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ABSTRACT

The sim-to-real problem remains a critical challenge in the real-world application
of reinforcement learning (RL). The conventional sim-to-real methods heavily rely
on resource-intensive re-training of the policy network to adapt to new domains,
which limits the flexibility of the deployment of RL policies in ever-changing en-
vironments. Inspired by human locomotion, where individuals adjust their gait to
new surface conditions without relearning the skill of walking, we introduce La-
tent Adaptation of Foundation Policies (Found-adapt), a framework that decou-
ples this problem into skill acquisition and environment adaptation. Our method
first pretrains a foundation policy on unlabeled offline trajectories from the source
simulator, capturing diverse long-horizon behaviors as reusable skills. At deploy-
ment, instead of retraining the policy, we perform efficient latent space adaptation:
a small amount of target-domain data is collected to refine a latent representation
through an adapter network that incorporates parameter efficient alignment, which
produces a task-ready controller under various system dynamics. This adaptation
occurs entirely in the latent space, avoiding costly policy optimization while en-
abling robust transfer. Empirical results across multiple locomotion tasks and dy-
namic variations demonstrate that our method significantly reduces the sim-to-real
gap. Further sensitivity analysis provides interesting insights into the requirements
for data quality and applicable situations. These findings highlight how founda-
tion policies with latent adaptation could serve as a general and efficient paradigm
for real-world RL deployment. Implementation and experiment are available here.

1 INTRODUCTION

Deep Reinforcement Learning (DRL) has enhanced intelligent decision-making by trial-and-error
fashion policy optimization. It can learn complex multi-tasks from video games (Shao et al., 2019)
and sophisticated robotic manipulators (Nguyen & La, 2019) directly based on raw observations,
which demonstrates superhuman performance in some environments with high-dimensional state
and action spaces (Wang et al., 2016). However, real-world deployment of RL policies still lags
behind the simulator-based successes; the main cause is that the policies trained in the simulator can
rarely generalize across domains with different system dynamics, disturbances, and sensor noises,
etc. (Da et al., 2025), i.e., known as the Sim-to-Real Challenge (Wagenmaker et al., 2024).

Simulator Real WorldTasks Adapt. Simulator Real WorldAdapt.

𝜋𝒟

Flexible

Figure 1: The difference between traditional sim-to-real adaptation (left) and the proposed method
(right). Traditional sim-to-real involves two steps: task policy network training and task network
adaptation, both of which are expensive and tightly bound. Proposed foundation policy π enables
flexible adaptation at an arbitrary task in any environment dynamics.

Bridging such sim-to-real gaps for RL policies remains a challenge in robotics, autonomous driving,
and other safety-critical domains (James et al., 2019; Daza et al., 2023). Traditional approaches,
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such as domain randomization (Huber et al., 2024) and domain adaptation (Farhadi et al., 2024),
typically rely on extensive online training for enough dynamics distribution coverage in the target
domain: by either iteratively collecting real-world rollouts or deploying costly system identification
procedures (Song et al., 2024), etc. Such methods generally require substantial training resources to
mitigate the sim-to-real gap. Thus, two fundamental challenges persist: (1) addressing new tasks re-
quires retraining for task-specific policy prior to adaptation. (2) Adapting to novel system dynamics
necessitates re-training of the sim-to-real process, which incurs significant extra efforts and costs.

Inspired by (Sterelny, 2012), humans typically rely on previously acquired skills and adapt them
to new environments without relearning from scratch. Instead of re-deriving motor primitives every
time, people reuse a shared repertoire of skills and flexibly adjust them according to context and
feedback. This analogy motivates the use of offline RL (Chen et al., 2024), where policies can be
trained on diverse prior experience and later specialized to novel domains without costly online re-
training. It serves as a foundation policy paradigm, which has offered a more generalizable policy
acquisition by decoupling representation learning from task-specific policy training. By capturing
generalist ‘skillsets’ from massive offline datasets, these methods can later instantiate near-optimal
behaviors in a zero- or few-shot fashion to even unseen tasks (Luo et al., 2025), simply by condition-
ing on small amounts of prompts (Park et al., 2024b). Given the generalist potential, for challenge
(1), we proposed to leverage the foundation policies as the basic architecture for sim-to-real tasks
to alleviate the re-training burden for policy networks. Then, for challenge (2), to better tackle the
sim-to-real gap, we propose Found-adapt, a latent space adaptation method that efficiently provides
online adaptation with three steps: Cross-domain initial alignment, Dynamics signature extraction,
and eventual Dynamics signature guided adaptation.

With only a small amount of target-domain data, our lightweight adapter estimates an appropriate
latent representation that bridges the source and target dynamics. This enables effective sim-to-
real adaptation without heavy retraining, while maintaining the ability to generalize across novel
tasks. We have verified the effectiveness of the proposed method, which reveals great potential in
real-world usage of RL policies. In conclusion, our contributions are threefold:

• Inspired by evolved apprentice, we propose to solve the sim-to-real challenge by leveraging
the foundation policies with generalizability and get rid of task-specific retraining.

• We propose a novel and efficient adaptation method that leverages foundation policy rep-
resentations and higher-order (meta) dynamics to derive the policy that bridges the source
and target distributions during execution, improving the policies’ sim-to-real ability.

• Broad Evaluation and Real-World Applicability. We demonstrate Found-adapt on multi-
ple zero-shot RL tasks and environments, showcasing its strong transfer performance and
practical potential by easily adapting to both new tasks and new environments.

2 RELATED WORK

Sim-to-Real Methods in RL There have been explorations to tackle the sim-to-real problems by
interventions at different stages of the MDP process. In observation, there are practices like domain
randomizations (Tobin et al., 2017; Tiboni et al., 2023), domain adaptation (Hu et al., 2022; Ho et al.,
2021), and sensor fusions (Mahajan et al., 2024; Bohez et al., 2017), which intend to cover broader
distribution during the policy training to overcome the potential shift. In action, there are works
tackling the action latency (Dulac-Arnold et al., 2019; Dezfouli & Balleine, 2012) and quantifying
the action uncertainties (Ilhan et al., 2021; Da Silva et al., 2020). Apart from the above, recent
work intends to bridge the transition dynamics (Da et al., 2025), a popular branch of work leverages
grounded action to better calibrate the dynamics shift (Hanna & Stone, 2017; Da et al., 2024), but
all of these methods require extra training to shrink the domain gaps of the learned policies, which
require extensive training on a mass of data. Different from these traditional methods, we leverage
the pre-trained foundation models with existing and reusable skillsets, and design a way to efficiently
prompt them to solve tasks in a specific domain with only test-time computing overhead.

Unsupervised Policy Pre-training Previous studies have introduced a variety of unsupervised,
task-agnostic objectives for pre-training a diverse set of policies, thereby speeding up subsequent
task learning. These methods pre-train policies with either exploration (Pathak et al., 2017; 2019;
Mendonca et al., 2021; Rajeswar et al., 2023) or skill discovery objectives (Gregor et al., 2016; Ey-
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senbach et al., 2018; Sharma et al., 2019; Klissarov & Machado, 2023; Park et al., 2023). Different
from this direction, we focus on the offline setting, where we could learn diverse policies purely
from an offline dataset with unlabeled trajectories.

Adaptive Policy Networks Another line of work focuses on motor adaptation through end-to-end
policy networks, such as Rapid Motor Adaptation (RMA) (Kumar et al., 2021) and Universal Policy
with Online System Identification (UP-OSI) (Yu et al., 2017). A line of follow-up research inspired
by RMA in real-world robotic systems includes bipedal locomotion (Kumar et al., 2022), in-hand
object manipulation (Qi et al., 2023), manipulator control (Liang et al., 2024), and humanoid real-
world policy adaptation (Hu et al., 2025), they perform adaptation by inferring latent dynamics from
recent observations, specifically, they adapt policies to varying dynamics by jointly learning task
objectives and online adaptation mechanisms, but they remain task-specific and require extensive
online training, which limits their generalizability. Different from their method, we propose a gen-
eralizable sim-to-real foundation policy that can adapt to various tasks and system dynamics more
flexibly and without per-task retraining.

3 PRELIMINARIES

The Sim-to-Real Problem in RL Following the classic definition (Sutton et al., 1998; Ding et al.,
2020; Da et al., 2024), we formulate reinforcement learning in the standard Markov decision process
setting (MDP): M = (S,A, P, r, µ, γ), where S is the state space, A the action space, P : S×A→
∆(S) refers to the transition probability. The reward function can be represented as r : S×A×S →
R, µ the initial state distribution, and the discount factor is γ ∈ (0, 1]. A policy in RL, such as
π(a|s), defines a distribution over actions given state s, and its learning objective is to maximize the
expected cumulative discounted reward Eπ

[∑∞
t=0 γ

tr(st, at, st+1)
]
. In practice, due to the cost of

real-world exploration consequences, RL policies are usually trained in a simulator Esim and then
executed in a real environment Ereal for testing or deployment (Salvato et al., 2021; Zhao et al.,
2020). But since Esim always holds differences in dynamics compared to Ereal, i.e., Psim ̸= Preal,
thus, the policy often suffers a performance drop in Ereal, which is denoted as the Sim-to-Real gap.

Foundation Policies. Inspired by foundation models in vision and language, a foundation policy
is a generalist control policy trained from diverse offline trajectories, intended to capture a broad
repertoire of reusable skills without specializing in a single downstream task. Given offline trajec-
tories D collected from a source environment 1 Esim, we define a foundation policy as a pair (ϕ, π),
where ϕ : S → Z is a state encoder mapping states into a latent space Z and π(a|s, z) is a latent-
conditioned policy with z ∈ Z . The encoder ϕ extracts reusable behavioral primitives, while varying
z spans a family of skills that can be composed to address different tasks. In this sense, foundation
policies naturally support task prompting, where new rewards or goals are realized by selecting an
appropriate latent. Moreover, their latent-conditioned structure also offers the potential for system
adaptation, since adjusting z provides a mechanism to align policy behavior with changes in envi-
ronment dynamics. Our work develops this perspective by introducing latent adaptation techniques
that unify task and system adaptation within the same framework.

4 METHODOLOGY

In this section, inspired by existing work (Park et al., 2024b), we will first introduce the learning
of the policy model in Hilbert Space, as an instantiation for the foundation policies, and then we
introduce details on how to adapt the latent space to solve the sim-to-real challenge while adapting
towards various tasks based on the foundation policy’s structure.

4.1 FOUNDATION MODEL IN HILBERT SPACE

Based on the definition in Section 3, one concrete instantiation of a foundation policy is given
by embedding states into a Hilbert space. The key idea, introduced by (Park et al., 2024b), is
that distances in this space can be aligned with temporal relations in trajectories, which makes the
representation suitable for skill composition and task adaptation. Formally, an encoder ϕ : S → Z

1In this paper, source env. = Esim and target env. = Ereal, might be used interchangeably.
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Figure 2: Overview of the proposed method. Offline trajectories from the simulator Esim train a
state encoder ϕ and a latent-conditioned policy π(a|s, z) using intrinsic rewards. Direct deploy-
ment degrades under dynamic gaps. We therefore perform latent adaptation with a small batch of
target-domain data Dtar: (i) a weighted joint least-squares fit yields an initial latent z∗src; (ii) a Meta-
Dynamic network extracts permutation-invariant distributional features η; (iii) an adapter network
refines z∗src into zfinal. The refined latent conditions π for robust execution in the target environment
Etar without retraining the policy.

maps states into a latent space Z = RD with Euclidean inner product. The encoder is trained so that
∥ϕ(s) − ϕ(g)∥ approximates the true temporal distance between s (certain state) and g (goal), thus
capturing the long-horizon structure of trajectories.

Given such an encoder, a latent-conditioned policy π(a|s, z) with z ∈ Z is trained using an intrinsic
reward r(s, z, s′) = ⟨ϕ(s′)− ϕ(s), z⟩. The intrinsic reward aligns policy transitions with the latent
vector z, ensuring that for any direction z ∈ Z the policy can induce state changes consistent with
z (thereby forming a set of directional primitives), and the collection {π(·|s, z) : z ∈ Z} can
be viewed as a skill family that spans the embedding. For downstream tasks, one can solve for an
appropriate z∗ by aligning the latent prediction with the task reward, which reduces to a least-squares
regression on offline samples. In the special case of goal reaching, z∗ simplifies to the normalized
vector between state ϕ(s) and goal ϕ(g), yielding a closed-form solution.

This enables task-level adaptation without retraining the policy parameters. However, the solution
implicitly assumes that the transition statistics used for representation learning in Esim remain con-
sistent at deployment in Ereal. In practice, domain shift in dynamics often invalidates this assump-
tion, leading to degraded performance. To address this sim-to-real gap, we next introduce a latent
adaptation mechanism that augments the above regression with additional components for robust
cross-dynamics deployment.

4.2 LATENT ADAPTATION FOR SIM-TO-REAL TRANSFER

Baseline latent vector z∗ for foundation policy. To deploy a Hilbert foundation policy on a new
task, one solves for the optimal latent vector as follows:

z∗ = arg min
z∈Z,∥z∥=1

E(s,a,s′)∼D

[(
R(s, a, s′)− ⟨ϕ(s′)− ϕ(s), z⟩

)2]
(1)

where R(s, a, s′) is the task reward and ϕ(s) is the Hilbert embedding from Section 4.1. In practice,
given samples {(si, ai, s′i, ri)}Ni=1, let Φ = [ϕ(s′1) − ϕ(s1), . . . , ϕ(s

′
N ) − ϕ(sN )]⊤ ∈ RN×D and

r = [r1, . . . , rN ]⊤ ∈ RN . Eq. 1 reduces to the standard least-squares problem:

ẑ = arg min
z∈RD

∥Φz − r∥22 (2)

which yields the closed form solution: ẑ = (Φ⊤Φ)−1Φ⊤r, derivation is shown in Appendix C.
After normalization to unit norm, we obtain z∗ = ẑ/∥ẑ∥. For goal reaching tasks with target g, this
further simplifies to the normalized vector z∗ = (ϕ(g)− ϕ(s))/∥ϕ(g)− ϕ(s)∥.

4
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The performance gap introduced by the dynamics gap. The baseline inference in Eq. 1 assumes
that the transition statistics used during training remain valid at deployment. Formally, let the simu-
lator dynamics be Psim(s

′|s, a) and the real dynamics be Preal(s
′|s, a). We denote their discrepancy

as ∆P (s
′|s, a) = Preal(s

′|s, a)−Psim(s
′|s, a). This difference propagates into the feature matrices,

since each row is defined by the embedding difference ϕ(s′) − ϕ(s). Thus, if Φsim is the feature
matrix computed under Psim, then under real dynamics we have Φreal = Φsim + ∆Φ

2, where ∆Φ

collects the deviations induced by ∆P .

The least-squares estimate under simulator data is ẑsim = (Φ⊤
simΦsim)

−1Φ⊤
simr, whereas the true

optimal solution under real dynamics is ẑreal = (Φ⊤
realΦreal)

−1Φ⊤
realr. Substituting Φreal = Φsim +

∆Φ reveals that ẑreal ̸= ẑsim, and the difference ∆z = ẑreal − ẑsim shows the dynamics gap at the
level of the latent solution. Without explicitly correcting for ∆Φ, deploying π(a|s, ẑsim) in Ereal

will generally lead to degraded performance.

A. Cross-Domain Initial Alignment To mitigate this gap, One possible way to address this issue
is to re-train the state encoder ϕ using additional trajectories from the target environment Ereal, i.e.,
constructing a new dataset Dtar = {(stj , atj , s′tj , rtj)} and updating ϕ so that it aligns with Preal.
However, such re-training is computationally intensive and reduces the modularity of foundation
policies by entangling representation learning with deployment. Instead, we propose to keep ϕ
fixed as learned from Esim and directly adapt the latent variable z toward Ereal by leveraging Dtar.
Concretely, this requires only solving regression problems of the form minz ∥Φsimz − rsim∥2 +
λ∥Φtarz − rtar∥2 and performing lightweight parameter updates for an adapter at inference time.
This procedure avoids costly re-optimization of ϕ, yet yields zfinal that conditions π(a|s, zfinal) for
robust deployment in Ereal.

Since we tend to consider samples from both the simulator and the real conditions, we extend the
least-squares step. Suppose we have Dsrc = {(si, ai, s′i, ri)}Ni=1 from the simulator and Dtar =
{(s̃j , ãj , s̃′j , r̃j)}Mj=1 from the real environment. We form the feature matrices Φsim = [ϕ(s′i) −
ϕ(si)]

N
i=1 ∈ RN×D and Φtar = [ϕ(s̃′j) − ϕ(s̃j)]

M
j=1 ∈ RM×D, with corresponding reward vectors

rsim ∈ RN and rtar ∈ RM . We then solve the weighted regression

zsrc = arg min
z∈RD

∥Φsimz − rsim∥22 + λ∥Φtarz − rtar∥22 (3)

where λ > 1 biases the fit toward real data. This admits the closed form zsrc = (A⊤A)−1A⊤b

with A =

[
Φsim√
λΦtar

]
and b =

[
rsim√
λrtar

]
, followed by normalization. This weighted joint regression

integrates information from both domains, allowing the latent solution to provide an initial, partially
corrected dynamics gap while preserving the efficiency of closed-form inference.

B. MetaDynamic - A Permutation-Invariant Network for Dynamics Signature. While cross-
domain alignment addresses first-order differences in transition features, it may fail to capture
higher-order variations such as distributional shifts in state visitation or structural patterns in dy-
namics. To address this, we compute a permutation-invariant summary of the target-domain embed-
dings:

η = MetaDynamic({ϕ(s̃j)}Mj=1) ∈ RK (4)

where MetaDynamic is a set-encoding function trained on simulator data and frozen at deployment.
The permutation invariance serves as a critical component, since {ϕ(s̃j)}Mj=1 is an unordered collec-
tion of states sampled from trajectories rather than a sequence with fixed ordering; the representation
must depend only on the empirical distribution of states, not on sample order. We interpret η as a
dynamics signature of the target domain, i.e., a compact descriptor encoding statistical regularities
of Ereal beyond mean feature alignment. This signature serves as an auxiliary input to refine latent
adaptation, enabling the policy to exploit structural information about the target dynamics without
retraining the encoder ϕ. The details of the MetaDynamic structure and training configurations are
provided in the Appendix. G.

2Here Φ denotes a feature matrix derived from the encoder ϕ; it is not an additional learnable parameter.
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C. Signature-Guided Latent Adaptation. Although cross-domain alignment partially reduces
the dynamics gap, the latent solution zsrc may still drift when directly applied in Etar. To further
adapt, we introduce a parametric adapter gθ : RD × RK → RD that leverages both the initial
solution zsrc and the dynamics signature η. The adapter is initialized to approximate the identity
mapping, i.e., gθ(zsrc, η) ≈ zsrc, ensuring stability at the start of adaptation. We then update θ using
the target-domain dataset Dtar, updating the parameters for a small number of gradient steps by
minimizing below, the loss ℓj conditions on the solution zsrc and the dynamics signature η:

L(θ) = 1

M

M∑
j=1

∥∥Φtar,j gθ(zsrc, η)− r̃j
∥∥2
2︸ ︷︷ ︸

ℓj(θ;zsrc,η)

. (5)

where Φtar,j is the j-th row of the target-domain feature matrix and r̃j is the corresponding reward.
This produces an adapted parameter set θ∗ and yields a refined latent vector:

zfinal =
√
D

gθ∗(zsrc, η)

∥gθ∗(zsrc, η)∥
(6)

The resulting zfinal incorporates both cross-domain alignment and distributional structure, and con-
ditions the foundation policy π(a|s, zfinal) for robust execution in Etar without retraining the policy
parameters.

In summary, the proposed latent adaptation provides a parameter-efficient approach to sim-to-real
transfer. From the perspective of conventional RL policies, which typically require costly policy π
retraining on target-domain data, our method is lightweight and avoids modifying the policy network
altogether. From the perspective of foundation policies, which were originally conceived for task
prompting under fixed dynamics, our method repositions them as a versatile paradigm that can adapt
not only across tasks but also across environments with differing dynamics, thus transforming their
role from intra-domain generalization to a unified framework for sim-to-real transfer.

4.3 OVERALL FRAMEWORK

As shown in Figure 2, our framework reframes foundation policies to address the challenging sim-
to-real transfer problem through prompting and parameter-efficient domain adaptation. We begin
with offline trajectories collected from the simulator Esim, which are used to train a state encoder
ϕ and a latent-conditioned policy π(a|s, z). This training stage produces a foundation policy that
encapsulates a repertoire of reusable skills indexed by latent variables z, supporting flexible task
prompting without modifying the policy parameters. However, direct deployment in a target envi-
ronment Etar is hindered by dynamics gaps that render simulator-derived latents suboptimal. To
overcome this, our latent adaptation procedure adjusts z while keeping π fixed: we propose (i)
cross-domain regression yields an initial zsrc, (ii) a permutation-invariant MetaDynamic encodes a
dynamics signature η, and (iii) a signature-guided adapter refines zsrc into zfinal. The resulting zfinal
conditions the frozen foundation policy for robust execution in Etar. This parameter-efficient design
redefines the scope of foundation policies, elevating them from intra-domain task generalization to
a unified paradigm for sim-to-real deployment.

5 EXPERIMENTS

Dataset and Tasks: In this section, we experiment on seven different environments from a widely
adopted benchmark in offline RL (Park et al., 2024a). We test different methods’ sim-to-real trans-
ferability using the sim-to-sim setting, which is a common practice to verify the methodology for
better reproducibility (Da et al., 2025; Zhao et al., 2020; James et al., 2019), we treat the default
environment setting as Esim and control various Ereal by designing high fidelity system dynamics
following the configurations in Table 3. In brief, there are two sets of variables of settings: friction
and gravity, which are applied at the level of each joint and contact degree of freedom, so as to
reflect high-fidelity system dynamics. The preview of different environments as in the Figure. 8.

Baselines: We compared with several classic and advanced baselines to provide empirical insights.
The first baseline is Direct-Transfer, which is the foundation policy learned in Esim and di-
rectly deployed to Ereal. Then, we compared with the grounded action transformation (GAT) (Hanna

6
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Setting Methods Task’s Average Return (Sim-to-Real Gap) Average Time Cost

Stand(∆ ↑) Walk(∆ ↑) Run(∆ ↑) Flip(∆ ↑) (↓)
Esim Foundation Policy 894.83 783.60 413.64 546.41 0.73 (0.11)±0.03

G1

Direct-Transfer 494.24 (-400.59)±95.89 318.93 (-464.67)±127.15 259.24 (-154.40)±154.58 406.09 (-140.33)±26.86 5.06 s ± 0.05
Vanilla-GAT 376.27 (-518.56)±101.65 185.66 (-597.94)±80.22 113.79 (-299.85)±70.91 239.87 (-306.54)±59.13 7.59 s ± 1.70

UGAT 371.44 (-523.39)±187.32 326.49 (-457.11)±48.09 222.38 (-191.26)±22.42 305.26 (-241.15)±24.54 9.15 s ± 2.50
PAD 570.70 (-324.13)±33.79 448.50 (-335.11)±51.61 282.82 (-130.82)±6.26 441.72 (-104.69)±69.74 (hs)

Found-adapt 586.63 (-308.20)±41.17 472.25 (-311.35)±42.44 278.44 (-135.20)±20.55 470.65 (-75.76)±33.03 6.22 s ± 0.12

G2

Direct-Transfer 222.49 (-672.34)±27.40 150.98 (-632.63)±29.73 117.32 (-296.32)±1.23 189.52 (-356.89)±17.79 5.36 s ± 0.11
Vanilla-GAT 60.57 (-834.27)±14.87 71.96 (-711.64)±54.30 29.89 (-383.75)±20.86 38.57 (-507.84)±7.38 7.56 s ± 2.30

UGAT 175.42 (-719.41)±91.35 163.25 (-620.36)±90.00 73.99 (-339.64)±12.35 54.68 (-491.74)±22.98 9.10 s ± 2.90
PAD 273.16 (-621.67)±4.60 189.17 (-594.43)±2.53 199.41 (-214.23)±40.09 211.73 (-334.68)±33.10 (hs)

Found-adapt 276.62 (-618.21)±34.59 182.46 (-601.14)±20.89 188.15 (-225.49)±90.79 219.39 (-327.02)±38.94 6.11 s ± 0.07

G3

Direct-Transfer 213.15 (-681.69)±78.96 105.00 (-678.60)±10.80 54.80 (-358.83)±46.39 60.22 (-486.19)±31.16 5.14 s ± 0.10
Vanilla-GAT 32.28 (-862.55)±12.00 28.80 (-754.80)±10.83 23.24 (-390.40)±9.72 26.26 (-520.16)±17.88 7.71 s ± 2.70

UGAT 72.30 (-822.54)±42.51 16.45 (-767.15)±1.08 34.44 (-379.19)±16.79 22.83 (-523.58)±1.34 9.10 s ± 1.70
PAD 262.21 (-632.62)±33.33 127.96 (-655.65)±17.83 140.84 (-272.80)±35.72 132.66 (-413.75)±13.33 (hs)

Found-adapt 276.15 (-618.69)±35.18 120.87 (-662.73)±8.42 147.47 (-266.17)±115.81 145.83 (-400.58)±26.88 6.08 s ± 0.11

G4

Direct-Transfer 63.81 (-831.02)±14.14 33.03 (-750.57)±6.82 28.69 (-384.95)±13.79 21.84 (-524.58)±5.58 5.28 s ± 0.09
Vanilla-GAT 57.83 (-837.00)±20.27 25.42 (-758.18)±11.53 14.46 (-399.18)±6.21 43.48 (-502.94)±41.15 7.61 s ± 2.50

UGAT 80.33 (-814.50)±47.76 14.51 (-769.09)±0.45 12.89 (-400.75)±2.39 21.81 (-524.61)±8.58 8.63 s ± 2.40
PAD 78.69 (-816.14)±9.47 105.45 (-678.16)±9.70 116.92 (-296.72)±61.29 83.51 (-462.90)±52.92 (hs)

Found-adapt 76.70 (-818.13)±11.81 118.55 (-665.05)±104.54 154.89 (-258.75)±76.34 105.88 (-440.53)±50.47 6.12 s ± 0.11

Table 1: Performance under Gravity variations comparing Direct-Transfer, Vanilla-GAT, UGAT,
PAD, and Found-adapt. Each cell shows average return with gap to Esim and standard deviation
(5 runs). Higher is better for returns; lower is better for time cost. Best average per column is bold;
second best is underlined. PAD time marked “hs” for it takes hour-level magnitude, not comparable.

& Stone, 2017), and uncertainty-based GAT (UGAT) (Da et al., 2023), which is developed by post-
training a grounding module for the foundation policy to ground the actions provided by the foun-
dation policy, and UGAT integrates an evidential layer to derive the uncertainty and use it to reject
low-quality actions. Besides, we provide four versions of Found-adapt for the ablation study:
F(init) (closed form solution π(a|s, z∗src) by cross-domain initial alignment from Sec. 4.2A),
F(dyna) (z∗final directly calculated from MetaDynamic network in Sec. 4.2B), F(init, dyna)
(make use of both initial alignment and meta dynamics signature, but without online adaptation.)
and F-all (i.e., full model of Found-adapt). There are methods in deployment adaptation branch,
however, this branch of methods are not adaptive to different tasks, thus, it needs to be pretrained on
specific tasks then perform deployment adaptation individually, to represent this research direction,
we implemented a classic baseline: Policy Adaptation during Deployment (PAD) by (Hansen et al.),
given the high time cost, we only provide magnitude in evaluation.

Evaluation Metrics: The primary goal of this work is to mitigate the performance gap of the
derived policy πθ in the simulation environment Esim and in the real-world environment Ereal, thus
we calculate the performance difference ∆ for the episode return of each task. We denote their
differences as ∆Return. For a given metric ‘Episode Return’ in two domains. Normally, Rreal <
Rsim, thus the gap ∆Return is negative, and the higher, the smaller the gap is (↑), applied in Table. 1.

∆Return = Rreal −Rsim (7)

Difficulty: ★ Difficulty: ★★ Difficulty: ★★★ Difficulty: ★★★★

Figure 3: The performance on the friction-based settings (F1 - F6). In this image, from left to
right, the blue bar shows the performance drop in the original system dynamics (Esim) along with
the increase of the difficulty of the system (reflected by the friction severeness as in Table. 3). The
foundation policy can adapt to various tasks, and our method shows best sim-to-real gap mitigation.
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5.1 EXPERIMENT ANALYSIS

(1) The performance comparison among the baselines. In this section, we tend to verify the
performance of our method in comparison to baselines. In Table 1, we compared Found-adapt
with four baselines under various gravity changes, including three types: Direct Transfer, grounded
action transformation (GAT, UGAT), and deployment adaptation (PAD). It is worth noting that de-
ployment adaptation methods require pretraining on task-specific data collections; thus, this branch
of method can not provide an absolute fair comparison to the task: ‘Adapt policy to various tasks
and multiple system dynamics at mean time without further training’. More details please visit
Appendix E (3). We evaluate on 4 different tasks in the Walker environment, comparing different
methods’ performance (return) and sim-to-real gap as in brackets (the higher the better), meanwhile,
we also compare the time cost during online adaptation. Our method consistently ranked at the top
2 performing methods. Sometimes it is slightly worse than the PAD; however, PAD requires task-
specific pretraining and updates are coupled to downstream behavior, whereas our method leverages
a task-agnostic foundation representation shared across tasks: stand, flip, etc. We also perform a
comprehensive evaluation on friction settings, as shown in Figure. 3, from stand to run. As the
difficulty increases, the overall performance drops; however, as shown in the red line, our method
successfully makes an improvement from the blue bar (which is the direct transfer performance in
Ereal). The adaptation process with the latent z representation changes is shown in the Fig. 5 (b),
and more discussion on the baselines can be found in the Section. H.

w/o. A
daptatio

n

(a) The ablation study of the Found-adapt on the friction F1
setting. Dotted box shows full model improves across tasks,
and adaptation is necessary, as in init+dyna (w/o. adapt).

Performance 
Improvement 

Direct Transfer

Gravity 

Fri
cti

on

(b) The landscape on Walk of both factors to
analyze the difficulty of the optimization task,
our method provides consistent improvement.

Figure 4: The partial results of case studies on the ablation and sensitivity of proposed Found-adapt.

(2) The ablation study of the proposed Found-adapt. The proposed method mainly has three
components: Initial alignment solution zsrc, MetaDynamics network with signature η, and Latent
adapter gθ. (Sec.4.2 A-C). We perform the ablation study to understand the contribution of different
components in the model’s result. As shown in Figure. 4 (a), F(init) uses only zsrc, it can score
well on the easy stand task but exhibits high variance on other tasks because it fails to capture
higher-order dynamics features; F(dyna) uses only dynamic signature η, underperforms since the
sole signature struggles to produce a valid latent z; interestingly, the F(init+dyna) performs worst,
since it applies simple merge with zsrc and η, as the latent mixes uncalibrated cues from alignment
and higher-order dynamics, it fails to exploit either; once we add the adapter gθ (Eq. 5), F(all) -
ours: yields consistent gains on all tasks (dotted box) by reconciling zsrc with η, reducing bias and
variance, and turning the dynamics signature into extra corrections, more results are in Figure 11.

𝑅(𝐸!"#$|𝑍%!&) = 383.51

𝑅(𝐸!"#$|𝑍!"'()"*) = 553.86

Corruption (%) (a) Adaptation Steps (b)

Loss (1e-3)Return (1e2)

2

4

Figure 5: The (1) data quality analysis under three
modes, and (2) latent vector evolution zsrc → zrefined.

(3) Study of the system variable sen-
sitiveness and the model’s ability. We
analyze how performance changes with
friction and gravity jointly on Walk task.
The results in Fig. 4 (b) show a two-
factor response surface where the adapted
policy (gradient red surface) consistently
lies above direct transfer (blue), indicat-
ing non-negative lift across the domain.
The gap (improvement) is most visible in
harder ranges: strong gravity shifts (-34
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to -44) combined with moderate friction,
suggesting that adaptation receives larger gains where the sim-to-real gap is wide. Moving toward
the nominal dynamics (gravity ≈ −9.81, friction ≈ 1), the two surfaces converge, but ours remains
slightly higher, evidencing reliable improvement even in mild conditions. Overall, despite the non-
linear and rugged landscape, the adapted model maintains robustness and yields the largest benefits
in adverse regimes.

(4) The analysis of the requirement of target-domain data. In collected target-domain data,
Dtar = {(sj , rj , s′j)}Mj=1. We corrupt transitions with a rate p% that selects an index set J ⊂
{1, . . . ,M}. We study three modes that mimic common data issues: (i) drop: remove the selected
tuples {(sj , rj , s′j)}j∈J from Dtar (data sparsity); (ii) mask: keep length but set sj = 0, s′j =
0, and rj = 0 for j ∈ J (bad imputation / ‘missing-as-zero’ bias); (iii) noise: add Gaussian
perturbations scaled by the empirical per-dimension standard deviation to the raw signals, i.e., sj←
sj+ϵ1, s′j←s′j+ϵ2, rj←rj+ϵ3 with ϵ1, ϵ2, ϵ3 ∼ N (0, σ2), simulate the label noise scenarios. We
evaluate on the consistent Walker environment, stand task under gravity G1 in Table. 3. As shown
in the Fig. 5 (a), All three modes only suffer slightly with drops when the corruption is less than
50%, showing our method is relatively robust to data quality. Then, Performance degrades most
gracefully under drop, indicating our method could capture the dynamics signature from little data
with high efficiency. mask fails early: means zero-filled values inject systematic bias, and hinders
the adaptation, pulling the latent toward degenerate solutions once ≳ 50 - 60% of data are masked.
The noise hurts consistently under heavy corruption (≳ 50%). In practice, when data are suspect,
it is suggested to discard rather than zero-filling when applying our method, keep noise low, and
consider denoise objectives if noisy data are unavoidable.

0.0

0.5

1.0

Figure 6: Correlation of the adap-
tation loss and the target domain
Ereal performance improvement.

(5) The relationship of the adaptation loss and the sim-to-
real ability. This study aims to understand how the adapta-
tion process advances the sim-to-real ability of our method.
We treat the ‘Stand’ task as an example. In the process, we
leveraged the pre-trained foundation policy, and applied our
method; then, we recorded the loss changes (step-wise) during
the adaptation of network gθ as in Eq. 5, by this, we derive
the πi, i ∈ [1, 60] from 60 steps. We test each πi’s perfor-
mance and calculate the improvement as in Eq. 7. To better
illustrate the correlation, we take a negative value of the loss
along the x-axis and then normalize both dimensions. On left
side of Fig. 6, the grey area shows the 95% confidence interval
around the fitted regression line, on the right side, we show the
KDE of the joint distribution to move beyond linear analysis, it
shows a high-density ridge aligned with the regression (darker→ denser), confirming monotonicity
and the scarcity of cases where lower loss yields better performance (‘∗∗∗’ indicates p ≤ 0.001).
This study reveals that: as ‘−loss’ increases (i.e., the better adaptation results), the sim-to-real per-
formance consistently grows.

6 CONCLUSION

This work presents the first study of leveraging foundation policies for adaptive sim-to-real transfer.
By decoupling skill acquisition from environment adaptation, our framework pre-trains a versa-
tile foundation policy from offline simulation data and then employs a lightweight latent adapter,
inferred from limited target-domain samples, to align with real-world dynamics efficiently. This
design enables rapid adaptation without costly retraining, mirroring how humans reuse previously
acquired skills and flexibly adjust them to novel environments.

Empirical evaluations across diverse locomotion tasks and varying dynamics factors, such as gravity
and friction, demonstrate that our method effectively mitigates domain gaps and achieves robust
transfer compared to conventional approaches. At the same time, we acknowledge two limitations:
(i) the degree of mitigation varies across environments, and (ii) sensitivity to hyperparameters may
require careful tuning for different tasks. These are not fundamental drawbacks, but opportunities
for refinement through adaptive weighting, uncertainty-aware objectives, and broader real-world
extensions. Overall, this work shows that foundation-style policies can capture generalizable skills
and be efficiently adapted to unseen dynamics, offering a promising new perspective for bridging
the sim-to-real gap.

9
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REPRODUCIBILITY STATEMENT

The implementation details and instructions needed to reproduce the main experimental results are
included in the supplementary material. We provide sufficient descriptions of the algorithms, experi-
mental setup, and hyperparameters also in the anonymous link: https://anonymous.4open.
science/r/Found-adapt-41C4/.
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APPENDIX

A LLM USAGE STATEMENT

In accordance with the ICLR 2026 submission guidelines, we disclose that large language models
(LLMs) were used only for language editing and grammar checking. No LLMs were employed
for generating research ideas, designing methodologies, producing experimental results, or creating
data. All scientific content, analysis, and conclusions were developed and verified by the authors.
The authors take full responsibility for the integrity, originality, and accuracy of the submission.

𝐸!"# 𝐸$%"

Figure 7: The 2D t-SNE visualization of Hilbert-space embeddings for Walk environment across
default and 4 gravity settings: ϕ(s) under increasing dynamics perturbations. From g0 (default
standard gravity) to g4 (strongly perturbed dynamics), the embedding structure gradually collapses:
the clean manifold geometry in g0 becomes increasingly distorted and contracted as dynamics shift
grows. This illustrates that the state-visitation distribution under perturbed dynamics diverges sig-
nificantly from the simulator distribution, producing noticeable drift in the fixed encoder’s feature
space, which our adaptation module is designed to correct the policy on that environment.

B HILBERT SPACE PRELIMINARIES

Definition B.1 (Real Hilbert Space). A real Hilbert space is a real vector space Z equipped with
an inner product as ⟨·, ·⟩ : Z × Z → R, such that the induced norm ∥z∥ =

√
⟨z, z⟩ makes Z into

a complete metric space under the distance d(z, z′) = ∥z − z′∥. Completeness means that every
Cauchy sequence in Z converges (with respect to d) to a point in Z .

In our approach, we rely on the geometry of a real Hilbert space (Z, ⟨·, ·⟩). Below, we briefly
introduce the key definitions and properties:

B.1 INNER PRODUCT

For any z, w ∈ Z , the inner product is ⟨z, w⟩ =
∑D

i=1 zi wi, which satisfies:

• Symmetry: ⟨z, w⟩ = ⟨w, z⟩.
• Linearity: ⟨αz + z′, w⟩ = α ⟨z, w⟩+ ⟨z′, w⟩.
• Positive definiteness: ⟨z, z⟩ ≥ 0 with equality iff z = 0.

B.2 NORM

The norm induced by the inner product measures the “length” of a vector: ∥z∥ =
√
⟨z, z⟩, with the

following properties:

• ∥z∥ ≥ 0, and ∥z∥ = 0 iff z = 0.

• ∥α z∥ = |α| ∥z∥ for any scalar α.

• ∥z + w∥ ≤ ∥z∥+ ∥w∥ (triangle inequality).
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B.3 METRIC

The inner-product norm induces a metric d on Z: d(z, z′) = ∥ z − z′∥ =
√
⟨z − z′, z − z′⟩, which

satisfies:

• d(z, z′) ≥ 0, and d(z, z′) = 0 ⇐⇒ z = z′.

• d(z, z′) = d(z′, z) (symmetry).

• d(z, z′) ≤ d(z, z′′) + d(z′′, z′) (triangle inequality).

Introducing d is necessary because First, it provides a principled way to compare embeddings:
d(ϕ(s), ϕ(g)) quantifies the similarity of states. Second, many representation-learning objectives
(e.g. contrastive or temporal losses) are formulated in terms of distances. Besides, Hilbert-space
policies use inner products or distances to define intrinsic rewards, ensuring temporally coherent be-
haviors. This geometric structure underpins both zero-shot inference and goal-conditioned planning
in our foundation policy.

C DERIVATION OF CLOSED FORM SOLUTIONS

In order to solve for the optimal vector z in the latent space Z to get the near-optimal policy so-
lutions. The objective is to minimize the difference between the observed reward and the linear
combination of the feature matrix and z. Formally, the optimization problem is:

z∗ = argmin
z∈Z

ED

[
(r(s, a, s′)− ⟨ϕ(s, a, s′), z⟩)2

]
(8)

where the observed reward for transition (s, a, s′) is denoted as r(s, a, s′), the feature vector de-
scribing the transition is ϕ(s, a, s′) ∈ Rd, the task-specific latent vector to optimize is z ∈ Rd, the
expectation over the dataset D is represented by ED, and the inner product in Rd is denoted by ⟨·, ·⟩.
In order to get the closed-form solution for this optimization problem, we have the derivation as
follows. We can simplify the goal in matrix form for n samples in the dataset:

L(z) = (r(s, a, s′)− ⟨ϕ(s, a, s′), z⟩)2 = ∥r − Φz∥22 (9)

where the vector of observed rewards is r = [r1, r2, . . . , rn]
⊤ with dimensions n × 1, the feature

matrix is Φ = [ϕ1, ϕ2, . . . , ϕn]
⊤ with dimensions n×d, and the latent vector to optimize is z ∈ Rd.

Expanding the loss:

∥r − Φz∥22 = r⊤r − 2r⊤Φz + z⊤Φ⊤Φz. (10)

And then differentiating with respect to z:

∂L(z)
∂z

= −2Φ⊤r + 2Φ⊤Φz. (11)

Because the unique global minimum exists if the function is differentiable and the second derivative
is positive semidefinite, and the critical point where the derivative equals zero corresponds to the
global minimum, we next set the derivative to zero:

−2Φ⊤r + 2Φ⊤Φz = 0,
Φ⊤Φz = Φ⊤r.

(12)

Then we rearrange the result, which gives the closed-form solution:

z∗ = (Φ⊤Φ)−1Φ⊤r (13)
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where Φ⊤Φ is the covariance matrix of the features, Φ⊤r represents the correlation between features
and rewards, z∗ minimizes the squared error between the observed rewards and the predictions given
by Φz.

D NOTATION SUMMARY

In this section, we provide a table of detailed notation and explanations that appear in the paper.
It provides a comprehensive summarization of the terms used in the preliminary and methodology
sections.

Symbol Description
M = (S,A, P, r, µ, γ) Markov decision process.
π(a|s) Policy distribution over actions.
φ(s) State encoder to latent space.
Z = RD Hilbert latent space.
d(s, g) = ∥φ(s)− φ(g)∥ Latent distance between states.
π(a|s, z) Latent-conditioned foundation policy.
r(s, z, s′) = ⟨φ(s′)− φ(s), z⟩ Intrinsic reward from latent direction.
z∗ Task-specific optimal latent vector.
Φ ∈ RN×D Feature matrix of transitions.
r ∈ RN Reward vector.
z = (Φ⊤Φ)−1Φ⊤r Least-squares latent solution.
∆P = Preal − Psim Dynamics discrepancy.
Φreal = Φsim +∆Φ Real feature matrix.
zsrc Latent from joint regression.
λ Weight for real-domain samples.
η = MetaDynamic({φ(s̃j)}) Permutation-invariant dynamics signature.
gθ(zsrc, η) Adapter network for latent refinement.
zfinal Refined latent for deployment.

Table 2: Notation summary for the proposed latent adaptation framework.

Setting Name Parameter Changes Description

Default Default default setting of Esim

G1 Gravity −9.8 → −15 Gravity-level 1 Ereal – easiest
G2 Gravity −9.8 → −24 Gravity-level 2 Ereal – middle easy
G3 Gravity −9.8 → −34 Gravity-level 3 Ereal – middle hard
G4 Gravity −9.8 → −44 Gravity-level 4 Ereal – hardest

F1 Friction → [4, 0.4, 0.4] Friction-level 1 Ereal – easiest
F2 Friction → [5, 0.5, 0.5] Friction-level 2 Ereal – slight easy
F3 Friction → [6, 0.6, 0.6] Friction-level 3 Ereal – middle easy
F4 Friction → [7, 0.7, 0.7] Friction-level 4 Ereal – slight hard
F5 Friction → [8, 0.8, 0.8] Friction-level 5 Ereal – harder
F6 Friction → [18, 1.8, 1.8] Friction-level 6 Ereal – hardest

Table 3: Simulator-to-Real Configurations for Ereal

E MORE EXPERIMENTAL RESULTS

E.1 DETAILS OF EXPERIMENTAL SETUPS

(1). Computing Resources: All case studies are conducted on a local workstation equipped with an
NVIDIA GeForce RTX 4090 GPU (24 GB memory), CUDA 12.2, and driver version 535.183.01,
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running under Ubuntu Linux. The main experiments reported in the tables were conducted with a
high-performance computing cluster equipped with NVIDIA A100 GPUs (80 GB memory).

(2). Training and Data Collection Configs: All the pre-training of the foundation models was
executed with 2,000,000 episodes, we adopt a unified configuration across all environments follow-
ing a Hydra-based setup (Yadan, 2025). We employ the DDPG agent pre-training and state-based
observations (with optional pixel-based experiments like Kitchen using frame stacking and action
repeat). In the total episodes, we set the first 1,000 frames for seeding the replay buffer. Replay
buffer capacity is fixed at 1,000,000 transitions, serve as the source-domain dataset Dsrc. In addi-
tion, we also construct a target-domain dataset Dtar by executing the pre-trained policy in the target
environment for 5, 000 rounds of interaction.

(3). Baseline implementation details: In this section, we provide details of the baseline models
trainings. For PAD (Hansen et al.) model, we follow the official repository as released in the project
website 3 Besides, since the grounded action transformation methods could provide adaptation on
the policy newtork in real time by training a forward model and invserse model, and ground the ac-
tion based on the estimated real-world system dynamics, thus, we adapt this branch of method and
conduct online adaptation, the implementation mainly follow the release code base at public repos-
itory 4. To make a fair comparison in the online adaptation time, we fixed the epochs of adaptation
as 200 across the main table’s experiments. In uncertainty-aware GAT (UGAT), it integrates the ev-
idential deep learning module for uncertainty prediction in the inverse module, and the uncertainty
will be used to decide whether to accept new proposed action (low-uncertainty) or take the original
action (high-uncertainty), this method generally provides consistent improvement than Vanilla-GAT
model based on our experiment.

Environment of the Study

(Walker) (Cheetah) (Quadruped) (AntMaze-L) (AntMaze-U) (Kitchen)

Figure 8: The seven environments of the experimental studies in this paper. The first four are used in
the zero-shot RL tasks, and the last three are used for goal-conditioned RL tasks. We conceptually
verify our method can also perform sim-to-real adaptation in goal-conditioned RL settings.

E.2 INTERPRETATION OF THE DATA QUALITY RESULTS.

Following the discussion in Sec. 5.1 (4), Figure. 12 (four panels) extends the analysis from stand to
walk, run, and flip under three corruption modes (drop, mask, noise). Two patterns are consistent
across tasks. First, drop exhibits graceful degradation: at less than 50% removal rate, stand and
walk decline only mildly, indicating that reducing target-domain sample size might weaken the
adapter’s evidence, but our method could still perform relatively robustly. In contrast, run and flip
deteriorate more sharply at the same rate; these skills start from a lower baseline because we are
zero-shot prompted to a new task while adapting to new environments, making them more sensitive
when losing the target domain data and amplifying variance in the latent refinement.

Second, mask fails early in four tasks, which shows that, converting selected transitions to zeros
injects biased signals into the squared-loss objective of Eq. 5, pulling the refined latent toward de-
generate regions and causing rapid collapse once a moderate fraction is masked. By comparison,
noise shows a nonlinear response: light corruption can act like a mild regularizer (occasionally
producing small bumps), but heavier noise degrades performance, particularly for the dynamics-
sensitive run/flip, because it disrupts the consistency between (s, s′) on which the adapter relies.

3https://www.nicklashansen.com/PAD/
4https://github.com/DaRL-LibSignal/UGAT/tree/main
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Figure 9: The baseline implementation of the Grounded Action Transformation-based foundation
policy sim-to-real model. The data for training the grounding module is a set of sampled data
(st, at, st+1) by 10000 rounds of interactions with the Esim and corresponding ŝt+1 by applying
the same at in Ereal. The training does not provide unlimited access to Ereal to align with our
method.

Figure 10: The performance on Gravity variations using Direct-Transfer, Vanilla-GAT compared
with using Found-adapt method. The result shows that our method consistently outperforms can-
didate baselines on various environments, such as Walker, Cheetah, Quadruped, and Jaco, etc.

Overall, the curves suggest a task-wise sensitivity hierarchy: stand ≈ walk are comparatively robust
to sparsity, whereas run and flip are fragile both to reduced evidence (50% drop) and to signal
corruption (mask/noise). Taken together, these results highlight that Found-adapt is surprisingly
resilient: it delivers stable performance under substantial sparsity (e.g., ≤50% drop in stand/walk)
and degrades gracefully relative to more brittle perturbations. However, on the more demanding
skills: run and flip, we observe that, the curves exhibit noticeably larger variance under comparable
corruption. We attribute this to the compounded difficulty of zero-shot adaptation to a new task while

Friction Test Set Gravity Test Set

Figure 11: The full ablation study results. The left side shows the experiment performed on the
friction test set, and the right side shows the experiment result on the gravity-based test cases. As
shown in the dotted line box, the full model performs the best among the other three ablated model
structures.
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Figure 12: More comprehensive data quality analysis on four different tasks with three modes of
corruptions and varied corruption rates.

adapting: contact- and timing-sensitive dynamics amplify small inconsistencies between (s, s′),
and the induced latent landscape can be more rugged. In conclusion, Found-adapt still delivers
consistent sim-to-real lift on unseen tasks by efficient parameter tuning, without retraining the whole
policy, which goes beyond conventional pipelines.

F FEASIBILITY IN GOAL-CONDITIONED RL SETTING.

We show that Found-adapt applies to goal-conditioned RL (GCRL) with no change to the foun-
dation policy or training loop, only to how the task latent is instantiated from a goal. Let g denote
a goal (e.g., a target state or target representation). As in the main text, the foundation policy is
π(a|s, z), the transition feature is ϕ(s, a, s′) ∈ RD, and rewards are modeled linearly in the latent:

r( s, a, s′ ) ≈ ⟨ϕ(s, a, s′), z⟩.

For GCRL we simply index the latent by the goal and write zg . Many standard goal rewards (e.g.,
indicator of reaching g or a shaped distance to g) admit a linear fit in the same feature space; we
denote their labels for transition j by r̃g,j .

Goal-to-latent mapping in the simulator. Given a set of simulator transitions {(si, ai, s′i)}Ni=1
and a goal g, form

Φsim ∈ RN×D with rows Φ⊤
sim,i = ϕ(si, ai, s

′
i), r̃g,sim ∈ RN .

The goal-specific source latent zsrcg is obtained exactly as in the main method (weighted/regularized
least-squares in the same feature basis):

zsrcg = arg min
z∈RD

1

N

∥∥Φsimz − r̃g,sim
∥∥2
2
+ λ∥z∥22 =

(
Φ⊤

simΦsim + λI
)−1

Φ⊤
simr̃g,sim.

When partial target data are also available, the same stacked/weighted normal equations used in the
main method can be applied to include them.

Target-domain refinement via the latent adapter. At inference, Found-adapt already computes
an environment signature η from target transitions (DynamicNet over ϕ-features) and refines the
latent via the adapter gθ(·, ·). For a given goal g, define the target design matrix and labels

Φtar ∈ RM×D, r̃g,tar ∈ RM ,
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Figure 13: The visualization of the zsrc and zrefined (after normalization). The left part, from zsrc
to zrefined, it shows the latent space changes during the adaptation process. Together with the loss
function decrease, the latent representation is changing, which leads to the final better solution in
the Ereal domain dynamics, yielding better performance in the Ereal rewards. This visualization
also confirms the refinement process is smooth and stable, demonstrating that the lightweight adapter
does not introduce instability. Due to the simple network architecture, it has a low risk of overfitting.

constructed from the same target transitions but goal-relabelled rewards (e.g., success indicator for
g, or a shaped distance to g in your representation). The adapter objective used throughout the paper
directly applies:

Ltar(θ; g) =
1

M

M∑
j=1

∥∥∥Φtar,j gθ
(
zsrcg , η

)
− r̃g,j

∥∥∥2
2
, zfinalg =

√
D

gθ∗
(
zsrcg , η

)∥∥gθ∗
(
zsrcg , η

)∥∥
2

.

The resulting zfinalg conditions the same foundation policy π(a|s, z) for the goal g, i.e., π(a|s, zfinalg ),
without retraining the policy.

Because g only changes the scalar labels r̃g,· while keeping the feature design matrices Φsim and
Φtar unchanged, Found-adapt is compatible with standard GCRL data strategies: (i) hindsight
relabelling, for any stored transition (s, a, s′), reuse it for many g by recomputing r̃g; and (ii) on-the-
fly goal queries, compute zsrcg (closed form) and its one-step refinement zfinalg per goal at inference.
No changes to ϕ, η, or π are needed.

Special case: representation-shaped goals. If the goal reward is a distance in the same represen-
tation used by ϕ, e.g.,

r̃g(s, a, s
′) ∝ −

∥∥φ(s′)− φ(g)
∥∥2
2
,

then, under the linear reward model already assumed by Found-adapt, the induced zg coincides
with the least-squares projection of this goal signal onto the feature span of ϕ(s, a, s′). Hence the
same identifiability and conditioning arguments in the main method carry over, and the adapter uses
η to correct residual simulation-to-real mismatch per goal.

Thus, GCRL in Found-adapt amounts to swapping task IDs for goals when forming the reward la-
bels r̃g,·; all estimators and refinements, least-squares for zsrc, DynamicNet environment signature
η, and the adapter gθ remain unchanged. Thus, a single foundation policy π(a|s, z) can be de-
ployed across many goals by computing zfinalg at inference, preserving the inference-time adaptation
advantages demonstrated in the main (task-conditioned) setting.

G DETAILED MODEL CONFIGURATIONS

The MetaDynamic network used in Sec. 4.2.B is a permutation-invariant set encoder. Given a set
of target-domain encoded states {ϕ(s̃j)}Nj=1, it produces a dynamics signature η ∈ RK through an
elementwise transformation, pooling, and a global projector such as below:

η = ρ

 1

N

N∑
j=1

ϕenc(ϕ(s̃j))

 (14)

Architecture: We use a lightweight DeepSet-style module as below:
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• elementwise encoder ϕenc: MLP(d→ 128→ 128, ReLU),
• permutation-invariant mean pooling,
• projector ρ: MLP(128→ 128→ K, ReLU) with K = 64.

Pre-training: The encoder is trained offline using simulator trajectories collected under 12 dynam-
ics variations (gravity, friction, and actuator-strength perturbations). Training uses a combined loss:

L = LCE + αLNTXent, α = 0.1 (15)

The cross-entropy term LCE encourages the encoder to separate different dynamics regimes, while
the NT-Xent loss LNTXent (Chen et al., 2020) pulls together sets from the same dynamics and pushes
apart sets from different ones, producing a smooth and discriminative dynamics signature.

Deployment: After pre-training, the parameters of MetaDynamic are frozen. During deployment,
it receives a small set of real-domain state encodings and outputs the corresponding dynamics sig-
nature η without further updates.

H THE COMPARISON OF PAD AND FOUND-ADAPT

The PAD framework Chen et al. (2023) is an important method for policy adaptation under dynamic
shifts. To better understand the strengths and applications of both approaches, we provide a com-
parison between PAD and Found-adapt, especially from their objectives, adaptation method, and
the use of target-domain data.

1. Adaptation objectives. PAD focuses on task-specific adaptation: for each downstream behavior
(e.g., walk, flip), PAD updates both the encoder and policy parameters via self-supervised consis-
tency losses. This enables the policy to specialize to the transition structure of each task, and PAD
has shown strong performance when per-task adjustment is required. In contrast, Found-adapt is
designed around a task-agnostic foundation representation. Built on top of the Hilbert-space encoder
from HILP, a frozen representation is shared across walk, stand, run, and flip. Our adaptation oper-
ates in the low-dimensional latent space, allowing the same correction to be reused across multiple
behaviors. This design aims to maximize flexibility and reuse across tasks, which is particularly
suited for foundation-model-based control. 2. Use of target-domain data. The target-domain
rollouts used in Found-adapt serve to estimate a domain-level shift that applies across multiple be-
haviors. That is, the goal is to infer how the underlying dynamics differ from the simulator so that
a single adapted latent can be shared across tasks. PAD, on the other hand, uses target-domain data
to refine the encoder and policy for each individual task. Its supervision signal is behavior-specific,
and its adaptation is tightly coupled to how each task’s trajectories unfold. As a result, the role and
interpretation of target samples are fundamentally different between the two methods, and the abso-
lute number of samples used by each is not directly comparable. Conclusion: PAD provides strong
per-task specialization and can adjust a policy for a given behavior; sometimes, it can provide more
optimal adapted policy compared to our method. Found-adapt instead prioritizes cross-task reuse
and real-time latent adaptation built on a shared foundation representation.

I DISCUSSION ON FUTURE WORK

Regularization for stable latent refinement. The refinement of the latent vector through the
adapter gθ is supervised by the projection ∥Φtarg gθ(zsrc, η) − rtarg∥2 which constrains the solution
only through the row space of Φtarg. In theory, multiple latent vectors may achieve similar projection
error, and this can potentially introduce a certain degree of overfitting. We find this effect to be
limited when the latent dimension is small, and the adapter is conditioned on zsrc, which serves as a
strong prior and restricts the refinement to a meaningful neighborhood of the initial solution. More-
over, the adapter is a low-capacity MLP that is optimized for only a few hundred steps, providing
a strong form of implicit regularization. Empirically, we did not observe strong instability or in-
consistency: the refined latent evolves smoothly and improves closed-loop performance. However,
adding an appropriate regularization term toward zsrc or incorporating geometric constraints in the
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latent space may further enhance the refinement, which eventually provides better identifiability and
improved performance under stronger perturbations.

Extending to real-world sim-to-real adaptation. Our experiments follow the widely adopted
sim-to-sim evaluation protocol, which provides controlled and repeatable dynamics variations for
isolating the effect of latent-space adaptation. This setting is both standard and practical for analyz-
ing dynamic generalization. An important direction for future work is to deploy the proposed method
in real hardware environments to more directly assess its sim-to-real capability. Additionally, replac-
ing state-based features with image observations or vision-based encoders would make the pipeline
more applicable to realistic robotic systems, where dynamics shifts often manifest through visual
changes. Such extensions would further validate the flexibility of foundation-policy adaptation and
broaden its applicability to perceptual and real-world domains.

Figure 14: A grid comparison to
demonstrate the correlation of the adap-
tation loss and the target domain Ereal

performance improvement.
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