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Abstract

Referenced-based scene stylization that edits the appearance based on a content-
aligned reference image is an emerging research area. Starting with a pretrained
neural radiance field (NeRF), existing methods typically learn a novel appearance
that matches the given style. Despite their effectiveness, they inherently suffer from
time-consuming volume rendering, and thus are impractical for many real-time
applications. In this work, we propose ReGS, which adapts 3D Gaussian Splatting
(3DGS) for reference-based stylization to enable real-time stylized view synthesis.
Editing the appearance of a pretrained 3DGS is challenging as it uses discrete Gaus-
sians as 3D representation, which tightly bind appearance with geometry. Simply
optimizing the appearance as prior methods do is often insufficient for modeling
continuous textures in the given reference image. To address this challenge, we
propose a novel texture-guided control mechanism that adaptively adjusts local
responsible Gaussians to a new geometric arrangement, serving for desired texture
details. The proposed process is guided by texture clues for effective appearance
editing, and regularized by scene depth for preserving original geometric structure.
With these novel designs, we show ReGS can produce state-of-the-art stylization
results that respect the reference texture while embracing real-time rendering speed
for free-view navigation.

1 Introduction

Stylizing a 3D scene based on a 2D artwork is an active research area in both computer vision and
graphics [} 2413 14} 15,16} [7]]. One important direction of stylization aims to precisely stylize the scene
appearance based on a 2D content-aligned reference image drawn by users [10]]. Such problem has
numerous applications in digital art, film production and virtual reality. In the classical graphics
pipeline, completing this task requires experienced 3D artists to manually create a UV texture map as
input to the shader, a tedious process requiring professional knowledge, significant time, and effort.

Over the past decades, tremendous progress has been made in automatic scene stylization by lever-
aging view synthesis methods. While early attempts [[1, 2} [12} |13]] suffer from geometry errors of
point clouds or meshes, more recent methods [9} 18 3,4} 15, 16| [7] rely on radiance field (NeRF) [14]], a
powerful implicit 3D representation, to deliver high-quality renditions that are perceptually similar
to the reference image. A typical stylization workflow starts from a pretrained NeRF model of the
target scene, followed by an appearance optimization phase to match the given style. The density
function is always fixed to maintain the scene geometry [8} 9} [3, [10 6] . Despite their promising
results, NeRF-based approaches consume high training and rendering costs in order to obtain satis-
factory results. Although some recent efforts make fast training possible [[15 (16} 17, {18} 19} 20], the
improvement in efficiency often comes at the price of degraded visual quality. Meanwhile, real-time
rendering at inference time still remains challenging.
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Figure 1: Given a pretrained 3DGS model of the target scene and its paired style reference, ReGS
enables real-time stylized view synthesis (at 134 FPS) with high-fidelity texture well-aligned with
the reference. In contrast, only optimizing the appearance of 3DGS (denoted as Naive 3DGS), as
previous methods [[8] 9] 3, [T0} 6] do, fails to capture many texture details in the reference. We tackle
the challenges in high-fidelity appearance editing with a texture-guided control mechanism that is
significantly more effective than the default density control [11] in addressing texture underfitting.
Side-by-side comparisons with default density control can be found in Figure [5]

Recently, 3D Gaussian Splatting (3DGS) [11]] has become an emerging choice for representing 3D
scenes. 3DGS creates millions of colored Gaussians with learnable attributes to jointly represent the
target scene geometry and appearance. Importantly, it adopts splatting-based rasterization to
replace the time-consuming volume rendering of NeRF models, providing remarkably faster rendering
speed while maintaining comparable visual quality. However, as it uses discrete 3D Gaussians to
represent the reconstructed scene, optimizing their appearance with a fixed geometry layout (as NeRF-
based methods do) is often inadequate to capture the continuous texture variance in the reference
image. This “appearance-geometry entanglement" makes applying 3DGS to applications that require
novel appearance, i.e. stylization, challenging. For 3DGS, how to properly control and edit the
appearance without distorting the original geometry remains under-explored.

In this paper, we present a novel reference-based scene stylization method using 3DGS, dubbed
ReGS, to enable real-time stylized view synthesis with high-fidelity textures well-aligned with the
given reference. Similar to previous methods, our approach starts with a pretrained 3D Gaussian
model of the target scene. The core enabler of ReGS is a novel texture-guided control procedure
that makes high-fidelity appearance editing with ease. In particular, we adaptively adjust the local
arrangement of responsible Gaussians in the appearance underfitting regions to a state that the desired
textures specified in the reference image can be faithfully expressed. The control process is designed
to (1) automatically identify target local Gaussians using texture clues, and (2) structurally distribute
tiny Gaussians for fast detail infilling while (3) sticking to the original scene structure via a depth-
based regularization. With these novel designs, ReGS is able to learn consistent 3D appearance that
accurately follows the given reference image.

Following [10], we train ReGS on a set of pseudo-stylized images for view consistency, which
are synthetic multi-view data created using extracted scene depth, alongside with a template-based
matching loss to ensure style spread to the occluded regions. By combining these techniques with
the proposed texture-guided control, ReGS is capable of producing visually appealing stylization
results that attain both geometric and perceptual consistency. Through extensive experiments, we
demonstrate that ReGS achieves state-of-the-art visual quality compared to existing stylization
methods while enabling real-time view synthesis by embracing the fast rendering speed of Gaussian
Splatting.

2 Related Work

2.1 3D Scene Representation

Neural Radiance Field. Reconstructing 3D scene from multi-view collections is a long-standing
problem in computer vision. Early approaches adopting explicit mesh or voxel [26),



27, 128]] based representations often suffer from geometry error and lack of appearance details [29].
Recent methods [30} |31} 132, 133 [34} |35] adopt learnable radiance fields [[14] to capture 3D scene
implicitly and outperform previous techniques by a large margin. However, NeRF models require
millions of network queries for a single rendition that can be extremely time and resource-consuming.
To reduce the training time, advanced methods adopt explicit/hybrid representations including
voxel grid [[18] [16} [15 136l 137], octree 38, 39, 140, planes [41}, 42} [17, 43]] and hash grid [20], and
successfully reduce the training time from days to minutes. Nevertheless, the rendering speed at
inference time is still limited by their volumetric nature, which requires dense sampling along a ray
to generate a single pixel.

3D Gaussian Splatting. Recently, 3D Gaussian Splatting (3DGS) [[L1] achieves real-time novel view
synthesis based on a differentiable rasterizer [21]] that efficiently projects millions of 3D Gaussians
to a 2D canvas. Given its high efficiency, 3DGS becomes a promising solution to enable real-time
vision applications, such as human avatar [44} 45|46, 47]], 3D object and immersive scene creation
[48 149} 150, 1511, relighting [52} 153} 154} 1551, surface or mesh reconstruction [56L57], 3D segmentation
[58,159160]], and SLAM [61}162] 63]]. Motivated by its high efficiency, our work explores 3DGS to
enable real-time stylized view navigation.

2.2 2D Stylization

Arbitrary Style Transfer. Our method is related to the general 2D stylization [64]], which transfers
the style from an artwork to a target image while maintaining the original content structure. In
the pioneering work, Gatys et al. [65] introduce an iterative scheme that progressively reduces the
difference between the Gram statistics of generated image and style image features, yet lengthy
optimization is required per style. To improve efficiency, later methods [66, 67, 68,169, [70] focus
on arbitrary image/video stylization by transferring the content image to target style spaces in a
zero-shot manner. For example, Huang et al. [67] introduce AdalN, which achieves real-time
stylization by matching content features with the mean and standard deviation of style features.
Linear style transfer [66] instead predicts a linear transformation matrix based on both content and
style pairs. For video stylization, it is crucial to maintain temporal coherence of the stylized frames.
Techniques (71172, 73] [74} 75 176], such as flow-based wrapping [[72]], global SSIM constraint [[75]],
and inter-frame feature similarity [[76], are proposed to ensure the consistency.

Optimization-based Style Transfer. While arbitrary style transfer is desirable in terms of flexibility,
they often fall short of reproducing small stylistic patterns and lack high-frequency details [18 [77].
Optimization-based Stylization [[78, 79, 80, 81} 182} [77] is still the primary choice to ensure visual
quality. For instance, a coarse-to-fine strategy is proposed by Liao et al. [82] to compute the nearest-
neighbor field and build a semantically meaningful mapping between input and style images for visual
attribute transfer. Kolkin ez al. [77] reach state-of-the-art stylization quality by replacing the content
features with the nearest style feature. To enable better controllability, example-based methods
[1831 184 1851 [86]] perform wrapping or stylizing based on the aligned correspondences between the
style reference and content images. However, their 2D alignment is generally unsuitable for 3D
scenes due to occlusions, leading to flickering effects [10].

2.3 3D Stylization

3D scene stylization extends artistic works beyond the 2D canvas [87]. To stylizing a 3D scene, both
image exemplar [8, 9, 4] and text instructions [88, |89, 90, 91] have been explored as style guidance.
This work focuses on image-exemplar-based methods. Early works [1} [2] typically back-project
image colors as 3D point cloud for processing, and project stylized point features back to 2D for view
synthesis. Yet, using point cloud often fails to represent complicated geometry and produces artifacts
for complex scenes [8]].

Benefiting from NeRF, methods stylizing radiance fields [9} (8} 3] 14 15 |6l [7] have shown visually
compelling and geometry-consistent results than previously possible. Similar to image stylization,
several works [9} 13} 16} [7] deal with arbitrary or multiple style transfer using various techniques such
as 2D-3D mutual learning [3]], deferred style transformation [9], and hypernetwork [6]. While a
universal stylizer might be desirable, these methods can only transfer the overall color tone and
lack detailed style patterns, i.e. brushstrokes. Per-style optimization is still required for better visual
quality. Among these methods [4}, 8 15, 92], ARF [8] shows state-of-the-art stylization capability
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Figure 2: An overview of ReGS. (a) The proposed method starts with a pretrained content 3DGS
of the target scene, and (b) outputs a stylized 3DGS that follows the reference. (c) We propose
Texture-Guided Gaussian Control that can progressively resolve texture underfitting by automatically
locating responsible Gaussians and adjusting local geometry layout for fitting high-frequency textures.
(d) Once training is done, our method enables real-time stylized scene navigation.

by progressively matching the generated features with the closest style feature via nearest neighbor
search. Besides NeRF-based approaches, concurrent works [93],04] [95] [96] also explore 3DGS [11]]
as scene representation. However, these methods are designed for transferring styles from an arbitrary
reference and lack controllability over generated results. To this end, Ref-NPR [[10] introduces a
reference-based scheme that controls stylized appearance based on a content-aligned reference image.
Our work also focuses on this setting.

3 Method

An overview of ReGS is shown in Figure Q ReGS takes a pretrained 3DGS model (Figure |Z| (a)) of
the target scene as well as a content-aligned reference image as inputs. It outputs a stylized 3DGS
model (Figure |Z| (b)) that bakes the texture of the reference image into the scene and enables real-time
stylized views synthesis (Figure |Z| (d)).

As 3DGS represents a scene as discrete Gaussians, simply optimizing its appearance often cannot
capture the continuous texture details in the reference image. We introduce a texture-guided control
mechanism to progressively address this challenge (Sec. [3.2). To ensure no geometry distortion
happens during optimization, we propose a geometry regularization using scene depth (Sec.[3.3). We
then introduce two techniques to encourage perceptual-consistent renditions (Sec. [3.4). Finally, we
describe our training objectives in Sec. [3.3]

3.1 Preliminary: 3D Gaussian Splatting

Before introducing our method, we first provide a brief review of 3D Gaussian Splatting [11]. 3DGS
represents the scene explicitly by a collection of learnable Gaussians. Each 3D Gaussian is attributed
by a positional vector x4 € R? and a 3D covariance matrix 3 € R®*3, Its influence on a space point
x is proportional to a Gaussian distribution:

G(x) = e—%(x—u)-rzfl(x—u). (1)
By definition, the covariance matrix should be positive semi-definite. This is achieved by decomposing

Y into a scaling matrix S and a quaternion R i.e. ¥ = RSSTR.". Each Gaussian also stores an
opacity value «; and a view-dependent color represented by Spherical Harmonic (SH) coefficients.

The rendering procedure is implemented as splatting-based rasterization [21]] which projects Gaussians
to a 2D canvas. The projected 2D splats are then sorted based on the depth to the camera. After



Style Reference Stylized Pseudo Views via Depth-based Warping

(a) Rendered depth images (b) Synthesized pseudo views
Figure 3: Examples of (a) rendered depth maps using Eq[3|and (b) synthesized stylized pseudo views.

sorting, the final color for each pixel is computed through a-blending:

n i—1
C=> ca[[(1-a)), 2)
i=1 j=1

where ¢; is a view-dependent color of the i-th Gaussian computed from SH. ¢ is the multiplication
result of the learned opacity «; and evaluated value of the projected 2D Gaussian.

During optimization, heuristic controls are employed to adaptively manage the density of Gaussians
to better represent the scene. Specifically, it densifies Gaussians with large positional gradients to
capture missing geometry and prunes Gaussians with small opacity to improve compactness.

3.2 Texture-Guided Gaussian Control

As a discrete scene representation, the geometry layout and arrangement of Gaussians essentially
limit the range of appearance it can express. For example, as shown in Figure 2] (c), appearance
underfitting happens frequently at the area where local granularity of Gaussians is greater than the
variance of the texture, e.g. a smooth colored surface in the original scene is painted with rich details
in the reference view. ReGS addresses such challenges via a novel texture-guided control that splits
these responsible local Gaussians into a denser set suitable for high-frequency texture. Specifically,
the proposed mechanism automatically identifies responsible Gaussians using texture clues and
structurally replaces them with a denser set of tiny Gaussians to compensate for the missing details.
We describe important designs of the proposed algorithm below.

Texture Guidance. The control algorithm is directly guided by texture clues. Specifically, we
accumulate color gradients of all Gaussians over iterations and select Gaussians with larger gradient
magnitude than a threshold for densification. We found that a larger color gradient corresponds to
Gaussians that have large texture errors while the optimization struggles to find the correct colors
to reduce the loss. This control scheme shares a similar spirit with the original control scheme in
3DGS, where they leverage positional gradients to locate Gaussians responsible for missing geometric
features. But in stylization, scene geometry is already well-reconstructed through pretraining, and
therefore, the positional gradient is no longer informative. As demonstrated in Figure 5} our color-
based control scheme is more sensitive for pinpointing Gaussians with missing textures than the
positional-based solution. In practical implementation, we increase density based on the gradient
statistics of every 100 iterations.

Structured Densification. Traditional mesh subdivision [97] cuts large faces into more sub-faces to
express surface details. Sharing a similar spirit, we structurally split each responsible Gaussians into
a structured denser set to better represent texture details. Intuitively, after densification, newly added
Gaussians need to approximate the original space coverage to avoid inducing large geometry errors,
and they should be sufficiently small and form a dense set to capture appearance variance. Based
on these considerations, we propose a structured densification scheme that adds tiny Gaussians into
the most representative locations surrounding their parent Gaussian. Specifically, we use nine tiny
Gaussians to replace a parent Gaussian. Eight of them correspond to eight separate octants divided
by the equatorial plane and perpendicular meridian planes of the original ellipsoid. And the rest
is placed at the original center. We reduce their size by shrinking the scales with a factor of 8 and
copy remaining parameters from their parent Gaussian. We empirically found this setup can roughly
maintain a space coverage that approximates the original geometry. As optimization continues, the
densified Gaussians are progressively updated to infill missing textures.



3.3 Depth-based Geometry Regularization

While our control mechanism progressively improves texture details, it is essential to ensure the
original scene geometry is preserved after optimization. We resort to the scene depth as an additional
regularization to penalize geometry changes. Examples of rendered depth are shown in Figure[3] (a).
Formally, we derive the scene depth via a a-blending-based equation:
n i—1
d=> di J[J(1 - a)), 3)
i=1 j=1
where the d; is the z-buffer associated with the ith Gaussian and «;’ is the same evaluated opacity in
Eq.[2 d; is computed by projecting the 3D location y to the camera space.

The depth regularization is defined as the L; distance between a depth image D; rendered from
original scene model m and a depth image D; rendered from the stylized model m using the same
camera pose @; i.e. Laeptn, = ||Di — Di|1.

3.4 View-Consistent Stylization

For stylization, it is necessary to ensure the stylized appearance is consistent across different view-
points and inpaints the occluded areas. Following [[10]], we adopt two strategies to address them.

Stylized Pseudo View Supervision. An image with paired depth contains sufficient information to
re-render from nearby viewpoints [98]]. This allows us to create a set of stylized pseudo views for
obtaining additional supervision from the reference image. Our synthesis approach is very similar
to classic depth-based 3D warping [98, [99]. Specifically, we back-project the reference image Sr
to the world space using the depth image Dy and its camera pose ¢r. Then, we re-project these
3D points back to a new viewpoint ¢;. The resulting 2D image .5; is used as an additional style
supervision. Examples of the created pseudo views are shown in Figure 3] (b). It is important to make
sure supervision only happens on meaningful pixels, i.e. they are projections of 3D points that are
visible from the current viewpoint ¢;. Therefore, we conduct a visibility check by comparing the
depth between the 2D projections of the 3D points and the depth image D; from the current viewpoint
¢;. This results in a visibility mask M;. Given the pseudo views and visibility masks, one can define
a pseudo view supervision loss as
1
Lo =
view || M,L ‘ ‘ o

where ||.||o is the £o-norm that counts the number of valid pixels and S; is renderings of the stylized
model m.

||M¢§z — M;Si||1, 4

Template Correspondence Matching (TCM) Loss. To ensure stylized appearance spreads to the
occluded areas, we adopt the same TCM loss proposed in [10]. We briefly describe it here and refer
readers to [10] for more details. TCM regularizes the difference of semantic correspondences before
and after stylization. Given the style reference Sg, its corresponding view I, and a scene image I;

rendered from a camera pose ¢;, it constructs a guidance feature F; by Fc(fy) = Fé“;y) where
(¢*,y") = argmindist(FL""), &), (5)
z',y’
Here, Fs,,, Fr,, F, denote deep semantic features of image Sg, Ir, and I; extracted by an ImageNet
pretrained VGG [100]. The superscript (, y) denotes the xy coordinates on the feature map. dist
denotes the cosine distance. After obtaining the guidance feature, TCM loss is defined as a cosine
distance loss:
Lrom = dist(F,, Fg, ), ©)

where I, is the extracted VGG features of the generated stylized view §1
3.5 Training Objectives
Besides aforementioned depth 10ss Lgeptn, pseudo view supervision 108s Ly e, and TCM loss Lo,

ReGS further optimizes a reconstruction loss L,... and a coarse color-matching 1oss L0 [10]. The
reconstruction loss is defined as the L; distance between the reference Sr and the corresponding
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Figure 4: Ablation study on different components of ReGS. (a) Optimizing only the appearance of
a 3DGS model cannot reproduce texture details. (b) Removing depth regularization causes Gaussians
to float out from the surface and distort the origin geometry. (c) Without pseudo-view supervision,
results lack view consistency. (d) Our full model produces the best results that faithfully respect the
texture in the reference.

stylized output S to enforce appearance baking. The color-matching loss is defined as
Leoor = 157" = S5 |3, )

where S(*%) denotes the average color of a patch associated with feature-level index (z,y). Feature-
level index is computed using Eq.[9] This loss is directly adapted from [I0] to encourage overall
color matching in the occluded area. The overall loss for ReGS can be expressed as

L= Arecﬁre‘c + Adepthﬁdepth + Aviewﬁview + AtcmETCM + )\colorﬁcolor (8)
where A( ) denotes the balancing parameter.

3.6 Implementation and Training Details

ReGS uses 3D Gaussians [11]] as the scene representation and is built upon their official codebase. We
follow the default parameter settings to obtain the pretrained 3D Gaussian model of the photo-realistic
scene. For stylization, as we do not expect view-dependent effects, we discard the higher order SH
and only render diffuse color in the stylization phase. Therefore, content images used in L7 s and
L o1or are the results of this diffuse model.

For texture-guided control, we start accumulating gradients after a warm-up of 100 iterations and then
perform the densification operation based on the color gradient statistics of every 100 iterations. The
control process stops when it reaches half of the total iterations. The gradient threshold is empirically
set to 1e — 5 at the beginning, and we linearly reduce it to 5e — 6 to allow for refining tiny details in the
later training stage. Following [10} [8], we use the ImageNet pretrained VGG16 [100] as the feature
extractor and use the features produced by relu_3 and relu_4 in L1 . For balancing parameters
we set Aree = Aiem = 1, Adepth = 10, Apicw = 2, and Ao = 15, which are determined by a
simple grid search on Blender [14] scenes. At each iteration, we always sample two views: the
reference view and a random view. We train our model for 3000 iterations. The proposed method is
implemented using PyTorch and trained on one A5000 GPU.

4 Experiments

In this section, we demonstrate the stylization quality and our designs through extensive experiments.
More experiment results and ablations can be found in the supplemental file and accompanied video.

4.1 Datasets

The only available reference-based stylization dataset is provided by [10]. The dataset contains 12
selected scenes from Blender [14]], LLFF , and Tanks and Temples . Each scene is paired
with a content-aligned reference image.

4.2 Ablation Study

We conduct controlled experiments to analyze the effectiveness of each design choice in ReGS.
Results are illustrated in Figures @ &[5} As illustrated in Figure ] replacing any components of
ReGS will harm the stylization quality. For example, Figure ] (a) shows that optimizing only the
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Figure 5: Effectiveness of Texture-Guided Control. We conduct controlled experiments by limiting
the number of newly densified Gaussians throughout optimization. The pretrained model contains
0.3M Gaussians. The proposed texture-guided control can more faithfully reproduce the target texture
details with a small number of Gaussians added (0.05M). The default strategy struggles to capture
high-frequency details, even with a large number of Gaussians added (0.25M).

appearance with fixed geometry arrangement like previous methods [8] (6} (3, [0L [T0] do fails to recover
the texture details. As shown in Figure [ (b), after removing depth regularization, Gaussians float
out from the surface and distort the original scene geometry. Similarly, discarding the pseudo view
supervision will induce view-inconsistency as highlighted in the inset (Figured](c)). The full model
overcomes these issues and produces more visually appealing results that follow the given reference.

Effectiveness of Texture-Guided Control. The core enabler of ReGS is the proposed texture-guided
control mechanism that makes high-fidelity appearance editing with ease. Here, we demonstrate
its effectiveness by comparing it with the default positional-gradient-guided density control [11]]
in addressing texture underfitting. Specifically, we conduct controlled experiments by setting a
series of limits on the total number of Gaussians that can grow throughout optimization. Results are
reported in Figure[5] One can see that by growing a very small amount of Gaussians (0.05M), the
proposed texture-guided method can quickly infill most of the missing details. With more Gaussians
added, it can further faithfully reproduce the given texture. In contrast, even with a large amount
of new Gaussians (0.25M) created, the default method can barely capture high-frequency texture
details. This is mainly because positional gradient is not sensitive to texture errors. As such, it fails
to grow Gaussians in the regions with texture underfitting. And further moving these incorrectly
placed Gaussians to the correct place for texture infilling is challenging. These results demonstrate
our method is indeed more favorable for addressing appearance underfitting. Study on individual
component (i.e. structured densification and color-gradient guidance) can be found in the supplement.

Table 1: Quantitative comparison of different stylization methods.

Metric ARF SNeRF Ref-NPR ReGS (Ours)
Ref-LPIPS| 0.394 0.405 0.339 0.202
RobustnessT 26.34 26.03 28.11 31.27
Speed (fps) 16.5 16.3 16.4 914

4.3 Compare with State-of-the-art Methods

To evaluate stylization performance, we compare our method with three state-of-the-art baselines:
AREF [8]], SNeRF [4], and Ref-NPR [10]. ARF [8] and SNeRF [4] are general stylization methods
that conduct style transfer without considering content correspondence. Ref-NPR [[10] is a reference-
based stylization method similar to ours that aims to precisely edit the 3D appearance based on the
reference. All baselines are NeRF-based approaches built upon Plenoxels [13].

Qualitative Evaluation. We report qualitative results in Figure[6] As shown, ARF [8] and SNeRF [4]
cannot generate semantic-consistent results with respect to the reference image as they ignore content
correspondence. In contrast, Ref-NPR [10] produces more controllable results but yields artifacts.
In some challenging cases (e.g. last row in Figure [6)), it also fails to achieve semantic consistent



Figure 6: Visual comparisons with state-of-the-art methods. Paired reference and content view are
shown on the left. Our method produces visual-compelling results that precisely follow the texture of
the given reference, including the challenging high-frequency details such as the leaf in the second

example. Baseline methods [10}[8] 4] either lack semantic consistency or produce artifacts.

stylization (i.e. green tree in the reference image is colored as white). In contrast, our method achieves
better results that reproduce the desired texture, including challenging high-frequency ones.

Quantitative Evaluation. We present quantitative results in Table [I] Results are averaged over
all scenes. We follow the protocol from [10] and report Ref-LPIPS and Robustness. Ref-LPIPS
computes LPIPS [103] score between the reference image and the 10 nearest test views. To calculate
robustness, we first (1) train a stylized base model m; and use it to render a set of stylized views
as new references; (2) then we use these references to train another set of stylized models and (3)
compute PSNR results between images produced by them and my (using the same camera path).
To measure run-time efficiency, we also report run-time FPS on a single A5S000 GPU. As shown in
Table[T} our method achieves the best results in terms of both quality and efficiency. Notably, our
method enables real-time stylized view synthesis at 91 FPS.
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Figure 7: Application: appearance editing. Given a pretrained 3DGS model, our method allows
users to make 3D appearance editing with ease by drawing on a 2D rendered view. Unlike NeRFs [14],
just optimizing the appearance of a 3DGS model cannot robustly handle user edits.

S Application: Appearance Editing

ReGS naturally enables high-fidelity appearance editing. As shown in Figure[7} given a pretrained
3DGS model and its rendering, our method allows users to make freehand edits on the image (e.g.
"computer" on the plate) and robustly bake the edits back into the 3D scene with view-consistency.
Unlike NeRFs , such task cannot be robustly handled by just optimizing the appearance of 3DGS
(denoted as Naive Gaussian), especially when edits happen on a smooth surface where the granularity
of Gaussians is greater than the texture variance. Benefiting from texture-guided control, our method
can effectively locate these large Gaussians and replace them with a denser set for better appearance
editing.

6 Conclusion

In this work, we introduce ReGS, which adapts Gaussian Splatting for reference-based controllable
scene stylization. ReGS adopts a novel texture-guided control mechanism to make high-fidelity
appearance editing with ease. This is achieved by adaptively replacing responsible Gaussians with a
denser set to express the desired appearance details. The control process is guided by texture clues for
appearance editing while preserving original scene geometry through a depth-based regularization.
We demonstrate the state-of-the-art scene stylization quality and effective designs of ReGS through
extensive experiments. Benefiting from the high efficiency of 3DGS, our method naturally enables
real-time stylized view synthesis. Discussions of limitations can be found in the supplemental file.
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Supplemental Material

A Video Demonstration

We encourage readers to watch the provided supplemental video for a better demonstration of the
stylization quality of ReGS.

B More Implementation Details

We describe additional implementation details here. As discussed in the main manuscript, our
method adopts the TCM loss L1 and color-matching loss L., to encourage stylization spread
to occluded areas. Specifically, similar to [10], we use the standard TCM loss for the first 70%
iterations. For the last 30% iterations, we replace the content feature matching (Eq. 5 in the main
manuscript) with a style feature matching, i.e. matching between features of a generated stylized

view S; and the reference image Sg. This results in an online stylization loss similar to NNFM [8]].

Formally, we construct an online guidance feature Fg, by Fc(:y) = Féf:’y*) where
(z*,y*) = argmin dist(Féz’y), Féi/’y/)). )
x/ 7y/ k3 .

where Fg and Fg, denote the deep semantic features of a generated stylized view S’\z and the
reference image Sg extracted by an ImageNet pretrained VGG [100]. And the loss is still computed
as the cosine distance between ng and Fz,. We further remove the color matching loss at this phase.
These techniques are shown to be useful for a smoother content update [10]. For appearance editing,
training takes about 50 seconds. For spreading appearance to other views, training takes about 5-6
minutes for all scenes due to the costly TCM loss. Detailed algorithms can be found in Algorithm[T2]

(a) 400 Iters, 0.3M (b) 800 Iters, 0.4M (c) 1600 Iters, 0.5M (d) 3000 Iters, 0.5M

Figure 8: Additional ablation study on structured densification. Structured densification allows
ReGS to create dense set of tiny Gaussians for representing high-frequency details. This enables our
method to quickly infill the most of textures with a small amount of Gaussians tiny created ((a)). In
contrast, the default strategy fails to express many details even with a large amount of Gaussians
added ((d)).

C Additional Ablation Study

C.1 Structured Densification

Structured densification replaces a responsible Gaussian by a dense set of tiny Gaussians without
inducing large geometry errors. Here we investigate its effectiveness by comparing it with the default
replacement strategy in [L1]] that splits a parent Gaussian into two “medium-sized" Gaussians by
shrinking with a scale factor of 1.6. Compared to their method, our approach creates a much denser
set (9 vs. 2 added Gaussians) of much smaller (shrinking by 8 vs. 1.6) Gaussians in a structured
way to replace the parent Gaussian. We report the comparison results in Figure 8] Each column
corresponds to a snapshot at the noted iterations during training. Densification stops at the 1500
iteration. For fair comparison, we reduce the gradient threshold of the default strategy to ensure that
densification creates a similar number of new Gaussians after each operation. Both methods are
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Figure 9: Ablation study on Texture Guidance (i.e. color-gradient guidance). Replacing texture
guidance with positional-gradient guidance (bottom) fails to capture texture details.

2 3 4 5 6 7 8 9 10 1

Figure 10: Ablation study on the number of Gaussians for each responsible Gaussian to be split.
Small number cannot capture full details. Performance becomes saturated as the number grows.

based on the color-gradient-guided density control. As shown in Figure([8] the default strategy fails
to express many details even after creating a large amount of Gaussians (i.e. Figure[§](d)). This is
mainly because the granularity of added Gaussians are not small enough to capture the high-frequency
details. Therefore, their model has to repeatedly densify many times to reach a granularity that can
match the texture variance. In contrast, benefiting from the structured densification, our method can
quickly reproduce most of details by creating a small amount of tiny Gaussians, and shows much
faster convergence. These results demonstrate the effectiveness of the proposed strategy in addressing
texture underfitting.

C.2 Texture (Color-Gradient) Guidance

Similarly, here we conduct an ablation study on color-gradient guidance. We construct the baseline
by removing texture guidance from the full model (i.e., switching to the default positional-gradient
guidance). We report the results in Figure[9} As shown, without texture guidance, the model fails to
capture tiny texture details in the reference.

C.3 Densification Number

Structured desertification splits a large Gaussian into a set of small Gaussians to infill the missing
texture. Here we conduct an ablation study on the number of Gaussians for each responsible Gaussian
to be split and present results in Figure[T0] We plot the PSNR value between the style reference and
the corresponding stylized view to quantitatively show the texture fitting capability using Blender
scenes. As shown, when the number is small, the model fails to capture the target texture details. As
this number grows, the performance becomes saturated. When the number equals 9, the model can

Content

(a) w/o Color Matching (b) w/o TCM (c) Full Model

Figure 11: Ablation study on adopted TCM and color matching loss. Removing color matching loss
leads to color mismatch and removing TCM leads to artifacts in occluded areas.
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Algorithm 1: Texture-Guided Control Algorithm 2: Structured Densification

Input: G = {G(pi, i, ¢i, i, i) i<y current set (StructDensify)
of 3D Gaussians; VL accumulated color Input: G(M3 a, ¢, s, ) target Gaussian to be
gradient for G;; T, densification threshold densified
for i < 1 to K do run in parallel 1 for i < 1to K = 9 do run in parallel
if VL > T. then 2 compute placement location ; of the
run structured densification on G; as o Z—lth new Gaussian;f // line }81
5 Densifv(G:): 3 initialize i, ¢;, si, i from ., ¢, 5/8, 73
g = StructDensi Y(qz)’ 4 initialize G; as Gi(v, i, Si, 74);
. update Gas G =G UG\ {G;}; < end
en
return G 6 return {G;}_,

Figure 12: Algorithms of the proposed ReGS.
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(a) SNeRF with the originai stS/le image ‘ (b) ReS ith the reference
Figure 13: Visual comparison on aesthetic quality with SNeRF (using original style image).

achieve peak performance but also without inducing many excessive Gaussians that might slow down
rendering.

C.4 Additional Loss Components

ReGS adopts TCM and color matching loss from [10]] to spread textures to occluded areas. Here we
re-assess their effectiveness for 3DGS. As shown in Figure [T T] using color matching loss reduces
color mismatch and using TCM loss removes artifacts in the occluded areas. These findings are
similar to the observations in [10]. These results suggest that the adopted losses indeed work for our
3DGS-based model.

D Limitations and Future Work

With ReGS, one can achieve real-time stylized view synthesis at high quality. However, it cannot
significantly improve the training efficiency over previous methods [10} [8 4], when adapting to a
novel style reference. During training, efficiency bottleneck comes from the feature extraction and
matching steps in Lr¢ s, which is significantly slower than the splatting rendering [11]]. Therefore,
using 3DGS as scene representation cannot benefit much for the training efficiency. On the other hand,
arbitrary stylization methods [9] [6]] have made possible for adapting to a novel style in a zero-short
manner with reasonable good performance. Following their spirit, designing a universal 3D Gaussian
stylizer that can generalize to any references without run-time optimization might be an interesting
direction for further improving training efficiency.

Moreover, beside editing the appearance, further styling geometry can be another interesting future
direction. ReGS might be able to handle minor shape changes, for example, by relaxing the depth
supervision. However, precise geometry editing based on a reference image is inherently more
challenging due to single-view shape ambiguity. To achieve high-quality geometry stylization,
existing methods often adopt a very different set of techniques such as shape prior [104]], text
guidance [105] and/or generative modeling [88] to hallucinate missing geometry. Combining
our method with these techniques for joint geometry and appearance editing is an open and interesting
future direction.

E Additional Comparison on Aesthetic Quality

In Figure[T3] we provide additional comparisons on aesthetic quality with SNeRF [4]], by providing
the original 2D art image. One can see that SNeRF produces results mimicking the abstract style of
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Figure 14: More visual comparison results. Our method can faithfully reproduce the texture in
reference image.
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Figure 15: More visual comparison results with Ref-NPR [10]. Our method faithfully reproduce the
texture in reference image. In contrast, Ref-NPR [10] produces images with lower quality.
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Table 2: Detailed Ref-LPIPS results on each scene

Figure 16: Stylization results of multiple style references on a single baked scene.

Method Chair Ficus Hotdog Mic Flower Horn Truck Playground Average
ARF 0.185 0.123 0300 0.146 0.619 0502 0.683 0.592 0.394
SNeRF 0.188 0.129 0.283 0.138 0.646 0492 0.702 0.663 0.405
Ref-NPR 0.164 0.122 0.273 0.126 0.289 0471 0.669 0.596 0.339
ReGS 0.127 0.119 0.175 0.104 0.134 0.367 0.454 0.472 0.202

the original art, whereas our method follows the extract stylized texture in the reference image by

design.

F More Results

We present more visual comparison results in Figure[I4] & [T3]to better demonstrate the superiority of
our approach. In Figure[T6 we show results of multiple style references acting on a single baked
scene. In Table[2] we report Ref-LPIPS score of each scene. Our method consistently outperforms

baselines.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: Content of this manuscript is organized following abstract and introduction.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See the supplemental file.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: This manuscript is not a theory paper.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Implementation details are provided.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: Code will be released before the conference.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.
* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Experiment settings and implementation details are provided in Section
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:
Justification: Our method is statistically stable.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: See section 3.6l
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: The research conforms with the the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discussed the potential applications of this work. This paper does not have
apparent negative societal impact.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: All assets are credited in this manuscript.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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