU NAD CLP RNP
‘ ‘ BA/ASR ‘ BA/ASR BA/ASR BA/ASR BA/ASR BA/ASR BA/ASR BA/ASR BA/ASR

61.33/96.72 | 57.16/43.09 59.97/88.19 66.41/41.17 67.97/74.64 64.53/20.19 67.79/77.23 52.88/44.64  55.6/68.44
61.33/99.95 | 57.15/91.54 59.97/99.67 66.41/85.06 67.97/98.72  64.53/53.0  67.78/99.11 52.88/88.16  55.6/97.81
61.33/99.99 | 57.16/97.75 59.97/99.99 66.41/91.83 67.97/99.69 64.53/59.36  67.79/99.88  52.88/93.67  55.6/99.39
61.33/100.0 | 57.16/99.11 59.97/99.99 66.41/93.81 67.97/99.8  64.53/62.6  67.79/99.88 52.88/95.15  55.6/99.57
61.33/100.0 | 57.16/99.61 59.97/100.0  66.41/94.4  67.97/99.84 64.53/63.84 67.79/99.91 52.88/96.42  55.6/99.78
61.33/100.0 | 57.16/99.71  59.97/100.0 66.41/95.46 67.97/99.85 64.53/65.13 67.79/99.95 52.88/97.07  55.6/99.85

98.25/76.59 | 90.54/1.77  97.77/52.94  98.24/7.8  98.41/36.67  89.92/3.9  97.85/17.02 97.93/77.97 97.26/49.67
97.66/99.85 | 89.78/2.03  97.39/88.93 98.27/44.36 98.16/88.22 92.03/39.96  98.08/92.87 97.57/99.53  97.66/99.85
98.25/99.98 | 90.54/42.52  97.77/97.91 98.24/42.39 98.41/86.75 89.92/17.05 97.85/59.39  97.93/99.99 97.26/97.24
98.25/100.0 | 90.54/51.51  97.77/99.89  98.24/49.97 98.41/93.57 89.92/20.56 97.85/68.14  97.93/100.0  97.26/99.31
98.25/100.0 | 90.54/58.7  97.77/100.0 98.24/55.44 98.41/96.57 89.92/21.94 97.85/73.35 97.93/100.0 97.26/99.95
98.25/100.0 | 90.54/62.76  97.77/100.0  98.24/59.12  98.41/98.07 89.92/23.29 97.85/76.19  97.93/100.0  97.26/100.0

48.09/96.22 | 48.09/96.22 48.09/96.22  52.27/27.32 54.63/68.53  50.6/20.2  47.77/20.62  47.72/95.58 47.87/94.77
48.09/99.91 | 48.09/99.91 48.09/99.91 52.26/62.62 54.63/97.66  50.6/51.52  47.77/44.37 47.71/99.91 47.87/99.85
48.09/100.0 | 48.09/100.0  48.09/100.0  52.27/73.73  54.63/99.54  50.6/66.72  47.77/54.55 47.72/100.0 47.87/100.0
48.09/100.0 | 48.09/100.0 48.09/100.0  52.27/78.43  54.63/99.89  50.6/74.69  47.77/60.06 47.72/100.0 47.87/100.0
48.09/100.0 | 48.09/100.0 48.09/100.0  52.27/83.15  54.63/99.98  50.6/81.07  47.77/65.17 47.72/100.0 ~ 47.87/100.0
48.09/100.0 | 48.09/100.0  48.09/100.0  52.27/85.17  54.63/99.97  50.6/84.99  47.77/68.74 47.72/100.0 47.87/100.0
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VGG19-BN: As indicated in Table @ for the VGG19-BN model, an increasing level leads to a
consistent rise in both BA and ASR across different datasets. This trend suggests that the model’s
capability to correctly classify benign inputs and successfully implement backdoor attacks improves
as level increases.
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Table 18: Ablation Study Assessing the Effect of [evel Variability on the Performance of the K&L
Method with VGG19-BN on CIFAR-10, CIFAR-100, GTSRB, Tiny ImageNet - Comparison of
Benign Accuracy (BA) and Attack Success Rate (ASR)

Datasets | level | No Defense | ANP BNP FP FT I-BAU NAD CLP RNP
‘ ‘ BA/ASR ‘ BA/ASR BA/ASR BA/ASR BA/ASR BA/ASR BA/ASR BA/ASR BA/ASR

87.72/76.98 | 82.39/6.68  86.14/41.14 90.09/10.34 90.23/11.99 87.99/10.96 89.61/12.92  75.45/4.17  81.72/76.98
86.39/98.97 | 82.4/39.27  86.14/98.21  90.08/66.61  90.23/69.38 87.99/72.82  89.6/74.74  75.45/272  73.51/43.71
85.99/99.77 | 83.75/37.56  83.5/99.76  90.09/57.76  90.23/58.93  87.99/60.36 89.61/61.44 75.45/18.84  83.06/92.27
81.45/100.0 | 76.48/48.84 75.09/100.0 90.09/82.36  90.23/84.8  87.99/74.46  89.61/84.7  75.45/36.84 84.97/99.47
86.22/100.0 | 81.93/64.92 84.31/100.0  90.09/92.38  90.23/90.96 87.99/86.94 89.61/90.13  75.45/43.19  84.85/99.74
85.49/100.0 | 79.5/69.1 84.45/100.0  90.09/92.61 90.23/93.74 87.99/87.23 89.61/93.89 75.45/56.81 83.86/99.93

54.74/71.53 | 52.04/824 53.86/72.84 62.59/5.776  62.04/532  58.34/1.44 61.6/4.95 36.81/3.85  35.77/9.38
53.6/86.86 | 49.84/33.42 53.81/85.53  62.6/26.41  62.04/27.18 58.34/10.01 61.59/25.97 36.81/10.31  48.3/32.25
55.61/92.64 | 53.33/70.85 55.26/92.59 62.59/25.08 62.04/27.47  58.34/9.77  61.6/26.87  36.81/8.14  39.71/29.42
55.8/96.81 55.03/86.2  54.56/96.81 62.59/29.36  62.04/30.68 58.34/12.68  61.6/29.85  36.81/10.07 47.54/88.76
55.14/99.02 | 51.23/74.52 54.97/98.84 62.59/38.74 62.04/37.06 58.34/18.38  61.6/38.16 36.81/9.8  43.66/83.66
54.2/99.77 | 52.4/33.53  54.06/99.75 62.59/39.17  62.04/45.8  58.34/19.8  61.6/44.03  36.81/12.52 47.57/57.59

94.35/81.74 | 92.08/0.14  94.23/69.6  97.91/27.71 97.62/45.21  96.37/4.83  97.77/49.44 95.92/64.18 94.28/65.79
96.02/97.89 | 90.82/1.85 96.53/92.09 97.91/73.23 97.62/88.73  96.37/6.43  97.77/87.36  95.92/97.99  96.02/97.89
95.92/99.64 | 92.04/5.34  95.73/98.35 97.91/75.05 97.62/92.33  96.37/7.89  97.77/90.58  95.92/98.32  95.92/99.64
93.82/99.97 | 87.01/0.41  93.72/99.9  97.91/83.78 97.62/95.32 96.37/18.04 97.77/93.68  95.92/99.49  94.04/98.47
94.13/100.0 | 88.27/0.45 94.81/99.98 97.91/86.01 97.62/97.33 96.37/10.95 97.77/95.83 95.92/99.78  95.35/99.99
96.37/99.97 | 91.19/3.4  96.18/99.77 97.91/80.02 97.62/94.49 96.37/18.49 97.77/92.59 95.92/99.72  96.44/99.97

41.73/74.23 | 41.97/53.54 41.75/74.27 51.63/0.44  51.51/0.54  47.23/0.86 45.5/0.58  40.24/24.04  42.43/52.46
39.48/94.12 | 38.43/81.5 39.15/93.83  51.63/4.68  51.51/6.22 47.23/6.5 45.52/2.0  40.24/90.64  38.29/84.31
43.21/98.78 | 40.59/88.17 43.62/98.75  51.63/2.99  51.51/3.56  47.23/4.45 45.5/2.51  40.24/39.93  42.73/95.65
40.58/99.76 | 40.39/85.68  40.82/99.7  51.63/7.07  51.51/7.66  47.23/8.41 45.5/4.81  40.24/44.04  40.89/97.11
40.86/99.88 | 37.25/97.29  40.66/99.9  51.63/9.23  51.51/10.36  47.23/11.4 45.5/6.41  40.24/49.33  41.41/99.12
42.13/99.98 | 38.57/97.19  41.0/99.93  51.63/9.68  51.51/10.8 47.23/12.08  45.5/6.14  40.24/53.49 40.33/98.76
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MobileNet-v3-large: The data in Table[I9reveals a clear correlation between the increase in level
and improvements in BA and ASR for the MobileNet-v3-large model. This pattern suggests enhanced
model performance and stronger resilience of backdoor attacks against defenses with higher level
values.

Table 19: Ablation Study Assessing the Effect of level Variability on the Performance of the K&L
Method with MobileNet-v3-large on CIFAR-10, CIFAR-100, GTSRB, Tiny ImageNet - Comparison
of Benign Accuracy (BA) and Attack Success Rate (ASR)

Datasets | level | No Defense | ANP BNP FP FT I-BAU NAD CLP RNP
‘ ‘ BA/ASR ‘ BA/ASR BA/ASR BA/ASR BA/ASR BA/ASR BA/ASR BA/ASR BA/ASR
2 77.2/96.1 70.73/16.53  72.07/96.29  79.96/16.98  79.92/23.97 -/- 81.1/41.31  70.18/89.12  55.73/16.44
4 77.2/99.97 | 70.73/27.96 72.07/99.94 79.98/49.96 79.93/58.43 -/- 81.09/81.53  70.18/99.92  55.73/25.07
CIFAR-10 6 77.2/100.0 | 70.73/30.18 72.07/100.0 79.96/63.01  79.92/69.0 -/- 81.1/88.81  70.18/99.99  55.73/28.22
8 77.2/100.0 | 70.73/31.24 72.07/100.0  79.96/70.3 79.92/74.9 -/- 81.1/92.41  70.18/100.0  55.73/29.98
10 77.2/100.0 | 70.73/31.81 72.07/100.0 79.96/75.88 79.92/78.62 -/- 81.1/94.41  70.18/100.0 55.73/30.98
12 77.2/100.0 | 70.73/32.51 72.07/100.0 79.96/79.08 79.92/81.46 -/- 81.1/95.92  70.18/100.0 55.73/31.87
2 47.16/82.69 | 47.14/80.0 35.51/57.27 46.21/18.87 47.47/21.92 -/- 49.94/28.42  37.4/64.84  32.17/47.23
4 47.16/99.57 | 47.12/99.52 35.51/94.77 46.19/64.09 47.45/66.06 -/- 49.94/79.94  37.4/97.46  32.17/84.39
CIFAR-100 6 47.16/99.94 | 47.14/99.93 35.51/97.44 46.21/75.04  47.47/77.6 -/- 49.94/89.07  37.4/99.47  30.74/89.74
8 47.16/99.99 | 47.15/99.99 35.51/98.09 46.21/77.47 47.47/80.56 -/- 49.94/91.19  37.4/99.86  30.74/92.24
10 47.16/100.0 | 47.15/100.0 35.51/98.35 46.21/78.79 47.47/81.76 -/- 49.94/92.26  37.4/99.95  30.74/93.03
12 47.16/100.0 | 47.15/100.0 35.51/98.43 46.21/79.47  47.47/82.8 -/- 49.94/93.09  37.4/99.96  30.74/93.66
2 89.79/90.02 | 89.02/69.06 86.76/87.67 95.76/9.01  95.21/23.19 -/- 94.54/33.33  72.84/75.04 81.47/28.09
4 91.24/99.74 | 88.14/97.1 88.3/99.63  95.65/29.44  95.55/61.22 -/- 93.67/72.35 86.31/98.33  83.95/78.12
GTSRB 6 89.79/99.98 | 89.02/99.17 86.76/99.83  95.76/47.42 95.21/72.55 -/- 94.54/83.67  72.84/99.63  81.47/90.76
8 89.79/99.99 | 89.02/99.88 86.76/99.99 95.76/57.71  95.21/80.8 -/- 94.54/90.52  72.84/99.94 81.47/95.61
10 89.79/100.0 | 89.02/99.95 86.76/100.0 95.76/63.69 95.21/85.55 -/- 94.54/93.98  72.84/99.98 81.47/97.69
12 89.79/100.0 | 89.02/99.97 86.76/100.0 95.76/68.07 95.21/88.68 -/- 94.54/96.25  72.84/99.98 81.47/98.46
2 35.45/95.47 | 35.55/93.29 31.65/94.06 41.57/22.76 42.43/30.57 -/- 35.86/4.2 35.47/95.52  31.12/11.66
4 35.45/99.95 | 35.5/99.91 31.65/99.87 41.56/66.99  42.44/78.3 -/- 35.84/22.24  35.45/99.95 31.12/27.14
Tiny 6 35.45/100.0 | 35.45/100.0 31.65/100.0 41.57/78.3  42.43/87.99 -/- 35.86/30.22  35.47/100.0 31.12/31.81
8 35.45/100.0 | 35.45/100.0 31.65/100.0 41.57/82.15 42.43/90.77 -/- 35.86/34.65 35.47/100.0 31.12/33.04
10 35.45/100.0 | 35.45/100.0 31.65/100.0 41.57/84.06 42.43/92.26 -/- 35.86/38.03  35.47/100.0 31.12/34.14
12 35.45/100.0 | 35.45/100.0 31.65/100.0 41.57/85.95 42.43/93.23 -/- 35.86/40.75 35.47/100.0 31.12/35.41

EfficientNet-B3: Table 20| showcases a trend where higher level settings result in increased BA and
ASR for the EfficientNet-B3 model. This indicates that the model becomes more accurate in benign
classification and more effective in backdoor attack scenarios as level increases.
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Table 20: Ablation Study Assessing the Effect of [evel Variability on the Performance of the K&L
Method with EfficientNet-B3 on CIFAR-10, CIFAR-100, GTSRB, Tiny ImageNet - Comparison of
Benign Accuracy (BA) and Attack Success Rate (ASR)

Datasets | level | No Defense | ANP BNP FP FT I-BAU NAD CLP RNP
‘ ‘ BA/ASR ‘ BA/ASR BA/ASR BA/ASR BA/ASR BA/ASR BA/ASR BA/ASR BA/ASR

65.38/74.32 | 65.37/74.33  40.18/32.63  66.57/17.59 65.72/18.94 67.16/50.28 67.45/29.53  17.39/5.42 21.67/2.3

65.38/98.94 | 65.37/98.94  40.18/82.3  66.57/45.78  65.7/45.67  67.16/90.64 67.45/72.11 17.4/5.93 21.67/3.19
65.38/99.96 | 65.37/99.96 40.18/95.09 66.57/68.48 65.72/68.08 67.16/98.27 67.45/90.78  17.39/6.63  21.67/4.41
65.38/100.0 | 65.37/100.0  40.18/98.0  66.57/81.11 65.72/79.86  67.16/99.5  67.45/96.73  17.39/7.21 21.67/6.17
65.38/100.0 | 65.37/100.0  40.18/98.8  66.57/86.39 65.72/85.06 67.16/99.69 67.45/98.39  17.39/7.77  21.67/8.17
65.38/100.0 | 65.37/100.0  40.18/99.1  66.57/88.09 65.72/87.09 67.16/99.72 67.45/98.49  17.39/8.33  21.67/10.01

44.76/92.05 | 44.76/92.03  40.6/92.14  41.41/6.62  42.16/5.23  45.42/26.38 45.14/17.17 11.79/12.93  32.7/25.58
44.76/99.66 | 44.76/99.66  40.6/99.49  41.42/23.12 42.13/18.17  45.4/65.55  45.15/54.26 11.78/15.63  32.7/54.08
44.76/99.91 | 43.81/99.88  40.6/99.78  41.41/35.84 42.16/2891 45.42/80.96 45.14/74.94 11.79/18.54  32.7/71.33
44.76/99.92 | 44.76/99.92  40.6/99.82  41.41/42.53 42.16/34.29 45.42/86.36 45.14/82.29 11.79/20.58  32.7/79.16
44.76/99.91 | 44.76/99.9  40.6/99.84  41.41/45.61 42.16/35.77 45.42/89.7  45.14/85.9  11.79/22.01  32.7/83.26
44.76/99.93 | 44.76/99.93  40.6/99.85 41.41/47.41 42.16/36.44 45.42/91.69 45.14/87.81 11.79/22.78  32.7/85.58

83.22/71.03 | 83.31/67.8  78.57/63.5 87.29/10.65 86.22/30.54  82.56/6.15  84.59/46.91 24.72/1535 75.72/40.38
83.22/95.54 | 76.67/93.9  78.57/92.54 87.3/41.44  86.22/67.29 82.55/15.82 84.6/79.86 = 24.73/26.2  75.72/81.02
83.22/99.44 | 76.67/99.01 78.57/98.45 87.29/61.54 86.22/83.72 82.56/19.44 84.59/91.73 24.72/42.55 75.72/93.43
83.22/99.94 | 76.67/99.73  78.57/99.59 87.29/73.36  86.22/91.28 82.56/21.49 84.59/96.19 24.72/58.71  75.72/97.96
83.22/99.98 | 76.67/99.86 78.57/99.92 87.29/80.58  86.22/95.3  82.56/24.87 84.59/98.03 24.72/70.78  75.72/99.22
83.22/99.99 | 76.67/99.9  78.57/99.92 87.29/85.65 86.22/97.32 82.56/27.86 84.59/98.98 24.72/79.89  75.72/99.57

39.54/87.57 | 39.54/87.59 38.75/85.83  44.14/6.9 44.68/22.6  42.07/42.45  37.23/7.62  39.14/85.64 27.22/66.62
39.54/99.49 | 39.54/99.49  38.75/99.33 44.13/36.25 44.66/71.62 42.06/90.05  37.23/29.6  39.18/99.28  27.22/95.26
39.54/100.0 | 39.54/100.0 38.75/100.0  44.14/64.8  44.68/91.69 42.07/98.57  37.23/53.1  39.14/99.97 27.22/99.12
39.54/100.0 | 39.54/100.0 38.75/100.0 44.14/80.46 44.68/97.54 42.07/99.75 37.23/68.23 39.14/100.0  27.22/99.9
39.54/100.0 | 39.54/100.0 38.75/100.0 44.14/88.21 44.68/99.19 42.07/99.96 37.23/76.18 39.14/100.0 27.22/99.97
39.54/100.0 | 39.54/100.0 38.75/100.0 44.14/92.15 44.68/99.64 42.07/99.98 37.23/80.28 39.14/100.0 39.54/100.0
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G.4 ABLATION STUDY ON LEARNING RATE

PreActResNet18: Table 21| highlights that as the learning rate varies, there is a noticeable impact
on BA and ASR across different datasets for the PreActResNet18 model. A lower learning rate
tends to yield higher BA and ASR, indicating more efficient training and stronger backdoor attack
effectiveness. Conversely, a higher learning rate results in a decrease in BA and ASR, suggesting
potential overfitting or ineffective learning.

Table 21: Ablation Study Assessing the Effect of Learning Rate Variability on the Performance of
the K&L Method with PreActResNet18 on CIFAR-100, GTSRB, Tiny ImageNet - Comparison of
Benign Accuracy (BA) and Attack Success Rate (ASR)

Datasets | LR | NoDefense | ~ ANP BNP Fp FT I-BAU NAD CLP RNP
\ | BA/ASR | BA/ASR  BA/ASR  BA/ASR  BA/ASR  BA/ASR  BA/ASR  BA/ASR  BA/ASR

0.001 | 69.3/99.97 | 66.34/83.36 68.87/99.93  66.19/71.02 69.73/99.25 64.64/53.69 69.67/99.65 67.88/99.77  69.3/99.97
0.005 | 68.43/99.78 | 63.48/85.57 68.13/99.29 66.28/80.73 69.66/99.45 61.84/78.84 69.58/99.61  66.4/99.53  68.43/99.78
CIFAR-100 | 0.01 | 61.33/99.95 | 57.15/91.54 59.97/99.67 66.41/85.06 67.97/98.72  64.53/53.0 ~ 67.78/99.11 52.88/88.16  55.6/97.81
0.05 | 53.24/99.9 | 48.24/0.03  52.9/17.86  62.24/84.54 63.06/89.42 62.16/27.89 64.57/78.95  37.73/2.65  46.38/3.54
0.1 31.88/99.9 30.3/1.41 20.54/18.07  43.49/5.38 43.8/4.7 45.65/56.26  48.01/64.43 9.83/0.6 11.12/0.32

0.001 | 97.66/99.85 | 89.78/2.03  97.39/88.93 98.27/44.36 98.16/88.22  92.03/39.96 98.08/92.87 97.57/99.53  97.66/99.85
0.005 | 98.0/99.47 90.9/0.0 97.85/89.8  98.27/57.03 98.27/93.83  95.38/44.55 98.22/96.25 98.03/99.47  98.0/99.47
GTSRB 0.01 | 96.98/99.81 91.38/0.0 97.23/92.6  98.28/59.75  98.31/90.8  96.69/51.88 98.25/90.85 96.51/99.63  97.08/94.33
0.05 | 89.28/99.49 | 83.05/71.44 82.62/97.87 95.77/81.64 95.69/98.91 94.46/81.77 95.72/99.04 48.15/14.84 84.77/79.56
0.1 83.95/93.04 | 76.45/21.12  80.72/89.0  91.4/51.06  91.56/70.04  89.6/73.28  90.78/79.86  31.1/61.26  52.69/32.28

0.001 | 56.82/99.92 | 52.47/99.74 56.82/99.92 51.89/70.54 57.02/98.26 53.91/91.14 50.38/40.52 56.41/99.84 56.53/99.92
0.005 | 56.35/99.83 | 53.12/99.62 56.36/99.83 51.59/70.55 56.34/99.01 52.21/95.21 48.11/19.52  56.49/99.8  56.34/99.83
Tiny 0.01 | 48.09/99.91 | 48.09/99.91 48.09/99.91 52.26/62.62 54.63/97.66  50.6/51.52  47.77/44.37 47.71/99.91  47.87/99.85
0.05 | 37.18/99.97 | 35.45/22.54 35.64/99.97 52.02/45.57 54.2/69.44  51.53/55.21 53.68/78.24 36.53/99.42  32.37/0.41
0.1 19.2/99.8 18.8/1.16 19.47/99.81  30.18/33.25  30.09/54.38  36.49/74.69  35.9/94.41 4.84/0.41 21.52/0.09

VGG19-BN: As seen in Table[22] the VGG19-BN model exhibits a relationship between learning
rate and model performance metrics. Lower learning rates generally correlate with higher BA and
ASR, denoting more accurate and potent backdoor attacks. Higher learning rates, however, lead to a
decline in both BA and ASR, implying a less effective training and attack process.

MobileNet-v3-large: Analyzing Table[23] it is evident that for the MobileNet-v3-large model, varying
learning rates significantly impact BA and ASR. Lower learning rates achieve better performance
in terms of both BA and ASR, while higher learning rates show a marked decrease in these metrics,
suggesting inefficiency in learning and backdoor attack execution.
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Table 22: Ablation Study Assessing the Effect of Learning Rate Variability on the Performance of the
K&L Method with VGG19-BN on CIFAR-10, CIFAR-100, GTSRB, Tiny ImageNet - Comparison of
Benign Accuracy (BA) and Attack Success Rate (ASR)

Datasets | LR | NoDefense | ~ ANP BNP Fp FT I-BAU NAD CLP RNP
\ | BA/ASR | BA/ASR  BA/ASR  BA/ASR  BA/ASR  BA/ASR  BA/ASR  BA/ASR  BA/ASR

0.001 | 89.09/91.66 | 88.56/17.11 88.69/92.74 90.37/17.51 89.78/20.76  88.4/22.53  89.65/21.21 86.89/69.66  89.09/91.66
0.005 | 88.66/96.71 | 83.09/36.67 88.25/95.58 90.12/35.66 90.25/45.32 85.88/44.94  88.8/53.13  84.88/47.17 85.53/89.71
CIFAR-10 | 0.01 | 86.39/98.97 | 82.4/39.27 86.14/98.21 90.08/66.61 90.23/69.38 87.99/72.82  89.6/74.74  75.45/27.2  73.51/43.71
0.05 | 81.84/89.21 | 74.31/31.19 79.49/88.07 88.09/51.03 87.53/56.43 84.79/61.59 87.73/59.44 73.71/34.41 78.41/58.97
0.1 70.3/72.96 | 64.88/43.57 66.77/76.57 81.25/33.38  81.58/37.0  79.16/44.68 80.73/43.84 51.57/81.86  64.4/53.14

0.001 | 60.68/90.11 | 57.75/26.91 59.29/88.81  62.61/4.09 62.2/3.52 59.83/1.86  62.54/24.91 53.45/74.41 60.68/90.11
0.005 | 56.95/96.52 | 57.7/84.51  56.63/96.22 62.93/11.02 61.42/12.08 58.13/3.47 60.63/13.64 46.6/46.05 51.09/36.28
CIFAR-100 | 0.01 53.6/86.86 | 49.84/33.42 53.81/85.53  62.6/26.41  62.04/27.18 58.34/10.01 61.59/25.97 36.81/10.31  48.3/32.25
0.05 | 45.24/79.39 | 41.44/23.7  44.43/80.54  58.27/7.44  58.09/7.19  55.96/7.38 58.68/9.1 34.41/21.35 34.47/30.61
0.1 23.81/47.77 | 25.46/40.8  23.4/47.57 44.61/1.58  44.59/121  41.67/233  43.69/1.34  20.69/51.52  23.98/36.67

0.001 | 96.41/94.68 | 88.44/5.55 96.05/92.59 98.31/38.65 98.12/55.82  94.43/5.89  98.16/60.33  96.02/93.33  96.41/94.68
0.005 | 95.55/97.47 | 92.51/7.27  95.4/96.06  98.04/57.92 97.85/75.46  95.79/2.15  97.15/79.16  95.6/95.98  96.75/95.47
GTSRB 0.01 | 96.02/97.89 | 90.82/1.85 96.53/92.09 97.91/73.23 97.62/88.73  96.37/6.43  97.77/87.36  95.92/97.99  96.02/97.89
0.05 | 94.58/95.35 | 85.18/37.1 94.17/94.84 97.46/79.32 97.41/84.15 96.66/18.69 97.28/84.28 93.99/90.75 95.12/93.22
0.1 43.23/42.35 | 41.45/23.87 40.85/39.24  57.35/1.11 57.64/6.67  49.64/4.55  51.71/425 21.65/23.65 41.58/23.7

0.001 | 48.59/97.82 | 50.97/34.53 48.06/97.39 53.31/47.63 53.36/70.99  45.75/5.45  42.33/1.35  48.53/97.8  48.59/97.82
0.005 | 48.65/96.07 | 48.47/64.12 48.52/95.94 53.16/43.06 53.52/56.94 47.83/10.15  40.24/2.01  48.75/95.83  48.64/96.07
Tiny 0.01 | 39.48/94.12 | 38.43/81.5 39.15/93.83  51.63/4.68  51.51/6.22 47.23/6.5 45.52/2.0  40.24/90.64  38.29/84.31
0.05 | 38.58/62.37 | 36.23/35.07 38.48/62.09 49.47/1.85  49.96/1.86  45.74/1.42  48.23/1.33  38.58/62.37  39.0/61.64
0.1 17.02/68.42 | 17.48/57.29 16.16/68.67  32.33/2.47  32.79/2.67  31.73/4.35 33.66/29  16.45/70.13  17.06/67.26

Table 23: Ablation Study Assessing the Effect of Learning Rate Variability on the Performance of
the K&L Method with MobileNet-v3-large on CIFAR-10, CIFAR-100, GTSRB, Tiny ImageNet -
Comparison of Benign Accuracy (BA) and Attack Success Rate (ASR)

Datasets | LR | No Defense | ANP BNP FP FT I-BAU NAD CLP RNP
‘ ‘ BA/ASR ‘ BA/ASR BA/ASR BA/ASR BA/ASR BA/ASR BA/ASR BA/ASR BA/ASR
0.001 | 83.48/99.67 | 77.88/84.86 81.45/96.44 79.59/45.44 79.27/53.31 -/- 76.29/70.64  81.74/99.22  83.48/99.67
0.005 | 80.13/99.88 | 76.28/47.12 75.19/97.87 80.19/46.22  79.42/54.9 -/- 80.13/79.24  79.35/99.38  70.77/90.44
CIFAR-10 0.01 77.2/99.97 | 70.73/27.96  72.07/99.94 79.98/49.96 79.93/58.43 -/- 81.09/81.53  70.18/99.92  55.73/25.07
0.05 | 41.71/100.0 | 39.42/86.07 20.32/100.0 76.47/56.61  76.4/66.11 -/- 75.57/92.51  37.59/100.0 41.89/99.97
0.1 44.44/99.97 | 41.02/99.94 44.78/99.94  69.93/57.97  70.3/67.81 -/- 68.14/85.97  39.61/99.96  44.44/99.97
0.001 | 51.92/99.01 | 46.77/95.74 46.22/95.97 46.36/41.48 47.64/40.65 -/- 46.09/38.48  43.34/93.34  42.19/90.61
0.005 | 49.25/99.09 | 46.81/96.29 45.81/98.34 46.74/54.55 48.35/59.85 -/- 48.74/73.37  40.02/92.44 34.67/71.09
CIFAR-100 | 0.01 | 47.16/99.57 | 47.12/99.52 35.51/94.77 46.19/64.09 47.45/66.06 -/- 49.94/79.94  37.4/97.46  30.74/81.88
0.05 | 26.41/99.98 | 24.02/86.13  22.04/99.68 39.76/88.46  40.08/90.6 -/- 44.46/97.45 23.87/99.95 18.64/89.53
0.1 19.92/99.69 | 20.52/0.19  19.63/99.63 30.24/85.08 30.27/55.96 -/- 30.36/82.27 12.34/99.62  19.43/1.09
0.001 | 94.52/97.65 | 88.93/29.24  90.49/95.03 95.5/8.28 95.34/32.08 -/- 94.58/50.84  85.07/87.84  94.52/97.65
0.005 | 93.34/99.24 | 88.71/79.17 89.25/98.94  95.86/16.8 95.55/56.2 -/- 94.62/74.69  88.12/96.06  93.34/99.24
GTSRB 0.01 | 89.79/99.43 | 89.02/95.88 86.76/98.67 95.76/31.89 95.21/57.14 -/- 94.54/68.97 72.83/97.29 81.47/75.76
0.05 | 62.68/100.0 | 64.95/99.88 60.29/100.0 95.76/77.79  95.26/80.76 -/- 94.72/92.82  61.57/100.0 71.91/18.47
0.1 64.39/100.0 | 63.95/98.15 48.08/100.0  94.43/88.5 94.79/90.7 -/- 93.98/96.88  52.63/100.0 71.51/99.99
0.001 | 46.84/98.83 | 42.81/89.16 44.39/97.35 40.77/34.81  43.84/51.3 -/- 35.13/10.69  46.8/98.81 45.7/97.86
0.005 | 41.99/99.69 | 41.93/99.62 39.19/99.13 41.8/48.6  43.02/57.99 -/- 33.44/5.99 42.0/99.69  36.29/96.56
Tiny 0.01 35.45/99.95 | 35.5/99.91 31.65/99.87 41.56/66.99  42.44/78.3 -/- 35.84/22.24  35.45/99.95 31.12/27.14
0.05 | 29.19/99.98 | 29.64/2.43  27.08/100.0 37.28/35.58  38.03/37.8 -/- 41.11/80.28  29.21/99.98 29.09/2.4
0.1 17.84/99.95 16.28/0.0 15.93/99.23  28.77/9.42 29.04/8.62 -/- 36.85/68.96 17.46/99.94 18.81/22.97
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EfficientNet-B3: The data from Table indicate that for EfficientNet-B3, the learning rate has a
critical role in determining BA and ASR. Lower learning rates lead to higher BA and ASR values,
indicating effective learning and successful backdoor attacks, whereas higher learning rates result in
poorer performance, likely due to issues like rapid convergence or overfitting.

Table 24: Ablation Study Assessing the Effect of Learning Rate Variability on the Performance
of the K&L Method with EfficientNet-B3 on CIFAR-10, CIFAR-100, GTSRB, Tiny ImageNet -
Comparison of Benign Accuracy (BA) and Attack Success Rate (ASR)

Datasets | LR | No Defense ANP BNP FP FT I-BAU NAD CLP RNP
| | BA/ASR BA/ASR BA/ASR BA/ASR BA/ASR BA/ASR BA/ASR BA/ASR BA/ASR

0.001 | 68.23/87.07 | 68.24/87.06 49.45/52.41  64.4/31.52  63.81/34.61 66.51/63.62  65.8/45.14  18.32/10.63  67.68/85.9
0.005 | 62.38/95.38 | 62.38/95.37 15.31/36.37 64.29/31.64 64.33/34.48 65.08/81.63 64.97/5827 14.41/40.2 16.24/54.24
CIFAR-10 | 0.01 | 65.38/98.94 | 65.37/98.94 40.18/82.3  66.57/45778  65.7/45.67  67.16/90.64 67.45/72.11 17.4/5.93 21.67/3.19
0.05 60.9/99.2 60.0/98.9  42.18/89.56  65.61/78.5  65.86/80.29 64.06/98.34  65.04/96.04 9.7/0.0 21.18/16.09
0.1 38.38/39.21 | 39.2/33.49  28.95/35.46 47.83/14.06 47.68/15.5 44.83/17.98 45.67/16.59 11.24/1.93  38.38/39.2

0.001 | 49.38/94.21 | 49.36/94.2 41.19/91.96 39.45/12.18 41.71/17.6  44.69/51.71 42.27/28.75 19.97/7.88  41.27/55.41
0.005 | 46.0/97.8 | 45.98/97.81 41.43/95.47 41.24/17.84 41.78/17.77 44.42/47.25 44.14/34.1  12.45/13.65  26.4/53.9
CIFAR-100 | 0.01 | 44.76/99.66 | 44.76/99.66  40.6/99.49  41.42/23.12 42.13/18.17  45.4/65.55  45.15/54.26 11.78/15.63  32.7/54.08
0.05 | 21.54/99.81 | 21.83/99.74  8.99/93.47  27.23/24.31 26.62/21.06 26.94/87.24  27.1/77.14 3.6/0.09 10.61/0.86
0.1 16.67/99.36 | 16.31/58.84  15.14/98.6  25.6/23.85  25.09/14.55 24.57/84.31 24.81/77.77  4.89/5.77 8.5/17.35

0.001 | 83.21/94.96 | 76.5/80.14  79.33/91.11 86.48/12.99 84.64/31.34 83.46/29.52 84.19/52.27 31.2/2495 77.65/82.26
0.005 | 83.26/96.31 | 83.4/95.04 65.19/29.24 86.85/25.47  84.8/55.82  84.05/52.53 83.63/75.75 28.69/53.22 71.86/88.65
GTSRB 0.01 | 83.22/95.54 | 76.67/93.9 78.57/92.54 87.3/41.44 86.22/67.29 82.55/15.82 84.6/79.86  24.73/26.2  75.72/81.02
0.05 | 40.8/59.48 | 41.37/45.68 39.56/59.64 66.4/0.0 66.84/0.14  49.51/0.43 55.27/0.3 13.56/41.56  38.5/48.2

0.1 52.11/79.15 | 50.36/74.69 49.83/77.75 69.34/42.51 70.38/44.48 60.19/50.72  62.98/54.17 43.49/66.69  40.76/74.52

0.001 | 44.34/99.43 | 44.8/99.22  44.43/99.34 42.87/13.85 45.61/81.08 42.25/91.85 35.72/6.75 43.81/98.99 44.35/99.43
0.005 | 43.96/99.78 | 43.97/99.78 43.35/99.83  43.39/22.31 45.24/80.82 43.65/93.12  34.34/8.41  43.84/99.8  43.97/99.78
Tiny 0.01 | 39.54/99.49 | 39.54/99.49 38.75/99.33 44.13/36.25 44.66/71.62 42.06/90.05 37.23/29.6  39.18/99.28  27.22/95.26
0.05 | 33.01/99.99 | 30.0/0.46  31.09/100.0 39.83/31.44 39.62/38.92 43.87/76.82 41.53/61.8  32.47/99.98 31.97/22.57
0.1 23.29/99.99 | 21.23/0.0  23.93/99.99  23.96/7.12  23.39/6.07  33.4/97.24  33.23/48.34 21.19/99.99  23.36/2.84

G.5 ABLATION STUDY ON ATTACK STEP SIZE «

PreActResNet18: As demonstrated in Table[23] the variation in the attack step size « has a profound
effect on the BA and ASR for the PreActResNet18 model across different datasets. Notably, a smaller
« tends to yield a higher BA but a lower ASR, indicating a more conservative attack strategy. In
contrast, increasing « leads to a higher ASR but at the potential cost of reduced BA, suggesting a
more aggressive approach that may compromise model accuracy.

Table 25: Ablation Study Assessing the Effect of o Variability on the Performance of the K&L
Method with PreActResNet18 on CIFAR-100, GTSRB, Tiny ImageNet - Comparison of Benign
Accuracy (BA) and Attack Success Rate (ASR)

Datasets | « | No Defense | ANP BNP FP FT I-BAU NAD CLP RNP
| | BA/ASR | BA/ASR BA/ASR BA/ASR BA/ASR BA/ASR BA/ASR BA/ASR BA/ASR

0.25 | 61.23/82.39 | 57.16/0.39  59.97/4.61  66.41/1.92  67.97/3.79  64.53/0.88  67.79/4.73  52.88/0.79  48.97/25.41

0.5 | 59.85/99.59 | 57.16/8.46  59.97/44.83  66.41/17.9  67.97/35.74  64.53/5.78  67.79/40.61  52.88/7.39  50.18/19.07

CIFAR-100 0.75 | 61.34/99.73 | 57.16/28.14  59.97/71.79 66.41/41.82 67.97/70.12 64.53/12.96 67.79/74.21 52.88/27.73 58.14/72.21
1 61.33/99.95 | 57.15/91.54 59.97/99.67 66.41/85.06 67.97/98.72  64.53/53.0  67.78/99.11 52.88/88.16  55.6/97.81

1.25 | 62.02/99.96 | 57.16/57.54 59.97/93.08 66.41/70.51 67.97/91.03 64.53/25.15 67.79/91.93 52.88/56.82  55.05/64.97

1.5 | 61.49/99.97 | 57.16/67.28 59.97/96.68 66.41/78.75 67.97/95.15 64.53/31.63 67.79/96.07 52.88/71.42 55.48/84.97

025 | 94.11/72.72 | 90.54/0.11  97.77/6.25  98.24/0.13  98.41/2.58  89.92/0.28  97.85/0.48  97.93/23.48  27.17/0.18

0.5 | 97.23/90.17 | 90.54/4.59  97.77/46.78  98.24/3.02  98.41/27.7  89.92/1.58  97.85/7.63  97.93/74.03 94.81/56.71

GTSRB 0.75 | 98.0/97.04 | 90.54/15.61 97.77/76.45 98.24/14.13  98.41/54.0  89.92/527 97.85/25.72 97.93/92.47  97.7/91.04
1 97.66/99.85 | 89.78/2.03  97.39/88.93 98.27/44.36  98.16/88.22  92.03/39.96  98.08/92.87 97.57/99.53  97.66/99.85

1.25 | 98.33/98.59 | 90.54/35.26 97.77/92.51 98.24/37.88 98.41/78.94 89.92/17.31 97.85/54.98 97.93/99.16 98.33/98.58

1.5 | 98.37/99.44 | 90.54/41.96 97.77/96.13 98.24/48.98 98.41/86.07 89.92/2422  97.85/65.4  97.93/99.9  98.37/99.44

0.25 | 42.36/79.11 | 48.09/5.42  48.09/5.42  52.27/0.49  54.63/0.81 50.6/0.26 47.77/1.38 47.72/14.9 43.3/64.57

0.5 | 45.85/98.62 | 48.09/48.13  48.09/48.13  52.27/5.64  54.63/18.46  50.6/2.28 47.77/5.93  47.72/45.42  41.87/85.17

Tiny 0.75 | 44.97/99.86 | 48.09/68.88 48.09/68.88  52.27/9.15  54.63/31.28  50.6/4.08 47.77/9.91  47.72/65.79  45.77/99.68

1 48.09/99.91 | 48.09/99.91 48.09/99.91 52.26/62.62 54.63/97.66  50.6/51.52  47.77/44.37 47.71/99.91 47.87/99.85

1.25 | 46.74/99.99 | 48.09/90.25 48.09/90.25 52.27/29.45 54.63/70.94  50.6/15.86  47.77/31.29 47.72/89.16 46.87/99.99

1.5 | 47.11/100.0 | 48.09/94.75 48.09/94.75 52.27/41.52 54.63/81.22  50.6/23.67  47.77/44.19 47.72/94.07  47.4/100.0

VGG19-BN: Table[26]reveals that for the VGG19-BN model, varying « significantly impacts both BA
and ASR across all datasets. Lower values of « correlate with higher BA and lower ASR, indicative
of less effective but safer attacks. Conversely, as « increases, ASR improves substantially, though
this is sometimes at the expense of BA, reflecting a trade-off between attack effectiveness and model
accuracy.
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Table 26: Ablation Study Assessing the Effect of o Variability on the Performance of the K&L
Method with VGG19-BN on CIFAR-10, CIFAR-100, GTSRB, Tiny ImageNet - Comparison of
Benign Accuracy (BA) and Attack Success Rate (ASR)

Datasets | « | No Defense | ANP BNP FP FT I-BAU NAD CLP RNP
| | BA/ASR | BA/ASR BA/ASR BA/ASR BA/ASR BA/ASR BA/ASR BA/ASR BA/ASR
0.25 | 87.25/10.49 | 80.36/0.86  86.7/12.41  90.09/2.72  90.23/3.03  87.99/2.21 89.61/3.28  75.45/2.19  87.25/10.49
0.5 | 86.15/61.76 | 83.07/19.31 85.13/64.92 90.09/10.63 90.23/13.16 87.99/10.34 89.61/13.94  75.45/4.81  86.15/61.76
CIFAR-10 0.75 | 85.82/87.16 | 77.67/9.99  85.87/84.29 90.09/19.59 90.23/21.76 ~ 87.99/22.1  89.61/23.16  75.45/6.43  85.82/87.16
1 86.39/98.97 | 82.4/39.27  86.14/98.21 90.08/66.61 90.23/69.38 87.99/72.82  89.6/74.74  75.45/27.2  73.51/43.71
1.25 | 87.52/99.02 | 81.26/20.64 86.92/95.43 90.09/53.24 90.23/52.36 87.99/61.03  89.61/56.87 75.45/17.44 83.93/87.53
1.5 | 88.46/98.78 | 80.47/24.0  87.91/76.7  90.09/55.39 90.23/54.19 87.99/58.68  89.61/57.0 ~ 75.45/252  85.9/76.99
025 | 56.14/27.18 | 53.26/3.72  56.1/22.97  62.59/0.39  62.04/0.39  58.34/0.31 61.6/0.31 36.81/2.33  51.83/9.31
0.5 | 56.4/45.82 | 55.86/16.02 55.49/4448  62.59/1.18  62.04/1.14  58.34/0.64 61.6/0.95 36.81/2.96  53.84/31.74
CIFAR-100 0.75 | 54.19/68.03 | 52.47/35.6  51.55/55.66  62.59/6.8 62.04/6.27  58.34/2.49 61.6/5.63 36.81/3.68  45.24/20.37
1 53.6/86.86 | 49.84/33.42 53.81/85.53  62.6/26.41  62.04/27.18 58.34/10.01 61.59/25.97 36.81/10.31  48.3/32.25
1.25 | 55.41/9791 | 55.44/84.25 55.4/97.63  62.59/15.43 62.04/17.33  58.34/442  61.6/16.42 36.81/6.3 50.04/34.8
1.5 | 54.96/99.49 | 51.01/4.38  54.2/99.14  62.59/21.35 62.04/26.72 58.34/10.37  61.6/25.92  36.81/9.37  42.33/1.64
0.25 | 92.98/47.89 | 83.8/0.98  92.54/46.48 97.91/2.39  97.62/6.76 ~ 96.37/1.58  97.77/10.31 95.92/17.42  92.98/47.89
0.5 | 95.18/79.1 87.54/5.28  94.77/73.63  97.91/24.67 97.62/44.55 96.37/4.65 97.77/49.27 95.92/63.28  95.18/79.1
GTSRB 0.75 | 91.56/93.27 | 82.54/0.02  91.44/88.37 97.91/39.52 97.62/63.99  96.37/6.17  97.77/66.87 95.92/80.72 91.84/57.82
1 96.02/97.89 | 90.82/1.85  96.53/92.09 97.91/73.23 97.62/88.73  96.37/6.43  97.77/87.36  95.92/97.99  96.02/97.89
1.25 | 94.33/97.86 | 91.36/6.43  94.2/93.92  97.91/67.65 97.62/86.21 96.37/13.57 97.77/84.71 95.92/95.13  94.34/97.86
1.5 | 94.91/99.55 | 88.99/0.64 93.82/98.54 97.91/73.72 97.62/91.16 96.37/11.08  97.77/89.2  95.92/98.16 94.91/99.55
0.25 | 43.13/50.44 | 43.35/12.66 43.17/48.02  51.63/0.24  51.51/0.29  47.23/0.48 45.5/0.46  40.24/16.71  43.9/41.35
0.5 | 42.37/84.21 | 41.35/45.4  42.42/82.31 51.63/0.53  51.51/0.73  47.23/0.95 45.5/0.73  40.24/22.11  42.48/62.21
Tiny 0.75 | 39.91/90.85 | 39.75/72.89 39.91/90.88  51.63/0.68  51.51/0.76  47.23/1.05 45.5/0.79  40.24/24.73  40.84/81.36
1 39.48/94.12 | 38.43/81.5 39.15/93.83 51.63/4.68  51.51/6.22 47.23/6.5 45.52/2.0  40.24/90.64  38.29/84.31
1.25 | 41.58/96.31 | 38.99/86.42  41.52/96.2  51.63/2.71 51.51/3.22  47.23/4.01 45.5/1.93  40.24/38.75  42.36/90.38
1.5 | 43.47/95.01 | 41.59/80.9 42.78/93.68 51.63/3.34  51.51/4.03  47.23/5.34 45.5/2.83  40.24/43.34  42.74/90.63

MobileNet-v3-large: Analyzing Table it is evident that for the MobileNet-v3-large model, «
plays a crucial role in dictating BA and ASR. A smaller « is associated with higher BA and lower
ASR, suggesting more accurate but less potent attacks. As « increases, there is a notable rise in ASR,
but this may sometimes lead to a decrease in BA, highlighting the balance between aggressive attack
strategies and maintaining model performance.

Table 27: Ablation Study Assessing the Effect of « Variability on the Performance of the K&L
Method with MobileNet-v3-large on CIFAR-10, CIFAR-100, GTSRB, Tiny ImageNet - Comparison
of Benign Accuracy (BA) and Attack Success Rate (ASR)

Datasets | a | No Defense | ANP BNP FP FT I-BAU NAD CLP RNP

‘ ‘ BA/ASR ‘ BA/ASR BA/ASR BA/ASR BA/ASR BA/ASR BA/ASR BA/ASR BA/ASR
0.25 | 75.85/60.91 | 71.75/21.91 70.66/56.68  79.96/4.03 79.92/5.12 -/- 81.1/6.36 70.18/16.0  61.95/34.13
0.5 | 75.97/99.36 | 69.79/28.71 69.82/93.64 79.96/10.68 79.92/15.37 -/- 81.1/25.11  70.18/57.14  62.39/34.59

CIFAR-10 0.75 | 76.8/99.92 | 69.85/25.44 69.32/98.92 79.96/24.17 79.92/33.63 -/- 81.1/55.23  70.18/90.13 64.1/15.6
1 77.2/99.97 | 70.73/27.96 72.07/99.94 79.98/49.96 79.93/58.43 -/- 81.09/81.53  70.18/99.92  55.73/25.07
1.25 | 77.24/99.98 | 73.08/96.54 72.98/99.76  79.96/56.2  79.92/64.79 -/- 81.1/81.01  70.18/99.33 64.51/80.36

1.5 | 77.54/100.0 | 72.96/98.74 73.64/100.0 79.96/70.71 79.92/77.82 -/- 81.1/91.16  70.18/99.76  72.2/88.38
0.25 | 45.61/46.23 | 42.83/32.63 43.82/39.77 46.21/1.77 47.47/1.85 -/- 49.94/1.77 37.4/10.88  38.67/25.65
0.5 | 44.02/93.68 | 42.18/89.59 37.47/80.02 46.21/13.19 47.47/15.12 -/- 49.94/19.3 37.4/43.71  36.72/72.01
CIFAR-100 0.75 | 44.76/98.96 | 44.96/98.66 27.49/90.67 46.21/41.95 47.47/45.53 -/- 49.94/57.83  37.4/86.02  38.68/97.05
1 47.16/99.57 | 47.12/99.52 35.51/94.77 46.19/64.09 47.45/66.06 -/- 49.94/79.94  37.4/97.46  30.74/81.88

1.25 | 46.54/99.59 | 46.51/99.39 32.86/98.37  46.21/73.6 47.47/74.2 -/- 49.94/85.35  37.4/97.24 20.8/49.37

1.5 | 46.53/99.88 | 44.64/99.33 33.99/98.53 46.21/83.31 47.47/83.45 -/- 49.94/92.62  37.4/98.82  34.67/72.71
0.25 | 88.31/63.29 | 88.8/53.54  83.49/59.55  95.76/0.66 95.21/1.27 -/- 94.54/2.15  72.84/10.39  89.37/42.87
0.5 | 79.52/96.75 | 87.34/83.12 67.35/92.46  95.76/4.15  95.21/11.65 -/- 94.54/16.57 72.84/30.43  80.59/72.37

GTSRB 0.75 | 89.77/99.68 | 88.0/92.16 86.11/97.64 95.76/12.15 95.21/30.68 -/- 94.54/40.94  72.84/62.49  68.09/20.71
1 89.79/99.43 | 89.02/95.88 86.76/98.67 95.76/31.89  95.21/57.14 -/- 94.54/68.97 72.83/97.29 81.47/75.76
1.25 | 92.42/99.62 | 90.02/93.6  89.08/99.41 95.76/34.24 95.21/55.46 -/- 94.54/64.25 72.84/86.25 92.42/99.62
1.5 | 90.89/99.79 | 89.98/96.95 87.17/99.55 95.76/46.3  95.21/66.59 -/- 94.54/74.46  72.84/88.18  81.14/87.55
0.25 | 37.36/62.68 | 36.27/51.05 37.98/49.65 41.57/0.65 42.43/0.81 -/- 35.86/0.34 35.47/1.97  36.64/55.71
0.5 | 36.83/92.59 | 34.64/69.07  35.8/80.38 41.5711.77 42.43/2.16 -/- 35.86/0.6 35.47/11.3  32.13/56.42
Tiny 0.75 | 35.14/99.22 | 32.73/95.55 32.86/98.65 41.57/24.3  42.43/33.56 -/- 35.86/4.72  35.47/93.31 30.23/74.48
1 35.45/99.95 | 35.5/99.91 31.65/99.87 41.56/66.99  42.44/78.3 -/- 35.84/22.24  35.45/99.95 31.12/27.14
1.25 | 36.88/99.88 | 34.7/99.57 33.75/59.8  41.57/79.95 42.43/87.01 -/- 35.86/43.34  35.47/99.88  28.06/53.07
1.5 | 39.82/99.98 | 36.55/99.83 37.41/82.21 41.57/90.48 42.43/94.59 -/- 35.86/62.69 35.47/99.98 38.42/88.73

EfficientNet-B3: The data from Table @ indicate that for EfficientNet-B3, the variation in «
substantially affects BA and ASR across different datasets. Smaller o values generally result in
higher BA but lower ASR, suggesting more cautious attack strategies that preserve model accuracy.
Increasing o, however, leads to higher ASR, indicating more effective but potentially riskier attacks
in terms of compromising model accuracy.
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Table 28: Ablation Study Assessing the Effect of o Variability on the Performance of the K&L
Method with EfficientNet-B3 on CIFAR-10, CIFAR-100, GTSRB, Tiny ImageNet - Comparison of
Benign Accuracy (BA) and Attack Success Rate (ASR)

Datasets a | NoDefense | ANP BNP FP FT I-BAU NAD CLP RNP

| BA/ASR | BA/ASR BA/ASR BA/ASR BA/ASR BA/ASR BA/ASR BA/ASR BA/ASR

0.25 | 66.29/18.43 | 65.38/18.72  45.3/10.06  66.57/6.89  65.72/8.72  67.16/10.63  67.45/9.34  17.39/5.14  60.41/20.09
0.5 | 65.03/79.8 | 65.02/79.79  38.46/53.3  66.57/19.07 65.72/20.22 67.16/48.02 67.45/30.01  17.39/5.46 17.09/6.03
0.75 | 63.99/95.99 | 64.0/95.99  35.85/76.68 66.57/27.67 65.72/28.51 67.16/73.58 67.45/47.23  17.39/5.59  24.16/13.7
1 65.38/98.94 | 65.37/98.94  40.18/82.3  66.57/45.78  65.7/45.67  67.16/90.64 67.45/72.11 17.4/5.93 21.67/3.19
1.25 | 66.65/98.77 | 66.65/98.77 14.82/19.61 66.57/60.52 65.72/62.01 67.16/94.24 67.45/83.73  17.39/6.31  26.68/3.04
1.5 | 64.83/99.44 | 59.21/99.04 45.41/88.0  66.57/70.99 65.72/72.81 67.16/95.24 67.45/89.58  17.39/6.64 22.5/1.06

025 | 41.26/29.17 | 44.76/15.21  30.95/33.66  41.41/1.32  42.16/1.15  45.42/1.87  45.14/226  11.79/11.25 29.99/17.32
0.5 | 42.69/76.53 | 42.67/76.53 34.11/55.64  41.41/3.1 42.16/2.47  45.42/8.33  45.14/593  11.79/11.84  17.77/15.0
0.75 | 42.13/97.39 | 42.12/97.39  39.7/96.98  41.41/8.68  42.16/7.21  45.42/28.36 45.14/22.92 11.79/13.24  31.23/22.9

1 44.76/99.66 | 44.76/99.66  40.6/99.49  41.42/23.12 42.13/18.17  45.4/65.55 45.15/54.26 11.78/15.63  32.7/54.08
1.25 | 43.53/98.96 | 39.24/98.59 42.42/98.95 41.41/239 42.16/19.14 45.42/49.46 45.14/47.42 11.79/17.12  21.43/37.35
1.5 | 43.61/99.79 | 43.63/99.79 39.77/99.62  41.41/10.9  42.16/8.64  45.42/28.06 45.14/29.27 11.79/13.83  16.25/7.38

0.25 | 79.6/50.29 | 76.11/36.84 72.09/36.84  87.29/0.64  86.22/4.43  82.56/1.66  84.59/11.48 24.72/10.97  79.6/50.28
0.5 | 80.37/83.43 | 74.77/72.37  54.57/29.5  87.29/10.18 86.22/29.84  82.56/4.55  84.59/44.59 24.72/13.83 77.35/67.25
0.75 | 81.54/93.55 | 79.18/86.76  76.61/88.35 87.29/32.45 86.22/54.05 82.56/10.25 84.59/68.15 24.72/21.05 51.01/60.32
1 83.22/95.54 | 76.67/93.9  78.57/92.54  87.3/41.44  86.22/67.29 82.55/15.82  84.6/79.86  24.73/26.2  75.72/81.02
1.25 | 83.85/97.55 | 80.78/96.34  78.84/96.02 87.29/53.17 86.22/76.52 82.56/19.98 84.59/86.07 24.72/36.26 78.93/81.11
1.5 | 84.73/98.92 | 83.36/98.48 82.16/95.74 87.29/58.01 86.22/83.23 82.56/19.74  84.59/91.7  24.72/49.0  72.09/89.81

0.25 | 37.9/52.28 | 35.32/39.2 37.16/49.43  44.14/0.68 44.68/1.3 42.07/1.56  37.23/1.62  39.14/898  31.08/25.1
0.5 | 38.15/88.72 | 38.61/88.09 36.53/85.72  44.14/2.55  44.68/6.71  42.07/9.29  37.23/4.29  39.14/39.23 23.76/48.92

0.75 | 39.57/97.53 | 36.58/92.33  39.59/97.47 44.14/9.53  44.68/26.62 42.07/32.42  37.23/10.8  39.14/78.72  20.26/52.6
1 39.54/99.49 | 39.54/99.49 38.75/99.33 44.13/36.25 44.66/71.62 42.06/90.05 37.23/29.6  39.18/99.28  27.22/95.26
1.25 | 40.05/99.91 | 40.18/99.83 39.83/99.82 44.14/31.9  44.68/61.07 42.07/64.37  37.23/26.5 39.14/96.25 32.83/94.79
1.5 | 40.75/100.0 | 39.19/99.9  40.87/99.97 44.14/44.96 44.68/74.96 42.07/74.84 37.23/38.17 39.14/98.41 22.95/97.04

CIFAR-10

CIFAR-100

GTSRB

Tiny

G.6 IMPACT OF EPOCHS AND LEARNING RATE ON AAC AND AAV

Table 29: AAV of different epochs on PreActResNetl8, VGG19-BN, MobileNet-v3-large, and
EfficientNet-B3

Models | Epochs | 2 4 6 8 10 12

AACI 0.81125 0.823472 0.831667 0.840278 0.834028  0.78375
PreActResNet18 AAC3 | 0.795139 0.809306 0.797639  0.79375 0.774583 0.751806
AACS | 0.774028 0.79625 0.781528 0.775972 0.749583  0.73375

AACI | 0.455278 0.648333 0.717222 0.655694 0.629861 0.501944
VGG19-BN AAC3 | 0425833 0.629722 0.684167 0.595972 0.54 0.455278
AACS | 0418056 0.585278 0.616944 0.547639 0.503056 0.444444

AACI | 0.729375 0.82375  0.825625 0.781563  0.71875  0.712812
MobileNet-v3-large | AAC3 | 0.728125 0.820938 0.814375 0.762813 0.692813  0.6975
AACS | 0.725938 0.774062 0.808125  0.7375 0.68375  0.653437

AACI | 0.670972 0.780417 0.785278 0.763611 0.698889 0.616944
EfficientNet-B3 AAC3 | 0.663611 0.770556 0.772222 0.718056 0.651667 0.585278
AACS | 0.647222 0.768611 0.751944 0.7 0.619167  0.555278

Impact of Epochs on AAC and AAV

In Table @ we present the AAV of different attack methods on PreActResNet18, VGG19-BN,
MobileNet-v3-large, and EfficientNet-B3 across varying epochs. The table highlights three levels of
AAC (AACI, AAC3, and AACS), representing the permissible loss in accuracy of 1%, 3%, and 5%,
respectively.

For the PreActResNet18 model, as shown in Figure[7] the AAV generally increases with the number
of epochs, peaking at 8 epochs for AAC1 and declining slightly thereafter. A similar trend is observed
in AAC3 and AACS levels, though the peak occurs at lower epochs and the decline is more significant
beyond 8 epochs.

In contrast, as shown in Figure[8] the VGG19-BN model demonstrates a peak in AAV at 6 epochs for
AACI, followed by a noticeable decrease. This trend is consistent across all AAC levels, indicating
that extending training beyond 6 epochs may not be beneficial for this model in terms of AAV.
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Figure 7: Impact of Epochs on AAC of PreActResNet18
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Figure 8: Impact of Epochs on AAC of VGG19-BN
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As shown in Figure[9] MobileNet-v3-large shows a relatively stable AAV across epochs, with a slight
peak at 4 and 6 epochs for AAC1 and AAC3. However, a gradual decrease is observed in AACS,
suggesting a diminishing return on AAV with increased epochs.

AAC1 AAC3 AAC5
o 1.04 v 1.0 o 1.04
o o (o))
8 8 3
c f= C
(v} [ 93
£0.8 £0.8 £ 0.8
[ [ [
o o o
[ (] [}
(%) wn %]
$0.6 $ 0.6 $ 0.6
ko} ‘@ ‘@
o el e
ey ey ey
$0.41 0.4 0.4
e S [
c e c
< < <
0.2 g0.2 g 0.21
o o o
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Allowed ASR Allowed ASR Allowed ASR
—— Epochs=2 Epochs=4 —— Epochs=6 —— Epochs=8 —— Epochs=10 —— Epochs=12

Figure 9: Impact of Epochs on AAC of MobileNet-v3-large

Lastly, as shown in Figure [I0] EfficientNet-B3 reveals a peak in AAV at 4 epochs for AACI and
AACS3, followed by a gradual decrease. The trend is similar for AACS, with a noticeable decline in
AAV after 4 epochs.
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Figure 10: Impact of Epochs on AAC of EfficientNet-B3

Impact of Learning Rate on AAC and AAV

Table[30]illustrates the impact of different learning rates (LR) on the AAV for various models, namely
PreActResNet18, VGG19-BN, MobileNet-v3-large, and EfficientNet-B3. The table showcases AAV
at three different AAC levels (AAC1, AAC3, and AACS), where AAC1, AAC3, and AACS correspond
to allowable accuracy losses of 1%, 3%, and 5% respectively.

In the PreActResNet18 model, as shown in Figure[TT] the AAV is observed to be highest at an LR of
0.005 across all AAC levels, indicating that this learning rate is optimal for the effectiveness of the
attack. However, there is a noticeable decrease in AAV as the learning rate increases to 0.1.

For the VGG19-BN model, as shown in Figure[T2] the AAV peaks at an LR of 0.01 for AAC1 and
AAC3 levels, while AACS shows a similar peak at an LR of 0.005. This suggests a slightly different
optimal learning rate for attacks with a higher tolerance for accuracy loss.

As shown in Figure[I3] the MobileNet-v3-large model demonstrates a consistent pattern where the
AAV decreases as the learning rate increases. The highest AAV is achieved at an LR of 0.001 for
AACI1 and AAC3, while AACS has its peak at an LR of 0.005.
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Table 30: AAV of different learning rates on PreActResNet18, VGG19-BN, MobileNet-v3-large, and
EfficientNet-B3

Models LR | 0.001 0.005 0.01 0.05 0.1

AAC1T | 0917917 0.950417 0.812778 0.737917 0.708889
PreActResNet18 AAC3 | 0.87875 0.8875  0.790833 0.679028 0.667222
AACS | 0.830417 0.854583 0.783333 0.651389 0.666667

AACT | 0.537222  0.645139 0.648333 0.566944 0.346944
VGGI19-BN AAC3 | 0.521944 0.632083 0.629722 0.539167  0.3425
AACS | 0.502222 0.581389 0.585278 0.509722  0.338889

AACI | 0.896719 0.839531 0.82375 0.801719 0.724531
MobileNet-v3-large | AAC3 | 0.827656 0.827344 0.820938 0.797344  0.724531
AACS | 0.763281 0.79125 0.774062 0.786563 0.717344

AACT | 0.808333 0.777083 0.780417 0.703056 0.525694
EfficientNet-B3 AAC3 | 0.746111 0.757222 0.770556 0.673889 0.515972
AACS | 0.680139 0.74 0.768611 0.635 0.515417
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Figure 11: Impact of Learning Rates on AAC of PreActResNet18
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Figure 12: Impact of Learning Rates on AAC of VGG19-BN
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Figure 13: Impact of Learning Rates on AAC of MobileNet-v3-large

Lastly, as shown in Figure[T4] the EfficientNet-B3 model displays a peak in AAV at an LR of 0.001
for all AAC levels. Similar to other models, an increase in learning rate results in a reduction of AAV,
with a significant drop observed at an LR of 0.1.
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Figure 14: Impact of Learning Rates on AAC of EfficientNet-B3

H VISUALIZATION AND INTERPRETABILITY ANALYSIS OF BACKDOOR
ATTACKS

In this section, the analysis of backdoor attack methodologies was carried out using the BIG attribution
method. As shown from Figure [I5]to Figure [30} this assessment spanned four models: PreActRes-
Netl8, VGG19-BN, MobileNet-v3-large, and EfficientNet-B3, across four datasets: CIFAR-10,
CIFAR-100, GTSRB, and Tiny ImageNet. The results notably highlighted the K&L method for its
exceptional stealthiness. The attribution maps generated by the K&L method closely resembled
those of the original, unattacked images, indicating a high degree of indiscernibility. Additionally,
the trigger used in the K&L method proved to be virtually imperceptible to the naked eye, further
affirming its covert nature in backdoor attacks.
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Figure 15: On the CIFAR-10 dataset, the BIG attribution is applied to the PreActResNet18 model.

Original BadNet Blended BppAttack Input-Aware WaNet SSBA K&L (ours)
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Figure 16: On the CIFAR-100 dataset, the BIG attribution is applied to the PreActResNet18 model.

Original BadNet Blended BppAttack Input-Aware WaNet K&L (ours)

Figure 17: On the GTSRB dataset, the BIG attribution is applied to the PreActResNet18 model.

Original BadNet Blended BppAttack Input-Aware

Figure 18: On the Tiny ImageNet dataset, the BIG attribution is applied to the PreActResNet18
model.
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Figure 19: On the CIFAR-10 dataset, the BIG attribution is applied to the VGG19-BN model.
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Figure 20: On the CIFAR-100 dataset, the BIG attribution is applied to the VGG19-BN model.

Original BadNet Blended BppAttack Input-Aware

Figure 21: On the GTSRB dataset, the BIG attribution is applied to the VGG19-BN model.

Original BadNet Blended BppAttack Input-Aware WaNet SSBA K&L (ours)
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Figure 22: On the Tiny ImageNet dataset, the BIG attribution is applied to the VGG19-BN model.
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Figure 23: On the CIFAR-10 dataset, the BIG attribution is applied to the EfficientNet-B3 model.
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Figure 24: On the CIFAR-100 dataset, the BIG attribution is applied to the EfficientNet-B3 model.

Original Input-Aware K&L (ours)

Figure 25: On the GTSRB dataset, the BIG attribution is applied to the EfficientNet-B3 model.
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Figure 26: On the Tiny ImageNet dataset, the BIG attribution is applied to the EfficientNet-B3 model.
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Figure 27: On the CIFAR-10 dataset, the BIG attribution is applied to the MobileNet-v3-large model.
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Figure 28: On the CIFAR-100 dataset, the BIG attribution is applied to the MobileNet-v3-large
model.
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Figure 29: On the GTSRB dataset, the BIG attribution is applied to the MobileNet-v3-large model.

Figure 30: On the Tiny ImageNet dataset, the BIG attribution is applied to the MobileNet-v3-large
model.
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