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Abstract
There is mounting evidence that existing neural001
network models, in particular the very popular002
sequence-to-sequence architecture, struggle to003
systematically generalize to unseen composi-004
tions of seen components. We demonstrate005
that one of the reasons hindering composi-006
tional generalization relates to representations007
being entangled. We propose an extension to008
sequence-to-sequence models which encourage009
disentanglement by adaptively re-encoding (at010
each time step) the source input. Specifically,011
we condition the source representations on the012
newly decoded target context which makes it013
easier for the encoder to exploit specialized014
information for each prediction rather than cap-015
turing it all in a single forward pass. Experi-016
mental results on semantic parsing and machine017
translation empirically show that our proposal018
delivers more disentangled representations and019
better generalization.020

1 Introduction021

When humans use language, they exhibit composi-022

tional generalization; they are able to produce and023

understand a potentially infinite number of novel024

linguistic expressions by systematically combining025

known atomic components (Chomsky, 2014; Mon-026

tague, 1970). For example, if a person knows the027

meaning of the utterance “A boy ate the cake on the028

table in a house” and the verb “like”, it is natural for029

them to understand the utterance “A boy likes the030

cake on the table in a house” when they encounter031

it for the first time (see Table 1). Humans are also032

adept at recognizing novel combinations of famil-033

iar syntactic structure, e.g., they would have no034

trouble processing the above sentence if the prepo-035

sition “beside the tree” were added to it, despite036

not having previously seen the phrase “in a house037

beside the tree” (see Table 1).038

There has been a long standing debate whether039

this systematicity can be captured by connectionist040

architectures (Fodor and Pylyshyn, 1988; Marcus,041

2003; Lake and Baroni, 2018) and recent years042

Training Set
A boy ate the cake on the table in a house.
*cake(x4); *table(x7); boy(x1) AND eat.agent(x2, x1)
AND eat.theme(x2, x4) AND cake.nmod.on(x4, x7) AND
table.nmod.in(x7, x10) AND house(x10)

Test Set (Lexical Generalization)
A boy likes the cake on the table in a house.
*cake(x4); *table(x7); boy(x1) AND like.agent(x2, x1)
AND like.theme(x2, x4) AND cake.nmod.on(x4, x7) AND
table.nmod.in(x7, x10) AND house(x10)

Test Set (Structural Generalization)
A boy ate the cake on the table in a house beside the tree.
*cake(x4); *table(x7); *tree(x13); boy(x1) AND eat.agent(x2,
x1) AND eat.theme(x2, x4) AND cake.nmod.on(x4, x7)
AND table.nmod.in(x7, x10) AND house(x10) AND
house.nmod.beside(x10, x13)

Table 1: Examples from COGS (Kim and Linzen, 2020)
showcasing lexical and structural generalization. In
lexical generalization, a familiar word (e.g., like) is at-
tested in a familiar syntactic structure but the resulting
combination has not been seen before. In structural
generalization, familiar syntactic components give rise
to novel combinations (e.g., only prepositional phrases
with nesting depth 2 have been previously seen whereas
new combinations show nestings of depth 3 or 4). All
PP modifiers are assumed to have an NP-attachment
reading and all modifications are nested rather than se-
quential. Definite descriptions are marked with * and
appear to the leftmost of the logical form.

have witnessed a resurgence of interest thanks to 043

the tremendous success of neural networks at var- 044

ious natural language understanding and genera- 045

tion tasks (Sutskever et al., 2014; Vaswani et al., 046

2017; Dong and Lapata, 2016; Jia and Liang, 2016). 047

Mounting evidence, however, suggests that existing 048

models, in particular the very popular sequence-to- 049

sequence architecture, struggle with compositional 050

generalization (Finegan-Dollak et al., 2018; Lake 051

and Baroni, 2018; Keysers et al., 2020; Herzig and 052

Berant, 2021). This failure may be due to spurious 053

correlations which hinder out-of-distribution gener- 054

alization (Gururangan et al., 2018; Arjovsky et al., 055

2019; Sagawa et al., 2020) or limited robustness to 056

perturbations in the input (Cheng et al., 2018). 057

In this paper, we identify an entanglement prob- 058

lem with how different semantic factors are repre- 059
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sented in neural sequence models that hurts gen-060

eralization. Specifically, we assume that a neural061

network modeling sentence-level semantics should062

represent lexical meaning and semantic relations063

in a disentangled way by virtue of the principle of064

compositionality. Neural units capturing a particu-065

lar semantic factor should be relatively invariant to066

changes in other factors (Bengio et al., 2013). For067

example, the relation between “table” and “house”068

in Table 1 and its representation should not be af-069

fected by whether there is a PP modifying “house”070

or not. However, in a standard neural encoder071

(e.g., transformer-based) semantic factors tend to072

be entangled so that changes in one factor affect073

the representation of others. We further illustrate074

this problem in an artificial setting and find that a075

simple marking strategy enhances the learning of076

disentangled representations for different factors.077

Motivated by this finding, we propose an ex-078

tension to sequence-to-sequence (seq2seq) models079

which allows us to learn disentangled represen-080

tations for compositional generalization. Specifi-081

cally, at each time step of the decoding, we adap-082

tively re-encode the source input by conditioning083

the source representations on the newly decoded084

target context. We therefore build specialized rep-085

resentations which make it easier for the encoder086

to exploit relevant-only information for each pre-087

diction. Experiments on three benchmarks, namely088

COGS (Kim and Linzen, 2020), CFQ (Keysers089

et al., 2020), and CoGnition (Li et al., 2021), empir-090

ically verify that our proposal leads to better gener-091

alization, outperforming competitive baselines and092

more specialized techniques.093

2 Disentanglement in a Toy Experiment094

We first shed light on the problem of entangled095

representation with a toy experiment and then move096

on to describe our modeling solution. Note that we097

only choose relations as semantic factors a model098

aims to represent, but the entanglement issue could099

also exist in representations of other factors, e.g.,100

lexical meaning.101

Data Creation Let x = [e1, r1, ec, r2, e2] denote102

a sequence of symbols. We want to predict the103

relation between e1 and ec, and ec and e2, which we104

denote by y = (y1, y2), with y1 ∈ L1 and y2 ∈ L2.105

For simplicity, we set e1, ec, and e2 to the same106

symbol e (i.e., e1, ec, e2 ∈ {e}) whereas r1 and r2107

denote different relations (i.e., r1 ∈ R1 and r2 ∈108

R2, respectively). In this toy setting, we will further109

assume that different relation symbols determine110

different relation labels (e.g., for the phrases “cat 111

in house” and “cat with house”, “in” and “with” 112

represent two distinct relations between “cat” and 113

“house”). In reality, relations between words could 114

be dependent on broader context or not verbalized 115

at all. We also assume that there is a one-to-one 116

mapping between relation symbols and relation 117

labels (i.e., between L1 and R1 and L2 and R2). 118

We construct a training set by including exam- 119

ples [e1, r1, ec, r2, e2] where r1 is the same relation 120

symbol throughout while r2 can be any relation 121

symbol in R2 (r1 ∈ {rtrain}, r2 ∈ R2). We also 122

include examples [e1, r1, ec] with all relation sym- 123

bols from R1 occurring in isolation (r1 ∈ R1). 124

This way, the training set covers all primitive re- 125

lations, but only contains a particular type of re- 126

lation composition (i.e., {rtrain} × R2). In con- 127

trast, the test set contains all unseen compositions 128

[e1, r1, ec, r2, e2] (i.e., r1 ∈ R1\{rtrain}, r2 ∈ R2) 129

which will allow us to evaluate a model’s ability 130

to generalize. We set each relation set to include 131

10 relation symbols (|R1| = |R2| =10). 132

Finally, we simplistically only consider the re- 133

lations of target word ec with its left and right 134

words e1 and e2. In reality, a model would be 135

expected to capture sentence-level semantics, i.e., a 136

word’s relation to all context words in a sentence 137

(including no relation). 138

Modeling We first embed each example x into a 139

sequence of vectors [w1, w2, ..., wn] (where n = 3 140

or n = 5) and then transform them into contextu- 141

alized representations [h1, h2, .., hn] using a Trans- 142

former encoder (Vaswani et al., 2017). To predict 143

the relation between two symbols, we concatenate 144

their corresponding representations and feed the 145

resulting vector to an MLP for classification. 146

To study how changes in relation y1 affect the 147

prediction of y2 at test time, we explore two train- 148

ing methods. One is joint training where a model 149

learns to predict both y1 and y2 (i.e., h1 and h3 150

are concatenated to predict y1 or h3 and h5 are 151

concatenated to predict y2). The other method is 152

separate training where a model is trained to only 153

predict y2 (i.e., only h3 and h5 are concatenated 154

to predict y2). For separate training, we basically 155

ignore examples [e1, r1, ec] which only include r1, 156

as they have no bearing on the prediction of y2. 157

Observation With separate training, the model 158

learns to ignore r1, the accuracy of predicting y2 159

on the test set is 100%, regardless of which value 160

r1 takes. This indicates that random perturbation 161

of r1 alone does not lead to generalization failure. 162
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It also follows that there is no spurious correla-163

tion between r1 and y2. However, when the model164

is trained to predict both relations (which is what165

happens in realistic settings since we need to cap-166

ture all possible relations) r1 has a huge impact167

on the prediction of y2 whose accuracy drops to168

approximately 55%. Taken together, these results169

suggest that the model fails to generalize to new170

relation compositions due to its internal represen-171

tations being entangled and as a result changes in172

one relation affect the representation of others.173

Why is there a wide performance gap between174

joint and separate training? At test time the model175

processes the same utterance (no matter whether it176

is trained jointly or separately), and could in theory177

be be susceptible to both r1 and r2. However, the178

induced representations show fundamentally dif-179

ferent behaviors, and remain invariant to r1 with180

separate training. A possible explanation is that181

modern neural networks trained with SGD have a182

learning bias towards simple functions (Shah et al.,183

2020). When r1 is not predictive of y2, relying184

only on r2 whilst remaining invariant to r1 consti-185

tutes a simpler function than making use of both r1186

and r2. As a result, in separate training the model187

learns to ignore extraneous information, focusing188

exclusively on r2. On the contrary, in joint train-189

ing the target of predicting both y1 and y2 forces190

the hidden states (e.g., h3) to capture information191

about both relations, leading to the entanglement192

problem discussed above.193

A Simple Solution Although separate training194

presents a solution to entanglement, it is unreal-195

istic for real-wold data as it would be extremely196

inefficient to train separate models for each relation197

(the number of relations is quadratic with respect to198

sentence length). Instead, we explore a simple but199

effective approach where a single model takes as200

input an utterance enriched with different indicator201

features for different targets. Specifically, given202

utterance [e1, r1, ec, r2, e2], and assuming we wish203

to predict relation y1, we add indicator feature 1204

for symbols e1, r1, and ec (marking the relation205

and its immediate context), and 0 for all other sym-206

bols. The model then takes as input the utterance207

and relation indicators, i.e., [1, 1, 1, 0, 0] for y1 and208

[0, 0, 1, 1, 1] for y2, and learns embeddings for orig-209

inal symbols and indicators alike. This way, we ob-210

tain specialized representations for each prediction211

rather than shared representations for all predic-212

tions. Based on the simplicity bias hypothesis, the213

two representations will guide the model towards214

exclusively relying on r1 and r2 and naturally dis- 215

entangling different relations by encoding them 216

separately. Such a model predicts y1 with 100% 217

test accuracy and y2 with 97%. 218

Discussion Fodor and Pylyshyn (1988) have ar- 219

gued that failure to capture systematicity is a major 220

deficiency of neural architectures, contrasting hu- 221

man learners who can readily apply known gram- 222

matical rules to arbitrary novel word combinations 223

to individually memorizing an exponential number 224

of sentences. However, our toy experiment shows 225

that neural networks are not just memorizing sen- 226

tences but implicitly capturing structure. With sepa- 227

rate training or joint training with the marking strat- 228

egy, the neural model managed to remain robust 229

to interference from r1 and properly represent r2 230

even for unseen examples, i.e., new compositions 231

of r1 and r2. This generalization ability implies 232

that neural models do not need to see all expo- 233

nential compositions in order to produce plausible 234

representations of them. Instead, with appropriate 235

training and model design, they could uncover and 236

represent the structure underlying systematically 237

related sentences. 238

3 Learning to Disentangle 239

While the marking strategy offers substantial ben- 240

efits in learning disentangled relation representa- 241

tions, we typically do not have access to explicit 242

labels indicating which words are helpful for pre- 243

dicting a specific relation. Nevertheless, the idea 244

of learning representations specialized for differ- 245

ent predictions (albeit with shared parameters) is 246

general and could potentially alleviate the entangle- 247

ment problem for compositional generalization. 248

Let [x1, x2, ..., xn] denote a source sequence. 249

Canonical seq2seq models like the Transformer 250

(Vaswani et al., 2017) first encode it into a sequence 251

of contextualized representations which are then 252

used to decode target symbols [y1, y2, ..., ym] one 253

by one. The same source encodings are used to pre- 254

dict all target symbols, and are therefore expected 255

to capture all possible relations in the input. How- 256

ever, these could be entangled as demonstrated in 257

our analysis above. To alleviate this issue, we pro- 258

pose to learn specialized source representations for 259

different predictions by adaptively re-encoding the 260

source input at every step of the decoding. 261

Specifically, at the t-th time step, we concate- 262

nate the source input with the previously decoded 263

target and obtain the context for the current pre- 264

diction Ct = [x1, x2, ..., xn, y1, ..., yt−1, [PH]] 265
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where [PH] is a placeholder (e.g., a mask token266

when using a pretrained encoder). Ct is then fed267

to a standard encoder (e.g., the Transformer en-268

coder) to obtain the contextualized representations269

Ht = [ht,1, ht,2, ..., ht,n, ht,n+1, ..., ht,n+t]:270

Ht = fEncoder(Ct) (1)271

The key difference from the encoder in stan-272

dard seq2seq models is that at each time step273

we adaptively re-compute source encodings St =274

[ht,1, ..., ht,n] that condition on the newly decoded275

target [y1, ..., yt−1]. This way, target context in-276

forms the encoder of predictions of interest at each277

time step. This simple modification unburdens278

the model from capturing all source information279

through a forward pass of encoding. Instead, based280

on the simplicity bias, the model tends to zero in281

on information relevant for the current prediction,282

remaining invariant to irrelevant details, thereby283

improving disentanglement. One might argue that284

the decoder in standard seq2seq models could also285

extract specialized information for each prediction286

(through the cross attention mechanism). How-287

ever, it would fail to do so when working with an288

entangled encoder that produces problematic rep-289

resentations for out-of-distribution examples and290

breaks down the decoding process.291

We propose two strategies for exploiting the292

target-informed encoder. Firstly, we use a mul-293

tilayer perceptron (MLP) to predict yt based on the294

encoder’s output, i.e., the last hidden states ht,n+t:295

p(yt|x, y<t) = fMLP(ht,n+t) (2)296

Secondly, we incorporate the proposed encoder297

into the standard encoder-decoder architecture: we298

take source encodings St and feed them together299

with the previous target [y1, ..., yt−1] to a standard300

decoder (e.g., Transformer-based) to predict yt:301

p(yt|x, y<t) = fDecoder(St, y<t) (3)302

We experimentally find that for complex tasks303

like machine translation, preserving the encoder-304

decoder architecture is essential to achieving good305

performance.306

Although the proposed method is generally ap-307

plicable to any seq2seq model, in this paper we308

adopt the Transformer architecture to instantiate309

the encoder and decoder. We maintain separate310

position encodings for source and target symbols311

(e.g., x1 and y1 correspond to the same position).312

To differentiate between source and target content,313

we also add a source(target) type embedding to all314

source(target) token embeddings.315

4 Experiments: Semantic Parsing 316

In this section, we present our experiments for eval- 317

uating the proposed Disentangled seq2seq model 318

which we call DANGLE. We first focus on seman- 319

tic parsing benchmarks which target compositional 320

generalization. Our second suite of experiments 321

reports results on compositional generalization for 322

machine translation. 323

4.1 Datasets 324

Our semantic parsing experiments focused on two 325

benchmarks. The first one is COGS (Kim and 326

Linzen, 2020) which contains natural language sen- 327

tences paired with logical forms based on lambda 328

calculus (see the examples in Table 1). In addi- 329

tion to the standard splits of Train/Dev/Test, COGS 330

provides a generalization (Gen) set that covers five 331

types of compositional generalization: interpreting 332

novel combinations of primitives and grammati- 333

cal roles, verb argument structure alternation, and 334

sensitivity to verb class, interpreting novel combi- 335

nations of modified phrases and grammatical roles, 336

generalizing phrase nesting to unseen depths. 337

The former three fall into lexical generalization 338

while the latter two require structural generaliza- 339

tion. Interpreting novel combinations of modified 340

phrases and grammatical roles involves generaliz- 341

ing from examples with PP modifiers within object 342

NPs to PP modifiers within subject NPs. The gen- 343

eralization of phrase nesting to unseen depths is 344

concerned with two types of recursive construc- 345

tions: nested CPs (e.g., [Mary knows that [John 346

knows [that Emma cooks]CP ]CP ]CP) and nested 347

PPs (e.g., Ava saw the ball [in the bottle [on the ta- 348

ble]PP]PP). The training set only contains nestings 349

of depth 0–2, where depth 0 is a phrase without 350

nesting. The generalization set contains nestings 351

of strictly greater depths (3–12). The Train set in- 352

cludes 24,155 examples and the Gen set includes 353

21,000 examples. 354

Our second benchmark is CFQ (Keysers et al., 355

2020), a large-scale dataset specifically designed 356

to measure compositional generalization. It con- 357

tains 239,357 compositional Freebase questions 358

paired with SPARQL queries. CFQ was automat- 359

ically generated from a set of rules in a way that 360

precisely tracks which rules (atoms) and rule com- 361

binations (compounds) were used to generate each 362

example. Using this information, the authors gen- 363

erate three splits with maximum compound diver- 364

gence (MCD) while guaranteeing a small atom di- 365

vergence between train and test sets. In this dataset 366
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atoms refer to entities and relations and compounds367

to combinations thereof. Large compound diver-368

gence indicates the test set contains many examples369

with unseen syntactic structures. We evaluate our370

model on all three splits. Each split consists of371

95,743/11,968/11,968 train/dev/test examples.372

4.2 Comparison Models373

On COGS, we trained a baseline TRANSFORMER374

(Vaswani et al., 2017) with both sinusoidal (abso-375

lute) and relative position embeddings (Shaw et al.,376

2018; Huang et al., 2020). To assess the effect377

of pretraining on compositional generalization, we378

also fine-tuned T5-BASE (Raffel et al., 2020) on379

the same dataset. We then created disentangled ver-380

sions of these models adopting an encoder-only ar-381

chitecture (i.e., +DANGLE). The pretrained version382

of our model used ROBERTA (Liu et al., 2019).1383

We also compared with two models specifi-384

cally designed for compositional generalization on385

COGS. The first one is TREE-MAML (Conklin386

et al., 2021), a meta-learning approach whose ob-387

jective directly optimizes for out-of-distribution388

generalization. Their best performing model uses389

tree kernel similarity to construct meta-train and390

meta-test task pairs. The second approach is391

LEXLSTM (Akyürek et al., 2021), an LSTM-392

based seq2seq model whose decoder is augmented393

with a lexical translation mechanism that gener-394

alizes existing copy mechanisms to incorporate395

learned, decontextualized, token-level translation396

rules. The lexical translation module is intended to397

disentangle lexical phenomena from syntactic ones.398

To the best of our knowledge, this model achieves399

state of the art on COGS.400

Furrer et al. (2020) showed that pretrained401

seq2seq models are key to achieving good per-402

formance on CFQ. We compared against their403

T5-11B-MOD model which obtained best results404

among various pretrained models. This is es-405

sentially a T5 model with 11B parameters fine-406

tuned on CFQ with intermediate representations407

(i.e., SPARQL queries are simplified to be struc-408

turally more aligned to the input for training and409

then post-processed to obtain the original valid410

SPARQL at inference time). Due to the effective-411

ness of pre-training on this dataset, we also built412

our model on top of Roberta (ROBERTA+DANGLE),413

1Note that we use T5-BASE instead of ROBERTA as our
pretrained baseline on COGS because in initial experiments
we found that having a pretrained decoder is critical for good
performance, possibly due to the relatively small size of COGS
and large vocabulary which includes many rare words.

Model OSM CP PP Overall
TREE-MAML 0.0 0.0 0.0 66.7
LEXLSTM 0.0 0.0 1.3 82.1
TRANSFORMER (abs) 0.0 4.0 10.0 85.7

+DANGLE 0.0 9.4 6.0 85.6
TRANSFORMER (rel) 0.0 0.0 0.0 83.4

+DANGLE 0.0 15.3 11.5 85.8
T5-BASE 0.0 12.5 18.0 85.9
ROBERTA + DANGLE 0.0 11.8 38.6 87.9

Table 2: Exact-match accuracy on COGS by type of
structural generalization and overall. OSM refers to gen-
eralizing from object modifier PPs to subject modifier
PPs; CP and PP are recursion depth generalization for
sentential complements and prepositional phrases.

again adopting an encoder-only architecture. To 414

tease apart the effect of pretraining and the pro- 415

posed approach, we also implemented a baseline 416

that makes use of the ROBERTA-BASE model as the 417

encoder and a vanilla Transformer decoder. The 418

Transformer decoder was initialized randomly and 419

trained from scratch. Finally, we compared against 420

HPD (Guo et al., 2020), a hierarchical poset de- 421

coding architecture which consists of three com- 422

ponents: sketch prediction, primitive prediction, 423

and traversal path prediction. This model is highly 424

optimized for the CFQ dataset and achieves state- 425

of-the-art performance. 426

We implemented comparison models and DAN- 427

GLE with fairseq (Ott et al., 2019); for T5-BASE 428

we used HuggingFace Transformers (Wolf et al., 429

2020). We provide details on model configuration, 430

and various experimental settings in the Appendix. 431

4.3 Results 432

Table 2 shows our results on COGS broken down 433

by type of structural generalization and overall. All 434

models achieve 0 accuracy on generalizing from 435

PP object modifiers to PP subject modifiers. We 436

find this is due to a predicate order bias. In all 437

training examples, “agent” or “theme” come before 438

preposition predicates like “in”, so the models learn 439

this spurious correlation and cannot generalize to 440

cases where the preposition precedes the predicate. 441

Interestingly, a vanilla TRANSFORMER out- 442

performs more complex approaches like TREE- 443

MAML and LEXLSTM. We conjecture the large 444

discrepancy is mostly due to our use of Glove em- 445

beddings, which comparison systems do not use. 446

Pretraining in general substantially benefits lexi- 447

cal generalization, our TRANSFORMER and T5- 448

BASE models achieve nearly perfect accuracy on 449

all such cases in COGS. An intuitive explanation 450

is that pretrained embeddings effectively capture 451
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2 3 4 5
Model CP PP CP PP CP PP CP PP

TRANSFORMER (abs) 4.0 10.0 1.5 7.6 1.2 6.6 2.8 8.6
+DANGLE 9.4 6.0 11.9 8.0 13.3 9.0 14.0 14.7

TRANSFORMER (rel) 0.0 0.0 0.1 0.6 0.0 0.9 0.1 1.3
+DANGLE 15.3 11.5 23.5 19.5 28.2 33.9 32.8 37.6

Table 3: Exact-match accuracy for CP and PP recursion on differ-
ent splits of GOGS (recursion depth with [2− 5] range).

Model MCD1 MCD2 MCD3 Mean
T5-11B-MOD 61.6 31.3 33.3 42.1
HPD 72.0 66.1 63.9 67.3
ROBERTA 60.6 33.6 36.0 43.4

+DANGLE 78.3 59.5 60.4 66.1

Table 4: Exact-match accuracy on CFQ, Maxi-
mum Compound divergence (MCD) splits.
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Figure 1: t-SNE visualization of hidden states corresponding to predicates “in”, “on”, and “beside” on training
examples with PP recursion depth 4 and test examples with PP recursion depth 5. Different colors denote different
recursion contexts and different shape of markers correspond to different predicates.

common syntactic roles for tokens of the same type452

(e.g., “cat” and “dog”) and facilitate the generaliza-453

tion of the same decoding strategy to all of them.454

DANGLE significantly improves generalization per-455

formance on CP and PP recursion when combined456

with our base TRANSFORMER and ROBERTA. In457

fact, ROBERTA+DANGLE achieves new state-of-458

the-art performance on this dataset.459

To further show the potential of our proposal,460

we evaluated TRANSFORMER+DANGLE on addi-461

tional COGS splits. Table 3 shows how model per-462

formance changes with exposure to progressively463

larger recursion depths. Given recursion depth n,464

we created a split by moving all examples with465

depth ≤ n from Gen to Train set. As can be seen,466

TRANSFORMER+DANGLE, especially the variant467

with relative embeddings, is continuously improv-468

ing with exposure to additional training examples.469

In contrast, vanilla TRANSFORMER does not seem470

to benefit from additional examples, even when rel-471

ative position encodings are used. We can also ex-472

plain why adding more recursion in training boosts473

generalization performance. In the original split,474

many nouns never occur in examples with recursion475

depth 2, which could tempt the model to exploit476

this kind of dataset bias for predictions. In contrast,477

seeing words in different contexts (e.g., different478

nesting depth) effectively reduces the possibility of479

learning these spurious correlations and therefore480

improves compositional generalization.481

CFQ results are shown in Table 4. 482

ROBERTA+DANGLE substantially boosts 483

the performance of ROBERTA-BASE, and is in fact 484

superior to T5-11B-MOD. This result highlights 485

the limitations of pretraining as a solution to 486

compositional generalization underscoring the 487

benefits of our approach. ROBERTA+DANGLE is 488

comparable to HPD which is a special-purpose 489

architecture highly optimized for the CFQ dataset. 490

On the contrary, DANGLE is generally applicable 491

to any seq2seq task including machine translation, 492

as we will show in Section 5. 493

4.4 Analysis 494

As discussed in Section 2, we hypothesize that 495

a neural model’s inability to perform composi- 496

tional generalization partly arises from its inter- 497

nal representations being entangled. To verify 498

this, we visualize the hidden representations for 499

a TRANSFORMER model with and without DAN- 500

GLE. Specifically, we train both models on the 501

4th split of COGS (i.e., data with maximum PP 502

recursion depth 4) and test on examples with PP 503

recursion depth 5. Then, we extract the hidden 504

states before the softmax layer used to predict the 505

preposition predicates “in”, “beside”, and “on” and 506

use t-SNE (van der Maaten and Hinton, 2008) to 507

visualize them. Ideally, the representations of these 508

prepositions should be invariant to the contexts ac- 509

companying them so that their prediction is not 510
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COGS CFQ
Model IntraV InterV ↓ R IntraV InterV ↓ R

TRANSFORMER 0.24 0.64 0.37 0.25 1.13 0.22
+DANGLE 0.19 0.73 0.26 0.01 0.52 0.01

TRANSFORMER 0.28 0.44 0.63 0.32 1.06 0.30
+DANGLE 0.23 0.54 0.42 0.04 0.48 0.08

Table 5: Entanglement for TRANSFORMER and our
approach (+DANGLE) on COGS and CFQ (for which
both models employ a ROBERTA encoder). Results
for training/test set in first/second block. Intra/InterV
denotes intra/inter-class variance and R is their ratio.

influenced by distribution shifts (e.g., contextual511

changes from PP recursion 4 to PP recursion 5).512

The visualization is shown in Figure 1. Differ-513

ent colors correspond to different recursion depths514

while different shape of markers denote different515

prepositions (e.g., for a training example like “NP516

in NP in NP in NP in NP”, the hidden states corre-517

sponding to the four “in” prepositions have the518

same marker but different colors). In training,519

TRANSFORMER’s hidden states within the same520

preposition scatter more widely compared to those521

of DANGLE, which implies that its internal rep-522

resentations conflate information about a preposi-523

tion’s context with itself. In other words, TRANS-524

FORMER’s hidden states capture more context vari-525

ations in addition to variations corresponding to526

the predicate of interest. This in turn causes catas-527

trophic breakdown on the test examples, where528

TRANSFORMER’s hidden states cannot discrimi-529

nate context from predicate information at all. This530

is in stark contrast with DANGLE, where informa-531

tion about predicates is preserved even in the pres-532

ence of unseen contexts.533

We further designed a metric to quantitatively534

measure entanglement in neural representations535

drawing inspiration from Kim and Mnih (2018).536

For each predicate y occurring in different ex-537

amples e, we extract all corresponding represen-538

tations {ve,y}, i.e., the last layer of the hidden539

states used to predict y, and compute the empir-540

ical variance Vare(v
i
e,y) for each y; we compute541

intra-class variance as the average of all predicates’542

variances weighted by their respective frequency:543

Vintra =
1

d

d∑
i=1

Ey Vare(v
i
e,y) (4)544

where d is the dimension of hidden states and E is545

the weighted average of their variances. Intuitively,546

if the representations are perfectly disentangled,547

they should remain invariant to context changes548

and intra-class variance should be zero.549

Training Set
en: That winter, Taylor barely moved from the fire.
zh: 那年冬天，泰勒几乎没有从大火中挪动过。

Test Set
en: That winter, the dog he liked barely moved from the fire.
zh: 那年冬天，他喜欢的狗狗几乎没有从火堆里挪动过。

Table 6: A training and test example from the CoGnition
dataset. The test example is constructed by embedding
the synthesized novel compound “the dog he liked” into
the template extracted from the training example “That
winter, [NP] barely moved from the fire.”.

We also measure inter-class variance by taking 550

the mean of ve,y for each predicate y and then 551

computing the variance of the means: 552

Vinter =
1

d

d∑
i=1

Vary Ee(v
i
e,y) (5) 553

Inter-class variance, on the contrary, should be rel- 554

atively large for these hidden states, because they 555

are intended to capture class variations. The ra- 556

tio of intra- and inter-class variance collectively 557

measures entanglement. 558

As shown in Table 5, representations in DANGLE 559

consistently obtain lower intra- to inter-class ratios 560

than baseline models on both COGS and CFQ on 561

both training and test sets. 562

5 Experiments: Machine Translation 563

5.1 Dataset 564

We also applied our approach to CoGnition (Li 565

et al., 2021), a recently released compositional gen- 566

eralization dataset targeting machine translation. 567

This benchmark includes 216K English-Chinese 568

sentence pairs; source sentences were taken from 569

the Story Cloze Test and ROCStories Corpora 570

(Mostafazadeh et al., 2016, 2017) and target sen- 571

tences were constructed by post-editing the output 572

of a machine translation engine. It also contains a 573

synthetic test set to quantify and analyze compo- 574

sitional generalization of neural MT models. This 575

test set includes 10,800 sentence pairs, which were 576

constructed by embedding synthesized novel com- 577

pounds into training sentence templates. Table 6 578

shows an example. Each newly constructed com- 579

pound is combined with 5 different sentence tem- 580

plates, so that every compound can be evaluated 581

under 5 different contexts. 582

5.2 Model Comparison 583

We compared our model to a TRANSFORMER trans- 584

lation model following the same setting and con- 585
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Model ↓ ErrRInst ↓ ErrRAggr ↑ BLEU
TRANSFORMER (abs) 27.7 62.0 59.5

+DANGLE 25.7 57.5 59.4
TRANSFORMER (rel) 30.1 63.3 59.4

+DANGLE 23.1 51.9 60.4

Table 7: BLEU and compound translation error rates
(ErrR) on the compositional generalization test set. Sub-
script Inst denotes instance-wise error rate while Aggr
denotes aggregate error over 5 contexts. All results are
averaged over 3 random seeds.

figuration of Li et al. (2021). Again, we experi-586

mented with sinusoidal (absolute) and relative posi-587

tion embeddings. We adopted the encoder-decoder588

architecture variant of our approach as the encoder-589

only architecture performed poorly possibly due590

to the complexity of the machine translation task.591

The number of parameters was kept approximately592

identical to the TRANSFORMER baseline for a fair593

comparison. All models were implemented using594

fairseq (Ott et al., 2019). More modeling details595

are provided in the Appendix.596

5.2.1 Results597

As shown in Table 7, +DANGLE improves over the598

base TRANSFORMER model by 0.9 BLEU points599

when relative position embeddings are taken into600

account. In addition to BLUE, Li et al. (2021) eval-601

uate compositional generalization using novel com-602

pound translation error rate which is computed over603

instances and aggregated over contexts. +DANGLE604

variants significantly reduce novel compound trans-605

lation errors both across instances and on aggre-606

gate by as much as 10 absolute accuracy points607

(see third column in Table 7). Across metrics,608

our results show that +DANGLE variants handle609

compositional generalization better than the vanilla610

TRANSFORMER model.611

6 Related Work612

The realization that neural sequence models strug-613

gle in settings requiring compositional generaliza-614

tion has led to numerous research efforts aiming to615

understand why this happens and how to prevent616

it. One line of research tries to improve composi-617

tional generalization by adopting a more conven-618

tional grammar-based approach (Herzig and Be-619

rant, 2021), incorporating a lexicon or lexicon-style620

alignments into sequence models (Akyürek et al.,621

2021; Zheng and Lapata, 2021), and augmenting622

the standard training objective with attention super-623

vision losses (Oren et al., 2020; Yin et al., 2021).624

Other work resorts to data augmentation strate-625

gies as a way of injecting a compositional induc- 626

tive bias into neural models (Jia and Liang, 2016; 627

Akyürek et al., 2021; Andreas, 2020) and meta- 628

learning to directly optimize for out-of-distribution 629

generalization (Conklin et al., 2021). There are 630

also several approaches which explore the benefits 631

of large-scale pre-trained language models (Oren 632

et al., 2020; Furrer et al., 2020). 633

In this work we identify the learning of represen- 634

tations which are not disentangled as one of the rea- 635

sons why neural sequence models fail to generalize 636

compositionally. Disentanglement, i.e., the ability 637

to uncover explanatory factors from data, is often 638

cited as a key property of good representations 639

(Bengio et al., 2013). Several types of variational 640

autoencoders (Kingma and Welling, 2014) have 641

been proposed for the unsupervised learning of dis- 642

entangled representations in images (Higgins et al., 643

2017; Kim and Mnih, 2018; Chen et al., 2018). 644

For example, a model trained on 3D objects might 645

learn factors such as object identity, position, scale, 646

lighting, or colour. However, some of the underly- 647

ing assumptions of these models have come under 648

scrutiny recently (Locatello et al., 2019). 649

Disentanglement for linguistic representations 650

remains under-explored, and has mostly focused on 651

separating the style of text from its content (John 652

et al., 2019; Cheng et al., 2020). In the context of 653

sentence-level semantics, disentangled representa- 654

tions should be able to discriminate lexical meaning 655

from semantic relations between words. We pro- 656

pose a modification to sequence-to-sequence mod- 657

els which achieves this by re-encoding the source 658

based on newly decoded target context. Our ex- 659

periments focus on semantic parsing and machine 660

translation but our proposal is applicable to any 661

seq2seq task and potentially useful for other types 662

of disentanglement (e.g., discourse relations). 663

7 Conclusions 664

In this paper we have proposed an extension to 665

sequence-to-sequence models which allows us to 666

learn disentangled representations for composi- 667

tional generalization. We have argued that taking 668

into account the target context makes it easier for 669

the encoder to exploit specialized information for 670

improving its predictions. Experiments on seman- 671

tic parsing and machine translation have shown that 672

our proposal improves compositional generaliza- 673

tion without any model, dataset, or task specific 674

modification. 675
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A Model Configuration: Semantic 955

Parsing Experiments 956

In these sections, we describe the configuration of 957

the models evaluated in the experiments of Sec- 958

tions 4 and 5, respectively. 959

On COGS, the small in-distribution development 960

(Dev) set makes model selection extremely diffi- 961

cult and non-reproducible. We follow Conklin et al. 962

(2021) and sample a small subset from the gener- 963

alization (Gen) set denoted as ‘Gen-Dev’ for tun- 964

ing hyper-parameters. Best hyper-parameters were 965

used to rerun the model with 5 different random 966

seeds for reporting final results on the Gen set. For 967

the baseline TRANSFORMER, the layer number of 968

encoder and decoders are both 2. The embedding 969

dimension is 300. The feedforward embedding di- 970

mension is 512. For TRANSFORMER+DANGLE, to 971

maintain approximately identical model size with 972

the baseline, we used the same embedding dimen- 973

sion and set the number of the encoding layers to 4. 974

For both models, we initialized embeddings (on the 975

both source and target side) with Glove (Penning- 976

ton et al., 2014). 977

On COGS, for the ROBERTA+DANGLE model, 978

we share the target vocabulary and embedding ma- 979

trix with the source. On CFQ, we use a separate 980

target vocabulary; the target embedding matrix 981

is randomly initialized and learned from scratch. 982

ROBERTA-BASE on CFQ is combined with a Trans- 983

former decoder that has 2 decoder layers with em- 984

bedding dimension 256 and feedforward embed- 985

ding dimension 512. All hyper-parameters are cho- 986

sen based on validation performance. On CFQ, for 987

both ROBERTA-BASE and ROBERTA+DANGLE, re- 988

sults are averaged over 3 randoms seeds. 989

B Model Configuration: Machine 990

Translation Experiments 991

We followed the same setting of Li et al. (2021) 992

and adopted a TRANSFORMER translation model 993

consisting of a 6-layer encoder and a 6-layer de- 994

coder with hidden size 512. Each training batch 995

includes 8,191 tokens at maximum. This model 996

was trained for 100,000 steps and we chose the 997

best checkpoint on the validation set for evaluation. 998

Again, we experimented with sinusoidal (absolute) 999

and relative position embeddings. 1000

We used the same hyperparameters as the base- 1001

line model except for the number of layers which 1002

we tuned on the validation set; for relative posi- 1003

tion embeddings, the encoder has 4 vanilla source- 1004

only Transformer encoder layers on top of 4 target- 1005
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informed Transformer encoder layers (i.e., 8 en-1006

coder layers in all) and the decoder has 4 Trans-1007

former decoder layers; for absolute position embed-1008

dings, the encoder has 4 vanilla source-only Trans-1009

former encoder layers on top of 2 target-informed1010

Transformer encoder layers and the decoder has 61011

Transformer decoder layers.1012
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