
REPOPILOT: Software Agents To Resolve Software Engineering Tasks
at Repository-Level Scale

Anonymous ACL submission

Abstract

Coding assistants based on Large Language001
Models (LLMs) have recently surged in popu-002
larity. A significant challenge for LLMs is accu-003
rately responding to user queries at the scale of004
entire code repositories. We propose REPOPI-005
LOT , a multi-agent-based system capable of ef-006
fectively navigating through source code repos-007
itories to collect relevant information, editing008
code and execute programs. We demonstrate009
the effectiveness of REPOPILOT through ex-010
tensive evaluations on challenging benchmarks,011
including SWE-bench and an automatically col-012
lected code generation dataset. On SWE-bench013
Lite, REPOPILOT achieves a 17% pass rate,014
establishing competitive results compared to015
the baseline while maintains low cost and also016
excels in other code intelligence tasks.017

1 Introduction018

The remarkable advances in Large Language Mod-019

els (LLMs) have driven rapid progress in various020

natural language processing tasks (Touvron et al.,021

2023; OpenAI et al., 2023) and software develop-022

ment tasks (Zhang et al., 2023; Austin et al., 2021;023

Zhang et al., 2023). Recently, multiple attempts024

have been made to directly exploit LLMs as agent025

models to address planning problems in software026

engineering (SE) (Bairi et al., 2023; Zhang et al.,027

2024a; Yang et al.; Zhang et al., 2024c). Most028

Software Engineering tasks are performed within029

the context of an integrated development environ-030

ment (IDE), which requires a quick response time031

for interactive usage. However, most existing ap-032

proaches rely on high-performance LLMs as the033

main agent, leading to high query costs. Addition-034

ally, these approaches often aim to solve a single035

task specifically with a single LLM agent, and their036

agent flow and tool designs are highly customized037

and not general enough for a variety of software de-038

velopment tasks. For example, AutoCodeRover’s039

pipeline (Zhang et al., 2024c) is difficult to extend040

to code generation and question answering tasks 041

due to its two-stage pipeline: localizing and patch- 042

ing. While SWE-agent (Yang et al.) offers more 043

flexibility in agent design, their tools are designed 044

to quickly localize objects and reduce API cost 045

and context length, potentially losing necessary 046

fine-grained information during search and editing, 047

which can be meaningful for other software de- 048

velopment tasks (bug tracing, question answering, 049

etc.). 050

We develop REPOPILOT , an agent-based frame- 051

work that is general for a wide range of software 052

development tasks while reducing the cost of using 053

LLMs. In REPOPILOT , a software task is decom- 054

posed into four main processes: planning, navi- 055

gating, generating, and executing. Each process 056

requires a different level of intricacy and, there- 057

fore, deserves a different level of intelligence from 058

LLMs. One can use a lightweight and computa- 059

tionally cheap LLM for navigation because this 060

process is the least complex but consumes the high- 061

est number of tokens. This approach not only re- 062

duces cost but also reduces context for other pro- 063

cesses, thereby improving performance. Despite 064

the promise of a multi-agent system, designing 065

such a system for software intelligent tasks is chal- 066

lenging for the following reasons: 067

• Tool design (interface and functionality) for each 068

agent role should be well-designed and special- 069

ized depending on the role’s complexity. 070

• Communication between agents can cause infor- 071

mation loss, leading to imprecise decisions in 072

other processes, which can cause compound er- 073

rors in subsequent iterations. 074

• Using multiple LLMs working together can sub- 075

stantially increase inference costs if not designed 076

properly. 077

REPOPILOT follows a new centralized multi-agent 078

system for software tasks, where the Planner has 079

1

the role of receiving user inputs (GitHub Issue,080

code generation request), planning, and iteratively081

deciding which child agent role (Navigator, Editor,082

and Executor) should be used in the next iteration.083

• Cost-Effective: We propose a centralized multi-084

agent system (Section 3.1) using a high-cost085

LLM for the Planner, which subordinates child086

agents that are low-cost and inexpensive to exe-087

cute requested tasks.088

• Communication: We propose a communication089

mechanism (Section 3.2) to offload tasks to child090

agents while ensuring that the observations re-091

ceived by the Planner are succinct and relevant.092

This is the key to REPOPILOT in reducing the093

need for making API calls to the Planner’s LLM094

while ensuring the Planner remains grounded095

with information from the codebase environment.096

• Tool Design: We propose a suite of new tools097

(Section 3.3) for efficient navigation, editing, and098

execution, specialized for each agent role. These099

tools are carefully customized for each type of100

agent and the difficulty of each task.101

Finally, our contributions are as follows:102

1. REPOPILOT : An adaptive and general multi-103

agent framework for different software tasks.104

2. An empirical evaluation demonstrating a com-105

parable pass rate of 17106

2 Related Work107

2.1 Software Engineering Benchmarks108

Code generation benchmarks, which evaluate mod-109

els on the task of synthesizing code from natu-110

ral language descriptions, have served as a long111

standing bellwether for measuring LM perfor-112

mance (Chen et al., 2021; Austin et al., 2021;113

Hendrycks et al., 2021; Lu et al., 2021). Subse-114

quent works have built upon the code generation115

task formulation to contribute new benchmarks that116

translate problems to different (programming) lan-117

guages (Cassano et al., 2022; Wang et al., 2022),118

incorporate third party libraries (Lai et al., 2023;119

Liu et al., 2023c), introduce derivative code com-120

pletion tasks (Muennighoff et al., 2023), increase121

test coverage (Liu et al., 2023a), change the edit122

scope (Ding et al., 2024; Yu et al., 2024; Du et al.,123

2023), and add robustness to dataset contamina-124

tion (Naman Jain et al., 2024). Code generation125

problems are largely self-contained, with short 126

problem descriptions (∼100 lines) and correspond- 127

ing solutions that are similarly brief, requiring noth- 128

ing more complex than basic language primitives. 129

Tests are either handwritten or generated synthet- 130

ically via fuzz testing. In recent months, rapid 131

development of LMs has begun to saturate many of 132

these benchmarks. The top method solves 94.4% 133

of HumanEval (Zhou et al., 2023). 134

Gauging future trends with the code generation 135

task paradigm may be limited by the simplicity of 136

this setting and cost of human-in-the-loop problem 137

creation. In response, recent efforts have demon- 138

strated that software engineering (SE) can serve 139

as a diverse, challenging testbed for LM evalua- 140

tion (Zhang et al., 2023; Jimenez et al., 2023; Liu 141

et al., 2023b). Repository-level code editing intro- 142

duces many reasoning challenges grounded in real 143

SE subtasks such as spotting errant code, identi- 144

fying cross-file relationships, and understanding 145

codebase-specific symbols and conventions. As a 146

field, SE has generally studied tasks in a more iso- 147

lated manner; prior benchmarks tend to frame prob- 148

lems in isolation from the rest of a codebase (Just 149

et al., 2014; Karampatsis and Sutton, 2020). 150

We use SWE-bench because it unites many sepa- 151

rate SE tasks such as automated program repair(Xia 152

and Zhang, 2022), bug localization (Chakraborty 153

et al., 2018; Yang et al., 2024a) under a single 154

task formulation that faithfully mirrors practical 155

SE. Furthermore, SWE-bench task instances are 156

diverse, having been collected from real GitHub 157

issues across 12 different repositories. In addition, 158

SWE-bench performance is based on rigorous, au- 159

tomatic execution-based evaluation. 160

2.2 Language Models as Agents 161

The co-emergence of stronger LMs, increasingly 162

challenging benchmarks, and practical use cases 163

have all together motivated a paradigm shift in 164

LMs’ inference setting. In place of traditional 165

zero/few-shot generation, language agents (Sumers 166

et al., 2023; Xi et al., 2023; Wang et al., 2024a), 167

which use LMs to interact with a real/virtual world, 168

have proliferated as the default setting for web 169

navigation (Nakano et al., 2021; Thoppilan et al., 170

2022; Yao et al., 2022a,b), computer control (Wu 171

et al., 2024; Xie et al., 2024), and code generation 172

tasks (Wang et al., 2023). 173

Interaction and code generation are increasingly 174

used together, with code as the modality of choice 175

for actions (Yang et al., 2024b; Wang et al., 2024b), 176

2

Thought: “server setting does
not appear when interface is
triggered”
Request: “Asks the Navigator
to search for the keyword
‘server’ in the codebase.
Waiting for Response……
Thought: “From the
Navigator’s response, we need
to change enable the flag
‘enable_server’ in Server
class.”
Request: “Asks the Generator
to change flag ‘enable_server’
in server.py to True”
Waiting for Response……
Thought: ”The flag is enabled,
need to validate if this change
can fix the issue.”
Request: “Asks the Executor to
execute the test case related
to server.py”
Waiting for Response……
Thought: ”The test case
completed successfully,
indicating that the server
setting has appeared on the
interface. The issue is
resolved!”

Action: use code_search to search for ‘server’
keyword in the codebase.
Observation: The files server.py contains
relevant settings.
Action: use go_to_definition to jump to the
server.py
Observation: the flag ‘ enable_server’ is set to
false in the __init__ function.
Final answer: After navigating through
different files, the flag ‘enable_server’ in
server.py is likely the root cause

Action: use open_file to open server.py
Observation: file is opened
Action: use repair_code to replace
‘enable_server =False` to ‘enable_server =
True’ in the __init__ function.
Observation: Flag is changed from False to
True and the file is saved. Need to test if this
change can successfully resolve the issue.
Action: Generate test_server.py to test the
change.
Observation: test_server.py is generated
successfully and saved to the the test/ folder
Final answer: the flag ‘enable_server’ is set to
True and a test_server.py is generated to test
if the change can resolve the issue.

Action: use open_file to open test_server.py
Observation: file is opened.
Action: use interactive_bash_shell to to execute
test_server.py.
Observation: test_server.py is executed
successfully.
Final answer:: The test_server.py is executed
successfully and all of the test cases passed

Planner

Navigator

Code Editor

Executor

Request: ……
Response: The flag
`enable_server` is set to False
after navigating through all of
the contexts that `server` might
appear

Request: ……
Response: Changed the flag
‘enable_server’ in server.py to
True and generated
test_serve.py to validate the
correctness

Request: ……
Response: The test_server.py
was successfully executed, and
all of the test cases passed.

server.py

test_server.py

user.py

Interact

Interact

Interact

Code Repo

Figure 1: RepoPilot Multi-Agent Framework

tool construction (Wang et al., 2024c; Zhang et al.,177

2024b; Gu et al., 2024), and reasoning (Zelikman178

et al., 2023a,b; Shinn et al., 2024). Code language179

agents have also been applied to offensive secu-180

rity (Yang et al., 2023; Shao et al., 2024), theorem181

proving (Thakur et al., 2023).182

To the best of our knowledge, REPOPILOT is183

the first to explore low-cost multi-agents system for184

generic, end-to-end software engineering tasks.185

3 Methodology186

Figure 1 illustrates our framework. The key design187

of REPOPILOT is centered at the idea that only188

Planner requires advanced reasoning and it should189

dedicate easy but need long execution tasks into190

its child agents which can be small and fast, there-191

fore, reduce the inference cost and improve overall192

performance by eliminating redundant information193

out of context of the Planner. At each iteration,194

the Planner generates a thought consisting a plan195

to resolve a query, an agent request and receive a196

feedback from that agent from generated request.197

After receiving request from Planner, child agents198

which follow the design of ReAct agent (Yao et al.,199

2022b), will iteratively execute tools, receiving 200

feedback from codebase environment and report 201

its findings to the Planner. Planner will terminate 202

when the task is fully resolved. 203

3.1 Centralized Multi-Agent System 204

The central agent Planner controls three supporting 205

agents Navigator, Editor and Executor: 206

The role of the Planner is to directly receive hu- 207

man task prompts, such as resolving GitHub issues 208

or generating code based on a given description, 209

and address these tasks iteratively. In each iteration, 210

it generates a plan to resolve the query, deciding 211

which supporting agents to utilize and how to em- 212

ploy them in that step (see Section 3.2 for details 213

on how the Planner delegates task execution to 214

the child agents and receives feedback from them). 215

The Planner also determines when to terminate the 216

resolving process or stops after a maximum number 217

of iterations to minimize the costs. 218

Navigator is a crucial agent that has responsi- 219

bility to receive information-seeking query from 220

Planner then iteratively navigates and collects all 221

relevant information that can be used to answer 222

3

the query. Navigator is equipped with tools sim-223

ilar to ones in Integrated development environ-224

ment (IDE) commonly used by programmers which225

are go_to_definition or code_search. Given a226

query from Planner, navigator uses a series of these227

provided tools to quickly traverse in the codebase228

and collect information. The search process will229

be terminated by the agent or timeout is reached.230

However, the information-seeking process is costly,231

requiring a certain number of exploratory iterations232

for an agent to understand the repository and ad-233

dress the query. This is particularly challenging234

when the codebase is private and not publicly avail-235

able, as the LLM lacks knowledge of its structure236

and key design elements.237

Therefore, the navigation agent should be fast238

and lightweight. It is crucial to have multiple sim-239

ple, easy-to-use tools that, when combined, yield240

excellent results for navigation and search. This241

contrasts with the design of SWE-agent (Yang242

et al.), which relies solely on summarized code243

search. While lightweight, this approach often fails244

to provide concise context understanding. Conse-245

quently, LLMs such as LLaMA (Touvron et al.,246

2023) or Claude 3 Haiku (Chiang et al., 2024) can247

struggle when faced with exhaustive search results248

from these tools.249

The Editor is an agent responsible for edit-250

ing code in multiple files or creating new files251

and generating source code for them. Ed-252

itor is equipped with several tools, includ-253

ing auto_repair_editor, code_search, and254

open_file. It receives the target file from the Plan-255

ner along with the editing context, which includes256

related information such as the expected behavior257

after the change and the specific lines to be con-258

sidered. Editor then produces a replacement block259

of code, which the auto_repair_editor inserts260

into the target file. If the auto_repair_editor261

confirms the edit’s success, the Editor loop can be262

terminated, and control returns to the Planner.263

The Executor is an agent responsible for re-264

producing issues or verifying that the generated265

patch behaves correctly and resolves the issue266

after changes are made. It is equipped with267

an interactive_bash_shell, which maintains268

its state even after executing commands, and269

open_file for reading installation instructions or270

documentation. The environment setup is also han-271

dled automatically by the Executor.272

3.2 Agent Execution and Communication 273

This section focuses on how the Planner dele- 274

gates repetitive, interactive but simple tasks to child 275

agents and how these child agents communicate 276

their findings back to the Planner with minimal 277

information loss. 278

Firstly, Planner needs to provide detailed request 279

with contextual information for child agents to per- 280

form its role and execution. The format of com- 281

munication from Planner sending to other agents 282

always have Context and Request fields. The Con- 283

text field is more descriptive on original behavior 284

and why Editor has to generate a patch while the 285

Request field is a direct command to re-ensure code 286

generated is behaved according to the intention of 287

the Planner. Similarly, the Context field for Nav- 288

igator is utilized for faster and direct navigation 289

by optionally directing the target files or specific 290

locations in advance. 291

Figure 2: Request from Planner to Editor

After receiving a request and context from the 292

Planner, child agents iteratively execute their tasks 293

to resolve the request and eventually report their 294

final answer back to the Planner. However, we 295

observed significant information loss in these final 296

reports, especially from the navigation agent. The 297

final answers often lack code snippets or detailed 298

information about the explored objects or codebase 299

structure, leading to deterioration and hallucination 300

in the Planner after several iterations. To address 301

this, we propose using a lightweight LLM summa- 302

rizer to compile intermediate results from the child 303

agent’s execution, incorporating this summary into 304

the final answer communicated to the Planner. 305

3.3 Tool Design 306

A key distinction of REPOPILOTcompared to exist- 307

ing approaches lies in tool design. Several factors 308

are important when designing a tool for each agent 309

role. First, the feedback format from the tools to 310

the LLM must be succinct, informative, and read- 311

able. Second, the functionality of the tool should 312

4

be considered: does it provide the most informa-313

tion, help the LLM achieve a higher patch apply314

rate, or speed up the testing environment setup? Fi-315

nally, usability is crucial; the input interface must316

be easy-to-use and intuitive. A complex input in-317

terface could lead to the LLM failing to use these318

tools correctly, and in some cases, incorrect tool319

outputs can negatively impact overall performance.320

Here, we describe how tools are designed specif-321

ically for each agent role.322

Navigating. In tasks like GitHub Issue Resolv-323

ing or Code Generation, efficiently finding rele-324

vant function and class definitions is crucial. To325

address this, we implemented the code_search326

tool using a trigram-based code search engine327

with symbol ranking, Zoekt (Nienhuys and Source-328

Graph), as the code search backend. Addition-329

ally, we introduced IDE-like features such as330

go_to_definition, get_all_references, and331

get_all_symbols. These tools, when used332

in conjunction with code_search, are particu-333

larly powerful because code_search can produce334

many false positives, especially in large code-335

bases. However, these results can indicate where336

the target definition is called or referenced, and337

go_to_definition can quickly localize the defi-338

nition effortlessly. This approach contrasts sharply339

with the summarized_search in (Yang et al.),340

which presents exhaustive search results in one341

feedback. Similarly, get_all_references is ef-342

fective in localizing similar usages of target func-343

tions or classes, helping the system understand how344

these objects are typically used, leading to better345

and more consistent fixes.346

Designing input interfaces for these tools347

presents significant challenges. These tools require348

precise specifications, including exact line num-349

bers, column numbers, file paths, and identifier350

names, to function properly. Our findings indicate351

that LLMs often struggle to accurately localize the352

column number and even the line number of a tar-353

get word. Therefore, we implemented a proximity354

search algorithm that identifies the closest exact355

position relative to the LLM’s prediction. Conse-356

quently, the LLM now only needs to provide the357

‘word_list‘, ‘file_path‘, and ‘line_number‘.358

We implemented the get_tree_structure359

function, which visualizes the structure of a code-360

base as a tree. This function takes relative_path361

and ‘level‘ as inputs, displaying the folder and file362

structure within the specified relative_path up to363

the given ‘level’ of depth. Moreover, we equipped 364

Navigator with open_file and find_file func- 365

tionalities. The open_file function can display 366

up to 50 lines of source code, annotated with line 367

numbers, and is integrated with a keyword search, 368

allowing the LLM to locate sections containing 369

specific keywords without exhaustive scrolling. 370

Observation: The content of sympy/core/numbers.py
is:
Results for keyword: __new__
524
525 # Used to make max(x._prec, y._prec) return
526 _prec = -1
527
528 def __new__(cls, *obj):
529 if len(obj) == 1:
530 obj = obj[0]

Action:
```
{
  "action": "open_file",
  "action_input": {
    "relative_file_path": "sympy/core/numbers.py",
    "start_line": 200,
    "end_line": 600,
    "keywords": ["__new__"]
  }
}
```

Figure 3: Open File Interface

code_search is the most intensively used tool 371

for navigation, making its interface design criti- 372

cal. Besides using simple input specifications and 373

a robust trigram-based search engine, we re-rank 374

results to prioritize primary symbols like functions 375

or classes. Additionally, we found that returned 376

results should include a preview window. This win- 377

dow displays documentation for primary symbols 378

or 5 lines surrounding the search position for other 379

results. 380

Editing. We also equip the Editor with tools sim- 381

ilar to those of the Navigator, such as open_file 382

and go_to_definition, to observe the target edit- 383

ing file and jump to the definition of identifiers 384

around the editing location, ensuring consistent 385

fixes within the codebase. The primary focus of 386

editing is the auto_repair_editor tool, which 387

uses the ‘start_line‘ and ‘end_line‘ positions of the 388

original block and ‘patch‘ fields for the replacement 389

code. This tool can receive a replacement patch 390

and automatically detect and repair any indentation 391

or syntax errors via an LLM. 392

Executing Executor can use open_file or 393

get_tree_structure to find documentations re- 394

lated to testing instruction or environment setup. 395

Then it can use interactive_bash_shell to run 396

bash command, normally, these commands are 397

5

Model SWE-bench SWE-bench Lite
% Pass Rate $ Avg. Cost % Pass Rate $ Avg. Cost

RAG
w/ GPT-4 Turbo 1.31 0.13 2.67 0.13

w/ Claude 3 Opus 3.79 0.25 4.33 0.25
SWE-agent
w/ GPT-4 Turbo 12.47 1.59 18.00 1.67

w/ Claude 3 Opus 10.46 2.59 13.00 2.18
AutoCodeRover⋆
w/ GPT-4 Turbo - - 16.11 0.44

RepoPilot
w/ GPT-4o 10.12 0.41 17.00 0.38

w/ Claude Opus - - 13.00 0.56
w/ WizardLM2 - - 16.00 0.28

Table 1: Performance comparison of different methods on SWE-bench and SWE-bench Lite.

‘pytest‘, ‘conda installation‘ or ‘python3‘. Notes398

that we uses interactive bash shell to maintain exe-399

cution states of bash instead of using Docker.400

4 Implementation Details401

Benchmarks We evaluate REPOPILOT using the402

SWE-bench dataset (Jimenez et al., 2023), which403

comprises 2,294 task instances derived from 12404

popular Python repositories, such as flask, numpy,405

and matplotlib. SWE-bench is designed to as-406

sess a system’s capability to automatically resolve407

GitHub issues by using Issue-Pull Request (PR)408

pairs. The evaluation process involves verifying409

unit tests using the post-PR behavior as the ref-410

erence solution. For ablations and analysis, due411

to budget constraint, we can only utilize a small412

subset called SWE-bench Tiny consisting of 100413

instances from SWE-bench Lite (Jimenez et al.,414

2023). Additionally, we also examine our method415

on a small, hand-collected and executable bench-416

mark for repository-level code generation called417

ExecBench, this benchmark is similar with DevE-418

val (Li et al., 2024) but with synthetic test cases.419

This benchmark aims for evaluating code gener-420

ation at the repository level that emphasizes exe-421

cutability and correctness. The test cases are auto-422

matically generated by few-shot prompted GPT-3.5423

Turbo with internal pipeline ensuring 96.25% test424

converage. The benchmark includes 120 samples.425

Models. For summarizer in REPOPILOT, we426

used Mixtral 8x7B (Jiang et al., 2024). We use a427

wide variety of LMs to examine the flexibility of428

the framework as well as measure robustness. For429

Planner role, advanced LLMs including GPT-4o430

(gpt-4o-2024-05-13) (OpenAI et al., 2023),431

Claude 3 Opus (claude-3-opus-20230229432

(Chiang et al., 2024) and WizardLM2433

(wizardlm-2-8x22b) (Tao et al., 2024) are 434

used. For Navigator, we only use Claude 3 Haiku 435

(claude-3-haiku-20240307 for fast inference 436

time and low cost; GPT-4o, Claude 3 Sonnet 437

(claude-3-sonnet-20240229) and WizardLM2 438

are used for Editor role. Finally, for Executor, 439

GPT-3.5 Turbo (gpt-3.5-turbo-0125) and 440

Claude 3 Haiku are utilized. All models and agent 441

roles utilize greedy sampling during inference 442

with temperature parameter set to 0. We have 443

3 different multi-agent configurations denoted as 444

following GPT-4o with (GPT-4o, Claude Haiku, 445

GPT-4o, GPT-3.5 Turbo) as (planner, navigator, 446

editor and executor), similarly, WizardLM2 with 447

(WizardLM2, Claude Haiku, WizardLM2, Claude 448

Haiku) and Claude Opus with (Claude Opus, 449

Claude Haiku, Claude Sonnet, Claude Haiku). 450

Baselines. On SWE-Bench, we compare RE- 451

POPILOT to three baselines: SWE-Agent, a bash 452

interactive agent with Agent-Computer Interfaces 453

(Yang et al.); AutoCodeRover, a two-stage agent 454

pipeline focusing on bug fixing scenarios (Zhang 455

et al., 2024c) and Retrieval Augmented Generation 456

baselines shown in (Jimenez et al., 2023). 457

Metrics. We use pass@1 as our metric, which 458

measures the percentage of instances where all 459

tests pass successfully after applying the model- 460

generated patch to the repository. Additionally, we 461

report the Avg cost. Cost metric, representing the 462

average API inference cost for all LLM usages. For 463

ExecBench 464

Tools. go_to_def, get_all_references 465

and get_all_symbols are implemented using 466

Multilspy (Agrawal et al., 2024) with natu- 467

ral language interface for LLM. LLM inside 468

auto_repair_editor is the same with Editor in 469

6

one configuration.470

Others. For RAG, text-embedding-3-large is471

used for source code embeddings, we use code pars-472

ing and chunking implementation from Langchain473
1. The chunking size is 1000 tokens.474

5 Experimental Results475

Methods pass@1 pass@5

GPT-3.5-Turbo + RAG 24.16 35.00
WizardLM2 + RAG 32.50 49.16
RepoPilot w/ WizardLM2 38.33 53.33

Table 2: Pass Rates of different methods on ExecBench

As shown as in Table 1, on SWE-bench Lite, in476

our framework, GPT-4o configuration achieves best477

performance 17% (51/300) compared to Claude478

Opus and WizardLM2. Furthermore, it has higher479

resolve rate compared to AutoCodeRover (17%480

versus 16.11%) and competitive with SWE-agent481

while having significantly lower cost (∼ 4.4 times482

lower). Notes that REPOPILOT has a more generic483

architecture rather than AutoCodeRover which is484

a two-stage pipeline focusing on bug resolving.485

Moreover, we found that an open weight model486

WizardLM2-8x22B shows strong planning capabil-487

ities and when combined with other LLMs inside488

our framework, it shows comparable results with489

GPT-4o but with only 73% API cost of GPT-4o con-490

figuration. Due to buget constraint, we can only491

evaluate GPT-4o configuration on full SWE-bench492

testset, and, it shows superior performance over493

RAG approaches and positive results compared494

with SWE-agent (10.12% versus 12.47%).495

In Table 2, REPOPILOT exhibits strong perfor-496

mance on ExecBench, surpassing RAG baselines497

in both pass@1 and pass@5 metrics. This demon-498

strates its versatility in handling various software499

engineering tasks of REPOPILOT .500

6 Analysis501

6.1 Ablation Studies on Agent Roles502

In this experiment, we use SWE-bench Tiny to eval-503

uate the contribution of each agent role to overall504

performance by replacing each child agent with505

the planner itself. This requires the planner to di-506

rectly call the eliminated agent’s toolset to execute507

necessary tasks. Table 3 shows a significant cost in-508

crease for all configurations when any agent role is509

1https://github.com/langchain-ai/langchain

removed. The resolving rate also decreases, vary- 510

ing by which role is eliminated. Removing the 511

Navigator causes the most performance drop, fol- 512

lowed by the Editor and the Executor, respectively. 513

Notably, in the case of a medium-long context 514

length LLM such as WizardLM2 acting as the Plan- 515

ner and replacing the role of Editor or Navigator, 516

we observe a more severe drop in the resolving 517

rate. This is because these roles require continuous 518

interaction with the environment, necessitating a 519

long context.

Model
SWE-bench Tiny

% Pass Rate $ Avg. Cost

GPT-4o
15.00 0.42

w/o Navigator. 7.00 2.81
w/o Editor 11.00 1.92
w/o Executor 14.00 0.75

WizardLM2
13.00 0.31

w/o Navigator 4.00 1.21
w/o Editor 7.00 0.51
w/o Executor 13.00 0.38

Table 3: Ablation study on different agent role’s contri-
bution on SWE-bench Tiny

520

6.2 Analysis of Tool Design 521

We investigate the extent of improvements 522

brought by our major design choices in the 523

tool’s interface and functionality. We con- 524

duct an ablation study on the functionalities 525

of go_to_definition, auto_repair_editor, 526

open_file, and code_search using SWE-bench 527

Tiny. For each tool, we evaluate the overall perfor- 528

mance when the tool is utilized versus when it is 529

not, as shown in Table 4 (denoted as Used and No 530

Usage, respectively). 531

A crucial finding for go_to_definition is that 532

the LLM agent struggles to effectively use this IDE- 533

like feature. It requires exact line and column num- 534

go_to_definition

Used 9.00↓6.0
w/ search 15.00
No usage 12.0↓3.0

open_file

Used 9.00↓6.0
w/ annotated lines 11.00↓4.0
w/ keyword summary 15.00
No usage 4.0↓11.0

code_search

Used 8.00↓6.0
w/ preview 11.00↓3.0
w/ ranking 14.00
No usage 3.0↓11.0

auto_repair_editor

Used 8.00↓7.0
w/ linting feedback 11.00↓4.0
w/ repairing 15.00
No usage 1.0↓14.0

Table 4: Ablation result on resolving performance on
SWE-Bench Tiny with different key tool designs

7

bers and the precise symbol name, which demands535

precise localization of character positions. Despite536

supporting annotated line numbers, the agent often537

fails and retries multiple times. However, incorpo-538

rating a proximity-based search process, allowing539

the agent to approximate specifications, would sig-540

nificantly improve performance (from 9% without541

search to 15% with search).542

For open_file, it’s frequently to observe that543

small LLMs, such as Claude Haiku, tend to scroll544

up and down multiple times to find desired snip-545

pets by continuously increasing ‘start_line‘ and546

‘end_line‘, leading to out-of-context length issues.547

We solved this problem by adding an additional548

input field ‘keywords‘, allowing LLM to search549

keywords inside file and tool to quickly localize550

the positions of keywords inside the file and display551

the surrounding lines. This increases the resolving552

rate by 3%.553

Without the utilization of code_search, the Nav-554

igator would face significant challenges in swiftly555

identifying the necessary objects to fulfill a request,556

resulting in a significantly lower performance rate557

of 3% compared to 8% when the tool is employed.558

Furthermore, merely providing file paths and key-559

word positions from code_search would not be560

sufficient. Enhancing the output to include partial561

surrounding context around the keyword enabling562

Navigator to make more informed decisions and563

select the most relevant results, thereby improving564

performance from 8% to 11%. In the majority of565

Software Engineering Workflow (SWE) tasks, pro-566

grammers primarily focus on key objects such as567

functions and classes. Consequently, prioritizing568

search results for these objects over other results569

is beneficial, and re-ranking these results further570

enhances overall performance, increasing it from571

11% to 14%.572

We further observe a substantial enhancement573

(8% to 11%) for providing python linting feed-574

back 2 to the Editor whenever it produces a patch575

via auto_repair_tool. By providing linting576

feedback for an internal LLM of the tool to au-577

tonomously refine the generated patch and attempt578

to fix any encountered error, the quality of the patch579

would be improved leading resolving rate increased580

by 4%581

2We use flake8 for providing syntax errors.

2 4 6 8 10
Iterations

0

10

20

30

40

50

Fr
eq

ue
nc

y

Navigator
Editor
Executor

Figure 4: Agent Roles Usage Frequency in SWE-bench
by Planner’s iterations

6.3 Agent Behavior 582

We analyzed the frequency of each agent role re- 583

quested by the Planner throughout the issue reso- 584

lution process. Figure 4 illustrates a typical pattern 585

where the Planner is most active at the beginning 586

of the resolution process, gathering relevant infor- 587

mation about the codebase environment. Subse- 588

quently, the Editor is frequently used to generate 589

patches, often immediately following the Naviga- 590

tor, with notable peaks at Iterations 4 and 8. Finally, 591

the Executor is requested more frequently in the 592

later iterations to verify the results by executing 593

tests. It is noteworthy that, in the first iteration, 594

there are a small peak indicating that Executor is 595

requested to reproduce the issue. 596

7 Conclusion 597

In this paper, we present REPOPILOT, a versa- 598

tile multi-agent-based system designed to tackle 599

complex software engineering tasks at the reposi- 600

tory level. By carefully crafting the overall frame- 601

work, communication mechanisms, and interactive 602

tools, we achieve competitive performance com- 603

pared to single-agent systems while maintaining 604

significantly lower costs. Furthermore, our design 605

is adaptable to other intelligent software engineer- 606

ing tasks and various programming languages. 607

8

https://flake8.pycqa.org/en/latest/

Limitations608

Despite the significant advancements demonstrated609

in multi-agent software development, several limi-610

tations and areas for future research remain to be611

addressed for REPOPILOT.612

One potential avenue for future research is to613

apply REPOPILOT to more diversified software en-614

gineering tasks, such as repository-level question615

answering, which requires a deep understanding616

of the codebase. REPOPILOT can leverage its ef-617

fective tool suite to navigate and collect relevant618

information efficiently.619

Secondly, future work could focus on train-620

ing smaller, open-sourced large language models621

(LLMs) using trajectories collected from more ca-622

pable yet expensive models like WizardLM2. Ef-623

fectively training these smaller models presents a624

significant challenge and an interesting research625

problem.626

Finally, our approach may result in lengthy ex-627

ecution times for child agents due to the lack of628

contextual information from previous rounds (as629

the child agent’s context is reset after each request630

from the Planner). Implementing a specialized631

adaptive memory for each agent role could enhance632

the efficiency and speed of subsequent executions.633

References634

Lakshya A Agrawal, Aditya Kanade, Navin Goyal, Shu-635
vendu Lahiri, and Sriram Rajamani. 2024. Monitor-636
guided decoding of code lms with static analysis of637
repository context. Advances in Neural Information638
Processing Systems, 36.639

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten640
Bosma, Henryk Michalewski, David Dohan, Ellen641
Jiang, Carrie Cai, Michael Terry, Quoc Le, and642
Charles Sutton. 2021. Program synthesis with large643
language models.644

Ramakrishna Bairi, Atharv Sonwane, Aditya Kanade,645
Arun Iyer, Suresh Parthasarathy, Sriram Rajamani,646
B Ashok, Shashank Shet, et al. 2023. Codeplan:647
Repository-level coding using llms and planning.648
arXiv preprint arXiv:2309.12499.649

Federico Cassano, John Gouwar, Daniel Nguyen, Syd-650
ney Nguyen, Luna Phipps-Costin, Donald Pinckney,651
Ming-Ho Yee, Yangtian Zi, Carolyn Jane Anderson,652
Molly Q Feldman, et al. 2022. Multipl-e: A scal-653
able and extensible approach to benchmarking neural654
code generation. arXiv preprint arXiv:2208.08227.655

Saikat Chakraborty, Yujian Li, Matt Irvine, Ripon Saha,656
and Baishakhi Ray. 2018. Entropy guided spec-657
trum based bug localization using statistical language658
model. arXiv preprint arXiv:1802.06947.659

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming 660
Yuan, Henrique Ponde, Jared Kaplan, Harrison Ed- 661
wards, Yura Burda, Nicholas Joseph, Greg Brockman, 662
Alex Ray, Raul Puri, Gretchen Krueger, Michael 663
Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, 664
Brooke Chan, Scott Gray, Nick Ryder, Mikhail 665
Pavlov, Alethea Power, Lukasz Kaiser, Moham- 666
mad Bavarian, Clemens Winter, Philippe Tillet, Fe- 667
lipe Petroski Such, David W. Cummings, Matthias 668
Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel 669
Herbert-Voss, William H. Guss, Alex Nichol, Igor 670
Babuschkin, Suchir Balaji, Shantanu Jain, Andrew 671
Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan 672
Morikawa, Alec Radford, Matthew M. Knight, Miles 673
Brundage, Mira Murati, Katie Mayer, Peter Welinder, 674
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya 675
Sutskever, and Wojciech Zaremba. 2021. Evaluat- 676
ing large language models trained on code. ArXiv, 677
abs/2107.03374. 678

Wei-Lin Chiang, Lianmin Zheng, Ying Sheng, Anasta- 679
sios Nikolas Angelopoulos, Tianle Li, Dacheng Li, 680
Hao Zhang, Banghua Zhu, Michael Jordan, Joseph E 681
Gonzalez, et al. 2024. Chatbot arena: An open plat- 682
form for evaluating llms by human preference. arXiv 683
preprint arXiv:2403.04132. 684

Yangruibo Ding, Zijian Wang, Wasi Ahmad, Hantian 685
Ding, Ming Tan, Nihal Jain, Murali Krishna Ra- 686
manathan, Ramesh Nallapati, Parminder Bhatia, Dan 687
Roth, et al. 2024. Crosscodeeval: A diverse and mul- 688
tilingual benchmark for cross-file code completion. 689
Advances in Neural Information Processing Systems, 690
36. 691

Xueying Du, Mingwei Liu, Kaixin Wang, Hanlin Wang, 692
Junwei Liu, Yixuan Chen, Jiayi Feng, Chaofeng 693
Sha, Xin Peng, and Yiling Lou. 2023. Classe- 694
val: A manually-crafted benchmark for evaluating 695
llms on class-level code generation. arXiv preprint 696
arXiv:2308.01861. 697

Yu Gu, Yiheng Shu, Hao Yu, Xiao Liu, Yuxiao Dong, 698
Jie Tang, Jayanth Srinivasa, Hugo Latapie, and Yu Su. 699
2024. Middleware for llms: Tools are instrumental 700
for language agents in complex environments. arXiv 701
preprint arXiv:2402.14672. 702

Dan Hendrycks, Steven Basart, Saurav Kadavath, Man- 703
tas Mazeika, Akul Arora, Ethan Guo, Collin Burns, 704
Samir Puranik, Horace He, Dawn Song, et al. 2021. 705
Measuring coding challenge competence with apps. 706
arXiv preprint arXiv:2105.09938. 707

Albert Q. Jiang, Alexandre Sablayrolles, Antoine 708
Roux, Arthur Mensch, Blanche Savary, Chris 709
Bamford, Devendra Singh Chaplot, Diego de las 710
Casas, Emma Bou Hanna, Florian Bressand, Gi- 711
anna Lengyel, Guillaume Bour, Guillaume Lam- 712
ple, Lélio Renard Lavaud, Lucile Saulnier, Marie- 713
Anne Lachaux, Pierre Stock, Sandeep Subramanian, 714
Sophia Yang, Szymon Antoniak, Teven Le Scao, 715
Théophile Gervet, Thibaut Lavril, Thomas Wang, 716
Timothée Lacroix, and William El Sayed. 2024. Mix- 717
tral of experts. 718

9

http://arxiv.org/abs/2108.07732
http://arxiv.org/abs/2108.07732
http://arxiv.org/abs/2108.07732
https://api.semanticscholar.org/CorpusID:235755472
https://api.semanticscholar.org/CorpusID:235755472
https://api.semanticscholar.org/CorpusID:235755472
http://arxiv.org/abs/2401.04088
http://arxiv.org/abs/2401.04088
http://arxiv.org/abs/2401.04088

Carlos E Jimenez, John Yang, Alexander Wettig,719
Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R720
Narasimhan. 2023. Swe-bench: Can language mod-721
els resolve real-world github issues? In The Twelfth722
International Conference on Learning Representa-723
tions.724

René Just, Darioush Jalali, and Michael D Ernst. 2014.725
Defects4j: A database of existing faults to enable726
controlled testing studies for java programs. In Pro-727
ceedings of the 2014 international symposium on728
software testing and analysis, pages 437–440.729

Rafael-Michael Karampatsis and Charles Sutton. 2020.730
How often do single-statement bugs occur? the731
manysstubs4j dataset. In Proceedings of the 17th732
International Conference on Mining Software Repos-733
itories, pages 573–577.734

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang,735
Ruiqi Zhong, Luke Zettlemoyer, Wen-tau Yih, Daniel736
Fried, Sida Wang, and Tao Yu. 2023. Ds-1000: A737
natural and reliable benchmark for data science code738
generation. In International Conference on Machine739
Learning, pages 18319–18345. PMLR.740

Jia Li, Ge Li, Yunfei Zhao, Yongmin Li, Huanyu Liu,741
Hao Zhu, Lecheng Wang, Kaibo Liu, Zheng Fang,742
Lanshen Wang, Jiazheng Ding, Xuanming Zhang,743
Yuqi Zhu, Yihong Dong, Zhi Jin, Binhua Li, Fei744
Huang, and Yongbin Li. 2024. Deveval: A manually-745
annotated code generation benchmark aligned with746
real-world code repositories.747

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and748
LINGMING ZHANG. 2023a. Is your code gener-749
ated by chatgpt really correct? rigorous evaluation of750
large language models for code generation. In Thirty-751
seventh Conference on Neural Information Process-752
ing Systems.753

Tianyang Liu, Canwen Xu, and Julian McAuley. 2023b.754
Repobench: Benchmarking repository-level code755
auto-completion systems. In The Twelfth Interna-756
tional Conference on Learning Representations.757

Yuliang Liu, Xiangru Tang, Zefan Cai, Junjie Lu,758
Yichi Zhang, Yanjun Shao, Zexuan Deng, Helan759
Hu, Zengxian Yang, Kaikai An, et al. 2023c. Ml-760
bench: Large language models leverage open-source761
libraries for machine learning tasks. arXiv preprint762
arXiv:2311.09835.763

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey764
Svyatkovskiy, Ambrosio Blanco, Colin Clement,765
Dawn Drain, Daxin Jiang, Duyu Tang, et al. 2021.766
Codexglue: A machine learning benchmark dataset767
for code understanding and generation. arXiv768
preprint arXiv:2102.04664.769

Niklas Muennighoff, Qian Liu, Armel Randy Ze-770
baze, Qinkai Zheng, Binyuan Hui, Terry Yue Zhuo,771
Swayam Singh, Xiangru Tang, Leandro Von Werra,772
and Shayne Longpre. 2023. Octopack: Instruction773
tuning code large language models. In The Twelfth774
International Conference on Learning Representa-775
tions.776

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, 777
Long Ouyang, Christina Kim, Christopher Hesse, 778
Shantanu Jain, Vineet Kosaraju, William Saunders, 779
et al. 2021. Webgpt: Browser-assisted question- 780
answering with human feedback. arXiv preprint 781
arXiv:2112.09332. 782

King Han Naman Jain, Alex Gu, Wen-Ding Li, Fanjia 783
Yan, Tianjun Zhang, Sida Wang, Armando Solar- 784
Lezama, Koushik Sen, and Ion Stoica. 2024. Live- 785
codebench: Holistic and contamination free eval- 786
uation of large language models for code. arXiv 787
preprint arXiv:2403.07974. 788

Han-Wen Nienhuys and SourceGraph. Zoekt. https: 789
//github.com/sourcegraph/zoekt. 790

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, 791
Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale- 792
man, Diogo Almeida, Janko Altenschmidt, Sam Alt- 793
man, Shyamal Anadkat, Red Avila, Igor Babuschkin, 794
Suchir Balaji, Valerie Balcom, Paul Baltescu, Haim- 795
ing Bao, Mohammad Bavarian, Jeff Belgum, Ir- 796
wan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, 797
Christopher Berner, Lenny Bogdonoff, Oleg Boiko, 798
Madelaine Boyd, Anna-Luisa Brakman, Greg Brock- 799
man, Tim Brooks, Miles Brundage, Kevin Button, 800
Trevor Cai, Rosie Campbell, Andrew Cann, Brittany 801
Carey, Chelsea Carlson, Rory Carmichael, Brooke 802
Chan, Che Chang, Fotis Chantzis, Derek Chen, Sully 803
Chen, Ruby Chen, Jason Chen, Mark Chen, Ben 804
Chess, Chester Cho, Casey Chu, Hyung Won Chung, 805
Dave Cummings, Jeremiah Currier, Yunxing Dai, 806
Cory Decareaux, Thomas Degry, Noah Deutsch, 807
Damien Deville, Arka Dhar, David Dohan, Steve 808
Dowling, Sheila Dunning, Adrien Ecoffet, Atty Eleti, 809
Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix, 810
Simón Posada Fishman, Juston Forte, Isabella Ful- 811
ford, Leo Gao, Elie Georges, Christian Gibson, Vik 812
Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo- 813
Lopes, Jonathan Gordon, Morgan Grafstein, Scott 814
Gray, Ryan Greene, Joshua Gross, Shixiang Shane 815
Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris, 816
Yuchen He, Mike Heaton, Johannes Heidecke, Chris 817
Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele, 818
Brandon Houghton, Kenny Hsu, Shengli Hu, Xin 819
Hu, Joost Huizinga, Shantanu Jain, Shawn Jain, 820
Joanne Jang, Angela Jiang, Roger Jiang, Haozhun 821
Jin, Denny Jin, Shino Jomoto, Billie Jonn, Hee- 822
woo Jun, Tomer Kaftan, Łukasz Kaiser, Ali Ka- 823
mali, Ingmar Kanitscheider, Nitish Shirish Keskar, 824
Tabarak Khan, Logan Kilpatrick, Jong Wook Kim, 825
Christina Kim, Yongjik Kim, Jan Hendrik Kirch- 826
ner, Jamie Kiros, Matt Knight, Daniel Kokotajlo, 827
Łukasz Kondraciuk, Andrew Kondrich, Aris Kon- 828
stantinidis, Kyle Kosic, Gretchen Krueger, Vishal 829
Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan 830
Leike, Jade Leung, Daniel Levy, Chak Ming Li, 831
Rachel Lim, Molly Lin, Stephanie Lin, Mateusz 832
Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue, 833
Anna Makanju, Kim Malfacini, Sam Manning, Todor 834
Markov, Yaniv Markovski, Bianca Martin, Katie 835
Mayer, Andrew Mayne, Bob McGrew, Scott Mayer 836
McKinney, Christine McLeavey, Paul McMillan, 837

10

http://arxiv.org/abs/2405.19856
http://arxiv.org/abs/2405.19856
http://arxiv.org/abs/2405.19856
http://arxiv.org/abs/2405.19856
http://arxiv.org/abs/2405.19856
https://github.com/sourcegraph/zoekt
https://github.com/sourcegraph/zoekt
https://github.com/sourcegraph/zoekt

Jake McNeil, David Medina, Aalok Mehta, Jacob838
Menick, Luke Metz, Andrey Mishchenko, Pamela839
Mishkin, Vinnie Monaco, Evan Morikawa, Daniel840
Mossing, Tong Mu, Mira Murati, Oleg Murk, David841
Mély, Ashvin Nair, Reiichiro Nakano, Rajeev Nayak,842
Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh,843
Long Ouyang, Cullen O’Keefe, Jakub Pachocki, Alex844
Paino, Joe Palermo, Ashley Pantuliano, Giambat-845
tista Parascandolo, Joel Parish, Emy Parparita, Alex846
Passos, Mikhail Pavlov, Andrew Peng, Adam Perel-847
man, Filipe de Avila Belbute Peres, Michael Petrov,848
Henrique Ponde de Oliveira Pinto, Michael, Poko-849
rny, Michelle Pokrass, Vitchyr H. Pong, Tolly Pow-850
ell, Alethea Power, Boris Power, Elizabeth Proehl,851
Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh,852
Cameron Raymond, Francis Real, Kendra Rimbach,853
Carl Ross, Bob Rotsted, Henri Roussez, Nick Ry-854
der, Mario Saltarelli, Ted Sanders, Shibani Santurkar,855
Girish Sastry, Heather Schmidt, David Schnurr, John856
Schulman, Daniel Selsam, Kyla Sheppard, Toki857
Sherbakov, Jessica Shieh, Sarah Shoker, Pranav858
Shyam, Szymon Sidor, Eric Sigler, Maddie Simens,859
Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin860
Sokolowsky, Yang Song, Natalie Staudacher, Fe-861
lipe Petroski Such, Natalie Summers, Ilya Sutskever,862
Jie Tang, Nikolas Tezak, Madeleine B. Thompson,863
Phil Tillet, Amin Tootoonchian, Elizabeth Tseng,864
Preston Tuggle, Nick Turley, Jerry Tworek, Juan Fe-865
lipe Cerón Uribe, Andrea Vallone, Arun Vijayvergiya,866
Chelsea Voss, Carroll Wainwright, Justin Jay Wang,867
Alvin Wang, Ben Wang, Jonathan Ward, Jason Wei,868
CJ Weinmann, Akila Welihinda, Peter Welinder, Ji-869
ayi Weng, Lilian Weng, Matt Wiethoff, Dave Willner,870
Clemens Winter, Samuel Wolrich, Hannah Wong,871
Lauren Workman, Sherwin Wu, Jeff Wu, Michael872
Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qim-873
ing Yuan, Wojciech Zaremba, Rowan Zellers, Chong874
Zhang, Marvin Zhang, Shengjia Zhao, Tianhao875
Zheng, Juntang Zhuang, William Zhuk, and Barret876
Zoph. 2023. Gpt-4 technical report.877

Minghao Shao, Boyuan Chen, Sofija Jancheska, Bren-878
dan Dolan-Gavitt, Siddharth Garg, Ramesh Karri,879
and Muhammad Shafique. 2024. An empirical evalu-880
ation of llms for solving offensive security challenges.881
arXiv preprint arXiv:2402.11814.882

Noah Shinn, Federico Cassano, Ashwin Gopinath,883
Karthik Narasimhan, and Shunyu Yao. 2024. Re-884
flexion: Language agents with verbal reinforcement885
learning. Advances in Neural Information Process-886
ing Systems, 36.887

Theodore R Sumers, Shunyu Yao, Karthik Narasimhan,888
and Thomas L Griffiths. 2023. Cognitive ar-889
chitectures for language agents. arXiv preprint890
arXiv:2309.02427.891

Zhengwei Tao, Ting-En Lin, Xiancai Chen, Hangyu892
Li, Yuchuan Wu, Yongbin Li, Zhi Jin, Fei Huang,893
Dacheng Tao, and Jingren Zhou. 2024. A survey894
on self-evolution of large language models. arXiv895
preprint arXiv:2404.14387.896

Amitayush Thakur, Yeming Wen, and Swarat Chaud- 897
huri. 2023. A language-agent approach to formal 898
theorem-proving. arXiv preprint arXiv:2310.04353. 899

Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam 900
Shazeer, Apoorv Kulshreshtha, Heng-Tze Cheng, 901
Alicia Jin, Taylor Bos, Leslie Baker, Yu Du, et al. 902
2022. Lamda: Language models for dialog applica- 903
tions. arXiv preprint arXiv:2201.08239. 904

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al- 905
bert, Amjad Almahairi, Yasmine Babaei, Nikolay 906
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti 907
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton 908
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, 909
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, 910
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An- 911
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan 912
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, 913
Isabel Kloumann, Artem Korenev, Punit Singh Koura, 914
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di- 915
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar- 916
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly- 917
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen- 918
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten, 919
Ruan Silva, Eric Michael Smith, Ranjan Subrama- 920
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay- 921
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu, 922
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, 923
Melanie Kambadur, Sharan Narang, Aurelien Ro- 924
driguez, Robert Stojnic, Sergey Edunov, and Thomas 925
Scialom. 2023. Llama 2: Open foundation and fine- 926
tuned chat models. 927

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao 928
Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai Tang, 929
Xu Chen, Yankai Lin, et al. 2024a. A survey on large 930
language model based autonomous agents. Frontiers 931
of Computer Science, 18(6):1–26. 932

Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang, 933
Yunzhu Li, Hao Peng, and Heng Ji. 2024b. Exe- 934
cutable code actions elicit better llm agents. arXiv 935
preprint arXiv:2402.01030. 936

Zhiruo Wang, Grace Cuenca, Shuyan Zhou, Frank F Xu, 937
and Graham Neubig. 2022. Mconala: a benchmark 938
for code generation from multiple natural languages. 939
arXiv preprint arXiv:2203.08388. 940

Zhiruo Wang, Daniel Fried, and Graham Neubig. 2024c. 941
Trove: Inducing verifiable and efficient toolboxes 942
for solving programmatic tasks. arXiv preprint 943
arXiv:2401.12869. 944

Zhiruo Wang, Shuyan Zhou, Daniel Fried, and Gra- 945
ham Neubig. 2023. Execution-based evaluation for 946
open-domain code generation. In Findings of the 947
Association for Computational Linguistics: EMNLP 948
2023, pages 1271–1290. 949

Zhiyong Wu, Chengcheng Han, Zichen Ding, Zhenmin 950
Weng, Zhoumianze Liu, Shunyu Yao, Tao Yu, and 951
Lingpeng Kong. 2024. Os-copilot: Towards gener- 952
alist computer agents with self-improvement. arXiv 953
preprint arXiv:2402.07456. 954

11

http://arxiv.org/abs/2303.08774
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288

Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen955
Ding, Boyang Hong, Ming Zhang, Junzhe Wang,956
Senjie Jin, Enyu Zhou, et al. 2023. The rise and957
potential of large language model based agents: A958
survey. arXiv preprint arXiv:2309.07864.959

Chunqiu Steven Xia and Lingming Zhang. 2022. Less960
training, more repairing please: revisiting automated961
program repair via zero-shot learning. In Proceed-962
ings of the 30th ACM Joint European Software Engi-963
neering Conference and Symposium on the Founda-964
tions of Software Engineering, pages 959–971.965

Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan966
Li, Siheng Zhao, Ruisheng Cao, Toh Jing Hua, Zhou-967
jun Cheng, Dongchan Shin, Fangyu Lei, et al. 2024.968
Osworld: Benchmarking multimodal agents for open-969
ended tasks in real computer environments. arXiv970
preprint arXiv:2404.07972.971

Aidan ZH Yang, Claire Le Goues, Ruben Martins, and972
Vincent Hellendoorn. 2024a. Large language mod-973
els for test-free fault localization. In Proceedings974
of the 46th IEEE/ACM International Conference on975
Software Engineering, pages 1–12.976

John Yang, Carlos E Jimenez, Alexander Wettig, Kilian977
Lieret, Shunyu Yao, Karthik Narasimhan, and Ofir978
Press. Swe-agent: Agent-computer interfaces enable979
automated software engineering.980

John Yang, Akshara Prabhakar, Karthik Narasimhan,981
and Shunyu Yao. 2024b. Intercode: Standardizing982
and benchmarking interactive coding with execution983
feedback. Advances in Neural Information Process-984
ing Systems, 36.985

John Yang, Akshara Prabhakar, Shunyu Yao, Kexin Pei,986
and Karthik R Narasimhan. 2023. Language agents987
as hackers: Evaluating cybersecurity skills with cap-988
ture the flag. In Multi-Agent Security Workshop@989
NeurIPS’23.990

Shunyu Yao, Howard Chen, John Yang, and Karthik991
Narasimhan. 2022a. Webshop: Towards scalable992
real-world web interaction with grounded language993
agents. Advances in Neural Information Processing994
Systems, 35:20744–20757.995

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak996
Shafran, Karthik R Narasimhan, and Yuan Cao.997
2022b. React: Synergizing reasoning and acting998
in language models. In The Eleventh International999
Conference on Learning Representations.1000

Hao Yu, Bo Shen, Dezhi Ran, Jiaxin Zhang, Qi Zhang,1001
Yuchi Ma, Guangtai Liang, Ying Li, Qianxiang Wang,1002
and Tao Xie. 2024. Codereval: A benchmark of prag-1003
matic code generation with generative pre-trained1004
models. In Proceedings of the 46th IEEE/ACM Inter-1005
national Conference on Software Engineering, pages1006
1–12.1007

Eric Zelikman, Qian Huang, Gabriel Poesia, Noah1008
Goodman, and Nick Haber. 2023a. Parsel: Algorith-1009
mic reasoning with language models by composing1010

decompositions. Advances in Neural Information 1011
Processing Systems, 36:31466–31523. 1012

Eric Zelikman, Eliana Lorch, Lester Mackey, and 1013
Adam Tauman Kalai. 2023b. Self-taught optimizer 1014
(stop): Recursively self-improving code generation. 1015
In OPT 2023: Optimization for Machine Learning. 1016

Fengji Zhang, Bei Chen, Yue Zhang, Jacky Keung, Jin 1017
Liu, Daoguang Zan, Yi Mao, Jian-Guang Lou, and 1018
Weizhu Chen. 2023. Repocoder: Repository-level 1019
code completion through iterative retrieval and gen- 1020
eration. 1021

Kechi Zhang, Jia Li, Ge Li, Xianjie Shi, and Zhi 1022
Jin. 2024a. Codeagent: Enhancing code gener- 1023
ation with tool-integrated agent systems for real- 1024
world repo-level coding challenges. arXiv preprint 1025
arXiv:2401.07339. 1026

Shaokun Zhang, Jieyu Zhang, Jiale Liu, Linxin Song, 1027
Chi Wang, Ranjay Krishna, and Qingyun Wu. 2024b. 1028
Training language model agents without modifying 1029
language models. arXiv preprint arXiv:2402.11359. 1030

Yuntong Zhang, Haifeng Ruan, Zhiyu Fan, and Abhik 1031
Roychoudhury. 2024c. Autocoderover: Autonomous 1032
program improvement. 1033

Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman, 1034
Haohan Wang, and Yu-Xiong Wang. 2023. Lan- 1035
guage agent tree search unifies reasoning acting 1036
and planning in language models. arXiv preprint 1037
arXiv:2310.04406. 1038

12

http://arxiv.org/abs/2303.12570
http://arxiv.org/abs/2303.12570
http://arxiv.org/abs/2303.12570
http://arxiv.org/abs/2303.12570
http://arxiv.org/abs/2303.12570
http://arxiv.org/abs/2404.05427
http://arxiv.org/abs/2404.05427
http://arxiv.org/abs/2404.05427

A Prompts 1039

A.1 Prompt Template for Planner 1040

Instruction Prompt Templates for Planner

Suffix Prompt:

Begin! Reminder to ALWAYS respond with a valid json blob of a single action. Use tools if
necessary. Respond directly if you have gathered enough information from the repository.
Format is Action:```$JSON_BLOB```then Observation:. Thought:

↪→
↪→

——————————————————————————————————————–
Prefix Prompt:

You are a great developer with expertise in resolving programmer's query. You have been
assigned a task to resolve a programmer's issue in a large repository. Devise a detailed
plan using other language model agents to resolve the issue.

↪→
↪→
You have access into N agents, utilize them to step-by-step solve the query. Each consequent

steps should be strictly based on the previous steps. Your thought process should be
grounded by information collected from your agents, consider its results carefully, and
make a decision based on the results and thought process.

↪→
↪→
↪→
Output the agent you want to use and the request you want to make to the agent. Respond

directly and terminated=true if you have resolved the issue (code generated is verified
and correct).

↪→
↪→
If you want to modify the logic of the code, or resolve the issue based on retrieved facts from

code navigator, use code editor agent. Terminate if your task is executed successfully and
reviewed correctly.

↪→
↪→

Top Priorities:
1. You need to use Codebase Navigator and Code Generator agents to resolve the issue. Use

them at least once.↪→
2. Maintain in mind which files need to edit.
3. Do not repeat your actions!. After receiving the response from the agent, diversify your

next action to get more information.↪→
4. Identify crucial causes of the issue, localize where the problem is before choosing the

code generator agent.↪→
5. No need to edit test file or test the code. You only need to resolve the issue in the

codebase.↪→
6. Do not care about any Pull Request or Existing Issue in the repository. You are only

focused on the issue assigned to you.↪→
7. Give a detailed request to the agent, so that the agent can understand the context of

the query as well.↪→

Important Notes:
1. Reading the issue description and understanding the problem is the first step. Make sure

to identify the key components of the issue and the expected behavior.↪→
2. Reading the response from the agents carefully, think about the information you have

collected and how it can be used to resolve the issue.↪→
3. Your thought process is the most important part of this task. Make sure to provide a

detailed explanation of your reasoning with the issue, code snippets and relevant
information collected from the agents.

↪→
↪→
4. Stop the task when you have resolved the issue. (Final Answer)

$THOUGHT_PROCESS is your thought process about the query and previous results.
You have access description to the following agents: {formatted_agents}

1041

13

A.2 Prompt Template for Navigator1042

Instruction Prompt Templates for Navigator

Suffix Prompt:

Begin! Reminder to ALWAYS respond with a valid json blob of a single action. Use tools if
necessary. Respond directly if you have gathered enough information from the repository.
Format is Action:```$JSON_BLOB```then Observation:. Thought:

↪→
↪→

——————————————————————————————————————–
Prefix Prompt:

You are an expert in finding all relevant information insider a code repository to answer the
query from a planner agent. You have the full access to the codebase of the project you're
working on to resolve a query from a planner. Your tools help you navigate the codebase and
find relevant information. Use them wisely to explore the repository and find the
information you need to resolve the query.

↪→
↪→
↪→
↪→
If your first attempts do not provide enough information to resolve the query, try different

tools or use tool with different parameters to get the information you need.↪→
Think carefully before making a decision. Your tools can provide valuable insights to help you

resolve the query. Once you have collected relevant information, you can provide a
response to the query with Final Answer, put any code snippet into that summary. Do not
repeat your actions.

↪→
↪→
↪→

Top Priorities:
1. Understanding the query, think step-by-step carefully before decision to propose actions

to collect necessary information to resolve the query.↪→
2. Do not repeat your actions.
3. Try to use the tools to get the information you need. DO NOT GUESS or refuse to response

the planner's request. Planner request is always correct. You may only see part of the
information, but the planner sees the whole picture.

↪→
↪→
4. If one tool does not find the information you need, try another tool. If you open a

file, but do not find the information you need, reopen with different start_line and
end_line or keywords.

↪→
↪→
5. Your summarization should be relevant to the query (provide code snippet if it's

required by query), do not provide unnecessary information.↪→

Important Notes:
1. Try to combine different tools to seek related information to the query inside the

project↪→
2. get_all_references: Use this tool to get all references to a symbol in the codebase.

This will help you understand how the symbol is used in the codebase.↪→
3. get_all_symbols: Use this tool to get all symbols in the target file, it should be used

with a keyword.↪→
4. get_folder_structure: Use this tool to get the structure of the target folder. This will

help you understand the organization of the codebase, and find the relevant files to
use other tools.

↪→
↪→
5. code_search: Use this tool to search for symbol name if you know the exact name of the

symbol, this is useful to find the definition if you're not familiar with codebase yet.↪→
6. go_to_definition: Use this tool to navigate to the definition of an identifier, for

example self._print in a class. (single word only, not a combination like sympy.latex),
in this case, _print.

↪→
↪→
7. open_file: Use this tool to open a file in the codebase, this is useful to read the

partial content of the file (50 lines). Should be used with a keyword (single word
only, not a combination like `sympy.latex` just `latex` only) or limited start_line and
end_line. If your previous open does not show all the information, next turn you can
open the same file with different start_line and end_line (incrementally scrolling).

↪→
↪→
↪→
↪→

You have access to the following tools: {formatted_tools}

1043

14

A.3 Prompt Template for Editor 1044

Instruction Prompt Templates for Editor

Suffix Prompt:

Begin! Reminder to ALWAYS respond with a valid json blob of a single action. Use tools if
necessary. Respond directly if you have gathered enough information from the repository.
Format is Action:```$JSON_BLOB```then Observation:. Thought:

↪→
↪→

——————————————————————————————————————–
Prefix Prompt:

You are an expert in programming, you're excellent at editing or generate source code files.

Top priorities:
1. Always think step-by-step carefully before decision (Thought:).
2. DO NOT re-generate the same failed edit. Running it again will lead to the same error.

Edit the file again if necessary based on the error message.↪→
3. You should not edit lines locally one part by one part. You might need to remain the

original code in your start_line and end_line if it's not changed (regenerate the code
if necessary).

↪→
↪→
4. You should aware about the code context, and surrounding variables and functions. Do not

add some undefined variables.↪→

Important notes:
1. Always open the file before editing to see latest code!.
2. If you have to edit the code, ensure the code is correct with syntax, dependency,

consistent with the file and the codebase.↪→
3. Returning final answer if your code is succesfully applied. You first can open a file to

get the context and use editor to apply the patch. You have to generate code that is
correct with syntax, ensure the dependency, consistent with the file and the codebase.

↪→
↪→
4. If you have the exact name of the file and symbol to edit, you can use the code search

to find the definition of the symbol. If there's no definition, you can use open
open_file tool.

↪→
↪→
5. Pay attention to original indentation.
6. The patch should be a block of code that be replaced into the code.

You have access to the following tool: {formatted_tools}

1045

15

A.4 Prompt Template for Executor1046

Instruction Prompt Templates for Executor

Suffix Prompt:

Begin! Reminder to ALWAYS respond with a valid json blob of a single action. Use tools if
necessary. Respond directly if you have gathered enough information from the repository.
Format is Action:```$JSON_BLOB```then Observation:. Thought:

↪→
↪→

——————————————————————————————————————–
Prefix Prompt:

You are an expert in running bash commandlines, based on the requests, try to run commands or
files.↪→

If your request is not specified, considering setup the environment first (using conda create),
cd into the project path and pip3 install -e .[dev]. Then find test folder to run all the
tests. Think carefully before making a decision.

↪→
↪→

Remember these things:
1. Your environment code name is `repopilot`, create it if it doesn't exist. Activate it

before running the tests.↪→
2. No need to create new environments.
3. Check the requirements or setup instruction via opening docs files.
4. You should setup the developing environment before running the tests, for example

running pip3 install -e . or something similar.↪→

Important Tips:
1. When you observe (y/[n]) in the terminal, you should respond only with y or n.

Similarly, when you see (yes/[no]), you should respond with yes or no.↪→
2. You're already in the project directory.
3. Run command one by one.

You have access into followng tools: {formatted_tools}

1047

B RepoPilot trajectories on SWE-bench1048

Figure 5: Trajectory of RepoPilot for instance django_django-16041.

Issue django_django-16041

You need to identify the cause of the following github issue, collect the relevant information, and provide a solution.
Github Issue:

When explicitly setting form_kwargs = {'empty_permitted':True} or form_kwargs =
{'empty_permitted':False} , a KeyError occurs when rendering a template that uses a
formset's empty_form.

↪→
↪→
Expected Behavior
empty_permitted is ignored for formset.empty_form since empty_permitted is irrelevant for

empty_form, as empty_form is not meant to be used to pass data and therefore does not need
to be validated.

↪→
↪→
Steps to Reproduce
from django.shortcuts import render
from .models import MyModel
def test_view(request):

context = {}
ff = modelformset_factory(MyModel, fields = ['a_field'])
context['formset'] = ff(

queryset = MyModel.objects.none(),
form_kwargs = {'empty_permitted':True} # or form_kwargs =

{'empty_permitted':False}↪→
)
return render(request, 'my_app/my_model_formset.html', context)

urls.py
from django.urls import path, include
from .views import test_view
urlpatterns = [

1049

16

path('test', test_view)
]
my_model_formset.html
{% extends "my_app/base.html" %}
{% block content %}
<form id="my-form" method="post">
{% csrf_token %}
{{ formset }}
<input type="submit" value="Save">
</form>
{{ formset.empty_form }}
{% endblock %}

INSTRUCTIONS: (31 lines)

(Open file: n/a)
(Current directory: /astropy__astropy)
bash-\$

1050

REPOPILOT Planner

1. **Understanding the Issue**:
- The issue is a KeyError when rendering a template that uses a

formset's empty_form with form_kwargs containing empty_permitted.
- The expected behavior is that empty_permitted should be ignored

for empty_form since it is irrelevant for empty_form.
2. **Identifying Key Components**:

- The issue is related to formset and empty_form.
- The form_kwargs parameter is causing the KeyError.

3. **Steps to Investigate**:
- Locate the implementation of modelformset_factory and BaseModelFormSet in the Django codebase.
- Investigate how form_kwargs is processed and how empty_form is generated.

4. **Plan**:
- Use the codebase_navigator to locate the relevant files and functions.
- Use the code_generator to create a patch if necessary.

Action:
```
{

"action": "codebase_navigator",
"action_input": {

"context": "Locate modelformset_factory and BaseModelFormSet",
"request": "Find the implementation of modelformset_factory and BaseModelFormSet in the

Django codebase."↪→
}

}
```

1051

REPOPILOT Navigator

Entering new execution chain..
Thought: To find the implementation of `modelformset_factory` and

`BaseModelFormSet` in the Django codebase, I will first search for the definitions of these symbols.

Action:
```
{

1052

17



"action": "code_search",
"action_input": {
"names": ["modelformset_factory", "BaseModelFormSet"]

}
}
```

1053

Observation Code Search

Results for modelformset_factory:
====================
File: django/forms/models.py
Name: modelformset_factory
Documentation: Return a FormSet class for the given Django model class.

Results for BaseModelFormSet:
====================
File: django/forms/models.py
Name: BaseModelFormSet
Documentation:

A ``FormSet`` for editing a queryset and/or adding new objects to it.

File: django/forms/models.py
Implementation:
32 "ModelMultipleChoiceField",
33 "ALL_FIELDS",
34 "BaseModelFormSet",
35 "modelformset_factory",

File: django/forms/models.py
Implementation:
644
645
646 class BaseModelFormSet(BaseFormSet):
647 """

File: django/forms/models.py
Implementation:
1000 form=ModelForm,
1001 formfield_callback=None,
1002 formset=BaseModelFormSet,
1003 extra=1,

File: django/forms/models.py
Implementation:
1067
1068
1069 class BaseInlineFormSet(BaseModelFormSet):
1070 """A formset for child objects related to a parent."""

1054

REPOPILOT Navigator

Thought: The search results indicate that the implementation of `modelformset_factory`
and `BaseModelFormSet` is located in the `django/forms/models.py`

file. I will now open that file to explore the details of these implementations.

Action:
```
{

"action": "open_file",

1055

18



"action_input": {
"relative_file_path": "django/forms/models.py",
"start_line": 644,
"end_line": 684

}
}
```

1056

Observation Open File

The content of django/forms/models.py is:
644
645
646 class BaseModelFormSet(BaseFormSet):
647 """
648 A ``FormSet`` for editing a queryset and/or adding new objects to it.
649 """
650
651 model = None
652 edit_only = False
653
654 # Set of fields that must be unique among forms of this set.
655 unique_fields = set()
656
657 def __init__(
658 self,
659 data=None,
660 files=None,
661 auto_id="id_%s",
662 prefix=None,
663 queryset=None,
664 *,
665 initial=None,
666 **kwargs,
667):
668 self.queryset = queryset
669 self.initial_extra = initial
670 super().__init__(
671 **{
672 "data": data,
673 "files": files,
674 "auto_id": auto_id,
675 "prefix": prefix,
676 **kwargs,
677 }
678)
679
680 def initial_form_count(self):
681 """Return the number of forms that are required in this FormSet."""
682 if not self.is_bound:
683 return len(self.get_queryset())

1057

REPOPILOT Navigator

Okay, let's summarize the key information about the implementation of

`modelformset_factory` and `BaseModelFormSet` in the Django codebase:

Final Answer:

The implementation of `modelformset_factory` and `BaseModelFormSet`

is located in the `django/forms/models.py` file.

1058

19

The `modelformset_factory` function is defined in this file and is

used to return a `FormSet` class for the given Django model class. It

takes several parameters such as the model class, the form class, and

various options to customize the formset behavior.

The `BaseModelFormSet` class is also defined in this file. It is a

subclass of `BaseFormSet` and is used for editing a queryset and/or

adding new objects to it. It has several properties and methods that

are specific to model formsets, such as `queryset`, `initial_extra`,

and `initial_form_count()`.

The key parts of the `BaseModelFormSet` implementation are:

```python
class BaseModelFormSet(BaseFormSet):

"""
A ``FormSet`` for editing a queryset and/or adding new objects to it.
"""

model = None
edit_only = False

# Set of fields that must be unique among forms of this set.
unique_fields = set()

def __init__(
self,
data=None,
files=None,
auto_id="id_%s",
prefix=None,
queryset=None,
*,
initial=None,
**kwargs,

):
self.queryset = queryset
self.initial_extra = initial
super().__init__(

**{
"data": data,
"files": files,
"auto_id": auto_id,
"prefix": prefix,
**kwargs,

}
)

def initial_form_count(self):
"""Return the number of forms that are required in this FormSet."""
if not self.is_bound:

return len(self.get_queryset())
```

This provides the core functionality for a model formset, including

managing the queryset, initial data, and number of forms in the
formset.

1059

20

REPOPILOT Planner

Based on the information gathered, the issue seems to be related to how `form_kwargs` are
processed when creating the `empty_form` in a formset. Specifically, the `empty_permitted`
key in `form_kwargs` is causing a `KeyError` when rendering the `empty_form`.

↪→
↪→

To resolve this issue, we need to ensure that `empty_permitted` is ignored for `empty_form`
since it is irrelevant for `empty_form`. This can be done by modifying the relevant part
of the code where `empty_form` is created to exclude `empty_permitted` from `form_kwargs`.

↪→
↪→

Next, I will use the `codebase_navigator` to locate the part of the code where `empty_form` is
created and `form_kwargs` are processed in the `BaseModelFormSet` class.↪→

Action:
```
{

"action": "codebase_navigator",
"action_input": {

"request": "Find the part of the code in BaseModelFormSet where empty_form is created and
form_kwargs are processed.",↪→

"context": "BaseModelFormSet is in `django/forms/models.py`
}

}
```

1060

REPOPILOT Navigator

Thought: To find the part of the code in BaseModelFormSet where empty_form is created and
form_kwargs are processed, I will use the following steps:↪→

1. Use get_folder_structure to understand the overall structure of the of `django/forms` and
identify the relevant file. Planner suggests we should look into `django/forms/models.py`↪→

2. Use open_file to browse the contents of the relevant file and locate the code that creates
the empty_form and processes form_kwargs.↪→

3. Use go_to_definition to navigate to the definition of the relevant methods or attributes.
4. Use find_all_references to find all references to the relevant methods or attributes.

Action:
```
{

"action": "get_folder_structure",
"action_input": {

"relative_path": "django/forms"
}

}
```

1061

Observation Get Folder Structure

The tree structure of django/forms is:
forms
__init__.py
jinja2

1062

21

templates
boundfield.py
fields.py
forms.py
formsets.py
models.py
renderers.py
utils.py
widgets.py

1063

REPOPILOT Navigator

Though: Okay, let’s continue the process to find the relevant code in BaseModelFormSet and emptyform.

Action:
```
{

"action": "open_file",
"action_input": {

"relative_file_path": "django/forms/formsets.py",
"start_line": 1,
"end_line": 20,
"keywords": ["BaseModelFormSet", "empty_form"]

}
}
```

1064

Observation Open File

The content of django/forms/formsets.py is:
Results for keyword: empty_form
252 """Return a list of all the initial forms in this formset."""
253 return self.forms[: self.initial_form_count()]
254
255 @property
256 def extra_forms(self):
257 """Return a list of all the extra forms in this formset."""
258 return self.forms[self.initial_form_count() :]
259
260 @property
261 @property
262 def empty_form(self):
263 form_kwargs = self.get_form_kwargs(None)
264 form_kwargs.pop('empty_permitted', None)
265 form = self.form(
266 auto_id=self.auto_id,
267 prefix=self.add_prefix("__prefix__"),
268 empty_permitted=True,
269 use_required_attribute=False,
270 **form_kwargs,
271 renderer=self.renderer,
399
400 def full_clean(self):
401 """
402 Clean all of self.data and populate self._errors and
403 self._non_form_errors.
404 """
405 self._errors = []
406 self._non_form_errors = self.error_class(
407 error_class="nonform", renderer=self.renderer
408)
409 empty_forms_count = 0
410

1065

22

411 if not self.is_bound: # Stop further processing.
412 return
413
414 if not self.management_form.is_valid():
415 error = ValidationError(
416 self.error_messages["missing_management_form"],
417 params={
418 "field_names": ", ".join(
420 for field_name in self.management_form.errors
421),
422 },
423 code="missing_management_form",
424)
425 self._non_form_errors.append(error)
426
427 for i, form in enumerate(self.forms):
428 # Empty forms are unchanged forms beyond those with initial data.
429 if not form.has_changed() and i >= self.initial_form_count():
430 empty_forms_count += 1
431 # Accessing errors calls full_clean() if necessary.
432 # _should_delete_form() requires cleaned_data.
433 form_errors = form.errors
434 if self.can_delete and self._should_delete_form(form):
435 continue
436 self._errors.append(form_errors)
437 try:
438 if (
439 self.validate_max
442 TOTAL_FORM_COUNT
443] > self.absolute_max:
444 raise ValidationError(
445 self.error_messages["too_many_forms"] % {"num": self.max_num},
446 code="too_many_forms",
447)
448 if (
449 self.validate_min
450 and self.total_form_count()
451 - len(self.deleted_forms)
452 - empty_forms_count
453 < self.min_num
454):
455 raise ValidationError(
456 self.error_messages["too_few_forms"] % {"num": self.min_num},
457 code="too_few_forms",
458)
459 # Give self.clean() a chance to do cross-form validation.
460 self.clean()
461 except ValidationError as e:
507 return "%s-%s" % (self.prefix, index)
508
509 def is_multipart(self):
510 """
511 Return True if the formset needs to be multipart, i.e. it
512 has FileInput, or False otherwise.
513 """
514 if self.forms:
515 return self.forms[0].is_multipart()
516 else:
517 return self.empty_form.is_multipart()
518
519 @property
520 def media(self):
521 # All the forms on a FormSet are the same, so you only need to
522 # interrogate the first form for media.
523 if self.forms:
524 return self.forms[0].media
525 else:
526 return self.empty_form.media

1066

23

REPOPILOT Navigator

The part of the code in BaseModelFormSet where `empty_form` is created and

`form_kwargs` are processed is located in the `django/forms/formsets.py` file.

Specifically, the `empty_form` property is defined on lines 261-271, where

the form is instantiated with various keyword arguments, including

`form_kwargs`. The `form_kwargs` are processed by calling the

`get_form_kwargs()` method on line 263, which prepares the keyword arguments

for the form.

Here is the relevant code snippet:

```python
@property
def empty_form(self):

form_kwargs = self.get_form_kwargs(None)
form_kwargs.pop('empty_permitted', None)
form = self.form(

auto_id=self.auto_id,
prefix=self.add_prefix("__prefix__"),
empty_permitted=True,
use_required_attribute=False,
**form_kwargs,
renderer=self.renderer,

)
return form

```

This method creates the `empty_form` that is used by the `BaseModelFormSet`

to provide an initial, empty form for the formset.

1067

REPOPILOT Planner

Based on the information gathered, the issue arises because the `empty_form` property in the
`BaseModelFormSet` class processes `form_kwargs` and includes the `empty_permitted` key,
which is irrelevant for `empty_form`. This causes a `KeyError` when rendering the template.

↪→
↪→

To resolve this issue, we need to ensure that `empty_permitted` is ignored for `empty_form` by
modifying the `empty_form` property to exclude `empty_permitted` from `form_kwargs`.↪→

Next, I will use the `code_generator` to create a patch that modifies the `empty_form`
property in the `BaseModelFormSet` class to exclude `empty_permitted` from `form_kwargs`.↪→

Action:
```
{

"action": "code_editor",
"action_input": {

"title": "Patch to fix KeyError in empty_form",
"file_path": "django/forms/formsets.py",

1068

24



"context": "The issue is a KeyError when rendering a template that uses a formset's
empty_form with form_kwargs containing empty_permitted. The expected behavior is that
empty_permitted should be ignored for empty_form since it is irrelevant for
empty_form. Ensure that form_kwargs.pop('empty_permitted', None) is called before
passing form_kwargs to the form constructor.",

↪→
↪→
↪→
↪→
"request": "Modify the empty_form property in the BaseModelFormSet class to exclude

empty_permitted from form_kwargs."↪→
}

}
```

1069

REPOPILOT Editor

Entering new execution chain..
Thought: I will look into "django/forms/formsets.py" to see relevant code snippets before editing.

Action:
```
Action:
```
{

"action": "open_file",
"action_input": {

"relative_file_path": "django/forms/formsets.py",
"keyword": "class",
"preview_size": 20

}
}
```

1070

Observation Open File

The content of django/forms/formsets.py is:
1 from django.core.exceptions import ValidationError
2 from django.forms import Form
3 from django.forms.fields import BooleanField, IntegerField
4 from django.forms.renderers import get_default_renderer
5 from django.forms.utils import ErrorList, RenderableFormMixin
6 from django.forms.widgets import CheckboxInput, HiddenInput, NumberInput
7 from django.utils.functional import cached_property
8 from django.utils.translation import gettext_lazy as _
9 from django.utils.translation import ngettext_lazy
10
11 __all__ = ("BaseFormSet", "formset_factory", "all_valid")
12
13 # special field names
14 TOTAL_FORM_COUNT = "TOTAL_FORMS"
15 INITIAL_FORM_COUNT = "INITIAL_FORMS"
16 MIN_NUM_FORM_COUNT = "MIN_NUM_FORMS"
17 MAX_NUM_FORM_COUNT = "MAX_NUM_FORMS"
18 ORDERING_FIELD_NAME = "ORDER"
19 DELETION_FIELD_NAME = "DELETE"
20
21 # default minimum number of forms in a formset
22 DEFAULT_MIN_NUM = 0
23
24 # default maximum number of forms in a formset, to prevent memory exhaustion
25 DEFAULT_MAX_NUM = 1000
26

1071

25



27
28 class ManagementForm(Form):
29 """
30 Keep track of how many form instances are displayed on the page. If adding
31 new forms via JavaScript, you should increment the count field of this form
32 as well.
33 """
34
35 template_name = "django/forms/div.html" # RemovedInDjango50Warning.
36
37 TOTAL_FORMS = IntegerField(widget=HiddenInput)
38 INITIAL_FORMS = IntegerField(widget=HiddenInput)
39 # MIN_NUM_FORM_COUNT and MAX_NUM_FORM_COUNT are output with the rest of the
40 # management form, but only for the convenience of client-side code. The
41 # POST value of them returned from the client is not checked.
42 MIN_NUM_FORMS = IntegerField(required=False, widget=HiddenInput)
43 MAX_NUM_FORMS = IntegerField(required=False, widget=HiddenInput)
44
45 def clean(self):
46 cleaned_data = super().clean()
47 # When the management form is invalid, we don't know how many forms
48 # were submitted.
49 cleaned_data.setdefault(TOTAL_FORM_COUNT, 0)
50 cleaned_data.setdefault(INITIAL_FORM_COUNT, 0)
51 return cleaned_data
52
53
54 class BaseFormSet(RenderableFormMixin):
55 """
56 A collection of instances of the same Form class.
57 """
58
59 deletion_widget = CheckboxInput
60 ordering_widget = NumberInput
61 default_error_messages = {
62 "missing_management_form": _(
63 "ManagementForm data is missing or has been tampered with. Missing fields: "
64 "%(field_names)s. You may need to file a bug report if the issue persists."
65 ),
66 "too_many_forms": ngettext_lazy(
67 "Please submit at most %(num)d form.",
68 "Please submit at most %(num)d forms.",
69 "num",
70 ),
71 "too_few_forms": ngettext_lazy(
72 "Please submit at least %(num)d form.",
73 "Please submit at least %(num)d forms.",
74 "num",
75 ),
76 }
77
78 template_name_div = "django/forms/formsets/div.html"
79 template_name_p = "django/forms/formsets/p.html"
80 template_name_table = "django/forms/formsets/table.html"8 from django.utils.translation

import gettext_lazy as _↪→
9 from django.utils.translation import ngettext_lazy
10
11 __all__ = ("BaseFormSet", "formset_factory", "all_valid")
12
13 # special field names
14 TOTAL_FORM_COUNT = "TOTAL_FORMS"
15 INITIAL_FORM_COUNT = "INITIAL_FORMS"
16 MIN_NUM_FORM_COUNT = "MIN_NUM_FORMS"
17 MAX_NUM_FORM_COUNT = "MAX_NUM_FORMS"
18 ORDERING_FIELD_NAME = "ORDER"
19 DELETION_FIELD_NAME = "DELETE"
20
21 # default minimum number of forms in a formset

1072

26



22 DEFAULT_MIN_NUM = 0
23
24 # default maximum number of forms in a formset, to prevent memory exhaustion
25 DEFAULT_MAX_NUM = 1000
26
27
28 class ManagementForm(Form):
29 """
30 Keep track of how many form instances are displayed on the page. If adding
31 new forms via JavaScript, you should increment the count field of this form
32 as well.
33 """
34
35 template_name = "django/forms/div.html" # RemovedInDjango50Warning.
36
37 TOTAL_FORMS = IntegerField(widget=HiddenInput)
38 INITIAL_FORMS = IntegerField(widget=HiddenInput)
39 # MIN_NUM_FORM_COUNT and MAX_NUM_FORM_COUNT are output with the rest of the
40 # management form, but only for the convenience of client-side code. The
41 # POST value of them returned from the client is not checked.
42 MIN_NUM_FORMS = IntegerField(required=False, widget=HiddenInput)
43 MAX_NUM_FORMS = IntegerField(required=False, widget=HiddenInput)
44
45 def clean(self):
46 cleaned_data = super().clean()
47 # When the management form is invalid, we don't know how many forms
34
35 template_name = "django/forms/div.html" # RemovedInDjango50Warning.
36
37 TOTAL_FORMS = IntegerField(widget=HiddenInput)
38 INITIAL_FORMS = IntegerField(widget=HiddenInput)
39 # MIN_NUM_FORM_COUNT and MAX_NUM_FORM_COUNT are output with the rest of the
40 # management form, but only for the convenience of client-side code. The
41 # POST value of them returned from the client is not checked.
42 MIN_NUM_FORMS = IntegerField(required=False, widget=HiddenInput)
43 MAX_NUM_FORMS = IntegerField(required=False, widget=HiddenInput)
44
45 def clean(self):
46 cleaned_data = super().clean()
47 # When the management form is invalid, we don't know how many forms
48 # were submitted.
49 cleaned_data.setdefault(TOTAL_FORM_COUNT, 0)
50 cleaned_data.setdefault(INITIAL_FORM_COUNT, 0)
51 return cleaned_data
52
53
54 class BaseFormSet(RenderableFormMixin):
55 """
56 A collection of instances of the same Form class.
57 """
58
59 deletion_widget = CheckboxInput
60 ordering_widget = NumberInput
61 default_error_messages = {
62 "missing_management_form": _(
63 "ManagementForm data is missing or has been tampered with. Missing fields: "
64 "%(field_names)s. You may need to file a bug report if the issue persists."
65 ),
66 "too_many_forms": ngettext_lazy(
67 "Please submit at most %(num)d form.",
68 "Please submit at most %(num)d forms.",
69 "num",
70 ),
71 "too_few_forms": ngettext_lazy(
72 "Please submit at least %(num)d form.",
73 "Please submit at least %(num)d forms.",
36
37 TOTAL_FORMS = IntegerField(widget=HiddenInput)

1073

27



38 INITIAL_FORMS = IntegerField(widget=HiddenInput)
39 # MIN_NUM_FORM_COUNT and MAX_NUM_FORM_COUNT are output with the rest of the
40 # management form, but only for the convenience of client-side code. The
41 # POST value of them returned from the client is not checked.
42 MIN_NUM_FORMS = IntegerField(required=False, widget=HiddenInput)
43 MAX_NUM_FORMS = IntegerField(required=False, widget=HiddenInput)
44
45 def clean(self):
46 cleaned_data = super().clean()
47 # When the management form is invalid, we don't know how many forms
48 # were submitted.
49 cleaned_data.setdefault(TOTAL_FORM_COUNT, 0)
50 cleaned_data.setdefault(INITIAL_FORM_COUNT, 0)
51 return cleaned_data
52
53
54 class BaseFormSet(RenderableFormMixin):
55 """
56 A collection of instances of the same Form class.
57 """
58
59 deletion_widget = CheckboxInput
60 ordering_widget = NumberInput
61 default_error_messages = {
62 "missing_management_form": _(
63 "ManagementForm data is missing or has been tampered with. Missing fields: "
64 "%(field_names)s. You may need to file a bug report if the issue persists."
65 ),
66 "too_many_forms": ngettext_lazy(
67 "Please submit at most %(num)d form.",
68 "Please submit at most %(num)d forms.",
69 "num",
70 ),
71 "too_few_forms": ngettext_lazy(
72 "Please submit at least %(num)d form.",
73 "Please submit at least %(num)d forms.",
74 "num",
75 ),
70 ),
71 "too_few_forms": ngettext_lazy(
72 "Please submit at least %(num)d form.",
73 "Please submit at least %(num)d forms.",
74 "num",
75 ),
76 }
77
78 template_name_div = "django/forms/formsets/div.html"
79 template_name_p = "django/forms/formsets/p.html"
80 template_name_table = "django/forms/formsets/table.html"
81 template_name_ul = "django/forms/formsets/ul.html"
82
83 def __init__(
84 self,
85 data=None,
86 files=None,
87 auto_id="id_%s",
88 prefix=None,
89 initial=None,
90 error_class=ErrorList,
91 form_kwargs=None,
92 error_messages=None,
93 ):
94 self.is_bound = data is not None or files is not None
95 self.prefix = prefix or self.get_default_prefix()
96 self.auto_id = auto_id
97 self.data = data or {}
98 self.files = files or {}
99 self.initial = initial

1074

28



100 self.form_kwargs = form_kwargs or {}
101 self.error_class = error_class
102 self._errors = None
103 self._non_form_errors = None
104
105 messages = {}
106 for cls in reversed(type(self).__mro__):
107 messages.update(getattr(cls, "default_error_messages", {}))
108 if error_messages is not None:
109 messages.update(error_messages)
81 template_name_ul = "django/forms/formsets/ul.html"
82
83 def __init__(
84 self,
85 data=None,
86 files=None,
87 auto_id="id_%s",
88 prefix=None,
89 initial=None,
90 error_class=ErrorList,
91 form_kwargs=None,
92 error_messages=None,
93 ):
94 self.is_bound = data is not None or files is not None
95 self.prefix = prefix or self.get_default_prefix()
96 self.auto_id = auto_id
97 self.data = data or {}
98 self.files = files or {}
99 self.initial = initial
100 self.form_kwargs = form_kwargs or {}
101 self.error_class = error_class
102 self._errors = None
103 self._non_form_errors = None
104
105 messages = {}
106 for cls in reversed(type(self).__mro__):
107 messages.update(getattr(cls, "default_error_messages", {}))
108 if error_messages is not None:
109 messages.update(error_messages)
110 self.error_messages = messages
111
112 def __iter__(self):
113 """Yield the forms in the order they should be rendered."""
114 return iter(self.forms)
115
116 def __getitem__(self, index):
117 """Return the form at the given index, based on the rendering order."""
118 return self.forms[index]
119
120 def __len__(self):

1075

REPOPILOT Editor

Entering new execution chain..
Thought: The `empty_form` property is defined in the `BaseFormSet` class within the `django/forms/formsets.py` file. The property is responsible for creating an empty form for the formset. To address the issue, I need to modify the `empty_form` property to exclude `empty_permitted` from `form_kwargs`.

Here is the relevant code snippet from the `BaseFormSet` class:

```python
@property
def empty_form(self):

form_kwargs = self.get_form_kwargs(None)
form_kwargs.pop('empty_permitted', None)
form = self.form(

auto_id=self.auto_id,
prefix=self.add_prefix("__prefix__"),

1076

29

empty_permitted=True,
use_required_attribute=False,
**form_kwargs,
renderer=self.renderer,

)
self.add_fields(form, None)
return form

```

I will now apply the required modification to the `empty_form` property in the `BaseFormSet` class.

Action:
```
{

"action": "autorepair_editor_file",
"action_input": {

"relative_file_path": "django/forms/formsets.py",
"start_line": 261,
"end_line": 274,
"patch": " @property\n def empty_form(self):\n form_kwargs =

self.get_form_kwargs(None)\n form_kwargs.pop('empty_permitted', None)\n
form = self.form(\n auto_id=self.auto_id,\n
prefix=self.add_prefix(\"__prefix__\"),\n empty_permitted=True,\n
use_required_attribute=False,\n **form_kwargs,\n
renderer=self.renderer,\n)\n self.add_fields(form, None)\n return
form"

↪→
↪→
↪→
↪→
↪→
↪→

}
}
```

1077

Observation Auto-repair Editor

Successfully edited the file django/forms/formsets.py from line 261 to 274

1078

Patch

diff --git a/django/forms/formsets.py b/django/forms/formsets.py
index 57676428ff..221aa405a8 100644
--- a/django/forms/formsets.py
+++ b/django/forms/formsets.py
@@ -214,8 +214,10 @@ class BaseFormSet(RenderableFormMixin):

index will be None if the form being constructed is a new empty
form.
"""

- return self.form_kwargs.copy()
-
+ form_kwargs = self.form_kwargs.copy()
+ if index is None:
+ form_kwargs.pop('empty_permitted', None)
+ return form_kwargs

def constructform(self, i, kwargs):
"""Instantiate and return the i-th form instance in a formset."""

@@ -255,14 +257,17 @@ class BaseFormSet(RenderableFormMixin):
"""Return a list of all the extra forms in this formset."""
return self.forms[self.initial_form_count() :]

+ @property
@property
def empty_form(self):
+ form_kwargs = self.get_form_kwargs(None)
+ form_kwargs.pop('empty_permitted', None)

1079

30



form = self.form(
auto_id=self.auto_id,
prefix=self.add_prefix("prefix"),
empty_permitted=True,
use_required_attribute=False,

- self.get_form_kwargs(None),
+ **form_kwargs,

renderer=self.renderer,
)
self.add_fields(form, None)

1080

REPOPILOT Planner

The modification to the `empty_form` property in the `BaseFormSet` class has

been successfully applied. The `empty_permitted` key is now excluded from

`form_kwargs` before passing it to the form constructor, addressing the

issue of the KeyError when rendering a template that uses a formset's

`empty_form`.

Action:
```
{

"action": "Final Answer",
"action_input": {

"context": "The task is fully resolved.",
}

}
```

1081

31


	Introduction
	Related Work
	Software Engineering Benchmarks
	Language Models as Agents

	Methodology
	Centralized Multi-Agent System
	Agent Execution and Communication
	Tool Design

	Implementation Details
	Experimental Results
	Analysis
	Ablation Studies on Agent Roles
	Analysis of Tool Design
	Agent Behavior

	Conclusion
	Prompts
	Prompt Template for Planner
	Prompt Template for Navigator
	Prompt Template for Editor
	Prompt Template for Executor

	RepoPilot trajectories on SWE-bench

