REACTID: SYNCHRONIZING REALISTIC ACTIONS AND IDENTITY IN PERSONALIZED VIDEO GENERATION

Anonymous authors

000

001

002003004

021

023

024 025 026

027 028

029

031

032

034

039

040

041

042

043

044

045

046

048

051

Paper under double-blind review

Figure 1: The landscape examples of ReactID for personalized video generation. For each case, ReactID automatically plans a distinct action timeline for each reference subject, generating a final video where each identity performs actions according to their synchronized schedule.

ABSTRACT

Personalized video generation faces a fundamental trade-off between identity consistency and action realism: overly rigid identity preservation often leads to unnatural motion, while emphasis on action dynamics can compromise subject fidelity. This tension stems from three interrelated challenges: imprecise subjectvideo alignment, unstable training due to varying sample difficulties, and inadequate modeling of fine-grained actions. To address this, we propose ReactID, a comprehensive framework that harmonizes identity accuracy and motion naturalness through coordinated advances in data, training, and action modeling. First, we construct ReactID-Data, a large-scale dataset annotated with a highprecision pipeline combining vision-based entity label extraction, MLLM-based subject detection, and post-verification to ensure reliable subject-video correspondence. Second, we analyze learning difficulty along dimensions such as subject size, appearance similarity, and sampling strategy, and devise a progressive training curriculum that evolves from easy to hard samples, ensuring stable convergence while avoiding identity overfitting and copy-paste artifacts. Third, ReactID introduces a novel timeline-based conditioning mechanism that supplements monolithic text prompts with structured multi-action sequences. Each sub-action is annotated with precise timestamps and descriptions, and integrated into the diffusion model via two novel components: subject-aware cross-attention module to bind sub-action to the specific subject of interest and temporally-adaptive RoPE to embed the rescaled temporal coordinates invariant to action duration. Experiments show that ReactID achieves state-of-the-art performance in both identity preservation and action realism, effectively balancing the two objectives.

1 Introduction

The generation of high-fidelity video content has emerged as a pivotal task in computer vision and graphics, with profound applications in content creation, virtual reality, and personalized media. A

Figure 2: An illustration of three key components in ReactID to improve personalized video generation from the perspectives of data construction, training paradigm and timeline formulation.

particularly challenging and impactful subset of this field is Personalized Video Generation, which aims to create video sequences of a specific subject (e.g., a person or object) performing a desired action while maintaining the identity of subject across frames. The core challenge in this task lies in achieving an optimal balance between two competing objectives: preserving the identity of subject with high fidelity and ensuring the realism and naturalness of the generated actions.

Current state-of-the-art approaches (Chen et al., 2025; Huang et al., 2025; Fei et al., 2025; Liu et al., 2025; Hu et al., 2025a; Jiang et al., 2025), typically built upon diffusion-based architectures, attempt to approach personalized video generation by incorporating reference identity information through cross-attention mechanisms or adapter modules. Despite the promising results, these methods consistently fall short of achieving the ideal balance between identity consistency and action realism. We speculate that this limitation stems from three fundamental bottlenecks in the generation pipeline, each contributing to the imbalance in different ways:

- (1) Inaccurate identity preservation resulting from noisy subject-video correspondences directly undermines the identity aspect of the balance. Conventional annotation pipelines often produce incomplete subjects, misaligned bounding boxes, and erroneous identity associations. When models learn from such imperfect supervision, they develop unreliable identity representations, leading to either identity drift or visual artifacts in generated videos.
- (2) **Unstable convergence patterns** caused by varying learning difficulties across samples disrupt the training process itself. Easy samples (with large, clear, and temporally consistent entities) encourage the model to adopt a "copy-paste" strategy, preserving identity at the expense of natural motion. Conversely, hard samples (with small scale, or appearance variations), though slowing convergence and complicating identity alignment, serve a critical function: they compel the model to maintain and leverage its pre-trained generative priors, thereby enhancing realistic action synthesis and mitigating catastrophic forgetting of motion dynamics.
- (3) **Compromised action naturalness** often results from coarse-grained action modeling that fail to capture temporal dynamics. Without precise temporal guidance, models tend to prioritize identity features—which are more explicitly supervised—over motion patterns, resulting in stiff, unnatural movements that diminish the overall realism of generated videos.

In this paper, we propose **ReactID**, a comprehensive framework designed to synchronize realistic action generation with faithful identity preservation through synergistic improvements across data curation, training strategy, and action modeling, as illustrated in Figure 2. Specifically, we first introduce ReactID-Data, a large-scale dataset with unprecedented annotation quality, enabled by a novel automated pipeline that leverages vision-based entity word extraction, Multi-modality Large Language Models (MLLM) based detection and additional post-verification to ensure reliable subject-video correspondences. Then, we develop a difficulty-aware progressive learning strategy that explicitly manages sample difficulty based on subject size, appearance similarity, and sampling strategy. Our curriculum learning approach ensures stable convergence while preventing both overfitting to easy samples and underfitting on challenging ones. To enable the modeling of complex, multi-action sequences, ReactID exploits a structured timeline-based conditioning mechanism complement to the conventional use of a single, monolithic text prompt for video generation. This timeline is composed of multiple fine-grained sub-actions, each annotated with precise start and end times alongside a detailed textual description of the specific motion. To effectively inject this rich spatio-temporal information into a diffusion-based generator, we introduce two key novel components: a subject-aware cross-attention module and a temporally-adaptive RoPE mechanism. The former embeds the rescaled temporal coordinates of the sub-actions, enhancing the compatibility and robustness to actions of varying lengths. The latter explicitly binds the descriptive sub-action

cues to the specific subject of interest within the scene, ensuring that the generated motions are accurately associated with the correct subject. This synergistic integration enables ReactID to achieve unprecedented control over personalized video generation, seamlessly synchronizing realistic actions with subject identity.

The main contributions of this work are summarized as follows. We propose ReactID, an innovative framework that effectively harmonizes identity preservation and action realism in personalized video generation. To support this framework, we introduce a large-scale, high-precision dataset (ReactID-Data), a progressive training strategy that transitions from easy to difficult samples, and a novel modeling architecture capable of representing complex multi-action sequences. Through extensive experiments, ReactID demonstrates state-of-the-art performance in both identity consistency and motion naturalness. Moreover, we believe the release of ReactID-Data with its temporally-precise multi-action annotations will significantly facilitate future research in personalized video generation.

2 RELATED WORK

Video Diffusion Models. Recently, text-to-video (T2V) generation has witnessed remarkable progress, largely driven by advances in diffusion models. Early attempts (Blattmann et al., 2023; Guo et al., 2024; Zhang et al., 2024; 2025b) built on UNet (Ronneberger et al., 2015) architecture are restricted to synthesize short clips with limited spatial and temporal resolution. Facing the unprecedented capability demonstrated by Sora (Brooks et al., 2024) in generating high-quality, minute-long videos, transformer-based diffusion models (Peebles & Xie, 2023) are increasingly introduced as the mainstream, replacing UNet backbones and enabling scalable video generative models. Among these, MMDiT (Esser et al., 2024), a dual-stream DiT architecture introduced by Stable Diffusion 3, is subsequently adopted in open-source video diffusion projects such as CogVideoX (Yang et al., 2025) and HunyuanVideo (Kong et al., 2024). More recently, Wan et al. (2025) leverage a attention-based structure in video DiT, and achieve remarkable performance in realistic video generation.

Personalized Video Generation. Personalized video generation has evolved from early UNetbased models (Chefer et al., 2024; He et al., 2024b; Ma et al., 2024; Wu et al., 2024; Wang et al., 2024; Zhou et al., 2024; Chen et al., 2024) to more advanced Diffusion Transformer (DiT) architectures (Yuan et al., 2025b; Zhang et al., 2025a; Wei et al., 2025). The initial UNet approaches often struggled with poor identity fidelity, limited motion, and required extensive test-time tuning (Wei et al., 2024a; Wu et al., 2024), typically constrained to simple single-subject scenarios (He et al., 2024b; Ma et al., 2024; He et al., 2024b; Jiang et al., 2024; Wei et al., 2024b). The shift to DiT frameworks yielded gains in identity preservation and video quality while enabling tuning-free customization. This advancement also facilitated the expansion from simple scenarios to more complex multi-subject and open-domain settings (Huang et al., 2025; Chen et al., 2025; Liu et al., 2025; Jiang et al., 2025; Fei et al., 2025; Hu et al., 2025a; Deng et al., 2025; Hu et al., 2025b), making models more suitable for real-world applications. However, a key challenge persists: the inherent trade-off between subject identity preservation and accurate motion generation often results in "copy-paste" artifacts and unnatural motion. Compounding this issue is the scarcity of high-quality training data, which remains a primary bottleneck. This underscores the urgent need for datasets with high action prompt precision, video temporal consistency, and reference image diversity.

In summary, our work mainly focuses on preserving subject identity with high fidelity and ensuring natural actions in personalized video generation. The proposal of ReactID contributes by studying not only how to conduct progressive subject-to-video learning for accurate identity preservation while alleviating "copy-paste" artifacts, but also how to integrate the timeline information into video diffusion to achieve precise action realism.

3 Method

3.1 REACTID-DATA: A DATASET FOR PERSONALIZED VIDEO GENERATION

Data Preparation. We initialize a pool of 20 million videos from publicly available video collections such as HD-VG-130M (Wang et al., 2025) and OpenHumanVid (Li et al., 2025). Then we employ a pipeline to process raw videos, which involves key stages such as scene detection, video

transcoding, text removal, quality assessment and filtering, and subject-centric captioning. The implementation details for this workflow are elaborated in the supplementary materials.

Entity Extraction. A typical method to identify entities from video captions is to extract nouns via a Named Entity Recognition (NER) model (e.g., SpaCy (Honnibal & Montani, 2017)) with a pre-defined taxonomy. However, the limited taxonomy results in coarse-grained entities that cannot distinguish between different instances, especially for living subjects. For instance, two distinct individuals might both be labeled simply as "a person." To mitigate this issue, we process living and non-living subjects differently. We first construct a 1200-term taxonomy by combining nouns from captions with labels from image datasets (e.g., Deng et al. (2009), Caesar et al. (2018), and Shao et al. (2019)), and then divide the terms into living and non-living categories. For each videocaption pair, an NER model guided by our taxonomy is employed to extract all entities from the caption. Entities identified as non-living subjects are directly retained as the final result, whereas those corresponding to living subjects undergo further processing. For these cases, a vision-language model analyzes the video content to generate a fine-grained, descriptive entity label for each living subject. As a result, we obtain specific entity labels for living subjects like "the person in red" and "the person sitting on the bench," rather than generic ones such as "a person" and "another person," enabling more precise entity referencing, which is curial for the following processing.

Subject Detection and Segmentation. Next, extracted entities are grounded to specific spatiotemporal regions within the video via subject detection and segmentation, thus forming comprehensive entity annotations. The primary challenge in this process lies in distinguishing between visually/semantically similar subjects and ensuring their correct association with the corresponding entities. To achieve this, an MLLM-based detector, Florence-2 (Xiao et al., 2024), is employed to locate the bounding boxes of the given entity labels, which are further verified by examining the cross-modal distance in the SigLIP (Zhai et al., 2023) feature space. Conditioning on the bounding boxes, we obtain the segmentation masks via the SAM (Ravi et al., 2024) model for each entity. Moreover, to better support face-centric identity-preserving generation tasks, we additionally extract face bounding boxes and masks for "human" entities utilizing the InsightFace Toolbox (Deng et al., 2019) and the SAM model, respectively.

3.2 DIFFICULTY-AWARE CURRICULUM LEARNING

A training sample consists of one or more reference images I_{ref} cropped from a subject's bounding box, a video clip in which the subject appears V_{gt} , and a video caption text. Easy samples, where the subject in the video is large and highly similar to the reference, can encourage a "copy-paste" shortcut that harms generalization. In contrast, harder samples with small or varied subjects in videos force the model to learn the desired skill of fusing identity in I_{ref} with action and context provided in text, but they also present a convergence challenge. To balance the easy and hard samples and effectively leverage our ReactID-Data, we introduce an easy-to-hard curriculum learning strategy that ensures stable convergence while avoiding identity overfitting and "copy-paste" artifacts. Technically, we formalize this difficulty-aware learning by quantifying sample difficulty using three cues: subject size, appearance similarity, and sampling strategy.

Subject size refers to the spatial proportion of the subject within the video frames. We define the difficulty score \mathcal{D}_{sub} for each sample. Let the video V_{gt} consist of N frames, each with a resolution of $H \times W$. For the n-th frame, a binary segmentation masks M_n is used, where $M_n(i,j)=1$ indicates that the pixel belongs to the subject in the reference image. The difficulty is calculated as:

$$\mathcal{D}_{sub} = 1 - \frac{1}{N \cdot H \cdot W} \sum_{n=1}^{N} \sum_{i=1}^{H} \sum_{j=1}^{W} \mathbf{1}_{\{M_n(i,j)=1\}} , \qquad (1)$$

where $\mathbf{1}_{\{\cdot\}}$ is the indicator function. This formulation ensures that a smaller subject yields a higher difficulty score \mathcal{D}_{sub} , which approaches 1.

Appearance similarity quantifies the identity alignment between the reference image I_{ref} and the subject's appearance in the video. We measure this by first detecting all N subject regions $\{P_i\}_1^N$ in the video and then calculating the average cosine similarity between the feature embeddings of I_{ref} and each P_i . The difficulty score \mathcal{D}_{app} is defined as:

$$\mathcal{D}_{app} = 1 - \frac{1}{N} \sum_{i=1}^{N} \frac{\mathcal{F}(I_{ref}) \cdot \mathcal{F}(P_i)}{\|\mathcal{F}(I_{ref})\| \cdot \|\mathcal{F}(P_i)\|} , \qquad (2)$$

Figure 3: An overview of ReactID framework for personalized video generation.

where $\mathcal{F}(\cdot)$ is DINOv2 (Oquab et al., 2023) for general subjects and ArcFace (Deng et al., 2019) for faces. This formulation ensures that lower similarity results in a higher score.

Sampling strategy evaluates difficulty based on whether the reference image and video originate from the same clip. We define two strategies: $intra-clip \ sampling$ (easy, $\mathcal{D}_{sam}=0$), and $inter-clip \ sampling$ (hard, $\mathcal{D}_{sam}=1$). In intra-clip sampling, the reference I_{ref} is taken directly from the video V_{gt} , ensuring high visual consistency (lighting, background). Conversely, inter-clip sampling pairs the video with a visually similar reference from a different clip, forcing the model to handle greater variation and thus posing a more challenging learning task.

Finally, to obtain a single, comprehensive difficulty metric for each training sample, we compute a weighted sum of the scores from the three cues: $\mathcal{D}_{overall} = \lambda_{sub}\mathcal{D}_{sub} + \lambda_{app}\mathcal{D}_{app} + \lambda_{sam}\mathcal{D}_{sam}$, where the λ_{sub} , λ_{app} , and λ_{sam} are trade-off parameters that are determined empirically. During model training, we implement our curriculum by imposing a difficulty threshold τ and only samples where $\mathcal{D}_{overall} \leq \tau$ are used for training. As the training progresses, this threshold is gradually increased, progressively introducing more challenging examples to the model. This easy-to-hard strategy ensures a stable learning process and robust convergence on the dataset.

3.3 TEMPORAL-AWARE ACTION MODELING

3.3.1 TIMELINE ANNOTATION CONSTRUCTION

Modern text-to-video and subject-to-video datasets normally construct the training data as the pair of text-video or the triplet of text-video-reference, and the granular timeline information of actions is scarcely provided. The lack of temporal annotation could limit the model capacity to characterize sophisticated time-related action generation. In the scenario of personalized video generation, exploiting additional timeline information in training can further precisely regulate the fine-grained sub-action generation, facilitating the synthesis of more natural motion dynamic. To obtain such time-aware information for training, we sample a subset with 1.2M subject-to-video pairs from the ReactID-Data, and further construct the detailed timeline annotations for each video.

Formally, we exploit the vision language model (VLM), i.e., Qwen2.5-VL-72B (Bai et al., 2025), as the timeline annotator to obtain both temporal timestamps and the corresponding sub-action descriptions for each video. Given the instructs and videos, the VLM partitions the global action of each subject into distinct time intervals based on motion cues. For each spitted interval, we form a structured annotation tuple with three components: (i) the start and end timestamps of sub-action, (ii) the acting subject, and (iii) the local prompt which details the subject's appearance and movement.

3.3.2 Temporal-aware Subject Integration

The overview of our ReactID is illustrated in Figure 3. To handle the subject timeline integration in diffusion, we introduce a novel subject-synchronized module which consists of two specific designs, i.e, subject-aware cross-attention and temporally-adaptive RoPE, in DiT blocks.

Subject-Aware Cross-Attention. For the subject-synchronized module as depicted in Figure 3, we exploit an attention-based mask predictor to estimate the mask for each subject, and further employ the masks to associate subject-related video latents and timeline prompts in cross-attention. In detail,

we first compute the cross-attention map between reference image tokens and video tokens. Then, we feed the attention map into MLP for mask prediction for each subject, which is supervised by the ground-truth subject mask using a focal loss. To enhance the accuracy of subject mask prediction, we average all results from last five DiT blocks to obtain final subject masks. Next, we implement a label binding mechanism to establish explicit correspondence between subject-related video tokens and their sub-action timeline prompt in cross-attention. Specifically, we assigned a unique numerical label for subject-related video tokens located in the mask, and the corresponding timeline prompt receiving the same label. For instance, video tokens of "woman in red" receives label α , while video tokens of "woman in purple" is assigned label β . Video tokens falling outside all subject masks are classified as background and assigned a distinct label that differs from any subject label. Given the assigned labels, a label-dependent phase modulation is proposed to facilitate video tokens to primarily focus on their corresponding subject's timeline while maintaining global interaction in cross-attention. The phase adjustments on both the query q_i (i.e., video tokens) and the key k_j (i.e., timeline prompt embeddings of each sub-action) are formulated as follows:

$$\tilde{q}_i = q_i e^{l_i \theta_0}, \quad \tilde{k}_j = k_j e^{l_j \theta_0}, \tag{3}$$

where l_i and l_j denote the assigned label value, and θ_0 is the base angle. Such phase adjustment ensures that the attention bias $\tilde{q}_i^{\top} \tilde{k}_j$ is maximized when label l_i and l_j match.

The subject-aware cross-attention guarantees that the video tokens with matched subject labels precisely attend to the timeline prompts at spatial level. The tokens with matching labels can be well-aligned, and those with mismatched labels are softly separated, ensuring the textual context embedded in the timeline annotations are correctly routed to the corresponding subject.

Temporally-Adaptive RoPE. In addition to spatial-level attention design to enhance subject and sub-action association, the precise timeline-aligned personalized video generation also necessitates the subject-action correlation modeling in temporal dimension. Vanilla temporal RoPE (Rotary Position Embedding) in attention exploits the absolute frame indices to construct the embedding, implicitly assuming that all sub-actions have the same duration. Nevertheless, the durations of subactions typically vary, and directly applying vanilla RoPE will lead to attention bias misalignment near the transition boundaries between two adjacent sub-actions. As demonstrated in Figure 3, the distance between the frame f and the midpoint of long sub-action is more than that between f and the midpoint of the subsequent short sub-action. Thus, f will perceive more attention bias to the midpoint of the short sub-action than the long sub-action when using vanilla RoPE. The allocation of attention bias is not reasonable since f belongs to the long sub-action, and this will lead to inaccurate temporal modeling and abrupt transitions. To alleviate this, we propose temporally-adaptive RoPE that rescales the temporal axis when constructing the temporal RoPE, which is invariant to the duration of various sub-action. Taking the frame index f that locates in n-th time interval f that a an example, the rescaled index f' is formulated as:

$$f' = \frac{\left(f - f_n^{\text{start}}\right)T}{f_n^{\text{end}} - f_n^{\text{start}}} + (n-1)T, \quad \text{s.t. } f_n^{\text{start}} \le f \le f_n^{\text{end}}, \tag{4}$$

where T is a pre-defined constant that rescales each sub-action into a uniform temporal length.

Inference with Single Prompt. In addition to the personalized video generation using the structured timeline inputs, our ReactID can be readily extended for video generation given a single natural prompt. To enable this feature, we leverage LLMs to function as an automated temporal planner, which converts the single prompt into the timeline formats. The input prompt is first expanded into a detailed global description, and then decomposed into a sequence of distinct event captions, assigned with a plausible time interval for each sub-action. The obtained results are finally formed as structured timeline for ReactID to generate videos with realistic actions and identity preservation.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets and Metrics. OpenS2V-Eval (Yuan et al., 2025a) is a fine-grained benchmark that contains 180 subject-text pairs focusing on the model's ability to generate subject-consistent videos with natural subject appearance and identity fidelity. Moreover, to better assess the generation of complex, multi-action sequences, we introduce an evaluation set, ReactID-Eval-SEQ. It comprises 120

Table 1: Quantitative comparison of different approaches on the personalized video generation task across metrics: Aesthetics, Motion Smoothness, Motion Amplitude, Face Similarity, GmeScore, NexusScore, and NaturalScore. The best-performing result is highlighted in **bold**, and the second-best is underlined.

Method	Aes.↑	M. Smo.↑	M. Amp.↑	FaceSim [†]	Gme.↑	Nexus.↑	Natural.↑	Total.↑
OpenS2V-Eval: Single Domain								
VACE-P1.3B	48.93%	95.68%	11.91%	18.04%	70.78%	36.24%	66.85%	49.20%
VACE-1.3B	49.41%	95.42%	22.51%	22.37%	70.87%	38.34%	68.33%	51.13%
Phantom-1.3B	49.00%	93.70%	16.38%	44.03%	69.54%	37.72%	66.76%	54.50%
ReactID	49.79%	96.25%	38.21%	40.80%	71.16%	39.85%	70.29%	56.04%
OpenS2V-Eval: Human D	omain							
ID-Animator	42.03%	94.69%	33.54%	31.56%	52.91%	-	56.11%	49.75%
ConsisID	41.77%	79.83%	37.99%	43.19%	72.03%	_	55.83%	54.19%
EchoVideo	36.93%	77.96%	35.58%	48.65%	68.4%	_	62.22%	56.36%
FantasyID	45.60%	85.44%	23.41%	32.48%	72.68%	_	62.36%	54.33%
VACE-P1.3B	51.91%	95.80%	8.78%	19.98%	73.27%	_	65.83%	53.97%
VACE-1.3B	53.18%	95.84%	16.87%	22.29%	73.61%	_	65.28%	54.90%
Phantom-1.3B	50.80%	92.82%	14.99%	46.29%	72.17%	_	65.83%	60.00%
Concat-ID-Wan-AdaLN	43.13%	85.86%	17.19%	50.05%	71.90%	_	68.47%	59.85%
ReactID	52.02%	96.46%	40.79%	44.08%	73.96%	-	69.31%	62.17%
ReactID-Eval-SEQ								
VACE-P1.3B	46.59%	90.07%	15.81%	13.52%	69.83%	34.22%	60.68%	45.66%
VACE-1.3B	47.92%	92.73%	23.65%	19.48%	70.02%	35.18%	64.78%	48.58%
Phantom-1.3B	45.68%	92.16%	15.38%	37.41%	67.35%	38.69%	62.30%	51.40%
ReactID	49.11%	94.58%	39.46%	38.20%	71.23%	37.13%	68.69%	54.42%

subject-text pairs, encompassing 40 human identities and 20 animals. The text prompt in each pair specifies sequential actions for the subject. Our evaluation methodology adheres to the OpenS2V-Nexus (Yuan et al., 2025a), employing seven scores to assess the generated videos: Aesthetics, Motion Smoothness, Motion Amplitude, Face Similarity, GmeScore, NexusScore, and NaturalScore. In line with the OpenS2V-Nexus protocol, all scores are normalized and then aggregated into a final TotalScore, with both processes following the procedures specified therein.

Implementation Details. We use Wan2.1-T2V-1.3B (Wan et al., 2025) as our foundational model. Our ReactID model is trained for 10k steps with a global batch size of 32, using the AdamW optimizer, a learning rate of 1e-5, and 500 warmup steps. For inference, we use 50 denoising steps and a classifier-free guidance (CFG) scale of 5.0. An LLM (Achiam et al., 2023) is employed to convert prompts into a timeline format when necessary.

4.2 EVALUATION OF REACTID

Quantitative Results. In Table 1, we first present an analysis of our proposed ReactID in comparison with several open-source approaches on the OpenS2V-Eval across two scenarios: the Single Domain, which consists of test samples each containing a single subject drawn from various categories, and the Human Domain, which is composed solely of subjects from the 'person' category. All the mentioned baselines utilize foundational models with complexities comparable to ours, providing a fair basis for evaluation. In general, ReactID outperforms baselines across most metrics and achieves the highest overall scores in both domains. In the Single Domain, ReactID achieves superior performance across most metrics, including NexusScore, GmeScore, NaturalScore, and TotalScore. This highlights its capability to effectively harmonize subject consistency with action realism. However, it scores marginally lower than Phantom-1.3B on FaceSim. We attribute this deficit to ReactID generating more dynamic and natural movements (higher motion amplitude/smoothness), which may introduce motion blur, thereby reducing facial similarity to the reference image. In the Human Domain, ReactID achieves a TotalScore of 62.17%, surpassing the strongest of the seven baselines, Phantom-1.3B, by 2.17%. It also secures the top position in four out of the six available metrics (NexusScore is not applicable in this domain). Similar to the results in the Single Domain, ReactID achieve a competitive FaceSim score of 44.08% with a high Motion Amplitude of 40.79%. To further demonstrate ReactID's advantages in generating videos with sequential actions, we conducted experiments on the ReactID-Eval-SEQ. We compared our model with three baseline approaches supporting both human and animal subjects. The results show that ReactID outperforms all baselines across most metrics. Notably, its TotalScore is 3.02% higher than the best competitor, which highlights ReactID's capability for sequential action generation.

Qualitative Results. We proceed with a visual examination of the generation quality, comparing ReactID against four baselines (VACE-P1.3B, VACE-1.3B, Concat-ID-Wan-AdaLN, and Phantom-

Figure 4: Quantitative comparisons of videos produced by different approaches on the OpenS2V-Eval dataset.

Table 2: Comparisons between Table 3: Results on label binding gard to human preference.

384

393

394

396 397

404

405

406

407

408

409

410

411

412

413

414 415

416

417

418

419

420

421

422

423

424

425

426 427

428

429

430

431

gura to mann	T P	010101		
Method	SC↑	$AN\uparrow$	TVA ↑	OVQ
ConsisID	1.97	1.66	2.13	1.84
ConcatID-WA	3.06	2.10	2.91	2.74
Phantom-1.3B	3.46	2.97	2.88	3.25
VACE-1.3B	3.23	3.20	3.08	3.37
ReactID	3.90	4.00	3.47	3.42

ReactID and four baselines with re- in Subject-Aware Cross-Attention.

Method	FaceSim [↑]	Gme.↑	Natural.↑				
Label Stre	ategy						
Adaptive	48.42%	70.16%	66.24%				
Uniform	49.11%	71.23%	68.69%				
Label Value Selection: (α, β)							
(0,1)	49.34%	70.08%	68.51%				
(2, 20)	49.11%	71.23%	68.69%				

Table 4: Ablation results on Temporally Adaptive RoPE in terms of strategy and rescale length.

Method	CLIP-T↑	$TVA\!\!\uparrow$	TC↑
Attention Mask	0.241	2.62	2.25
Vanilla RoPE	0.242	2.67	2.35
TARoPE T=8 TARoPE T=4 TARoPE T=2	0.246	2.70	2.36
	0.247	2.69	2.35
	0.247	2.71	2.38

1.3B) on two input subject-text pairs. As illustrated in Figure 4, while all approaches successfully generate videos featuring the subjects from the reference images, our model produces the most plausible visual quality and naturalistic motions. Taking the left case as an example, ReactID adeptly generates a man in a snowy park giving a thumbs-up gesture. In contrast, the baseline VACE-P1.3B and VACE-1.3B struggles to preserve the subject's key visual attributes from the reference image, leading to a degradation in subject consistency. While Phantom-1.3B effectively replicate the subject's appearance, it fails to follow the text prompt and its video quality is compromised by "copy-paste" artifacts. These artifacts manifest as subjects appearing static or being unnaturally duplicated across frames, which results in visually implausible motion sequences.

Evaluation of ReactID-Data. A comparative analysis of our ReactID-Data against OpenS2V-5M (Yuan et al., 2025a), which includes evaluations of data quality, human preference, and model training impact, is detailed in the supplementary materials.

User Study. We further conducted a user study to evaluate whether videos produced by ReactID better align with human preferences compared to those from four baseline methods: ConsisID, Concat-ID-Wan-AdaLN (ConcatID-WA), Phantom-1.3B, and VACE-1.3B. For this study, we randomly sampled 50 subject-text pairs from OpenS2v-Eval to serve as test cases. We recruited 25 evaluators (17 males, 8 females) with diverse educational backgrounds and ages. Each participant was asked to rate the generated videos on a 5-point Likert scale across four critical dimensions: (1) subject consistency (SC), (2) action naturalness (AN), (3) text-video alignment (TVA), and (4) overall visual quality (OVQ). To ensure a reliable assessment, the final score for each dimension was computed by averaging ratings across all participants and test cases. As presented in Table 2, ReactID demonstrates consistent superiority over all baselines across all four evaluated dimensions. This study thus validates the effectiveness of ReactID from a human perceptual standpoint.

4.3 ABLATION STUDY ON REACTID

In this section, we perform a series of ablation studies to delve into the design of ReactID for personalized video generation. Note that all results here are evaluated on the ReactID-Eval-SEQ.

Difficulty-aware Curriculum Learning. We first delve into the effectiveness of our difficultyaware curriculum learning for personalized video generation, and report the performances in Table 5. When progressively expanding the training set without using any difficulty guidance (i.e., Random

Table 5: Ablation study of the difficulty-aware curriculum learning in ReactID.

Method	Aes.↑	M. Smo.↑	M. Amp.↑	FaceSim [↑]	Gme.↑	Nexus.↑	Natural.↑	Total.↑
Full Data Training	48.19%	92.64%	37.22%	34.89%	69.16%	33.10%	65.13%	51.54%
Random Expansion	48.46%	92.56%	37.46%	34.74%	69.11%	33.24%	64.36%	51.39%
Curriculum w/o $D_{\rm sub}$	48.43%	93.68%	35.27%	38.03%	70.68%	34.33%	68.01%	53.35%
Curriculum w/o $D_{\rm app}$	48.96%	94.07%	38.84%	37.18%	71.16%	35.89%	68.14%	53.76%
Curriculum w/o $D_{\rm sam}$	48.57%	93.26%	37.87%	35.76%	70.41%	35.06%	66.43%	52.68%
Full Curriculum	49.11%	94.58%	39.46%	38.20%	71.23 %	37.13%	68.69 %	54.42%

Expansion), the model achieves 51.39% TotalScore, which is lower than that of training with all data (i.e, 51.54% achieved by **Full Data Training**). To ablate each component of difficulty-aware curriculum learning, we conduct experiments by discarding any one of the three difficulty cues, and the performances are superior to the baseline of no curriculum. By further exploiting all the three cues in curriculum learning to avoid both overfitting to easy samples and underfitting on challenging ones, ReactID with **Full Curriculum** learning shows the best 54.42% TotalScore.

Subject-Aware Cross-Attention. Then, we investigate different technical choices of label binding strategies in subject-aware cross-attention of subject synchronized module. Table 3 details the performances of two runs, i.e., adaptive labeling and our uniform labeling. **Adaptive labeling** assigns varying label values based on predicted mask probabilities. The pixels with higher probability receive larger values, while pixels with lower probability are assigned smaller ones. Instead, **Uniform labeling** assigns a fixed label value to all pixels within each predicted subject mask. Counterintuitively, the uniform labeling strategy outperforms the adaptive counterpart across all metrics. We speculate that the results may be caused by the misalignment between the attended region derived from mask probabilities and the region essential for personalized video generation. Compared to potentially erroneous adaptive labeling, uniformly applying the same label to all tokens in the mask can be more robust to attain better identity preservation. For the uniform labeling, we further explore the influences of the labeling value selection. As indicated by the results, exploiting more distinct label values (i.e., $\alpha = 2$ and $\beta = 20$) for different subjects empirically achieves better performances.

Temporally-Adaptive RoPE. We also explore different approaches of the RoPE design in temporal dimension for temporal alignment in ReactID. Two additional runs of attention masking and vanilla RoPE are conducted for comparison. **Attention masking** directly applies the temporal mask on video tokens to enforce the timeline prompt only attend to the corresponding frames, and there is no temporal RoPE implemented. **Vanilla RoPE** assigns original temporal RoPE to video tokens without temporal axis rescaling. In addition to utilize the metric of CLIP-T, we further leverage two measures from VideoScore (He et al., 2024a), i.e., Text-to-Video Alignment (TVA) and Temporal Consistency (TC) for temporal alignment evaluation. The performances of the three runs are summarized in Table 4. Compared to attention masking or vanilla RoPE that totally abandons RoPE or takes no account of event duration variances in temporal RoPE modeling, our temporally-adaptive RoPE dynamically adjusts the attention bias according to the sub-action duration in RoPE formulation, thereby achieving the best performances in temporal alignment. We also detail the performance comparisons by using different T. In practice, our ReactID yields the best results when T is 2.

5 Conclusions

We have presented ReactID, a comprehensive framework devised to address the fundamental tension between identity preservation and action realism in personalized video generation. We identified and tackled the root causes of this problem, i.e., imprecise data alignment, unstable training, and inadequate action modeling, through a holistic approach. Our solution integrates three key components: a high-quality dataset (ReactID-Data) with reliable identity-video correspondence, a progressive training curriculum for stable learning, and a novel timeline-based conditioning mechanism for fine-grained action control. Extensive experimental results validate that ReactID achieves a new state-of-the-art performances, excelling in both maintaining subject identity and generating natural, complex motions. Beyond its immediate performance gains, we believe this work makes two pivotal contributions to the field. First, the release of the ReactID-Data dataset provides a critical foundation for future research, offering a benchmark for precise identity-action modeling. Second, our timeline-based paradigm demonstrates a scalable and intuitive path toward controllable, multi-action video synthesis, significantly broadening the potential applications of personalized generation.

ETHICS STATEMENT

The primary of this paper is to introduce a personalized video diffusion model for reference subjects to perform desired action while maintaining the identity across frames. In this work, we construct our ReactID-Data from publicly available academic datasets. To ensure ethical compliance, we strictly adhere to licensing policies and respect privacy rights. We only utilize publicly accessible videos that are either explicitly licensed for research use or fall under fair-use considerations. No copyrighted content is redistributed or modified in violation of licensing terms. We uphold the highest ethical standards in the construction, use and dissemination of data.

7 REPRODUCIBILITY STATEMENT

The paper provides all necessary implementation details required to reproduce the main experimental results, including dataset processing procedure in Section 3.1 and Section B, model architectures, training protocols in Section 3.2, hyperparameters and experimental settings in Section 4.1. Additionally, we will release our constructed dataset for academic research, ensuring faithful reproduction of our core results.

REFERENCES

- Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.
- Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang, Shijie Wang, Jun Tang, et al. Qwen2.5-VL Technical Report. *arXiv preprint arXiv:2502.13923*, 2025.
- Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel Mendelevitch, Maciej Kilian, Dominik Lorenz, Yam Levi, Zion English, Vikram Voleti, Adam Letts, et al. Stable video diffusion: Scaling latent video diffusion models to large datasets. *arXiv preprint arXiv:2311.15127*, 2023.
- Tim Brooks, Bill Peebles, Connor Holmes, Will DePue, Yufei Guo, Li Jing, David Schnurr, Joe Taylor, Troy Luhman, Eric Luhman, Clarence Ng, Ricky Wang, and Aditya Ramesh. Video generation models as world simulators. Technical report, OpenAI, 2024.
- Holger Caesar, Jasper Uijlings, and Vittorio Ferrari. Coco-stuff: Thing and stuff classes in context. In CVPR, 2018.
- Hila Chefer, Shiran Zada, Roni Paiss, Ariel Ephrat, Omer Tov, Michael Rubinstein, Lior Wolf, Tali Dekel, Tomer Michaeli, and Inbar Mosseri. Still-moving: Customized video generation without customized video data. *ACM Trans. Graph.*, 2024.
- Hong Chen, Xin Wang, Yipeng Zhang, Yuwei Zhou, Zeyang Zhang, Siao Tang, and Wenwu Zhu. Disenstudio: Customized multi-subject text-to-video generation with disentangled spatial control. In *ACM MM*, 2024.
- Tsai-Shien Chen, Aliaksandr Siarohin, Willi Menapace, Yuwei Fang, Kwot Sin Lee, Ivan Skorokhodov, Kfir Aberman, Jun-Yan Zhu, Ming-Hsuan Yang, and Sergey Tulyakov. Multi-subject open-set personalization in video generation. In *CVPR*, 2025.
- Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical image database. In *CVPR*, 2009.
- Jiankang Deng, Jia Guo, Niannan Xue, and Stefanos Zafeiriou. Arcface: Additive angular margin loss for deep face recognition. In *CVPR*, 2019.
- Yufan Deng, Xun Guo, Yuanyang Yin, Jacob Zhiyuan Fang, Yiding Yang, Yizhi Wang, Shenghai Yuan, Angtian Wang, Bo Liu, Haibin Huang, et al. Magref: Masked guidance for any-reference video generation. *arXiv preprint arXiv:2505.23742*, 2025.

- Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for high-resolution image synthesis. In *ICML*, 2024.
 - Zhengcong Fei, Debang Li, Di Qiu, Jiahua Wang, Yikun Dou, Rui Wang, Jingtao Xu, Mingyuan Fan, Guibin Chen, Yang Li, et al. Skyreels-a2: Compose anything in video diffusion transformers. *arXiv preprint arXiv:2504.02436*, 2025.
 - Yuwei Guo, Ceyuan Yang, Anyi Rao, Zhengyang Liang, Yaohui Wang, Yu Qiao, Maneesh Agrawala, Dahua Lin, and Bo Dai. Animatediff: Animate your personalized text-to-image diffusion models without specific tuning. In *ICLR*, 2024.
 - Xuan He, Dongfu Jiang, Ge Zhang, Max Ku, Achint Soni, Sherman Siu, Haonan Chen, Abhranil Chandra, Ziyan Jiang, Aaran Arulraj, et al. VideoScore: Building Automatic Metrics to Simulate Fine-grained Human Feedback for Video Generation. *arXiv preprint arXiv:2406.15252*, 2024a.
 - Xuanhua He, Quande Liu, Shengju Qian, Xin Wang, Tao Hu, Ke Cao, Keyu Yan, Man Zhou, and Jie Zhang. Id-animator: Zero-shot identity-preserving human video generation. *arXiv preprint arXiv:2404.15275*, 2024b.
 - Matthew Honnibal and Ines Montani. spacy 2: Natural language understanding with bloom embeddings, convolutional neural networks and incremental parsing. *To appear*, 2017.
 - Teng Hu, Zhentao Yu, Zhengguang Zhou, Sen Liang, Yuan Zhou, Qin Lin, and Qinglin Lu. Hun-yuancustom: A multimodal-driven architecture for customized video generation. *arXiv* preprint *arXiv*:2505.04512, 2025a.
 - Teng Hu, Zhentao Yu, Zhengguang Zhou, Jiangning Zhang, Yuan Zhou, Qinglin Lu, and Ran Yi. Polyvivid: Vivid multi-subject video generation with cross-modal interaction and enhancement. *arXiv preprint arXiv:2506.07848*, 2025b.
 - Yuzhou Huang, Ziyang Yuan, Quande Liu, Qiulin Wang, Xintao Wang, Ruimao Zhang, Pengfei Wan, Di Zhang, and Kun Gai. Conceptmaster: Multi-concept video customization on diffusion transformer models without test-time tuning. *arXiv preprint arXiv:2501.04698*, 2025.
 - Yuming Jiang, Tianxing Wu, Shuai Yang, Chenyang Si, Dahua Lin, Yu Qiao, Chen Change Loy, and Ziwei Liu. Videobooth: Diffusion-based video generation with image prompts. In *CVPR*, 2024.
 - Zeyinzi Jiang, Chaojie Mao, Ziyuan Huang, Ao Ma, Yiliang Lv, Yujun Shen, Deli Zhao, and Jingren Zhou. Res-tuning: A flexible and efficient tuning paradigm via unbinding tuner from backbone. In *NeurIPS*, 2023.
 - Zeyinzi Jiang, Zhen Han, Chaojie Mao, Jingfeng Zhang, Yulin Pan, and Yu Liu. Vace: All-in-one video creation and editing. *arXiv preprint arXiv:2503.07598*, 2025.
 - Weijie Kong, Qi Tian, Zijian Zhang, Rox Min, Zuozhuo Dai, Jin Zhou, Jiangfeng Xiong, Xin Li, Bo Wu, Jianwei Zhang, et al. Hunyuanvideo: A systematic framework for large video generative models. *arXiv preprint arXiv:2412.03603*, 2024.
 - Hui Li, Mingwang Xu, Yun Zhan, Shan Mu, Jiaye Li, Kaihui Cheng, Yuxuan Chen, Tan Chen, Mao Ye, Jingdong Wang, et al. Openhumanvid: A large-scale high-quality dataset for enhancing human-centric video generation. In *CVPR*, 2025.
 - Lijie Liu, Tianxiang Ma, Bingchuan Li, Zhuowei Chen, Jiawei Liu, Qian He, and Xinglong Wu. Phantom: Subject-consistent video generation via cross-modal alignment. *arXiv preprint arXiv:2502.11079*, 2025.
 - Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Chunyuan Li, Jianwei Yang, Hang Su, Jun Zhu, et al. Grounding DINO: Marrying Dino with Grounded Pre-Training for Open-Set Object Detection. In *ECCV*, 2024.
 - Ze Ma, Daquan Zhou, Xue-She Wang, Chun-Hsiao Yeh, Xiuyu Li, Huanrui Yang, Zhen Dong, Kurt Keutzer, and Jiashi Feng. Magic-me: Identity-specific video customized diffusion. In *ECCV*, 2024.

- Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning robust visual features without supervision. *arXiv preprint arXiv:2304.07193*, 2023.
 - William Peebles and Saining Xie. Scalable diffusion models with transformers. In ICCV, 2023.
 - Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang Hu, Chaitanya Ryali, Tengyu Ma, Haitham Khedr, Roman Rädle, Chloe Rolland, Laura Gustafson, Eric Mintun, Junting Pan, Kalyan Vasudev Alwala, Nicolas Carion, Chao-Yuan Wu, Ross Girshick, Piotr Dollár, and Christoph Feichtenhofer. Sam 2: Segment anything in images and videos. *arXiv preprint arXiv:2408.00714*, 2024.
 - Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical image segmentation. In *MICCAI*, 2015.
 - Shuai Shao, Zeming Li, Tianyuan Zhang, Chao Peng, Gang Yu, Xiangyu Zhang, Jing Li, and Jian Sun. Objects365: A large-scale, high-quality dataset for object detection. In *ICCV*, 2019.
 - PaddleOCR Team. Paddleocr. PaddleOCR Lab, 2024a. URL https://github.com/PaddlePaddle/PaddleOCR.
 - PySceneDetect Development Team. Pyscenedetect: An open-source video scene detection tool. https://www.scenedetect.com/, 2024b.
 - Team Wan, Ang Wang, Baole Ai, Bin Wen, Chaojie Mao, Chen-Wei Xie, Di Chen, Feiwu Yu, Haiming Zhao, Jianxiao Yang, et al. Wan: Open and advanced large-scale video generative models. *arXiv preprint arXiv:2503.20314*, 2025.
 - Wenjing Wang, Huan Yang, Zixi Tuo, Huiguo He, Junchen Zhu, Jianlong Fu, and Jiaying Liu. Swap attention in spatiotemporal diffusions for text-to-video generation. In *ICCV*, 2025.
 - Zhao Wang, Aoxue Li, Lingting Zhu, Yong Guo, Qi Dou, and Zhenguo Li. Customvideo: Customizing text-to-video generation with multiple subjects. *arXiv preprint arXiv:2401.09962*, 2024.
 - Jiangchuan Wei, Shiyue Yan, Wenfeng Lin, Boyuan Liu, Renjie Chen, and Mingyu Guo. Echovideo: Identity-preserving human video generation by multimodal feature fusion. *arXiv preprint arXiv:2501.13452*, 2025.
 - Yujie Wei, Shiwei Zhang, Zhiwu Qing, Hangjie Yuan, Zhiheng Liu, Yu Liu, Yingya Zhang, Jingren Zhou, and Hongming Shan. Dreamvideo: Composing your dream videos with customized subject and motion. In *CVPR*, 2024a.
 - Yujie Wei, Shiwei Zhang, Hangjie Yuan, Xiang Wang, Haonan Qiu, Rui Zhao, Yutong Feng, Feng Liu, Zhizhong Huang, Jiaxin Ye, et al. Dreamvideo-2: Zero-shot subject-driven video customization with precise motion control. *arXiv preprint arXiv:2410.13830*, 2024b.
 - Jianzong Wu, Xiangtai Li, Yanhong Zeng, Jiangning Zhang, Qianyu Zhou, Yining Li, Yunhai Tong, and Kai Chen. Motionbooth: Motion-aware customized text-to-video generation. In *NeurIPS*, 2024.
 - Bin Xiao, Haiping Wu, Weijian Xu, Xiyang Dai, Houdong Hu, Yumao Lu, Michael Zeng, Ce Liu, and Lu Yuan. Florence-2: Advancing a unified representation for a variety of vision tasks. In *CVPR*, 2024.
 - Zhuoyi Yang, Jiayan Teng, Wendi Zheng, Ming Ding, Shiyu Huang, Jiazheng Xu, Yuanming Yang, Wenyi Hong, Xiaohan Zhang, Guanyu Feng, Da Yin, Yuxuan.Zhang, Weihan Wang, Yean Cheng, Bin Xu, Xiaotao Gu, Yuxiao Dong, and Jie Tang. Cogvideox: Text-to-video diffusion models with an expert transformer. In *ICLR*, 2025.
 - Shenghai Yuan, Xianyi He, Yufan Deng, Yang Ye, Jinfa Huang, Bin Lin, Jiebo Luo, and Li Yuan. Opens2v-nexus: A detailed benchmark and million-scale dataset for subject-to-video generation. *arXiv preprint arXiv:2505.20292*, 2025a.

Shenghai Yuan, Jinfa Huang, Xianyi He, Yunyang Ge, Yujun Shi, Liuhan Chen, Jiebo Luo, and Li Yuan. Identity-preserving text-to-video generation by frequency decomposition. In CVPR, 2025b. Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language image pre-training. In CVPR, 2023. Yunpeng Zhang, Qiang Wang, Fan Jiang, Yaqi Fan, Mu Xu, and Yonggang Qi. Fantasyid: Face knowledge enhanced id-preserving video generation. arXiv preprint arXiv:2502.13995, 2025a. Zhongwei Zhang, Fuchen Long, Yingwei Pan, Zhaofan Qiu, Ting Yao, Yang Cao, and Tao Mei. TRIP: Temporal Residual Learning with Image Noise Prior for Image-to-Video Diffusion Models. In CVPR, 2024. Zhongwei Zhang, Fuchen Long, et al. MotionPro: A Precise Motion Controller for Image-to-Video Generation. In CVPR, 2025b. Yupeng Zhou, Daquan Zhou, Ming-Ming Cheng, Jiashi Feng, and Qibin Hou. Storydiffusion: Con-sistent self-attention for long-range image and video generation. In *NeurIPS*, 2024.

A APPENDIX: CLARIFICATION OF USING LLMS

In the period of paper writing, we only exploit the Large Language Model (LLM), i.e., GPT-4, for word polishing to improve the presentation quality. No LLMs contributes to the core scientific methods, technical contents, or any substantive research contributions.

B APPENDIX: DETAILS OF REACTID-DATA CONSTRUCTION

B.1 VIDEO DATA PREPARATION

We first collect a pool of 20 million videos from publicly available video datasets such as HD-VG-130M (Wang et al., 2025) and OpenHumanVid (Li et al., 2025). To detect the scene transition and partition long videos into single shot video clips, we utilize the PySceneDetect (Team, 2024b) to coarsely find the cut points according to color and brightness variations. Then, we detect the potential semantical transition points in videos using the cosine similarity of DINOv2 (Oquab et al., 2023) features between adjacent frames. Video clips longer than 5 seconds are saved to files using H.264 codec. To remove the text overlays, subtitles, and watermarks from videos, we use PaddleOCR (Team, 2024a) to find all text regions throughout the video, then crop it to the largest possible textfree area. Next, we apply a suite of automatic video quality assessment methods to evaluate each video clip across multiple facets, including aesthetic quality, technical quality, and motion dynamics, and filter out the clips with low scores in any of these dimensions. To provide rich, subject-centric textual captions which are crucial for personalized video generation, we employ an off-the-shelf vision-language model (Qwen2.5-VL (Bai et al., 2025)), which is prompted to analyze each subject appearing in the video and describe their physical appearance, corresponding actions, and background environment. According to the descriptions, video clips that possibly contain an excessive number of subjects (e.g., a crowd of people or a line of cars) are filtered out, ensuring that the remaining videos clear focus on a limited number of subjects.

Video Scene Cut. To prepare a high-quality video clip pool, we employ a systematic two-stage strategy to partition long videos into semantically coherent clips. The process begins with a coarse, content-aware segmentation using PySceneDetect. Subsequently, we refine these initial segments with DINOv2, inserting additional cuts at temporal locations where the cosine similarity between adjacent frame features drops below a predefined threshold. Finally, we retain all clips with durations above 5 seconds, which are well-suited for personalized video generation model training.

Video Quality Filtering. We implement a multi-dimensional video quality scoring mechanism:

- **Aesthetic Score:** We utilize an improved aesthetic predictor to evaluate the visual appearance of each clip, only retaining those with high aesthetic scores.
- Motion Score: To distinguish deliberate subject motion from incidental camera movement, we compute optical flow using RAFT model. The foreground and background flows are calculated separately, and the final score is based on the foreground flow, effectively isolating and quantifying subject-specific motion.
- **Content Purity:** We employ PaddleOCR to detect and remove frames containing overlaid text or watermarks. Frames with OCR confidence scores above 0.7 are flagged, and the clip is cropped to retain only clean visual content.
- Technical Quality: We assess the technical quality using DOVER model for data filtering.

Video Captioning. Effective captions for personalized video generation must be subject-centric, detailing the reference subject's appearance and motion while incorporating relevant contextual cues from the background environment. To meet this requirement, we employ Qwen2.5-VL-7B to generate rich descriptions. Moreover, we filter out any captions containing plural entity nouns. This operation not only maintains a clear focus on a limited number of subjects, but also facilitates consistency between the used textual prompts during training and inference.

B.2 Dataset Annotation

 We further construct the timeline annotation based on the collected video data. There are four main steps in this data processing stage, i.e., entity label extraction, subject detection and segmentation, face detection and segmentation, and timeline prompt captioning.

Entity Label Extraction. To accurately identify distinct entities, we adopt a hybrid strategy that leverages both textual and visual information for entity labeling, mitigating the risk of error propagation from the video recaptioning. (1) For object label extraction, a text-based approach is exploited, which first pre-defines a taxonomy of common objects, and then use a NER model, i.e., SpaCy (Honnibal & Montani, 2017), to parse the captions and extract relevant entity labels in the taxonomy. (2) To deal with human and living subjects, we shift to a vision-based method to accurately discriminate entities with similar semantics. We leverage Qwen2.5-VL model to analyze the video content and extract unique, descriptive entity labels. The potential inaccuracies caused by the generated captions can be alleviated, providing a more robust foundation for subsequent subject and face detection.

Subject Detection and Segmentation. Conventional CLIP-based detectors like GroundingDINO (Liu et al., 2024) can fail to distinguish semantically similar concepts due to the limitation in understanding. To overcome this, we leverage an MLLM-based detector, i.e., Florence-2 (Xiao et al., 2024), for highly accurate subject detection. To further verify label-subject correspondence, we perform a subsequent classification step using SigLIP (Zhai et al., 2023) as post-verification. Finally, we apply SAM2.1 (Ravi et al., 2024) to generate segmentation masks for the detected subjects. These masks are further refined using morphological operations to improve boundary precision.

Face Detection and Segmentation. To detect high-quality human faces, we first utilize Insightface toolbox on video frames with 2 FPS sampling rate. Then, we apply Non-Maximum Suppression with a 25% overlap threshold to filter duplicates and remove outlier bounding boxes. For each unique person, the detected faces are ranked by confidence, and five representative frames are uniformly sampled. Finally, SAM2.1 model is employed to generate precise segmentation masks for these selected frames, which are subsequently refined using morphological operations as well.

Timeline Prompt Captioning. The quality of timeline prompt caption largely depends on the caption model's ability to accurately localize event timestamps and describe the action contents. Thus, we conducted a comprehensive analysis of advanced multimodal large models, such as InternVL3, Qwen2.5-VL, and MiniCPM. Through evaluation, we find that the model series of Qwen2.5-VL demonstrate a superior capacity on both temporal event localization and fine-grained action description. We therefore selected Qwen2.5-VL-72B and its quantized version, Qwen2.5-VL-72B-AWQ, to build our annotation pipeline. We instruct the caption model to identify the main subjects and detect the timestamps of the event starts and ends based on meaningful action changes.

C APPENDIX: STATISTICAL ANALYSIS ON REACTID-DATA

Figure 5 further demonstrates a statistical analysis on our proposed ReactID-Data. We measure the video dataset from the perspectives of duration, resolution, word sequence length of prompt, aesthetic score, and motion score. The word cloud of entity label is also depicted to show the major components of the detected subjects. According to the statistics, the duration of more than 97% videos is longer than 5 seconds, and all videos have a resolution of at least 720P, guaranteeing the high video quality for model training. Meanwhile, around 94% videos having ≥ 50 words in each text prompt indicate that ReactID-Data can provide precise and comprehensive textual descriptions for videos to enhance video generation learning. The distribution of motion score is very uniform, reflecting that the training data can cover both relative static and dynamic scenes. In the word cloud, the entities such as human (e.g., woman and man), animals (e.g., horse) and common objects (e.g., sofa and mug) have been included. The reasonable data composition of ReactID-Data highlights the merit for precise personalized video generation modeling.

D APPENDIX: OVERALL ARCHITECTURE OF REACTID

Given the subject-to-video pairs with timeline annotations, we proceed along the direction of typical personalized video generation DiT framework for subject condition injection, and further consider

Figure 5: Statistical analysis on our ReactID-Data.

Figure 6: Examples of data items in the ReactID-Data.

the timeline information learning. We choose the Wan2.1-1.3B (Wan et al., 2025) as the base architecture of our ReactID. To preserve the intrinsic capabilities of the original DiT blocks while enabling personalized video generation, we introduce a dedicated conditioning branch for reference image feature encoding. This conditioning branch consists of several reference blocks that are structurally identical to the base DiT blocks. We first apply the VAE on the reference images to obtain the image latents, which are treated as the condition and further fed into the condition branch. The extracted middle-level features from the image condition are then injected into the video diffusion model via Res-Tuning (Jiang et al., 2023) manner. To handle the subject timeline integration in diffusion, we introduce a novel subject-synchronized module which consists of two specific designs, i.e, subject-aware cross-attention and temporally-adaptive RoPE, in DiT blocks. The former ensures robust subject-action association in multi-subject scenarios by accurately binding each action to its corresponding subject. The latter precisely anchors each sub-action within the timeline to its designated timestamps, enhancing temporally alignment and semantically coherence.

Table 6: Comparisons of ConsisID trained on different datasets. Models are evaluated on the ReactID-Eval-SEQ dataset.

Training Data	FaceSim↑	Gme. ↑	Natural. ↑
OpenS2V-5M	45.12%	72.86%	59.51%
ReactID-Data	45.41%	73.20 %	64.77 %

Figure 7: Classification and preference comparison between OpenS2V-5M and our ReactID-Data.

Table 7: Quantitative comparison of different approaches on our ReactID-Eval-SEQ dataset. The best-performing result is highlighted in **bold**.

Method	Aes.↑	M. Smo.↑	M. Amp.↑	FaceSim↑	Gme.↑	Nexus.↑	Natural.↑	Total.↑
Without Prompt	Pre-processi	ing						
VACE-1.3B	47.92%	92.73%	23.65%	19.48%	70.02%	35.18%	64.78%	48.58%
Phantom-1.3B	45.68%	92.16%	15.38%	37.41%	67.35%	38.69%	62.30%	51.40%
With LLM Enhar	nced Prompt	s						
VACE-1.3B	48.20%	92.60%	23.45%	19.70%	70.00%	35.30%	64.90%	48.70%
Phantom-1.3B	45.80%	92.05%	15.25%	37.20%	67.50%	38.60%	62.40%	51.30%
With LLM Plann	ed Structure	d Timeline Pro	mpts					
VACE-1.3B	47.98%	92.78%	23.38%	19.25%	69.96%	35.05%	64.52%	48.25%
Phantom-1.3B	45.75%	92.10%	15.18%	37.05%	67.45%	38.50%	62.05%	50.95%
ReactID	49.11%	94.58%	39.46%	38.20%	71.23%	37.13%	68.69%	54.42%

E APPENDIX: MORE EVALUATION

E.1 COMPARISON BETWEEN OPENS2V-5M AND REACTID-DATA

We conduct a comprehensive comparison between recent public OpenS2V-5M (Yuan et al., 2025a) and our proposed ReactID-Data. First, we randomly select 2,000 samples from both OpenS2V-5M and ReactID-Data, then employ CLIP to classify subject images against their corresponding entity labels. We compute F1-score to evaluate classification performance. As shown in left part of Figure 7, ours achieves significantly higher F1-scores, demonstrating the superiority of our data construction pipeline. When handling complex scenarios containing entities with high visual or semantic similarity, our pipeline can maintain precise entity labeling and accurate subject extraction. However, the commonly adopted text-based entity extraction approach (i.e., Grounded-SAM) in OpenS2V may suffer from omissions and misclassifications. To further validate the labeling quality of the two measurements, we conduct a human evaluation. Specifically, we randomly sample 2,000 valid instances from the HD-VG-130M dataset and process them using both the conventional data pipeline and our data pipeline. 25 participants are recruited to evaluate the quality of both datasets, specifically assessing whether subject extraction is accurate, complete, and consistent with the assigned labels. Each participant selects the better-processed result from the two alternatives. We report the average preference rate across all trials in the right part of Figure 7. There are 63% of participants that favor our data processing pipeline, compared to only 37% for the conventional approach. To further testify the quality of ReactID-Data, we train ConsisID from scratch under identical setting on 500K samples randomly selected from the OpenS2V-5M and ReactID-Data, respectively. As shown in Table 6, the model trained on ReactID-Data outperforms the model trained on equivalent data in OpenS2V-5M, confirming that our ReactID-Data facilitates superior model optimization in personalized video generation.

E.2 Model Performances on Different Prompt Formats

To analyze whether the existing models can be improved through enriched text prompts, we select two top-performing models, VACE-1.3B and Phantom-1.3B, and perform these two methods on the input prompts processed by two augmentation strategies: prompt enhancement and structured timeline prompts. The performances on OpenS2V are illustrated in Table 7. Prompt enhancement yields minimal performance gains across all baselines that generate videos without any prompt pre-

Figure 8: An additional example of ReactID. The model successfully generates a sequence of actions performed by the same person: basketball crossing-over, shooting, and singing.

processing. The results are expected since the majority of prompts in the OpenS2V already consist of detailed, comprehensive captions. Notably, for the models trained without timeline annotations, the structured timeline prompt also fails to deliver significant improvements and, in some cases, leads to performance degradation. This somewhat reveals a fundamental limitation: models not explicitly trained on timeline-structured data possess limited temporal reasoning capabilities, and cannot effectively leverage sequential action descriptions to enhance motion naturalness. Without designing proper temporal modeling architectures, simply reformatting single text prompts into timeline structures may introduce confusion for action modeling in video generation. These findings underscore the importance of architectural design and training paradigms tailored for temporal action modeling, rather than solely relying on input formatting modifications.