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Abstract

We propose a novel neural architecture for computer vision – WaveMix – that is resource-
efficient and yet generalizable and scalable. While using fewer trainable parameters, GPU
RAM, and computations, WaveMix networks achieve comparable or better accuracy than
the state-of-the-art convolutional neural networks, vision transformers, and token mixers for
several tasks. This efficiency can translate to savings in time, cost, and energy. To achieve
these gains we used multi-level two-dimensional discrete wavelet transform (2D-DWT) in
WaveMix blocks, which has the following advantages: (1) It reorganizes spatial information
based on three strong image priors – scale-invariance, shift-invariance, and sparseness of
edges – (2) in a lossless manner without adding parameters, (3) while also reducing the
spatial sizes of feature maps, which reduces the memory and time required for forward and
backward passes, and (4) expanding the receptive field faster than convolutions do. The
whole architecture is a stack of self-similar and resolution-preserving WaveMix blocks, which
allows architectural flexibility for various tasks and levels of resource availability. WaveMix
establishes new benchmarks for segmentation on Cityscapes; and for classification on Galaxy
10 DECals, Places-365, five EMNIST datasets, and iNAT-mini and performs competitively
on other benchmarks.

1 Introduction

Natural images have a number of priors that are not comprehensively exploited in any single type of neural
network architecture. For instance, (1) convolutional neural networks (CNNs) only model shift-invariance
using convolutional design elements (Lecun et al., 1998; Krizhevsky et al., 2012; Simonyan & Zisserman, 2014;
Szegedy et al., 2014; He et al., 2015; Howard et al., 2017; Hu et al., 2017; Huang et al., 2016), (2) vision
transformers (ViT) model long-range dependencies using self-attention (Zhao et al., 2020; Dosovitskiy et al.,
2021), and (3) token mixers also model the long-range dependencies but without the quadratic complexity
of self-attention (Tolstikhin et al., 2021; Guibas et al., 2021; Trockman & Kolter, 2022). However, none
of these architectures exploit other image priors, such as scale-invariance and spatial sparseness of edges.
Self-attention amplifies low-frequency components while convolutions amplify high frequency components
in images (Park & Kim, 2022). Additionally, transformers and token-mixers cannot easily be adapted for
per-pixel tasks, such as segmentation, without significant architectural changes (Trockman & Kolter, 2022).

Table 1: A sample of WaveMix generalization performance and parameters compared with previous state-
of-the-art (SOTA). See text for results on additional datasets.

Task Metric Datasets Previous SOTA WaveMix
Pre-train Train Test Ref. Perf. Param. Perf. Param.

Segmentation mIoU (SS) ImageNet-1k Cityscapes Cityscapes val. (Xie et al., 2021) 82.40 85 M 82.70 63 M
- Places-365 Places-365 val. (Wang et al., 2020b) 56.32 31 M 56.45 28 M

Classification Accuracy - EMNIST Letters EMNIST Letters (Kabir et al., 2020) 95.88 4 M 95.96 4 M
ImageNet-1k Galaxy 10 DECals Galaxy 10 DECals (Dagli, 2023) 94.86 272 M 95.42 28 M
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We solve the challenges of architectural flexibility and comprehensive exploitation of natural image priors
by proposing a novel neural architecture for computer vision called WaveMix, which generalizes better with
fewer resources for a variety of tasks, as shown in Table 1.

At the heart of WaveMix are three design elements – a stack of self-similar WaveMix blocks, a multi-level
two-dimensional discrete wavelet transform (2D-DWT) within each block, and spatial resolution contraction
followed by expansion back to the original size within a block. We use the multi-level 2D-DWT for resource-
efficient token-mixing and to exponentially increase the receptive field. Additionally, 2D-DWT transform
partitions the image features into different frequencies and processes them separately, allowing the model
to focus equally on both low-frequency and high-frequency component. These design elements are our key
contributions, along with adaptations, extensive experimentation, and analysis to demonstrate the versatility,
utility, and parsimony of the WaveMix design.

We relate WaveMix to previous works in Secion 2, where we delve further into the image priors modeled
by various classes of neural architectures for vision, and the use of wavelet transform. Our key innovations
– the WaveMix blocks, use of multi-level 2D-DWT in each block, channel mixing, and the preservation of
feature tensor dimension – and their rationale are explained in Section 3. In Section 4 we show compre-
hensive experiments and results that compare WaveMix with several other state-of-the-art (SOTA) models
for multiple vision tasks and show that WaveMix models can match or outperform much larger models in
generalization. In addition to generalization, we provide evidence of scalability (adding WaveMix blocks or
channels to improve generalization), and parsimony (smaller number of parameters, GPU RAM requirement,
and inference time) of the WaveMix architecture.

2 Background and Related Works

Statistical properties of natural images that have been well-studied include shift-invariance, scale-
invariance, high spatial auto-correlation and preponderance of certain colors, as well as spatial sparseness
of edges (Field, 1993; Ruderman, 1994; Lee, 1996; Párraga et al., 2002). Shift-invariance, which is a form
of stationarity of signals, arises due to the assumption of uniform distribution over the location of objects
and visual features. Scale-invariance arises from the possibility of an object being at any distance from the
camera, and the hierarchical nature of groups of objects, objects, their parts, and parts of parts, etc (Zoran
& Weiss, 2009). High auto-correlation arises from each object being relatively more homogeneous within
as compared to the other objects in the scene. The finite spatial extents of objects lead to spatially sparse
occlusion boundaries that manifest as edges. Natural selection has facilitated survival of camouflaged species
of lifeforms (which are popular salient objects in images) that have edge-like patterns on their outer surfaces.

Two-dimensional discrete wavelet transform (2D-DWT) has been extensively researched to exploit
various properties of images for multiple applications, including denoising (Ruikar & Doye, 2010), super-
resolution (Guo et al., 2017), recognition (Mahmood et al., 2018), and compression (Lewis & Knowles, 1992).
Features extracted using wavelet transforms have also been used extensively with machine learning mod-
els (Mowlaei et al., 2002), such as support vector machines and neural networks (Ranaware & Deshpande,
2016), especially for image classification (Nayak et al., 2016). Some instances of integration of wavelets in
neural architectures include the following. ScatNet architecture cascades wavelet transform layers with non-
linear modulus and average pooling to extract translation-invariant features that are robust to deformations
and preserve high-frequency information for image classification (Bruna & Mallat, 2013). WaveCNets re-
places max-pooling, strided-convolution, and average-pooling of CNNs with 2D-DWT for noise-robust image
classification (Li et al., 2020). Multi-level wavelet CNN (MWCNN) has been used for image restoration for
a better trade-off between receptive field size and computational efficiency (Liu et al., 2018). Wavelet trans-
form has also been combined with a fully convolutional neural network for image super-resolution (Kumar
et al., 2017). Pooling using wavelets have been shown to perform comparably with other pooling tech-
niques (Williams & Li, 2018). WaveSNet uses DWT to downsample and inverse-DWT to upsample feature
maps for segmentation (Li & Shen, 2020). Recently, wavelet transform has been used with self-attention in
transformers (Patro & Agneeswaran, 2023).

What makes DWT an attractive tool for analysis of natural signals are its multi-resolution properties and
treatment of spatio-temporally sparse discontinuities (edges). A 1D-DWT splits an input 1-D signal x of
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length H into two sub-bands roughly of length H/2 each (Daubechies, 1990). The first one is called the
approximate sub-band wa(x), which can be thought of as the lower-resolution version of the original signal.
In its simplest form as a Haar wavelet, wa(x) is proportional to the sum of two consecutive samples of the
input, followed by downsampling by a factor of 2. The second one is called the detail sub-band wd(x), which
captures the information lost by the approximation sub-band. In Haar wavelet, it is proportional to the
difference of two consecutive samples, followed by a downsampling operation. That is, both sub-bands are
convolution with a 2×1 filter with stride 2 and can be thought of as local low and high-frequency components,
respectively, that together are orthogonal and compact the signal energy (Mallat, 1989).

A 2D-DWT is the application of 1D-DWT on the rows of a 2-D signal, followed by a column-wise 1D-DWT of
the resultant rows. A 2D-DWT has one approximation waa and three detail sub-bands wad, wda, wdd (Kumar
& Sethi, 2018). The approximation sub-band can be further decomposed using a repeated application of
the wavelet transform, and the resultant decomposition is known as level 2 transform. All sub-bands model
shift-invariance, the detail sub-bands model spatial derivatives (e.g., edges), and the levels model spatial
scale (Daubechies, 1990).

CNN generalization accuracy for various vision tasks has improved over the last decade due to architectural
innovations that ease gradient flow to deeper layers (He et al., 2015; Szegedy et al., 2014),or reduce parameters
per layer by restricting convolutional kernel size or dimension (Simonyan & Zisserman, 2014; Chollet, 2016),
or multi-scale feature aggregation using multiple branches (Chen et al., 2019). Attention layers for space or
channel seem to improve the performance of CNNs to some extent (Chen et al., 2017), but these have not
been widely adopted for vision tasks due to a lack of advantage in deeper CNN architectures.

Vision transformers (ViTs), inspired by the success of transfomers on NLP tasks, use a one-dimensional
sequence of tokens corresponding to image patches (sub-images, tiles) (Dosovitskiy et al., 2021). Although,
ViTs have proven to be scalable models that generalize better than CNNs for image classification, the
destruction of potentially useful 2-D structure during patch tokenization is countered by the use of very large
datasets and number of parameters to re-learn class-specific spatial associations in the destroyed direction
(say, vertical) in an unintuitive way. Training these models requires access to multiple GPUs with large
RAMs. While there is some long-range association between visual features to be learned for image-based
reasoning, the use of quadratic self-attention may be an overkill, unlike its clear advantage in natural language
processing.

Hybrid models aim to reduce the computational requirements of vision transformers by incorporating
image-specific inductive biases in the form of additional architectural elements including distillation (Touvron
et al., 2020), convolutional embeddings (Jeevan & Sethi, 2022; Hassani et al., 2021), convolutional tokens (Wu
et al., 2021), and encoding overlapping patches (Yuan et al., 2021). The quadratic complexity with respect to
the sequence length (# of tokens) of transformers has also led to the search for other linear approximations
of self-attention for efficiently mixing tokens (Jeevan & Sethi, 2022). However, these models suffer from
similar inflexibility as the ViTs.

Token mixers that replace the self-attention in transformers with fixed token mixing mechanisms, such as
the Fourier transform (Guibas et al., 2022; Rao et al., 2021), achieves comparable generalization with lower
computational requirements on NLP tasks (Lee-Thorp et al., 2021). Other token-mixing architectures (Yu
et al., 2021) have also been proposed that use standard neural components, such as convolutional layers
and multi-layer perceptrons (MLPs, i.e. 1 × 1 convolutional filters) for mixing visual tokens. MLP-mixer
uses two MLP layers applied first to an image patch sequence and then to the channel dimension to mix to-
kens (Tolstikhin et al., 2021). ConvMixer uses standard convolutions along spatial dimensions and depth-wise
convolutions across channels to mix tokens with fewer computations than attention mechanisms (Trockman
& Kolter, 2022). PoolFormer uses pooling as a token-mixing operation (Yu et al., 2021). These token mixing
models perform efficiently compared to transformers without compromising generalization. However, these
models do not use image priors well.

Our work combines ideas from CNNs, token mixers, and wavelet transforms with innovative architectural
elements to use image priors in a computationally and parametrically more efficient manner.
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3 WaveMix Architectural Framework
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Figure 1: WaveMix architecture for (a) image classification and (b) semantic segmentation, along with (c)
details of the WaveMix block

Due to the properties of wavelet transform mentioned in the previous section – shift-invariance, multi-
resolution analysis, edge-detection, local operations, and energy compaction – we propose using it in neural
network architectures for computer vision as token mixers, feature reorganizers, and spatial compactors with
fixed weights as described below.

3.1 Overall architecture

As shown in Figure 1 (a) and (b), the macro-level idea behind the proposed framework is to stack N (a
hyperparameter) similar WaveMix blocks that are fully convolutional (by design) in both spatial dimensions
and maintain the spatial resolution of the feature maps across the blocks. While some CNNs are fully
convolutional, vision transformer architectures tend to maintain the sequence lengths (which is a flattened
version of the spatial resolution). Combining these two elements gives WaveMix architectural flexibility to
easily adapt to various image dimensions and tasks. For instance, while pixel maps for semantic segmentation
or image enhancement are a natural outcome of this framework, adding an optional MLP layer for channel
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mixing followed by global average pooling and softmax are enough to adapt it for classification of images
of various sizes. That is, WaveMix processes image as a 2D grid and not as sequence of pixels/patches
by unrolling the image as done in transformer models. For additional flexibility, we pass the input image
x′ ∈ RH×W ×3 through an initial convolutional layer which increases the number of channels to embedding
dimension C (i.e., x ∈ RH×W ×C , where C is a hyperparameter) before passing it to WaveMix blocks.
Optionally, the initial convolutional layer can also be used to reduce the input resolution either using strided
or patchifying convolutions (Trockman & Kolter, 2022; Liu et al., 2022).

3.2 WaveMix block

As shown in Figure 1 (c), the design of the WaveMix block is such it that does not collapse the spatial
resolution of the feature maps, unlike CNN blocks that use pooling operations (He et al., 2015). And yet,
it reduces the number of computations required by reducing the spatial dimensions of the feature maps
using 2D-DWT, which translates to a reduction in GPU RAM, training time, and inference time. However,
unlike pooling or strided convolutions, a 2D-DWT is lossless as it expands the number of channels by
the same factor by which it reduces spatial resolution. Furthermore, it has additional energy compaction
(sparsification) properties that are not offered by random filters or Fourier basis.

Denoting input and output tensors of the WaveMix block by xin and xout, respectively; level of the wavelet
transform by l ∈ {1...L}, the four wavelet filters along with their downsampling operations at each level
by wl

aa, wl
ad, wl

da, wl
dd (a for approximation, d for detail); convolution, multi-layer perceptron (MLP), trans-

posed convolution (upconvolution), and batch normalization operations by c, m, t, and b, respectively; and
their respective trainable parameter sets by ξ, θl, ϕl, and γl, respectively; concatenation along the channel
dimension by ⊕, and point-wise addition by +, the operations inside a WaveMix block can be expressed
using the following equations:

x0 = c(xin, ξ); xin ∈ RH×W ×C , x0 ∈ RH×W ×C/4 (1)

xl = [wl
aa(x0) ⊕ wl

ad(x0) ⊕ wl
da(x0) ⊕ wl

dd(x0)]; xl ∈ RH/2l×W/2l×4C/4, l ∈ {1...L} (2)

x̂l = [xl ⊕ x̃l+1], x̂L = xL; l ∈ {1...L − 1} (3)

x̃l = b(t(m(x̂l, θl), ϕl), γl); x̃l ∈ RH/2l−1×W/2l−1×Cl∀l > 1 Cl = C/2, C1 = C, l ∈ {1...L} (4)

xout = x̃1 + xin; xout ∈ RH×W ×C (5)

The WaveMix block extracts learnable and space-invariant features using a convolutional layer, followed
by spatial token-mixing and downsampling for scale-invariant feature extraction using multi-level 2D-
DWT (Lütkebohle, 2018), followed by channel-mixing using a learnable MLP (1×1 conv) layer, followed
by restoring spatial resolution of the feature map using a transposed-convolutional layer. The use of train-
able convolutions before the wavelet transform is a key design aspect of our architecture as it allows the
extraction of only those feature maps that are suitable for the chosen wavelet basis functions. The convolu-
tional layer c decreases the embedding dimension C by a factor of four so that the concatenated output xl

after each level of 2D-DWT has the same number of channels as the input xin (Eq. 1 and Eq. 2). That is,
since 2D-DWT is a lossless transform, it expands the number of channels by the same factor (using concate-
nation) by which it reduces the spatial resolution by computing an approximation sub-band (low-resolution
approximation) and three detail sub-bands (spatial derivatives) (Daubechies, 1990) for each input channel
(Eq. 2). Use of this image-appropriate and lossless downsampling using 2D-DWT allows WaveMix to use
fewer layers and parameters. The four outputs from each level are concatenated together to form xl as shown
in Eq. 2.
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We decide the number of levels of wavelet decomposition L based on the image size. Each level l reduces
the output size by a factor of 2×2. Our experiments show that using three or four levels of 2D-DWT are
sufficient to ensure token-mixing over long spatial distances. For instance, a 3-level DWT decomposition of
an image of size 128×128 simultaneously creates feature maps of size 64×64, 32×32 and 16×16, which are
sufficient for spatial token mixing. Using more levels of DWT increases the receptive field exponentially, but
it also amplifies noise in the model (Daubechies, 1990), which degrades the performance.

The concatenated output from each level of DWT xl is concatenated with the output from the next higher
level path x̃l+1 as shown in Eq. 3. The output x̂l is then passed to an MLP layer m, which has two 1 × 1
convolutional layers with an inverse bottleneck design (multiplication factor > 1) separated by a GELU
non-linearity. After this, the feature map resolution is doubled using transposed-convolutions t followed by
batch normalization b (Eq. 4). We do not use transposed-convolutions in each DWT level path to directly
resize image back to the original input resolution because doing so will require larger filter sizes, which will
lead to exponential increase in parameters.

The number of channels in output of higher level DWT paths are halved using transposed convolutional
layer t before using batch norm b (Eq. 4). The output x̃l is concatenated with DWT output xl−1 of the
previous level (Eq. 3). Hence, there is an accumulation of features from the higher levels of DWT to lower
levels and the final output after all the token-mixing and feature extraction is obtained from the level 1 path
as x̃1. A residual connection is used to ease the flow of the gradient (He et al., 2015) (Eq. 5).

The feed-forward (MLP) sub-layers immediately following DWT have access to the outputs at the corre-
sponding level and those from higher levels (after transposed-convolution) to learn both local and global
features. As the information from higher levels propagate to lower levels, mixing of local and global informa-
tion enables the model to learn efficiently with fewer parameters and layers. This multi-resolution mixing of
information also leads to an exponential expansion of receptive field within each block, much faster compared
to CNN layers. Just using a 2 × 2 kernel, DWT is able to reach 2L × 2L pixels within each WaveMix block
(Appendix).

Among the different types of mother wavelets available, we used the Haar wavelet (a special case of the
Daubechies wavelet (Daubechies, 1990), also known as Db1), which is frequently used due to its simplicity
and faster computation. Haar wavelet is both orthogonal and symmetric in nature, and has been extensively
used to extract basic structural information from images (Porwik & Lisowska, 2004). For even-sized images,
it reduces the dimensions exactly by a factor of 2, which simplifies the designing of the subsequent layers.

4 Experiments and Results

We compared WaveMix models with various CNN, transformer, and token-mixing models for semantic
segmentation and image classification. Ablation studies were conducted to assess the effect of the hyperpa-
rameters and the importance of each component and its placement in the WaveMix block.

4.1 Tasks, datasets, and models compared

For semantic segmentation, we used the Cityscapes (Cordts et al., 2016) dataset. The official training dataset
itself was split into training and validation sets. Results of the other models compared were directly taken
from their original papers as cited in Table 2. Since ConvMixer (Trockman & Kolter, 2022) was never used for
semantic segmentation, the classification head of ConvMixer was replaced with a segmentation head similar
to WaveMix for segmentation experiments. Mean intersection over union (mIoU) on the Cityscapes official
validation dataset was compared as a generalization metric among the models. All results are computed
with single scale (SS) inference. Inference throughput on a single GPU was reported in frames/sec (FPS).

For classification, we used multiple types of publicly available datasets, including CIFAR-10, CIFAR-
100 (Krizhevsky, 2009), EMNIST (Cohen et al., 2017), Fashion MNIST (Xiao et al., 2017), SVHN (Netzer
et al., 2011), Tiny ImageNet (Le & Yang, 2015), ImageNet-1K (Deng et al., 2009), Places-365 (Zhou et al.,
2017), and iNaturalist2021-10k (iNAT-2021-mini) (Horn et al., 2021). Top-1 accuracy on the test set of best
of three runs with random initialization is reported as a generalization metric based on prevailing proto-
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Table 2: Results for semantic segmentation on Cityscapes validation set show SOTA mIoU (single scale)
by WaveMix without compromising inference throughput (FPS). All models use ImageNet-1k pretrained
weights unless otherwise stated. Not pre-training on ImageNet-1k is denoted by *.

ARCHITECTURE mIoU # PARAM. FPS

DeepLabV3+ (Chen et al., 2018) 80.9 63 M -
Axial-DeepLab (Wang et al., 2020a) 81.1 - -
Seg-L-Mask/16 (Strudel et al., 2021) 81.3 307 M -
FAN-L-Hybrid (Zhou et al., 2022) 82.3 77 M -
SegFormer-M5 (Xie et al., 2021) 82.4 85 M 3
WaveMix-256/16 (4 level)∗ 78.6 63 M 7
WaveMix-256/16 (4 level) 82.7 63 M 7

cols (Hassani et al., 2021). For ImageNet-1k, Places-365 and iNAT-mini datasets, we have reported Top-1
accuracy in validation set. GPU RAM usage is reported in the supplementary materials.

To evaluate the performance of WaveMix on domain specific datasets where data availability is low, we
choose the task of galaxy morphology classification on Galaxy 10 DECals dataset (Leung & Bovy, 2018).
There is lack of efficient methods that can extract information from astronomical surveys to classify galaxies
and creating large amount of annotated data is expensive. Galaxy 10 DECals dataset contains 17,736 images
of 256 × 256 resolution distributed in 10 classes. The dataset is also imbalanced, with some classes having
more images than others.

For WaveMix model notation, we use the format Model Name -Embedding Dimension/ no. of blocks and
mention the number of levels of DWT in brackets. We call the WaveMix model which uses only one level
of 2D-DWT as WaveMix-Lite and it has been shown to perform well in small datasets with low resolution
images. For other models, we use the same notation that is used in their papers.

4.2 Implementation details

We adjusted the stride (or patch size) in the initial convolutional layers in all WaveMix models that handled
high-resolution images to ensure that resolution of feature maps before it reached WaveMix blocks was
always less than 256 for classification and 1024 for segmentation. We only used strided convolutions in the
initial convolution layers for segmentation and in classification of low-resolution image (less than 128 × 128)
datasets. For classification of datasets with larger image resolution, patchifying convolutions were used.

For Cityscapes, we used the full-resolution 1024×2048 images for training and inference. Images were resized
to 256×256 for Places-365 and 224×224 for iNAT-mini and ImageNet-1k datasets. Only horizontal flip was
used as data augmentation for semantic segmentation. No data augmentations were used for classification
unless mentioned other-wise.

No pre-training was performed on any of the WaveMix models used for classification. For classification on
ImageNet-1K, we used the models available in Timm (PyTorch Image Models) library (Wightman, 2019)
without using pre-trained weights and used the default Timm training script (Wightman, 2019) without
augmentations. Due to limited computational resources (which actually inspired looking for an alternative
neural framework), the maximum number of training epochs was set to 300. All experiments were done with a
single 80 GB Nvidia A100 GPU. For all experiments other than ImageNet-1k classification, we used AdamW
optimizer (α = 0.001, β1 = 0.9, β2 = 0.999, ϵ = 10−8) with a weight decay of 0.01 during initial epochs and
then used SGD with learning rate of 0.001 and momentum = 0.9 during the final 50 epochs (Keskar &
Socher, 2017; Jeevan & sethi, 2022).

Cross-entropy loss was used for image classification and pixel-wise focal loss was used for semantic segmen-
tation. A batch-size of 5 was used for all segmentation experiments with full resolution Cityscapes dataset.
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Batch-size between 256-512 was used for classification task. We used automatic mixed precision in PyTorch
during training.

4.3 Semantic segmentation

table 1 shows that WaveMix is the current SOTA for Cityscapes dataset in terms of single-scale inference
mIoU among models pre-trained using only ImageNet-1k dataset. Higher mIoU reported by other models (Xie
et al., 2021) belong to multi-scale inference. Performance of WaveMix on Cityscapes validation set along with
the reported results of other models are shown in Table 2. Even without ImageNet-1k pre-training, WaveMix
performs on par with the other models which use encoders pre-trained on ImageNet-1k. After using ImageNet
pre-trained weights, WaveMix outperforms all the other CNN and transformer-based models. WaveMix is
more than 2× faster than previous SOTA model, SegFromer (Xie et al., 2021), in inference even on a
single GPU. Further improvement may be obtained by performing multi-scale inference and pre-training on
ImageNet-22k dataset.

The versatility of WaveMix is such that it can be directly used for semantic segmentation by replacing
the output layer with two transposed convolution layers and a per-pixel softmax layer to generate the
segmentation maps. On the other hand, architectural changes – such as encoder-decoder and skip connec-
tions (Ronneberger et al., 2015) – are required for base CNNs and transformers (Xie et al., 2021), to perform
segmentation.

The lower mIoU (75.78) obtained by replacing the classification head of ConvMixer (Trockman & Kolter,
2022) with segmentation head (similar to WaveMix) shows that other token-mixing architectures, which work
well for classification, may not be able to translate that performance to segmentation without significant
architectural modifications. This shows the versatility of our WaveMix model. Also, the GPU consumption
of WaveMix is much lower than other models.

Transposed convolution operation is the major contributor (> 75%) for parameters in WaveMix architecture.
We can further lower its number of parameters by replacing the transposed convolution in each block by using
the parameter-free up-scaling operations such as bi-linear up-sampling and pixel-shuffle. See supplementary
materials for details.

4.4 Image classification

Table 3 shows the performance of WaveMix for image classification on multiple datasets with image sizes
ranging from 28×28 to 256×256. WaveMix achieved state-of-the-art (SOTA) accuracy of 56.45% on Places-
365 standard (365 classes) validation set (256 × 256) among the models that were not pre-trained on larger
datasets, such as (Wang et al., 2020b). WaveMix achieves 78.78% on CIFAR-100 dataset among models that
do not use pre-trained weights or extra training data. It has also achieved high accuracy on iNAT-2021-mini
validation set (224×224) which has 10,000 classes (no previous SOTA on iNAT-2021 mini has been reported).
We also see from Table 3 that WaveMix models establishes a new state-of-the-art on the smaller EMNIST
datasets (28×28) by outperforming the previous best results (Kabir et al., 2020; Pad et al., 2020; Gesmundo
& Dean, 2022) for Balanced, Letters, Digits, Byclass and Bymerge subsets within EMNIST (Cohen et al.,
2017) without using any data augmentations. WaveMix with 28 M parameters outperforms the previous
SOTA on Galaxy 10 DECals dataset, Astroformer (Dagli, 2023) with 272 M parameters.

The superior performance of WaveMix in the Galaxy Morphology Classification task highlights a critical
insight: traditional convolutional models, which are biased towards texture detection(Geirhos et al., 2022),
tend to struggle when it comes to discerning shapes from textured images. This limitation arises from
their inherent bias towards texture over shape. In contrast, WaveMix, while still a fully convolutional
architecture, integrates 2D discrete wavelet transforms (2D-DWT), allowing it to create sub-bands across
different frequencies. This enables the model to separately process high and low frequencies, with the latter
containing vital shape information. By effectively leveraging these lower frequencies, WaveMix demonstrates
a superior ability to understand and classify the shapes of galaxies. This finding suggests that for tasks
requiring a focus on shape learning rather than texture detection—an area where conventional convolutional
models often fall short—WaveMix offers a significant advantage.
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Input Ground Truth Model Prediction

Figure 2: A sample of semantic segmentation results on Cityscapes dataset by WaveMix for qualitative
assessment.

Table 3: WaveMix outperforms all previous models for image classification and achieves state-of-the-art
(SOTA) results on Galaxy 10 DECals, all five EMNIST datasets, Places-365 validation set (365 classes) and
INAT-mini validation set (10,000 classes). See suplementary materials for architectural details.

DATASETS WAVEMIX
ACCURACY (%)

PREVIOUS
SOTA (%) REF.

EMNIST Byclass 88.43 88.12 (Cohen et al., 2017)
EMNIST Bymerge 91.80 91.79 (Cohen et al., 2017)
EMNIST Letters 95.96 95.88 (Kabir et al., 2020)
EMNIST Digits 99.82 99.82 (Gesmundo & Dean, 2022)
EMNIST Balanced 91.06 91.05 (Kabir et al., 2020)
Places-365 (val set) 56.45 56.32 (Wang et al., 2020b)
Galaxy 10 DECals 95.42 94.86 (Dagli, 2023)
iNAT-mini (val set) 61.75 NA

Table 4 shows the performance of WaveMix on image classification using supervised learning on ImageNet-1K
on a single GPU with limited epochs. No augmentations were used to get a proper comparison of performance
across the different architectures. WaveMix models outperform CNN and transformer-based models, and
token-mixers. The use of non-learnable fixed weights and shallower network structure also makes inference
using WaveMix faster than other architectures. See supplementary materials for inference throughput and
GPU consumption.
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Table 4: Results of Image classification on ImageNet-1K dataset (224 × 224) using default Timm training
script (Wightman, 2019) without augmentations on a single GPU shows improved accuracy and decreased
parameter count by WaveMix.

MODELS # PARAMS TOP-1 ACCURACY

ResNet-18 (He et al., 2015) 11.7 M 69.80%
ResNet-34 (He et al., 2015) 21.8 M 72.27%
MobileNetV3-large 0.75(Howard et al., 2019) 4.0 M 69.84%
ViT-base-patch-16 (Dosovitskiy et al., 2021) 86.6 M 66.93%
MLP-Mixer-base-patch-16 (Tolstikhin et al., 2021) 59.9 M 59.84%
PoolFormer-small-12 (Yu et al., 2021) 11.9 M 54.21%
ConvMixer-1024/20 (Trockman & Kolter, 2022) 24.4 M 74.57%
WaveMix-Lite-192/16 12.5 M 70.82%
WaveMix-192/16 (level 3) 27.9 M 75.32%

Table 5: WaveMix needs very few parameters to achieve certain accuracy benchmarks compared to other
architectures. Use of upsampling instead of upconvolution is denoted by *.

DATASET ACCURACY MODEL PARAMETERS

MNIST 99% WaveMix-Lite-8/10* 3,566
Fashion MNIST 90% WaveMix-Lite-8/5 7,156
CIFAR-10 80% WaveMix-Lite-32/7* 37,058
CIFAR-10 90% WaveMix-Lite-64/6 520,106

4.5 Parameter efficiency

Table 5 shows that WaveMix meets certain accuracy benchmarks with far fewer parameters compared to
previous models (Jha et al., 2021; Wu, 2018). Since WaveMix heavily uses kernels with fixed weights for
token mixing, it needs far fewer parameters compared to commonly used architectures. We can further reduce
the parameter count by replacing the upconvolution layers with upsampling layers using fixed interpolation
techniques (e.g., inverse-DWT, bilinear, bicubic, pixel-shuffle).

4.6 Ablation studies

We performed ablation studies using ImageNet-1k and CIFAR-10 datasets on WaveMix to understand the
effect of each type of layer on performance by removing the 2D-DWT layer, replacing it with Fourier transform
or random filters, as well as learnable wavelets. All of these led to a decrease in accuracy. Those methods
that did not reduce the feature map resolution led to an increase in GPU RAM consumption. When we
removed the 2D-DWT layers from WaveMix, the GPU RAM requirement of the model increased by 62%
and accuracy fell by 5%. This is due to the MLP receiving the full resolution instead of the half-resolution
feature map from 2D-DWT. Replacing the 2D-DWT with the real part of a 2D-discrete Fourier transform
(2D-DFT) showed 12% decrease in accuracy along with 73% increase in GPU consumption as the Fourier
transform also does not downscale the feature map. Additionally, unlike the wavelet transform, the Fourier
transform has spatially smoothly varying (not abrupt) kernels with global (as opposed to local) scope, which
do not model object edges due to finite spatial extents in a sparse manner.

Replacing the filters of 2D-DWT with random filters of similar size as Haar wavelet resulted in 6% fall in
accuracy, confirming that the fixed kernel weights of 2D-DWT is already well-suited for computer vision
based on previous studies. GPU RAM consumption increased by 8% and accuracy decreased by 5% when
we replaced the 2D-DWT with 2 × 2 max pooling, indicating that the loss of information by the latter hurts
generalization.
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Figure 3: The results of occlusion analysis to find the significance of each pixel in the output decision shows
that WaveMix identifies important regions (darker in second row) in an image for making the classification
decision. The scale shows the probability of class output when the pixel is occluded.

We used lifting scheme (Bastidas Rodriguez et al., 2020) to create learnable wavelet coefficients and observed
a decline in performance by 4% compared to fixed Haar wavelet coefficients. We also experimented with
different families of wavelet coefficients, such as Daubechies, Coiflet, and Symlet series and observed that
Haar wavelet was faster and gave more accurate test results than the others. We believe that although higher
order Daubechies and other wavelets are perhaps better suited for information compression of natural images,
the feature maps after the first convolutional layer are already sparse and are perhaps better analyzed by
the Haar wavelet itself. The results of this experiment are provided in the Appendix.

We compared upsampling by transposed convolution in WaveMix block with (a) inverse-2D-DWT and (b)
bi-linear upsampling layers. Both inverse 2D-DWT and bi-linear upsampling layers needed more WaveMix
blocks compared to upconvolutions to give similar generalization. Even though the number of parameters
of these individual layers was lower than upconvolution, the larger depth led to consumption of more GPU
RAM and slower training and inference. Additional details of ablation studies on the number of blocks,
levels of DWT, and embeddings and MLP dimension are included in the Appendix.

5 Conclusions, Future Directions, and Impact

We proposed a novel and versatile neural architectural framework – WaveMix – that can generalize at par
with (and sometimes better than) both CNNs and vision transformers, and their hybrids for a variety of
vision tasks, while needing fewer parameters, GPU RAM, and clock time. WaveMix uses multi-level 2D-
DWT for lossless and image-appropriate down-sampling and token-mixing, that model image priors, such as
scale-invariance, shift-invariance, and edge-sparseness. Unlike CNNs, WaveMix mixes tokens from far apart
as it quickly expands the receptive field. Moreover, unlike transformers that unroll a 2D image into a 1D
sequence, which makes them rigidly wedded to an image size or proportions, WaveMix handles the image in
its 2D format itself, making it far easier to adapt it to various image sizes, proportions, and tasks.

Adapting WaveMix architecture to tasks, such as object detection and instance segmentation, would be
worthwhile to explore, as would be scaling it to much deeper and wider proportions (increase N and C).
Additional ways of more comprehensive exploiting of multiple image priors must also be explored to reduce
the resource requirements for training generalizable neural networks for vision.
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A Appendix

A.1 Feedforward Dimension and MLP Multiplication Factor

The feedforward dimension (ff) is the dimension of the embeddings of output from the MLP layer m before
it is passed to the deconvolution layer t. The deconvolution layer then changes the embedding dimension
back to the value set in the model name. Unless otherwise mentioned, the value of feedforward dimension
is set by default as the embedding dimension specified in the model name. Using a value higher than em-
bedding dimension as ff dimension increases the number of parameters of the model and GPU consumption.
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Feedforward dimension is different from the MLP multiplication factor (mul) which describes the increase
in embedding dimension within the MLP layer (the first 1 × 1 convolution increases it by a factor and the
second 1 × 1 convolution decreases it after is passes through the GELU activation). For example, MLP
multiplication factor of 2 in a WaveMix-128 will use the first 1×1 convolutional layer inside MLP to increase
the embedding dimension from 128 to 256. After the GELU activation, the second 1 × 1 convolutional layer
inside MLP will decreases the embedding dimension back to 128. If we specify the ff dimension to be different
from one provided in model name, then the second 1 × 1 convolutional layer inside MLP will change it to
the ff dimension as specified. Unless otherwise mentioned, a MLP multiplication factor of 2 was used in all
the models.

A.2 Alternatives to Transposed Convolutions

We may also use parameter-free bi-linear up-sampling or pixel-shuffle operation for increasing feature resolu-
tion instead of the transposed-convolutions t for further reduction in parameters and floating point operations
(FLOPs). Since this can impact that learning capacity of the network, it is advised to add a convolutional
layer after the parameter-free up-sampling operations whenever they are used.

Conv 

Level 1
2D-DWT

Concatenate

MLP

Transposed 
Conv

BatchNorm

Output

WaveMix-Lite Block (1-level 2D-DWT)

H x W x C

InputH x W x C

H x W x C/4

H x W x C

H/2 x W/2 x C

aa ad da dd

Figure 4: Details of the WaveMix-Lite block, which uses only a single level 2D-DWT
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Table 6: Image classification performance on CIFAR-10 dataset by WaveMix-Lite-256/7 using different
Wavelets on a T4 16 GB GPU show that Haar Wavelet is better. Training time in seconds/epoch is also
reported.

WAVELET TOP-1 ACCURACY S/EPOCH

Haar (db1) 91.15% 25
Daubechies (db2) 90.72% 44
Daubechies (db3) 89.14% 68
Daubechies (db4) 88.00% 104
Daubechies (db5) 86.88% 148
Biorthogonal (bior1.3) 90.50% 67
Biorthogonal (bior1.5) 89.61% 157
Reverse Biorthogonal 90.14% 67
Coiflet (coif1) 89.98% 67
Coiflet (coif2) 85.68% 233
Symlet (sym2) 90.24% 44
Symlet (sym3) 88.87% 63

A.3 Semantic Segmentation

A.3.1 Detailed Results

The original input image resolution of 1024 × 2048 could not be send directly to WaveMix blocks in our
experiments due to resource constraints. Two strided convolutional layers having stride of 2 each were used
to reduce the input resolution to 256 × 512 before it reaches the WaveMix layers. Table 7 shows the detailed
results of our experiments in Cityscapes dataset.

A.3.2 Ablation Studies

Influence of input image size. From 7 we can see that for the same model size, larger input image
resolution gave better results. The results for 512 × 1024 input was 6-8% better than the corresponding
results obtained while using input size of 256 × 512. Results for input size of 1024 × 2048 was 2 % better
than 512 × 1024 input size.

Influence of number of layers. The number of layers that could be tested were limited due to the GPU
constraints as well as the batch size requirements. We observed an increase in mIoU as the number of layers
increases, then it peaks at around 16 layers for various input sizes and then gradually decreases for each
additional layer.

Influence of embedding dimension. We varied the embedding dimension from 128 to 512. Variation
of embedding dimension showed a behaviour similar to that shown by increasing the number of layers where
mIoU first increases with increase in embedding dimension, then peaks at around 256, and then starts to
decrease for both the input image sizes.

Influence of the MLP multiplication factor. Table 7 shows that increasing the multiplication factor
(mul) does not increase the parameter count significantly. It can be used to vary the parameter count slightly
for a marginal increase in performance. Increasing the MLP multiplication factor beyond 3 showed slight
deterioration in performance with input images of size 256 × 512.

Influence of multiple levels of Wavelet transforms Table 7 shows that using multi-level 2D-DWT
provides better results than just using a single level (WaveMix-Lite). The best results were obtained when
using 4 levels of 2D-DWT for an input size of 1024 × 2048.
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Table 7: Results for semantic segmentation using WaveMix models on Cityscapes validation dataset at
different image resolutions in V100 and A100 GPUs without ImageNet-1k pre-training

ARCHITECTURE mIoU ↑ # PARAM. ↓ MAX BATCH
FOR 16 GB ↑

INFERENCE
THROUGH-

PUT (FPS) ↑

Image resolution 256 × 512 on 16 GB V100 GPU

WaveMix-Lite-128/8 63.33 2.9 M 55 18
WaveMix-Lite-128/20 (mul 3) 67.76 7.5 M 32 17
WaveMix-Lite-160/12 65.08 6.6 M 45 18
WaveMix-Lite-192/12 65.92 9.5 M 40 19
WaveMix-Lite-224/12 66.67 12.9 M 32 18
WaveMix-Lite-256/7 (ff 160) 65.30 7.2 M 45 18
WaveMix-Lite-256/7 (ff 160, mul 3) 64.34 7.9 M 40 19
WaveMix-Lite-256/7 (ff 192, mul 3) 65.27 8.9 M 30 17
WaveMix-Lite-256/12 (ff 160) 67.11 11.5 M 30 18
WaveMix-Lite-256/12 (ff 192) 65.46 13.3 M 25 17
WaveMix-Lite-256/12 (ff 224) 66.75 15.0 M 30 18
WaveMix-Lite-256/12 67.46 16.9 M 25 12
WaveMix-Lite-256/12 (ff 1024, mul 3) 62.39 63.2 M 22 17
WaveMix-Lite-256/16 (ff 272, mul 3) 67.46 25.5 M 20 17
WaveMix-Lite-256/16 (ff 512, mul 3) 71.75 44.2 M 18 18
WaveMix-Lite-256/16 (ff 512, mul 4) 67.17 47.3 M 18 18
WaveMix-Lite-256/16 (ff 1024, mul 3) 69.94 84.0 M 18 17
WaveMix-Lite-256/18 (ff 512, mul 3) 65.16 49.6 M 16 17
WaveMix-Lite-256/20 (mul 3) 67.65 30.1 M 16 18
WaveMix-Lite-256/20 (ff 512, mul 3) 67.80 55.0 M 16 17
WaveMix-Lite-272/16 67.48 25.0 M 22 17
WaveMix-Lite-288/16 67.90 28.0 M 20 17
WaveMix-Lite-304/16 67.76 31.2 M 18 18
WaveMix-Lite-320/16 (ff 512, mul 3) 67.94 56.5 M 15 16
WaveMix-Lite-512/12 (ff 1024, mul 3) 65.09 133.2 M 11 17

Image resolution 512 × 1024 on 40 GB A100 GPU

WaveMix-Lite-128/8 67.55 2.9 M 32 16
WaveMix-Lite-256/7 70.43 10.2 M 18 16
WaveMix-Lite-256/14 73.86 19.5 M 15 16
WaveMix-Lite-256/16 76.79 22.2 M 13 16
WaveMix-Lite-256/17 74.26 23.5 M 12 16
WaveMix-Lite-256/18 74.67 24.9 M 12 16
WaveMix-Lite-272/16 73.21 25.1 M 12 16
WaveMix-Lite-288/16 73.06 28.1 M 11 16

Image resolution 1024 × 2048 on 80 GB A100 GPU

WaveMix-Lite-256/16 75.32 22.3 M 1 9
WaveMix-256/16 (level 2) 75.92 35.9 M 1 8
WaveMix-256/16 (level 3) 76.54 49.6 M 1 7
WaveMix-256/15 (level 4) 77.18 59.4 M 1 7
WaveMix-256/16 (4 level) 78.64 63.2 M 1 7
WaveMix-256/17 (level 4) 77.68 67.1 M 1 6
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Figure 5: Visualisation of receptive fields for different models show a rapid expansion of receptive field in
WaveMix as we add layers or blocks due to multi-level 2D-DWT. A blank image with a single high pixel
value near the center was sent as input to the models. All parameters were assigned a value of one and all
bias were set to zero.

Table 8: Performance of WaveMix on different datasets. SOTA results are highlighted in bold. *Architecures
pre-trained on ImageNet-1k. †Used TrivialAugment Müller & Hutter (2021).

DATASETS MODEL INPUT RESOLUTION ACC. (%)

By_Class WaveMix-Lite-128/7 28 × 28 88.43
Balanced WaveMix-Lite-128/7 28 × 28 91.06
Letters WaveMix-Lite-112/16 28 × 28 95.96
Digits WaveMix-Lite-112/16 28 × 28 99.82
By_Merge WaveMix-Lite-128/16 28 × 28 91.80
Places-365 WaveMix-240/12 (level 4) 224 × 224 56.45
iNat-2021 WaveMix-256/16 (level 2) 256 × 256 61.75
SVHN WaveMix-Lite-144/15 32 × 32 98.73
CIFAR-10 † WaveMix-Lite-320/8 32 × 32 95.37
CIFAR-100 † WaveMix-Lite-256/10 32 × 32 78.78
Tiny ImageNet † WaveMix-244/12 (level 2) 64 × 64 64.51
CIFAR-10 † WaveMix-192/16 (level 3)* 192 × 192 97.61
CIFAR-100 † WaveMix-192/16 (level 3)* 224 × 224 85.64
SVHN WaveMix-192/16 (level 3)* 128 × 128 98.79
Tiny ImageNet † WaveMix-192/16 (level 3)* 128 × 128 77.49
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Table 9: Image classification results on ImageNet-1K dataset (224×224) without augmentations by WaveMix
(arrows in column headers show desired directions). Patch size of 5 is used for WaveMix-Lite models and 4
is used for other WaveMix models. Training was done using Timm training script Wightman (2019).

MODELS TOP-1 ACCU.
(%) ↑ # PARAM. ↓

WaveMix-Lite-192/16 70.82 12.5 M
WaveMix-Lite-256/16 71.45 23.1 M
WaveMix-192/16 (2 level) 72.30 20.5 M
WaveMix-256/8 (3 level) 72.72 26.2 M
WaveMix-192/16 (3 level) 75.32 27.9 M

Table 10: Image classification on ImageNet-1K dataset (224 × 224) without augmentations shows improved
accuracy as well as throughput due to decreased parameter count and GPU RAM consumption by WaveMix
(arrows in column headers show desired directions). Timm training script Wightman (2019) is not used.

ARCHITECTURE TOP-1 ACCU.
(%) ↑ # PARAM. ↓ GPU RAM fOR

BATCH SIZE 64 ↓
THROUGHPUT (IM/S)

TRAIN ↑ TEST ↑

ResNet-18 55.12 11.7 M 2.7 GB 450 439
ResNet-34 57.02 21.8 M 3.1 GB 414 410
ResNet-50 61.76 25.6 M 6.2 GB 638 617
ResNet-101 64.60 44.5 M 9.6 GB 487 725
ResNet-152 65.86 60.2 M 12.7 GB 344 758
MobileNetv3-small 51.57 2.5 M 1.4 GB 255 229
MobileNetv3-large 58.89 5.5 M 3.5 GB 492 481
ViT-B-16 39.53 86.6 M 10.0 GB 140 420
ViT-B-32 30.11 88.2 M 2.2 GB 1,595 1,613
ConvMixer-512/12 60.24 4.2 M 10.8 GB 292 735
ConvMixer-512/16 62.24 5.4 M 14.1 GB 220 725
ConvMixer-1024/12 64.13 14.6 M 23.6 GB 251 667
WaveMix-Lite-128/8 54.12 3.9 M 4.5 GB 1,242 1,724
WaveMix-224/12 (2 level) 65.90 22.6 M 9.8 GB 385 1,250
WaveMix-240/12 (3 level) 70.02 33.8 M 15.6 GB 205 610

A.4 Image Classification

A.4.1 Results on Smaller Resolution Image Datasets

We observe from Table 9 that deeper WaveMix models perform better and this suggests that even further
scale-up of WaveMix in multi-GPU setting could be possible. We see from Table 10 that shallow WaveMix
models are competitive in performance to deeper ResNets and MobileNets, and they are approximately 2x
faster in training 4x faster in inference. Even deeper WaveMix models provide faster inference and better
performance compared to the other models. ConvMixers are parameter-efficient and provide high accuracy,
but they need much higher GPU RAM compared to WaveMix.

In Table 11 we see that on CIFAR and TinyImageNet datasets, WaveMix-Lite performs much better than
the other models, giving accuracy higher than ResNets and MobileNets with 4 to 10 times fewer parameters
and less GPU consumption. GPU consumption of WaveMix-Lite is sometimes 50 times lower for similar
performance when compared to transformer models.
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Table 11: Results for image classification on small datasets (32x32, 64x64) show improved accuracy as well
as decreased parameter count and GPU RAM consumption by WaveMix-Lite. No augmentations were used.

MODEL #PARAM. ↓ GPU RAM FOR
BATCH SIZE 64 ↓

ACC. (%) ↑
CIFAR-10 CIFAR-100 TINYIMGNT

ResNet-18 Hassani et al. (2021) 11.20 M 1.2 GB 90.27 63.41 48.11
ResNet-34 Hassani et al. (2021) 21.30 M 1.4 GB 90.51 64.52 45.60
ResNet-50 Hassani et al. (2021) 25.20 M 3.3 GB 90.60 61.68 48.77
MobileNetV2 Hassani et al. (2021) 8.72 M - 91.02 67.44 -
ViT-128/4×4 0.53 M 13.8 GB 56.81 30.25 26.43
ViT-384/12x6 Hassani et al. (2021) 85.60 M - 76.42 46.61 -
ViT-Lite-256/6x4 Hassani et al. (2021) 3.19 M - 90.94 69.20 -
HybridViN-128/4×4 0.62 M 4.8 GB 75.26 51.44 34.05
CCT-128/4×4 0.91 M 15.8 GB 82.23 57.09 39.05
CvT-128/4×4 1.12 M 15.4 GB 79.93 48.29 40.69
MLP-Mixer-512/8 2.41 M 1.0 GB 72.22 44.23 26.83
WaveMix-Lite-16/7 0.04 M 0.1 GB 64.98 23.03 19.15
WaveMix-Lite-32/7 0.15 M 0.3 GB 84.67 46.89 34.34
WaveMix-Lite-64/7 0.60 M 0.6 GB 87.81 62.72 46.31
WaveMix-Lite-128/7 2.42 M 1.1 GB 91.08 68.40 52.03
WaveMix-Lite-144/7 3.01 M 1.2 GB 92.97 68.86 52.38
Wavemix-Lite-160/13 6.90 M 9.4 GB - - 54.76
WaveMix-Lite-256/7 9.62 M 2.3 GB 90.72 70.20 51.37

Table 12: Comparison of Top-1 Accuracy of WaveMix models using different initial convolution layers on
ImageNet-1k dataset. Patch size of 4 is used in patchify layer

MODEL STRIDED
CONVOLUTIONS

PATCHIFYING
LAYER

WaveMix-Lite-224/20 62.79 67.91
WaveMix-240/12 (2 level) 64.75 66.44
WaveMix-240/12 (3 level) 67.97 70.02

A.4.2 Augmentations and Learning Rate Tuning

The previously reported results for the other architectures include the effect of various well-intentioned
incremental training methods (tips and tricks) like Timm training script Wightman (2019), including Ran-
dAugment Cubuk et al. (2019), mixup Zhang et al. (2017), CutMix Yun et al. (2019), random erasing Zhong
et al. (2017), gradient norm clipping Zhang et al. (2020), learning rate warmup Gotmare et al. (2019) and
cooldown. These additional methods improve the results of the core architectures trained using simple
methods by a few percentage points each. For example, Mixup, Cutmix, Random Erasing, RandAugment,
Random Scaling and Gradient Norm Clipping improved accuracy of ConvMixer by 9.55 percentage points
in image classification Trockman & Kolter (2022). However, experimenting with these additional training
methods requires extensive hyperparameter tuning. On the other hand, by excluding these methods, we
were able to compare the contribution of the base architectures in a uniform manner. The accuracy obtained
in our experiments for the other architectures are thus lower than the previously reported numbers, but
the results are still within the expected range when such training methods are not used. We have used
TrivialAugment Müller & Hutter (2021) while training some of the smaller datasets and observed a higher
performance compared to RandAugment Cubuk et al. (2019). Some results using TrivialAugment as the
only data augmentation method used for training is reported in Table 8.
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captionVariation of performance and resource consumption of WaveMix-Lite-144/7 on classification of
CIFAR-10 dataset using different levels of 2D-DWT separately.

LEVEL OF
2D-DWT ACCU. (%) # PARAM. GPU FOR BATCH

SIZE OF 1024

1 91.61 3 M 19.6 GB
2 87.39 5.9 M 14.2 GB
3 78.07 15.2 M 13.7 GB
4 65.40 47.7 M 13.2 GB

A.4.3 Ablation Studies

Influence of initial convolutional layers. We experimented with two types of convolutional layers in
the initial convolutional layer to downscale the image size for large resolution datasets. Strided convolutions
with stride of 2 reduced the resolution by half in each layer. In patchifying convolutional layer, we used 2
layers of normal convolutions followed by a patchifying convolutional layer (stride and kernel size set to same
value), a GELU non-linearity and a batch normalisation layer. We see from Table 12 that using patchifying
convolutions perform better than strided convolutions for WaveMix models.

Influence of levels of 2D-DWT. Table A.4.3 shows the variation of performance and resource consump-
tion for each level of 2D-DWT. Level-1 2D-DWT reduced image resolution by half, reducing the computa-
tional cost and GPU consumption compared to convolutional layers. Using higher levels of 2D-DWT could
further reduce the image resolution to one-fourth, one-eight and so on which can further reduce the compu-
tational costs. But the deconvolution layer used to resize the output back to input size will need a lot more
parameters. This will consume more resources in terms of GPU and time. Each increment in the level of
2D-DWT results in doubling of the number of parameters, but provides only a very small reduction in GPU
consumption, especially when we go to higher levels of 2D-DWT. In each of the higher level decomposition,
when the approximation and detail coefficients are concatenated as a tensor, the noise intensity in the detail
coefficients would be stronger than that of useful details (object edge, texture, or contour, etc.) which could
be the cause of degradation in the performance. When we use multiple levels of 2D-DWT together, we
observe a gain in performance as we add more levels as shown in Table 9 for high resolution images. This
improvement in performance was not observed for low resolution images when we used more than 1 level of
2D-DWT (WaveMix-Lite).

Influence of number of layers. The performance of WaveMix models generally improve as the number
of layer increases. The behaviour observed in smaller datasets show that the accuracy increases with increase
in number of layers, peaks at a particular value and then do not show any increase for any further addition of
layers. In experiments with ImageNet-1k dataset, we observed that while using higher levels of 2D-DWT, the
number of layers needed is much lower for reaching the best performance when compared to WaveMix-Lite.
Therefore, WaveMix with multi-level 2D-DWT are shallower than WaveMix-Lite.

Influence of the Embedding Dimension. Our experiments showed that increasing the embedding
dimension of a model usually improved the model performance, but the resource-utilization also increased
significantly. Doubling the embedding dimension of model from 128 to 256 results in an increase of parameter
count by more than three times and doubles the GPU RAM consumption.
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