
LLM Bandit: Cost-Efficient LLM Generation via
Preference-Conditioned Dynamic Routing

Anonymous ACL submission

Abstract001

The rapid advancement in large language mod-002
els (LLMs) has brought forth a diverse range003
of models with varying capabilities that excel004
in different tasks and domains. However, se-005
lecting the optimal LLM for user queries often006
involves a challenging trade-off between accu-007
racy and cost, a problem exacerbated by the008
diverse demands of individual queries. In this009
work, we present a novel framework that for-010
mulates the LLM selection process as a multi-011
armed bandit problem, enabling dynamic and012
intelligent routing of queries to the most ap-013
propriate model. Our approach incorporates a014
preference-conditioned dynamic routing mech-015
anism, allowing users to specify their prefer-016
ences at inference time, thereby offering a cus-017
tomizable balance between performance and018
cost. Additionally, our selection policy is de-019
signed to generalize to unseen LLMs, ensuring020
adaptability to new models as they emerge. Ex-021
perimental results demonstrate that our method022
achieves significant improvements in both ac-023
curacy and cost-effectiveness across various024
LLM platforms, showcasing the potential of025
our framework to adaptively optimize LLM se-026
lection in real-world scenarios.027

1 Introduction028

The rapid advancement in large language models029

(LLMs) has created a diverse ecosystem with vary-030

ing capabilities and cost profiles. While larger mod-031

els like GPT-4 demonstrate superior reasoning abili-032

ties, they come with substantial costs—often $0.03-033

0.10 per query—making them impractical for large-034

scale deployments (Achiam et al., 2023). In con-035

trast, open-source models like Mixtral-8x7B of-036

fer competitive performance at roughly 1/10th the037

cost (Jiang et al., 2024), while domain-specialized038

models excel in specific areas while maintaining039

lower operational costs (Roziere et al., 2023; Sing-040

hal et al., 2023). This diversity creates a complex041

decision space where optimal model selection must042

balance performance, cost, and domain-specific 043

requirements. 044

Existing approaches to address this performance- 045

cost dilemma typically fall into three categories. 046

Ensemble methods (Jiang et al., 2023; Wang et al., 047

2023) combine responses from multiple LLMs but 048

require invoking multiple models per query, mul- 049

tiplying costs and latency. Cascading approaches 050

like FrugalGPT (Chen et al., 2023) and AutoMix 051

(Madaan et al., 2023) implement sequential strate- 052

gies, starting with cheaper models and escalating 053

only when necessary, but can increase latency for 054

complex queries. Direct routing approaches (Ding 055

et al., 2024; Ong et al., 2024; Nguyen et al., 2024) 056

select the most appropriate model with a single 057

inference, but current systems struggle with gener- 058

alization and adaptation to new models. 059

Designing effective routing systems presents 060

several fundamental challenges. First, LLMs en- 061

counter diverse queries ranging from simple fac- 062

tual questions to complex reasoning tasks, requir- 063

ing accurate assessment of both query complexity 064

and model capabilities. Second, the LLM land- 065

scape evolves rapidly, demanding adaptation to 066

new models without extensive retraining. Third, ap- 067

plications have varying requirements—from cost- 068

efficient customer service to accuracy-focused legal 069

analysis—necessitating dynamic adjustment to dif- 070

ferent preferences. Finally, routing decisions must 071

be lightweight to minimize processing overhead. 072

To address these challenges, we propose a 073

preference-conditioned dynamic routing mecha- 074

nism that frames LLM selection as a multi-armed 075

bandit problem. Our approach introduces three key 076

innovations: (1) model identity vectors that cap- 077

ture capabilities across different tasks and domains, 078

enabling efficient comparison; (2) user-specified 079

preference parameters for dynamic performance- 080

cost trade-offs at inference time; and (3) efficient 081

integration of new models using only 20-50 care- 082

fully selected benchmark prompts. 083
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Figure 1: Overview of our preference-conditioned dy-
namic routing framework. Model quizzing (left) gener-
ates identity vectors capturing model capabilities, while
routing policy (right) determines model selection based
on user preferences and query.

Our contributions span both theoretical and084

practical aspects. We formulate routing as a085

multi-objective optimization task and develop a086

preference-conditioned mechanism that captures087

the entire Pareto front of performance-cost trade-088

offs. Our action-space aware policy generalizes to089

arbitrary sets of LLMs, demonstrated across vari-090

ous routing configurations. We introduce an effi-091

cient quizzing mechanism that characterizes new092

models with minimal evaluation, reducing integra-093

tion overhead by 90% compared to full benchmark094

evaluation.095

Experimental results across multiple bench-096

marks demonstrate that our method achieves up097

to 27% improvement in cost-efficiency while main-098

taining comparable performance. The framework099

proves especially effective in real-world scenarios100

where requirements vary across applications and101

users, enabling organizations to automatically se-102

lect the most cost-effective model for each query103

while meeting specific performance demands.104

2 Method105

2.1 Problem Formulation106

Let X denote the space of all possible queries and107

{Mk}Kk=1 be a finite set of K large language mod-108

els. Each model Mk is characterized by its gener-109

ation capabilities and an associated cost ck ∈ R+.110

For any query x ∈ X and model Mk, we define111

s(x, k) ∈ [0, 1] as a normalized score measuring112

the quality of Mk’s response to query x. This score113

can be obtained through various evaluation metrics114

(e.g., accuracy, F1-score) depending on the task.115

We aim to develop a routing policy π : X →116

P(K), where P(K) denotes the probability sim-117

plex over K models, that maps each query to a118

distribution over available models. When execut-119

ing the policy, a model is sampled according to120

this distribution, i.e., k ∼ π(x). The routing de- 121

cision results in a two-dimensional reward vector 122

r(x, k) = [s(x, k),−ck] ∈ R2, capturing both the 123

generation quality and the negative cost. 124

In the context of multi-objective optimization, 125

we seek to maximize the expected reward vector: 126

Jπ = Ex∼p(x),k∼π(x)[r(x, k)] 127

= [Ex,π[s(x, k)],−Ex,π[ck]], 128

where p(x) denotes the underlying query distribu- 129

tion and Ex,π is shorthand for the expectation over 130

both x ∼ p(x) and k ∼ π(x). Given two policies 131

π1 and π2, we say π1 dominates π2 if Jπ1 ≥ Jπ2 132

elementwise and the inequality is strict in at least 133

one dimension. A policy π is Pareto optimal if it is 134

not dominated by any other policy. 135

The set of all Pareto optimal policies forms the 136

Pareto set Π∗, and their corresponding expected 137

rewards {Jπ : π ∈ Π∗} form the Pareto front. Due 138

to the conflicting nature of performance and cost 139

objectives, there typically exists no single policy 140

that simultaneously maximizes both objectives. In- 141

stead, different policies in Π∗ represent different 142

trade-offs between performance and cost. 143

To navigate this trade-off, we introduce a pref- 144

erence parameter ω = [ω1, ω2] ∈ R2
+ that spec- 145

ifies the relative importance of performance ver- 146

sus cost. This allows us to define a scalarized re- 147

ward: rω(x, k) = ω⊤r(x, k) = ω1s(x, k)−ω2ck. 148

For any fixed preference ω, the optimal policy 149

πω maximizes the expected scalarized reward: 150

πω = argmaxπ Ex∼p(x),k∼π(x)[rω(x, k)]. While 151

the instantaneous reward s(x, k) may be discrete 152

(e.g., binary success/failure outcomes), the ex- 153

pected reward Ex,π[s(x, k)] is continuous in the 154

policy parameters under mild regularity conditions 155

on the policy class (see Theorem A.1 in Appendix). 156

Specifically, when the policy π is parameterized by 157

continuous functions (e.g., neural networks with 158

softmax outputs), the expected reward surface re- 159

mains continuous despite discrete individual re- 160

wards. This ensures the existence of optimal poli- 161

cies πω for each preference vector ω. Moreover, 162

as ω varies across R2
+, the corresponding optimal 163

policies {πω : ω ∈ R2
+} trace out the complete 164

Pareto front of achievable performance-cost trade- 165

offs (Yang et al., 2019; Basaklar et al., 2022). 166

This formulation connects our problem to both 167

multi-armed bandit (Katehakis and Veinott Jr, 168

1987; Bouneffouf and Rish, 2019) and multi- 169

objective optimization (Sharma and Kumar, 2022) 170
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literature. The routing policy must learn to select171

models (arms) based on query-specific context, sim-172

ilar to contextual bandits. However, unlike tradi-173

tional bandits that optimize a scalar reward, our174

setting involves vector-valued rewards and user-175

specified preferences, relating to multi-objective176

optimization. This combination presents unique177

challenges in policy learning and evaluation, which178

we address in subsequent sections.179

2.2 Overall Framework180

Given the formulation above, our framework ad-181

dresses two key challenges: (1) how to efficiently182

characterize each model’s capabilities to enable183

informed routing decisions, and (2) how to learn184

a preference-conditioned policy that generalizes185

across different models and queries. We propose a186

two-component solution: a model quizzing compo-187

nent that generates identity vectors capturing model188

capabilities, and a preference-conditioned routing189

policy that determines selection probabilities. Fig-190

ure 1 illustrates this framework.191

2.3 Model Identity Vector192

To enable effective routing, we need a compact rep-193

resentation of each model’s capabilities across dif-194

ferent tasks and domains. Given a set of evaluation195

prompts X = {xn}Nn=1 spanning various domains,196

we collect evaluation scores Yk = {ykn}Nn=1 for197

LLMMk. Our goal is to learn a model identity vec-198

tor Ik ∈ Rd that predicts these evaluation scores.199

We employ a variant of Item Response Theory200

(IRT) (Hambleton and Swaminathan, 2013) com-201

bined with deep neural networks. Unlike IRT, we202

leverage pretrained prompt embeddings en rather203

than learning explicit prompt representations, en-204

abling generalization to unseen prompts. The score205

prediction model f(en, Ik) outputs the probability206

of model Mk successfully handling prompt xn.207

For binary evaluation scores ȳkn, we opti-208

mize the binary cross-entropy loss: Lirt =209

E[−ȳkn log pkn − (1− ȳkn) log(1− pkn)], where210

pkn = sigmoid(f(en, Ik)). For non-binary scores,211

we employ a thresholding mechanism in Ap-212

pendix B.1.1.213

We further incorporate pairwise model com-214

parisons to enhance the identity vectors. Given215

responses from models Mk1 and Mk2 with an-216

notations zn ∈ {0, 1} indicating the win-217

ner, we introduce a secondary network g218

that predicts winning probabilities: Lpair =219

E[−zn log pn− (1−zn) log(1−pn)], where pn =220

sigmoid(g(en, Ik1)− g(en, Ik2)). 221

To enhance generalization to unseen models, we 222

employ variational inference, treating Ik as latent 223

variables. This adds a KL-divergence term for reg- 224

ularization: LKL = Ek[DKL(q(Ik)∥p(Ik))], where 225

both prior p(Ik) and posterior q(Ik) are Gaussian 226

distributions. Please see Appendix B.1 for details. 227

2.4 Preference-Conditioned Routing Policy 228

Building on our problem formulation, the core chal- 229

lenge is to develop a routing policy that can (1) 230

generalize across different sets of LLMs and (2) 231

adapt to varying user preferences ω. A natural ap- 232

proach would be to directly estimate the evaluation 233

scores s(x, k) using our IRT model f(e, Ik) and 234

select models that maximize the scalarized reward 235

rω(x, k). However, this direct estimation faces 236

several limitations. The predicted scores may be 237

inaccurate for specific query-model pairs, the esti- 238

mation provides no uncertainty quantification, and 239

most importantly, the deterministic selection strat- 240

egy cannot balance exploration and exploitation. 241

We propose to learn a stochastic policy πθ that 242

maps queries to routing decisions while incorporat- 243

ing both the available models and user preferences 244

as conditioning information: πθ(k′|x, CK ,ω) ∝ 245

exp(I⊤k′h(x, CK ,ω)). Our formulation introduces 246

three key innovations to address the core challenges. 247

First, we enable generalization across model sets 248

through action-space awareness. The policy is 249

explicitly conditioned on model identity vectors 250

{Ik}Kk=1, making it aware of available actions. The 251

dot-product structure between model identities and 252

network outputs allows the policy to work with ar- 253

bitrary sets of models - once we compute a model’s 254

identity vector, it can be immediately incorporated 255

into routing decisions. Second, we enhance rout- 256

ing decisions by incorporating comprehensive con- 257

text CK = {(Ik, ck, p̂k)}Kk=1, which includes not 258

only identity vectors but also costs ck and pre- 259

dicted scores p̂k = sigmoid(f(x, Ik)). This con- 260

text is processed through a permutation-invariant 261

network h(·), enabling the policy to reason about 262

relative strengths of different models for each spe- 263

cific query while maintaining consistency across 264

different model orderings. Third, we enable dy- 265

namic preference adaptation by directly condition- 266

ing the policy on ω. This allows the policy to adjust 267

its routing strategy at inference time without retrain- 268

ing, efficiently exploring different performance- 269

cost trade-offs based on user requirements. 270

We optimize the policy following standard multi- 271
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objective policy gradient algorithms (Xu et al.,272

2020; Shu et al., 2024), where the gradient for up-273

dating the parameters θ is given by ∇θ[ω
TJπθ

] =274

E
[
ωTA(x, k′)∇θ log πθ(k

′ | x,CK ,ω)
]
, where275

A(x, k′) indicates the advantage function esti-276

mated from sampled trajectories. The correspond-277

ing value function Vπθ
(x,CK) outputs a vector of278

expected returns under the current policy πθ. The279

parameters of the value function are updated by a280

squared-error loss ∥Vπθ
−Vtarg∥2, where Vtarg281

is the target value. Note the value function does282

not depend on the preference ω, which encourages283

shared values estimation across different user pref-284

erences. The vectorized value function is inspired285

by the core principles of multi-objective Q-learning286

algorithms (Yang et al., 2019; Basaklar et al., 2022).287

This value network and policy gradient extension288

can be seamlessly integrated into most existing pol-289

icy gradient methods. In our implementation, we290

adapt Proximal Policy Optimization (PPO) (Schul-291

man et al., 2017), where the clipped surrogate ob-292

jective is used to update policy parameters. Addi-293

tionally, Generalized Advantage Estimation (GAE)294

(Schulman et al., 2015) is employed to compute the295

advantage function A and target values Vtarg. For296

detailed derivations and implementation specifics,297

please refer to Appendix B.2.298

A key advantage of our approach is its scala-299

bility. By leveraging model identity vectors and300

preference conditioning, the policy can seamlessly301

adapt to new models and varying user requirements302

without retraining from scratch. However, realiz-303

ing these benefits requires careful consideration of304

training methodology. In the following sections,305

we explore techniques that ensure effective gener-306

alization across models, queries, and preferences.307

2.5 Training for Generalization308

While our policy architecture enables handling dif-309

ferent models and preferences, realizing these ca-310

pabilities requires careful training strategies. We311

identify three key generalization challenges: (1)312

handling arbitrary sets of models, (2) generalizing313

to unseen queries, and (3) maintaining consistent314

performance across preferences.315

To handle arbitrary model sets, we employ two316

complementary strategies. First, we train the317

policy on dynamically sampled sets of models318

with varying sizes and capabilities. We lever-319

age evaluation leaderboards like HELM (Liang320

et al., 2022) that provide scores for diverse mod-321

els, randomly selecting different combinations dur-322

ing training. This exposure to diverse model com- 323

binations forces the policy to learn generalizable 324

routing strategies rather than memorizing specific 325

model relationships. Second, we address the chal- 326

lenge of varying score and cost scales across dif- 327

ferent model combinations. For instance, com- 328

paring GPT-4 with Mixtral-8x7B yields differ- 329

ent scales than comparing two open-source mod- 330

els. We handle this through reward normalization 331

within each set: s̄k = sk/max({sk}Kk=1), c̄k = 332

ck/max({ck}Kk=1). This normalization ensures 333

consistent reward scales regardless of the specific 334

models, enabling stable optimization. Moreover, 335

it maintains consistent interpretation of preference 336

vectors - the same preference ω represents similar 337

trade-offs across different model combinations. 338

For query generalization, we employ two tech- 339

niques. First, we perform large-scale pretrain- 340

ing on pairwise model comparison datasets, such 341

as Nectar (Zhu et al., 2023) and Chatbot Arena 342

(Zheng et al., 2023). While these datasets feature 343

diverse user queries that help learn generalizable 344

routing behaviors, they only provide binary win- 345

ning labels rather than model-specific evaluation 346

scores. To leverage this data, we first obtain pre- 347

dicted scores from our IRT model, then calibrate 348

them using Platt scaling (Platt et al., 1999): p̄k = 349

sigmoid(αf(x, Ik)+β),where α and β are learned 350

to align score predictions with human preferences 351

(see Appendix B.3.1). The policy is pretrained to 352

predict actions that maximize the calibrated reward: 353

â = argmaxk∈{k1,k2}ω
T [p̄k,−ck]. Second, we 354

introduce an on-manifold mixup regularization dur- 355

ing the subsequent reinforcement learning phase. 356

When sampling queries from the replay buffer, we 357

interpolate each prompt embedding with its nearest 358

neighbor. This neighborhood-based interpolation 359

ensures the mixed embeddings remain meaningful, 360

helping the policy learn smoother decision bound- 361

aries (see Appendix B.3.2). 362

For preference generalization, the key chal- 363

lenge is maintaining Pareto optimality while en- 364

abling efficient learning across different trade- 365

offs. We leverage two complementary strategies. 366

First, our decomposed value function Vπθ
(x,CK) 367

estimates score and cost components indepen- 368

dently. This decomposition enables value esti- 369

mation sharing across preferences while maintain- 370

ing separate tracking of objectives. Second, we 371

train with dynamically sampled preferences ω ∼ 372

U(ωmin, ωmax), forcing the policy to learn consis- 373

tent behaviors across different trade-offs. The pref- 374
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erence range is chosen to cover practical trade-offs375

between quality and cost.376

2.6 Cold Start for New Routing Candidates377

A key advantage of our framework is its ability378

to efficiently incorporate new LLMs without re-379

training the routing policy. When a new model M̃380

is introduced, we only need to compute its iden-381

tity vector Ĩ to enable routing. While this vector382

could be obtained through full benchmark evalua-383

tion, such an approach would be prohibitively ex-384

pensive and time-consuming. We propose instead385

an efficient characterization method that requires386

evaluating only 20-50 carefully selected prompts,387

reducing the integration overhead by 90% or more388

compared to full evaluation.389

Our approach is based on the insight that not390

all evaluation prompts are equally informative for391

distinguishing model capabilities. Given exist-392

ing prompts X = {xn}Nn=1 and binary evaluation393

scores Yk = {ȳkn}Nn=1 for existing models, we394

compute a discrimination score for each prompt:395

ψn = Ek[−ȳkn log pkn − (1− ȳkn) log(1− pkn)]396

where pkn = sigmoid(f(xn, Ik)) indicates IRT397

model’s prediction. The score ψn measures the av-398

erage prediction error across models for prompt xn.399

A high ψn indicates that our IRT model struggles400

to accurately predict model performance on this401

prompt, often because models with similar capabil-402

ities exhibit inconsistent performance. Conversely,403

a low ψn suggests model performance is highly404

predictable - either consistently successful or un-405

successful across models with similar capabilities.406

Using these discrimination scores, we select a407

representative subset of prompts X̃ through strat-408

ified sampling. By sampling from different strata409

of ψn values, we ensure our evaluation set covers410

prompts with varying discriminative power. Given411

the new model’s evaluation scores Ỹ on these se-412

lected prompts, we compute its identity vector by:413

Ĩ = argmin
I

[EX̃Lirt +DKL(q∥p)], (1)414

where Lirt = −ȳ log p − (1 − ȳ) log(1 − p), p =415

sigmoid(f(x, I)). The KL term acts as a regu-416

larizer, encouraging the identity vector to remain417

close to our prior distribution over model capabil-418

ities. Importantly, this optimization updates only419

the identity vector Ĩ while keeping the IRT model420

fixed. Once computed, the identity vector Ĩ can421

be immediately used by our routing policy without422

any additional training or fine-tuning. This is en- 423

abled by our dot-product architecture that naturally 424

extends to new models. As shown in Fig. 3, routing 425

performance with these efficiently computed iden- 426

tity vectors closely matches that of vectors com- 427

puted using full evaluation. 428

The combination of discriminative prompt se- 429

lection and efficient identity vector computation 430

provides a practical solution for maintaining an up- 431

to-date routing system in the rapidly evolving LLM 432

landscape. Implementation details and additional 433

analysis can be found in Appendix B.3.4. 434

3 Related Works 435

LLM Ensemble, Cascade and Routing As LLMs 436

diversify, researchers have developed strategies to 437

balance performance and cost. Ensemble methods 438

(Jiang et al., 2023; Wang et al., 2023; Lu et al., 439

2024) aggregate multiple model outputs but mul- 440

tiply costs. Cascading approaches (Chen et al., 441

2023; Madaan et al., 2023; Ramírez et al., 2024) 442

start with cheaper models but still require multi- 443

ple inferences for complex queries. In contrast, 444

routing methods direct queries to the most suitable 445

model with a single inference, either by predict- 446

ing evaluation scores (Shnitzer et al., 2023; Lu 447

et al., 2023; Hari and Thomson, 2023; Šakota et al., 448

2024) or win rates between models (Ding et al., 449

2024; Ong et al., 2024). Most closely related, Met- 450

aLLM (Nguyen et al., 2024) frames routing as a 451

bandit problem but optimizes for fixed preferences 452

and predefined models, whereas ours generalizes 453

to dynamic preferences and adapts to new LLMs 454

without retraining. 455

Multi-objective Reinforcement Learning 456

Multi-objective RL optimizes conflicting rewards 457

to find Pareto-optimal policies. Traditional 458

methods sample discrete policies (Van Moffaert 459

and Nowé, 2014; Parisi et al., 2014; Xu et al., 460

2020) but face dimensionality challenges as 461

objectives increase. Modern approaches use 462

preference-conditioned networks (Yang et al., 463

2019; Abels et al., 2019; Basaklar et al., 2022) 464

or hypernetworks (Chauhan et al., 2023; Shu 465

et al., 2024) to represent the entire Pareto front 466

with a single model. Our work employs prefer- 467

ence conditioning specifically tailored for LLM 468

routing, enabling efficient adaptation across 469

performance-cost tradeoffs. 470

Generalization in Reinforcement Learning 471

Zero-shot RL enables policies to handle unseen 472

tasks without retraining (Korkmaz, 2024). Our 473
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approach adopts a representation-based paradigm474

where task characteristics are explicitly encoded475

as model identity vectors and costs, similar to ac-476

tion space generalization (Jain et al., 2020). For477

observation distribution generalization, we employ478

regularization techniques inspired by Cobbe et al.479

(2019) and Zhang and Guo (2021). Additional re-480

lated work is discussed in Appendix D.481

4 Experiments482

We evaluate our routing policy on five popular483

LLM benchmarks: HELM-Lite, HELM-MMLU484

(Liang et al., 2022), HuggingFace OpenLLM485

Leaderboard, OpenLLM Leaderboard v2 (Beech-486

ing et al., 2023; Fourrier et al., 2024), and AlpacaE-487

val 2.0 (Li et al., 2023). For each benchmark, we488

divide prompts into training and test splits, with the489

former used for policy training and the latter for490

evaluation. Our routing policy is pretrained on pair-491

wise comparison datasets including Chatbot Arena492

(Zheng et al., 2023), Nectar (Zhu et al., 2023), and493

RouteLLM’s synthetic dataset (Ong et al., 2024).494

The IRT model is trained on these same pairwise495

datasets plus training splits from all leaderboards.496

We approximate model costs based on processing497

and generating 1M tokens each (see Appendix E498

for details).499

For comparative evaluation, we follow500

RouteLLM’s setup with GPT-4 and Mixtral-8x7B501

as candidates, noting that while RouteLLM is502

specifically trained for this two-model scenario,503

our approach handles arbitrary model sets. To504

test generalization, we evaluate two additional505

multi-model configurations per dataset where506

RouteLLM is not applicable. We compare against507

several baselines: (1) RouteLLM (two-model508

scenarios only), (2) a random selection baseline509

(two-model only), (3) a Predictor baseline that510

uses predicted scores p̂k to compute utility, (4)511

separate PPO policies trained for each LLM set and512

preference, and (5) an Oracle policy that selects513

models based on actual evaluation scores. For514

preference adjustment, RouteLLM uses thresholds515

while our method directly accepts preference516

parameters as inputs.517

Results Figure 2 demonstrates our method’s518

routing performance across five major LLM eval-519

uation benchmarks with various model combina-520

tions. The results reveal several key advantages of521

our approach: First, our Predictor baseline consis-522

tently outperforms RouteLLM, validating the effec-523

tiveness of our model identity vector and score524

prediction framework. Second, our preference- 525

conditioned routing policy further improves upon 526

the Predictor baseline, particularly in challenging 527

scenarios where score prediction is less reliable. 528

This is especially evident in AlpacaEval 2.0 (c) and 529

HELM-Lite (b), where the routing policy learns 530

to compensate for prediction uncertainties by in- 531

corporating broader context about model capabil- 532

ities and costs. When compared to RouteLLM, 533

our policy demonstrates substantial cost savings - 534

on AlpacaEval 2.0 with the GPT4/Mixtral-8x7B 535

configuration, our approach achieves 46.35% ac- 536

curacy at $31 cost compared to RouteLLM’s $35, 537

representing an 11% cost reduction. On MMLU, 538

the improvement is even more significant, reduc- 539

ing costs from $33 to $24 (27% reduction) while 540

maintaining 80% accuracy. Third, our single rout- 541

ing policy achieves comparable or better perfor- 542

mance than separately trained PPO policies across 543

all datasets and LLM configurations. This is a 544

crucial advantage, as each PPO baseline requires 545

specific training for its fixed set of models and 546

preference settings, while our approach generalizes 547

across arbitrary model combinations and prefer- 548

ences without retraining. This demonstration of 549

robust generalization is particularly important for 550

practical deployments where model sets and re- 551

quirements frequently change. While these results 552

demonstrate significant improvements over exist- 553

ing methods, the performance gap between all rout- 554

ing policies and the Oracle baseline indicates po- 555

tential for further optimization. This gap suggests 556

opportunities for future work in improving both 557

prediction accuracy and routing strategy. 558

Cold Start for New Routing Candidates To 559

simulate the scenario where new models are in- 560

troduced into the routing system, we select sev- 561

eral unseen models from the HuggingFace Open- 562

LLM v2 benchmark. These models are not used for 563

training either the IRT model or the routing policy. 564

For detailed evaluation settings, please refer to Ap- 565

pendix E.9. The identity vectors for these models 566

are obtained by optimize (1) over a selected subset 567

of prompts from the OpenLLMv2 benchmark. We 568

explore different evaluation budgets, selecting 10, 569

20 or 50 prompts to obtain the evaluation scores for 570

these newly added models. The Predictor baseline 571

utilizes the learned identity vectors to predict the 572

evaluation scores, while the PPO baseline trains 573

the routing policy using the same set of selected 574

prompts. For our preference conditioned routing 575

policy, we directly plug the identity vectors into the 576

6
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Figure 3: Evaluate routing performance on two sets of
new models. the identity vectors are obtained using 10,
20 or 50 selected prompts, respectively.

routing policy trained on OpenLLMv2 (as shown577

in the last row of Figure 2), without further tuning578

on these newly added models. Figure 3 presents579

the evaluation results. Overall, our routing policy580

outperforms the Predictor baseline and performs581

comparably to the PPO policy, despite the latter582

being specifically trained on the new models. Ad-583

ditionally, our approach maintains effectiveness584

even with very limited evaluation data - using just585

50 prompts achieves performance nearly matching586

that of identity vectors computed from the full set.587

Computational Overhead The routing over-588

head is minimal compared to model inference time.589

Our policy requires approximately 5ms per routing590

decision on a single GPU, negligible compared to591

typical LLM inference times (100ms-1s). Mem-592

ory requirements are also modest: the identity vec-593

tors and routing policy together require less than594

100MB of GPU memory.595

Figure 4: Ablation stud-
ies on the routing policy
components.

Ablation Studies596

Our routing policy597

consists of a super-598

vised pretraining stage599

followed by a RL600

training stage. During601

training, we incorporate602

on-manifold mixup reg-603

ularization to improve604

generalization to unseen prompts. Additionally,605

our policy leverages the predicted scores p̂k as606

contextual information. In this section, we perform607

ablation studies to assess the contributions of these608

components. Figure 4 presents the results when609

each component is removed. The results indicate610

that the context information, pretraining stage, and611

mixup regularization all contribute to learning a612

more effective routing policy.613

5 Conclusion614

In this work, we present a novel preference-615

conditioned dynamic routing framework for large616

language models that addresses three key chal- 617

lenges in LLM deployment: balancing perfor- 618

mance and cost, adapting to user preferences, and 619

incorporating new models efficiently. We formu- 620

late LLM routing as a multi-objective optimization 621

problem and develop a preference-conditioned pol- 622

icy that dynamically adapts to user requirements at 623

inference time. Our approach introduces a model 624

identity vector framework that enables efficient in- 625

tegration of new LLMs without policy retraining, 626

reducing adaptation time from hours to minutes. 627

Through comprehensive experiments on five major 628

benchmarks, we demonstrate significant improve- 629

ments over existing methods, achieving up to 27% 630

cost reduction while maintaining comparable per- 631

formance. 632

Our results highlight the potential of intelligent 633

routing systems in making LLM deployments more 634

efficient and adaptable. However, several promis- 635

ing directions remain for future research. While 636

our current approach operates in an offline setting 637

with pre-computed evaluation scores, extending 638

to online learning could improve policy robust- 639

ness through real-time feedback. This would en- 640

able continuous adaptation to changing user needs 641

and model performance patterns. Our framework 642

currently assumes fixed costs per model, but real- 643

world costs vary with input length and compu- 644

tation requirements. Developing adaptive cost 645

models that account for query-specific characteris- 646

tics could enable more precise optimization of the 647

performance-cost trade-off. 648

Future work could also expand the routing ca- 649

pability to leverage external tools and API calls 650

that many modern LLMs support. This could in- 651

clude incorporating tool use, online search results, 652

and other augmentations into the routing decision 653

process. Additionally, while our preference-based 654

approach offers flexibility, expressing trade-offs 655

through numerical parameters may not be intuitive 656

for all users. Developing more natural interfaces 657

for preference specification and automated prefer- 658

ence learning from user feedback could improve 659

usability. 660

As the LLM ecosystem continues to evolve with 661

new models and capabilities, efficient routing sys- 662

tems will become increasingly critical for practical 663

applications. Our framework provides a founda- 664

tion for building more sophisticated, adaptive, and 665

user-friendly LLM routing systems that can meet 666

the diverse needs of real-world deployments. 667
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Limitations668

Our work on efficient LLM routing has several669

potential societal implications. On the positive670

side, by enabling more cost-efficient use of LLMs,671

our approach could help democratize access to ad-672

vanced AI capabilities, allowing organizations with673

limited resources to leverage these technologies674

more effectively. The ability to balance perfor-675

mance and cost dynamically could make AI appli-676

cations more sustainable and economically viable677

for a broader range of users.678

However, this work also raises important con-679

siderations. By making LLM deployments more680

efficient, we could accelerate the adoption of these681

technologies, potentially exacerbating existing con-682

cerns about AI’s impact on privacy, misinformation,683

and labor markets. Additionally, while our rout-684

ing system aims to optimize resource allocation, it685

could inadvertently reinforce biases present in the686

underlying models if not carefully monitored.687

To address these concerns, we emphasize that688

our framework is designed to be transparent in its689

decision-making process and configurable to align690

with organizational policies and ethical guidelines.691

We encourage users of this technology to carefully692

consider their specific use cases and implement ap-693

propriate safeguards, particularly when deploying694

in sensitive domains.695
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A Theoretical Analysis968

A.1 Continuity and Existence of Optimal969

Policies970

Consider a policy πθ parameterized by θ ∈ Θ,971

where Θ is a compact subset of Rd. Let s(x, k) ∈972

{0, 1} be a binary reward function and p(x) be the973

query distribution.974

Theorem A.1. If the policy πθ(k|x) is continu-975

ous in θ for all x and k, then the expected reward976

J(θ) = Ex∼p(x),k∼πθ(x)[s(x, k)] is continuous in977

θ.978

Proof. For any θ, θ′ ∈ Θ:979

|J(θ)− J(θ′)|980

=

∣∣∣∣∣
∫
X

∑
k

s(x, k)(πθ(k|x)− πθ′(k|x))p(x)dx

∣∣∣∣∣981

≤
∫
X

∑
k

|s(x, k)||πθ(k|x)− πθ′(k|x)|p(x)dx982

≤
∫
X

∑
k

|πθ(k|x)− πθ′(k|x)|p(x)dx983

Since πθ(k|x) is continuous in θ, for any ϵ > 0,984

there exists δ > 0 such that ∥θ − θ′∥ < δ im-985

plies |πθ(k|x)− πθ′(k|x)| < ϵ/K for all k and x.986

Therefore, |J(θ)− J(θ′)| < ϵ when ∥θ − θ′∥ < δ,987

proving continuity.988

Corollary A.2. For any preference vector ω, there989

exists an optimal policy πω that maximizes the ex-990

pected scalarized reward.991

This follows from the extreme value theorem,992

as we are maximizing a continuous function over993

a compact set. For the relationship between the994

preference vectors and the Pareto front, we refer995

readers to Yang et al. (2019) who provide a detailed996

analysis in the context of multi-objective reinforce-997

ment learning.998

B Method999

B.1 Model Identity Vector1000

We learn the model identity vector Ik following a1001

variational variant of the IRT model. Given eval-1002

uation scores Yk = {ykn}Nn=1 for model Mk on1003

a set of prompts X = {xn}Nn=1, we maximize1004

the following variational lower bound of the log-1005

likelihood: 1006

log p(ykn | xn)

= log

∫
p(ykn, Ik | xn)dIk

≥ Eq(Ik) [log p(ykn | xn, Ik)]−DKL(q(Ik)∥p(Ik)).

1007

Here, the model embedding Ik is treated as a la- 1008

tent variable, with the posterior and prior distribu- 1009

tions over Ik denoted by q(Ik) and p(Ik), respec- 1010

tively. In practice, both distributions are modeled as 1011

Gaussians, with the posterior q(Ik) = N (µk,Σk) 1012

and the prior p(Ik) = N (0, I). The posterior 1013

mean µk and variance Σk are represented as em- 1014

bedding vectors of dimension d, with the variance 1015

assumed to be diagonal. The predictive distribution 1016

p(ykn | xn, Ik) is implemented as a neural network 1017

that concatenates of prompt and model embeddings 1018

as input and outputs the score prediction logits. 1019

During training, the loss is computed over the entire 1020

evaluation benchmarks, involving multiple prompts 1021

and models, i.e., −Ex,k log p(ykn | xn). 1022

B.1.1 Training with Real-valued Evaluation 1023

Scores 1024

Certain evaluation datasets produce real-valued 1025

evaluation scores, such as F1 and RougeL. In or- 1026

der to unify the training procedure, we propose to 1027

binarize the real-valued scores. Specifically, given 1028

a set of real-valued scores Y = {yn}Nn=1, where 1029

yn ∈ [0, 1], we find an optimal threshold η∗ so that 1030

the average performance across instances are close 1031

to the original scores, that is 1032

η∗ = argmin
η

(
1

N

N∑
n=1

I(yn > η)− 1

N

N∑
n=1

yn

)2

, 1033

where I(yn > η) is the indicator function, which 1034

equals to 1 only when the condition yn > η is 1035

true. Therefore, the binarized evaluation scores are 1036

derived as Ȳ = {I(yn > η∗)}Nn=1. 1037

B.2 Preference Conditioned Routing Policy 1038

In the main text, we derived the routing policy as 1039

πθ(k
′ | x, {(Ik, ck, p̂k)}Kk=1,ω)

∝ ITk′h(x, {(Ik, ck, p̂k)}Kk=1,ω),
1040

where h(·) is a neural network that is permutation 1041

invariant to the set {(Ik, ck, p̂k)}Kk=1. We achieve 1042

the permutation invariance by using a permutation 1043

invariant embeddings of the set, implemented via 1044

the SetTransformer architecture(Lee et al., 2019a). 1045

12



The prompt x is encoded using pretrained prompt1046

embeddings. The preference vector ω is projected1047

through a linear layer for integration into the rout-1048

ing policy. The neural network then concatenates1049

the embeddings and passes them through several1050

linear layers, resulting in a vector representation1051

in Rd. The inner product between h(·) and each1052

model embedding Ik′ determines which model to1053

select based on the policy. Specifically, the rout-1054

ing probability for selecting model Mk′ follows the1055

softmax distribution:1056

πθ(k
′ | x, {(Ik, ck, p̂k)}Kk=1,ω)

=
exp

(
ITk′h(x, {(Ik, ck, p̂k)}Kk=1,ω)

)∑K
k′′=1 exp

(
ITk′′h(x, {(Ik, ck, p̂k)}Kk=1,ω)

) .1057

We train the routing policy following the multi-1058

objective PPO algorithm, where the gradient for1059

updating the policy parameters θ is given by1060

∇θ[ω
TJπθ

] = Ex,k′
[
ωTA(x, k′)∇θ log πθ(k

′ | ·)
]
,1061

where A(x, k′) indicates the advantage function es-1062

timated via GAE (Schulman et al., 2015). The PPO1063

algorithm also requires a value estimation to reduce1064

the gradient variance. Following multi-objective1065

RL literature (Xu et al., 2020; Shu et al., 2024), we1066

define a value network Vπθ
(x, {(Ik, ck, p̂k)}Kk=1)1067

that outputs a vector of expected returns under the1068

current policy πθ. The value estimation is not1069

conditioned on the preference, therefore, it can1070

be shared across different user preferences. We1071

train the values network by optimizing a MSE loss1072

∥Vπθ
−Vtarg∥2, where Vtarg indicates the target1073

values estimated via GAE.1074

B.3 Generalization of the Routing Policy1075

In this section, we discuss the training procedure1076

of the dynamic routing policy, which is designed to1077

enhance the generalizability of the policy to various1078

scenarios.1079

B.3.1 Supervised Pretraining1080

The supervised pretraining stage leverages diverse1081

prompts from pairwise comparison datasets to en-1082

hance generalization to unseen prompts. Given a1083

pairwise comparison dataset V , where each exam-1084

ple consists of a prompt xn, a pair of models Mk11085

and Mk2, and a winning label zn ∈ {0, 1}, we first1086

train a logistic regression model to calibrate the pre-1087

dicted evaluation scores, p̂ = sigmoid(f(x, Ik)),1088

using the winning label zn. Specifically, the log-1089

ical regression model predicts the wining proba-1090

bility as p(zn = 1) = sigmoid(α(f(xn, Ik1) −1091

f(xn, Ik2)) + β), where α and β are learnable pa- 1092

rameters. After training, the calibrated evaluation 1093

scores are given by p̄ = sigmoid(αf(x, Ik) + β). 1094

The calibration follows the well-known Platt scal- 1095

ing (Platt et al., 1999) algorithm, which refines 1096

the evaluation scores using human-labeled winning 1097

labels to produce more accurate predictions. 1098

With the calibrated evaluation scores p̄ on 1099

a prompt x and a user preference vector ω, 1100

the routing action is determined by â = 1101

argmaxk∈{k1,k2}ω
T [p̄k,−ck]. We then pretrain 1102

the routing policy in a supervised manner using the 1103

following negative log-likelihood loss: 1104

Lpretrain
= − log π(â | x, {(Ik, ck, p̂k)}k∈{k1,k2},ω).

(B.1) 1105

It is important to note that the policy utilizes the 1106

original predicted scores p̂ as input, rather than the 1107

calibrated scores, to maintain consistency with the 1108

subsequent RL training stage. 1109

B.3.2 On-Manifold Mixup Regularization 1110

The mixup regularization technique was initially 1111

introduced for supervised learning tasks (Zhang, 1112

2017), where new input-output pairs are generated 1113

by taking convex combinations of pairs of train- 1114

ing samples. Wang et al. (2020) extended this ap- 1115

proach to RL, where observations and their asso- 1116

ciated supervision signals from two transitions are 1117

combined convexly. In our case, the observation 1118

corresponds to the prompt embeddings. However, 1119

naively combining two prompt embeddings may 1120

produce vectors that lie outside the prompt mani- 1121

fold. To address this, we use the nearest neighbor 1122

from the replay buffer for each prompt x. Given 1123

the embedding e for prompt x and the embedding 1124

en for its nearest neighbor, the interpolated prompt 1125

embedding is obtained as: 1126

ê = λe+ (1− λ)en, (B.2) 1127

where λ ∼ Beta(ξ, ξ), and ξ is a hyperparameter, 1128

set to 0.2 as recommended in the original mixup 1129

paper. To train the routing policy on the interpo- 1130

lated prompt embeddings using PPO, we similarly 1131

interpolate the associated supervision signals: 1132

π̂old = λπold + (1− λ)π(n)old

Â = λA+ (1− λ)An

V̂targ = λVtarg + (1− λ)V(n)
targ

(B.3) 1133

The interpolated routing action â is chosen as a if 1134

λ > 0.5, otherwise an. Similarly, routing-relevant 1135
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parameters, including Ik and ω are chosen based1136

on λ as well.1137

B.3.3 Reward Normalization1138

Our routing policy is designed to generalize across1139

different sets of LLM candidates. However, the1140

varying score and cost scales across these sets1141

can pose challenges. For instance, routing deci-1142

sions involving proprietary API models often in-1143

volve higher costs compared to open-source mod-1144

els, where the cost is significantly lower. These1145

discrepancies in scale can complicate the training1146

of the routing policy, as the preference vector must1147

be adjusted to suit each scenario. Moreover, the1148

same preference vector might favor higher costs1149

for one set of models while preferring lower costs1150

for another, introducing inconsistency and instabil-1151

ity during training. To address this, we propose1152

normalizing both the scores and costs across all1153

LLM sets. Given a set of LLMs {Mk}Kk=1 with1154

scores {sk}Kk=1 and costs {ck}Kk=1, we normalize1155

the scores and costs by1156

s̄k = sk/max({sk}Kk=1),

c̄k = ck/max({ck}Kk=1).
(B.4)1157

This normalization ensures that both scores and1158

costs are scaled such that their maximum value is1159

1.0. By standardizing the range of values, the pol-1160

icy can learn a consistent mapping from user pref-1161

erences to routing decisions across various LLM1162

sets. This approach prevents the policy from dispro-1163

portionately favoring either high-cost or low-cost1164

models based purely on their relative scales, pro-1165

moting more balanced decisions that accurately1166

reflect trade-offs between performance and cost.1167

In theory, the preference vector ω can take any1168

value in the range of [0,∞). However, for simplic-1169

ity, we define it as ω = [1, ω], fixing the preference1170

weight for scores at 1 and only varying the weight1171

for cost. When ω = 0, the model selection priori-1172

tizes high scores regardless of cost, while ω =∞1173

indicates a preference for the lowest-cost model. In1174

practice, we found that sampling ω from the range1175

[0, 2] effectively captures the Pareto front.1176

B.3.4 Stratified Sampling1177

Generalizing the routing policy to a new model1178

M̃ requires to obtain its identity vector Ĩ , which1179

captures the model’s unique strengths and weak-1180

nesses. However, evaluating the model on all avail-1181

able prompts is often prohibitively expensive, espe-1182

cially when new models are frequently introduced.1183

In order to reduce the evaluation cost, we propose 1184

selecting a subset of informative prompts that effec- 1185

tively assess the model’s capabilities. Specifically, 1186

given a set of prompts X = {xn}Nn=1 and the bi- 1187

narized evaluation scores Yk = {ȳkn}Nn=1 for each 1188

available LLM Mk, we assess the difficulty of each 1189

prompt based on the average prediction accuracy 1190

across all models Mk, i.e., 1191

ψn = Ek [−ȳkn log pkn − (1− ȳkn) log(1− pkn)] . 1192

We then apply stratified sampling using the dif- 1193

ficulty ψn as the strata. The stratified sampling 1194

ensures the selected prompts covers a range of dif- 1195

ficulties, from easy to hard, providing a more bal- 1196

anced and informative assessment of the model’s 1197

strengths and weaknesses. Once the subsets X̃ is 1198

selected, the model identity vector is computed as: 1199

Ĩ = argminI

[
Ex̃Lirt +DKL

(
q(Ĩ)∥p(Ĩ)

)]
, 1200

where 1201

Lirt = −ȳ log p− (1− ȳ) log(1− p),
p = sigmoid(f(ẽ, Ĩ)),

1202

and ẽ is the prompt embedding for prompts x̃ ∈ X̃ . 1203

The stratified sampling approach described 1204

above can also be extended to sample prompts from 1205

pairwise comparison datasets. Given a pairwise 1206

comparison dataset V , where each example con- 1207

sists of a prompt xn, a pair of models Mk1 and 1208

Mk2, and a winning label zn ∈ {0, 1}. We first as- 1209

sess each model’s capability using Elo score (Elo, 1210

1967). The Elo scores are then used as strata to 1211

sample a set of models as the comparison baselines. 1212

For each baseline Mk, we uniformly select a set 1213

of prompts Xk on which to run inference with the 1214

new model M̃ and compare its performance to the 1215

baseline Mk. After obtaining the baseline models 1216

and pairwise comparison labels, the model identity 1217

vector is computed as: 1218

Ĩ = argminI Lpair + LKL. (B.5) 1219

In our experiments, we opted to sample prompts 1220

from existing evaluation benchmarks for simplicity. 1221

We leave the exploration of sampling from pairwise 1222

comparison datasets as future work. 1223

C Training Algorithm 1224
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Algorithm 1 Training Procedure of Preference Conditioned Dynamic Routing

Require: Model identify vectors I , Pretraining steps T1, Training steps T2
Require: Comparison dataset V for pretraining, Evaluation leaderboard D for training
Require: Evaluation score predictor f(x, Ik), Calibration parameters α and β
Require: Routing policy πθ, Preference range [ωmin, ωmax], RL training procedure P

1: ## Pretraining Stage
2: for step in [1, . . . , T1] do
3: sample a batch of pretraining data (x, (k1, k2), (c1, c2)) ∼ V
4: sample a batch of preference ω = [1, ω] and ω ∼ U(ωmin, ωmax) {uniform for cost}
5: compute score predictions p̂k = sigmoid(f(x, Ik)) {auxiliary info to the policy}
6: calibrate the score predictions p̄k = sigmoid(αf(x, Ik) + β) {only used to predict action}
7: normalize scores p̄k = p̄k/max({p̄k}k∈{k1,k2}) and costs c̄k = ck/max({ck}k∈{k1,k2})
8: obtain routing action â = argmaxk∈{k1,k2}ω

T [p̄k,−c̄k] {maximize scalarized reward}
9: pretrain the policy by optimizing − log π(â | x, {(Ik, c̄k, p̂k)}k∈{k1,k2},ω)

10: end for
11: ## Training Stage
12: Initialize a replay buffer B {with on-manifold mixup regularization}
13: for step in [1, . . . , T2] do
14: sample a batch of training data (x, {(Mk, ck, sk)}Kk=1) ∼ D {K is different across batches}
15: sample a batch of preference ω = [1, ω] and ω ∼ U(ωmin, ωmax) {uniform for cost}
16: normalize scores s̄k = sk/max({sk}Kk=1) and costs c̄k = ck/max({ck}Kk=1)
17: compute score predictions p̂k = sigmoid(f(x, Ik)) {auxiliary info to the policy}
18: run the current policy a ∼ π(x, {(Ik, c̄k, p̂k)}Kk=1,ω) and obtain reward [s̄a,−c̄a]
19: update replay buffer B← (x, a, {(Mk, c̄k, s̄k)}Kk=1,ω)
20: RL training on data sampled from the replay buffer P(πθ,B) {with mixup interpolation}
21: end for

D Additional Related Works1225

LLM Ensemble, Cascade and Routing As the1226

number of LLMs grows, there is increasing interest1227

in combining them to optimize performance and1228

balance costs. LLM ensemble methods improve1229

response quality by aggregating outputs from multi-1230

ple LLMs but incur high computational costs since1231

they require running inference on multiple models1232

(Jiang et al., 2023; Wang et al., 2023; Lu et al.,1233

2024). LLM cascading reduces costs by invoking1234

LLMs sequentially, starting with the least expen-1235

sive model and progressing to more costly ones1236

until a satisfactory response (Chen et al., 2023;1237

Madaan et al., 2023; Ramírez et al., 2024). While1238

effective in reducing costs, cascading still requires1239

multiple inferences, especially for complex queries,1240

and often depends on an additional model to assess1241

the response quality.1242

In contrast, LLM routing sends queries directly1243

to the most appropriate model, requiring only a1244

single inference and thus offering a more cost-1245

efficient solution. Typical routing methods rely1246

on performance prediction models to guide the1247

selection of LLM. These methods either predict 1248

downstream evaluation or reward scores for a given 1249

query (Shnitzer et al., 2023; Lu et al., 2023; Hari 1250

and Thomson, 2023; Šakota et al., 2024), or esti- 1251

mate win rates between pairs of models (Ding et al., 1252

2024; Ong et al., 2024). The chosen LLM is then 1253

selected based on predicted performance and any 1254

additional constraints, such as cost or latency. 1255

The most relevant work to ours is MetaLLM 1256

(Nguyen et al., 2024), which also frames the rout- 1257

ing task as a multi-armed bandit problem. However, 1258

MetaLLM optimizes a scalarized reward and oper- 1259

ates on a fixed set of LLMs, limiting the learned 1260

policy to specific user preferences and a predefined 1261

set of models. Our approach, by contrast, gener- 1262

alizes to varied user preferences and dynamically 1263

adapts to new LLMs added to the system, ensuring 1264

broader applicability and greater flexibility. 1265

Multi-objective Reinforcement Learning 1266

Multi-objective RL seeks to optimize multi- 1267

ple, often conflicting reward signals within a 1268

Markov decision process, resulting in a set of 1269

Pareto-optimal policies known as the Pareto set 1270

rather than a single optimal policy. Traditional 1271
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algorithms typically aim to approximate this1272

Pareto set by searching for a finite number of1273

policies (Van Moffaert and Nowé, 2014; Parisi1274

et al., 2014; Xu et al., 2020). However, these1275

methods face the curse of dimensionality, where1276

the number of policies needed to accurately1277

approximate the Pareto set grows exponentially1278

with the number of objectives. To address this,1279

recent approaches have proposed using a single1280

deep neural network conditioned on preferences to1281

represent the entire Pareto set (Yang et al., 2019;1282

Abels et al., 2019; Basaklar et al., 2022). Another1283

approach involves using hypernetworks (Chauhan1284

et al., 2023), which map user preferences to the1285

parameters of the policy network (Shu et al., 2024).1286

Our routing policy aligns with the conditional1287

neural network framework, where a single model1288

is conditioned on user preferences to adapt to1289

different user requirements. We further tailor this1290

conditional architecture specifically for routing1291

LLMs, allowing for efficient decision-making1292

across a diverse and expanding set of models.1293

Generalization in Reinforcement Learning1294

Generalizing RL policies to new tasks, often re-1295

ferred to as zero-shot RL, is a growing area of1296

research focused on enabling policies to handle1297

unseen tasks without retraining (Korkmaz, 2024).1298

Approaches typically fall into three categories: The1299

first category focuses on maximizing worst-case1300

performance across tasks, often using adversarial1301

training (Moos et al., 2022; Dong et al., 2023).1302

This approach is commonly used when no data is1303

available to identify the current task. The second1304

category aims to compute task representations from1305

data, allowing agents to adapt their policies to the1306

specific task at hand. This approach is commonly1307

employed in multi-task RL and hidden-parameter1308

MDPs (Konidaris and Doshi-Velez, 2014), where1309

task representations are inferred from exploration1310

data within the task environment (Touati and Ol-1311

livier, 2021; Agarwal et al., 2021; Benjamins et al.,1312

2022; Ingebrand et al., 2024). The third category1313

leverages in-context learning by feeding data from1314

the current task directly into a pretrained trans-1315

former as context (Melo, 2022; Brohan et al., 2022).1316

Although transformers have demonstrated effective-1317

ness, their high memory consumption, training in-1318

stability, and data inefficiency present challenges to1319

their broader application. Our routing policy falls1320

into the second category, where the task represen-1321

tation is explicitly provided as a set of LLMs and1322

their associated costs. In a similar vein, Jain et al.1323

(2020) explore RL generalization to new action 1324

spaces using a VAE to learn action representations, 1325

whereas we capture LLM capabilities via identity 1326

vectors. 1327

In addition to task generalization, research has 1328

also explored generalizing RL policies to new ob- 1329

servation distributions. Techniques include data 1330

augmentation (Cobbe et al., 2019; Yarats et al., 1331

2021; Laskin et al., 2020), specialized architectures 1332

(Lee et al., 2019b), regularization methods (Fare- 1333

brother et al., 2018; Wang et al., 2020), invariant 1334

representation learning (Tachet et al., 2018; Zhang 1335

et al., 2020; Agarwal et al., 2021), and adversarial 1336

observation perturbations (Zhang and Guo, 2021; 1337

Korkmaz, 2022). Our approach explores a simple 1338

regularization technique that encourage smooth- 1339

ness across prompt distributions. 1340

E Experiment 1341

E.1 Model Cost 1342

In Table E.1, we list the costs for each model. For 1343

proprietary APIs, the costs are based on their offi- 1344

cial API pricing, while for open-source models, we 1345

reference pricing from TogetherAI1. All costs are 1346

normalized by estimating the expense of process- 1347

ing 1 million input tokens and generating 1 million 1348

output tokens. 1349

E.2 Dataset Statistics 1350

Our framework consists of three training stages: 1351

First, we train the IRT model to obtain model iden- 1352

tity vectors I and the evaluation score prediction 1353

model f . Second, we perform supervised pretrain- 1354

ing of the routing policy on diverse prompts. Third, 1355

we train the routing policy using a reinforcement 1356

learning procedure. Below, we summarize the 1357

datasets used in each training stage. 1358

The datasets used in this work fall into two cate- 1359

gories: First, pairwise comparison datasets, where 1360

annotations indicate which of two models provides 1361

a higher-quality response. Second, LLM evalua- 1362

tion datasets, which provide evaluation scores for 1363

various models on a set of prompts. Table E.2 1364

summarizes the statistics of these two types of 1365

datasets. We apply basic preprocessing, such as 1366

removing multi-turn prompts and excluding ties 1367

from pairwise comparisons. For LLM evaluation 1368

benchmarks, we select a subset of popular LLMs. 1369

Please see Table E.3 for the full list of LLMs in- 1370

volved in this work. 1371

1https://www.together.ai/pricing
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Table E.1: The estimated cost of invoking the models for
processing 1M input tokens and generating 1M output
tokens.

Model Cost ($)

gpt-3.5-turbo-0125 2
gpt-3.5-turbo-0301 3.5
gpt-3.5-turbo-0613 3.5
gpt-3.5-turbo-1106 3
gpt-4-0125-preview 40
gpt-4o-2024-05-13 20

gpt-4o-mini-2024-07-18 0.75
gpt-4 90

gpt-4-1106-preview 40
gpt-4-turbo-2024-04-09 40

gpt-4-turbo 40

claude-3-opus 90
claude-3.5-sonnet 18
claude-3-sonnet 18
claude-3-haiku 1.5

claude-2.1 32
claude-2 32

claude-instant 3.2
claude-1 32

gemini-pro-1.5 14
gemini-flash-1.5 0.375

llama3.1-405b 9
llama3.1-70b 1.584
llama3.1-8b 0.324
llama3-70b 1.584
llama3-8b 0.324

mistral-large 12
mistral-medium 10.8

mistral-small 8
mixtral-8x22b 2.16
mixtral-8x7b 1.08
mixtral-7b 0.36

command-r-plus 18
command-r 2
command 3

command-light 0.9

qwen-1.5-110b 3.24
qwen-1.5-72b 1.62

yi-large 6

The IRT model is trained using the pairwise com- 1372

parison datasets and the training splits of the evalu- 1373

ation datasets. The pretraining stage also uses these 1374

pairwise comparison datasets. For the policy train- 1375

ing stage, the routing policy is trained separately on 1376

each LLM evaluation dataset. We do not train the 1377

policy across different evaluation benchmarks, as 1378

they employ different scoring mechanisms, leading 1379

to variations in score scales. 1380

E.3 Training the IRT Model 1381

The IRT model for evaluation outcome prediction 1382

consist of four component: the prompt represen- 1383

tation e, the model identity vector I , the evalua- 1384

tion score predictor f(e, I), and the pairwise win- 1385

ner predictor g(e, I). The prompt representation 1386

e is obtained using a pretrained text embedding 1387

model, meaning it contains no learnable parame- 1388

ters. The model identity vector is initialized as 1389

random embeddings for each model listed in Ta- 1390

ble E.3, with the embedding dimension set to 128. 1391

The two neural networks, f and g, share a common 1392

backbone, differing only in their final linear layer. 1393

This shared architecture encourages the model iden- 1394

tity vector to capture both types of evaluation out- 1395

comes, enabling more accurate representation of 1396

each model’s strengths and weaknesses. 1397

The IRT model is trained using both the pairwise 1398

comparison datasets and the training splits of the 1399

evaluation datasets, with a combined loss function, 1400

Lirt + Lpair. The model is trained for 10 epochs 1401

with a batch size of 256. We use the Adam opti- 1402

mizer with a learning rate of 0.001. The learning 1403

rate is decayed by 0.95 after each epoch. We did 1404

not conduct extensive hyperparameter tuning, and 1405

no signs of overfitting were observed during prelim- 1406

inary experiments. Additionally, training beyond 1407

10 epochs did not lead to further improvements in 1408

validation performance and downstream routing 1409

performance. 1410

E.4 Supervised Pretraining of the Routing 1411

Policy 1412

The supervised pretraining stage for the routing pol- 1413

icy optimizes the following negative log-likelihood 1414

− log π(â | x, {(Ik, c̄k, p̂k)}k∈{k1,k2},ω) using 1415

the pairwise comparison dataset V . Given 1416

two models Mk1 and Mk2 compared on the 1417

prompt x, we first sample a preference vector 1418

ω = [1, ω], where ω is uniformly sampled 1419

from the predefined distribution U(ωmin, ωmax). 1420

The routing decision is then estimated as â = 1421
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Table E.2: Two types of datasets used in the training process.

Category Dataset # Prompts # Models

Pairwise Model Comparison

berkeley-nest/Nectar2 182954 39
lmsys/lmsys-arena-human-preference-55k3 39716 64

lmsys/chatbot_arena_conversations4 18320 20
lmsys/mt_bench_human_judgments5 894 6

routellm/gpt4_judge_battles6 84864 2

Single Model Evaluation

AlpacaEval 2.07 805 61
HELM-Lite8 13021 61

HELM-MMLU9 14042 45
OpenLLM Leaderboard10 14617 41

OpenLLM Leaderboard v211 21606 39

Table E.3: The models used in this work for training and evaluating the routing policy.

ai21_j2-grande ai21_j2-jumbo ai21_jamba-instruct alpaca-7b
alpaca-13b chatglm-6b chatglm2-6b chatglm3-6b
claude-1 claude-2.0 claude-2.1 claude-instant-1

claude-instant-1.2 claude-3-5-sonnet-20240620 claude-3-opus-20240229 claude-3-sonnet-20240229
claude-3-haiku-20240307 cohere_command-r cohere_command cohere_command-r-plus

cohere_command-light cohere_command-xlarge codellama-7b-instruct codellama-13b-instruct
codellama-34b-instruct codellama-70b-instruct deepseek-llm-67b-chat dolly-v2-12b

dolphin-2.2.1-mistral-7b dialogpt-large falcon-180b-chat falcon-40b-instruct
falcon-7b-instruct fastchat-t5-3b flat-t5-small gemini-1.0-pro

gemini-1.5-pro gemini-1.5-flash gemini-pro-dev-api gemma-2-9b-it
gemma-2-27b-it gemma-2b-it gemma-7b-it recurrentgemma-2b-it

recurrentgemma-9b-it google-text-unicorn google-text-bison gpt2
gpt2-large gpt2-medium gpt2-xl gpt-3.5-turbo-0125

gpt-3.5-turbo-0314 gpt-3.5-turbo-0613 gpt-3.5-turbo-1106 gpt-4-0125-preview
gpt-4 gpt-4-0314 gpt-4-0613 gpt-4-1106-preview

gpt-4-turbo-2024-04-09 gpt-4o-2024-05-13 gpt-4o-mini-2024-07-18 gpt4all-13b-snoozy
guanaco-13b guanaco-33b guanaco-65b guanaco-7b

koala-13b llama-13b llama-65b llama-2-13b-chat
llama-2-70b-chat llama-2-7b-chat llama2-70b-steerlm-chat llama-3-70b-instruct

llama-3-8b-instruct llama-3.1-405b-instruct-turbo llama-3.1-70b-instruct-turbo llama-3.1-8b-instruct-turbo
luminous-base luminous-supreme luminous-extended mamba-gpt-7b-v2
metamath-13b metamath-70b mistral-7b-instruct-v0.1 mistral-7b-instruct-v0.2

mistral-7b-instruct-v0.3 mistral-large mistral-medium mistral-small
mixtral-8x7b-instruct-v0.1 mixtral-8x22b-instruct-v0.1 mpt-30b-chat mpt-7b-chat

nous-hermes-2-mixtral-8x7b-dpo oasst-pythia-12b opt-1.3b opt-2.7b
opt-350m opt-6.7b opt-iml-max-1.3b opt-iml-max-30b

openchat-3.5 openchat-3.5-0106 openhermes-2.5-mistral-7b phi-2
phi-2-dpo phi-2-sft phi-3-medium phi-3-small
phi-3-mini palm-2 pythia-12b pplx-70b-online

pplx-7b-online palmyra-x-v3 palmyra-x-v2 qwen-14b-chat
qwen1.5-0.5b-chat qwen1.5-1.8b-chat qwen1.5-4b-chat qwen1.5-72b-chat
qwen1.5-14b-chat qwen1.5-32b-chat qwen1.5-7b-chat qwen1.5-110b-chat

qwen1.5-moe-a2.7b-chat qwen2-0.5b-instruct qwen2-1.5b-instruct qwen2-7b-instruct
qwen2-72b-instruct rwkv-4-raven-1b5 rwkv-4-raven-3b rwkv-4-raven-7b
rwkv-4-raven-14b solar-10.7b-instruct-v1.0 stablelm-tuned-alpha-7b starling-lm-7b-alpha

stripedhyena-nous-7b text_davinci_001 text_davinci_002 text_davinci_003
tulu-2-dpo-7b tulu-2-dpo-13b tulu-2-dpo-70b ultralm-13b
ultralm-65b vicuna-13b vicuna-33b vicuna-7b
wizardlm-7b wizardlm-13b wizardlm-70b yi-6b-chat
yi-34b-chat yi-large yi1.5-6b-chat yi1.5-9b-chat

yi1.5-34b-chat zephyr-7b-alpha zephyr-7b-beta
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argmaxk∈{k1,k2}ω
T [p̄k,−c̄k], where c̄k repre-1422

sents the normalized cost c̄k = ck/max(ck1, ck2),1423

and p̄k represent the calibrated evaluation score1424

p̄k = sigmoid(αf(x, Ik) + β). The evaluation1425

scores are further normalized by dividing by the1426

maximum calibrated scores, ensuring consistency1427

with the scale used in the RL training stage. Note1428

that these calibrated and normalized scores are used1429

only for routing action estimation during pretrain-1430

ing, the policy takes in the original score prediction1431

p̂k = sigmoid(f(x, Ik)) as auxiliary inputs, since1432

the normalized scores are not available during the1433

test phase.1434

The pretraining stage runs for 500 steps with1435

a batch size of 1024, using the Adam optimizer1436

with a learning rate of 0.001. The calibration pa-1437

rameters, α and β, are learned by fitting a logistic1438

regression model. Again, we did not conduct ex-1439

tensive hyperparameter tuning, further tuning may1440

improve the performance.1441

E.5 RL Training of the Routing Policy1442

The RL training stage follows a modified PPO pro-1443

cedure tailored for the multi-objective optimiza-1444

tion task. Specifically, from the evaluation leader-1445

board D, we sample K models, {Mk}Kk=1, as1446

routing candidates. The costs ck of these mod-1447

els are normalized by c̄k = ck/max({ck}Kk=1),1448

and the their evaluation scores sk are normalized1449

by s̄k = sk/max({sk}Kk=1). The user preference1450

ω = [1, ω] and ω is sampled from the distribution1451

U(ωmin, ωmax). The training process starts with1452

generating the trajectories following the current1453

policy a ∼ π(x, {(Ik, c̄k, p̂k)}Kk=1,ω). The multi-1454

objective reward for action a is represented as a1455

vector [s̄a,−c̄a]. We update the replay buffer with1456

these sampled trajectories and use samples from the1457

buffer to train the policy. For mixup regularization,1458

we identify the nearest neighbor for each sampled1459

prompt and perform a weighted linear combination1460

of the prompt embedding and its neighbors, where1461

the weights are drawn from Beta(0.2, 0.2). Both1462

the reward and the advantage are linearly combined1463

using the same weights.1464

At each training step, we sample 256 new1465

prompts, along with their routing candidates and1466

preference vectors, to obtain the routing trajecto-1467

ries and update the replay buffer. The training stage1468

runs for 500 steps with a batch size of 256, using1469

Adam optimizer with learning rate of 0.001.1470

E.6 Evaluation Setup 1471

We evaluate the routing performance on 5 LLM 1472

evaluation benchmarks and various sets of routing 1473

candidates. Table E.4 presents the detailed evalua- 1474

tion settings. 1475

E.7 Baselines 1476

In this section, we describe the implementation 1477

details of the baseline methods. 1478

E.7.1 RouteLLM 1479

RouteLLM (Ong et al., 2024) develops a model 1480

that predicts the winning label between a pair of 1481

LLMs and selects the model based on a threshold 1482

applied to the predicted probability. To account for 1483

varying user preferences, we evaluate RouteLLM 1484

using a range of different thresholds. 1485

E.7.2 Predictor 1486

The predicted evaluation scores p̂k = 1487

sigmoid(f(x, Ik)) can be used directly to 1488

compute the scalarized reward for an LLM Mk as 1489

rω(x, k) = ωT [p̂k,−ck]. The routing decision is 1490

then made by selecting â = argmaxk rω(x, k). 1491

E.7.3 Random 1492

The random routing policy selects models based 1493

on predefined probabilities for each model. Dif- 1494

ferent user preferences are reflected by adjusting 1495

these probabilities. However, when there are more 1496

than two LLM candidates, specifying the probabil- 1497

ities becomes non-trivial, so we omit the random 1498

baseline in these scenarios. 1499

E.7.4 Oracle 1500

The oracle routing policy selects the model based 1501

on the actual evaluation scores, making the rout- 1502

ing decision as â = argmaxk rω(x, k) = 1503

argmaxk ω
T [s(x, k),−ck], where s(x, k) repre- 1504

sents the true performance score for model Mk 1505

on prompt x. 1506

E.7.5 PPO 1507

For each LLM candidate set and each user pref- 1508

erence, we train a separate PPO routing policy 1509

to maximize the scalarized reward rω(x, k) = 1510

ωT [s(x, k),−ck]. 1511

E.8 Additional Evaluation Results 1512

We also evaluate our preference-conditioned dy- 1513

namic routing (PCDR) approach on MT-Bench, a 1514
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Table E.4: Evaluation settings.

Benchmark Setting Models

AlpacaEval 2.0 GPT4/Mixtral-8x7B gpt4_1106_preview
Mixtral-8x7B-Instruct-v0.1

GPT Family gpt-3.5-turbo-0301
gpt-3.5-turbo-0613
gpt-3.5-turbo-1106
gpt-4-0125-preview
gpt-4o-2024-05-13

gpt4
gpt4_0314
gpt4_0613

gpt4_1106_preview

Claude Family claude
claude-2

claude-2.1
claude-3-5-sonnet-20240620

claude-3-opus-20240229
claude-3-sonnet-20240229

claude-instant-1.2

HELM-MMLU GPT4/Mixtral-8x7B gpt4_1106_preview
mixtral-8x7b-32kseqlen

Mistral Family mistral-7b-instruct-v0.3
mixtral-8x22b

mixtral-8x7b-32kseqlen

GPT Family gpt-3.5-turbo-0613
gpt-4-0613

gpt-4-1106-preview
gpt-4o-2024-05-13

HELM-Lite GPT4/Mixtral-8x7B gpt4_1106_preview
mixtral-8x7b-32kseqlen

Mistral Family mistral-7b-instruct-v0.3
mixtral-8x7b-32kseqlen

mixtral-8x22b

GPT Family gpt-4o-2024-05-13
gpt-4o-mini-2024-07-18

gpt-3.5-turbo-0613
gpt-4-0613

gpt-4-1106-preview

OpenLLM Yi1.5 Family Yi-1.5-34B-Chat
Yi-1.5-6B-Chat
Yi-1.5-9B-Chat

Mistral Family Mistral-7B-Instruct-v0.2
Mixtral-8x22B-Instruct-v0.1
Mixtral-8x7B-Instruct-v0.1

LLaMA3 Family Llama-3-70B-Instruct
Llama-3-8B-Instruct

OpenLLMv2 Yi1.5 Family Yi-1.5-34B-Chat
Yi-1.5-6B-Chat
Yi-1.5-9B-Chat

Qwen2 Family Qwen2-0.5B-Instruct
Qwen2-1.5B-Instruct
Qwen2-72B-Instruct
Qwen2-7B-Instruct

LLaMA3 Family Llama-3-70B-Instruct
Llama-3-8B-Instruct
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Figure E.1: Performance-cost trade-off on MTBench
dataset.

Table E.5: Evaluation setting fro new routing candi-
dates.

Benchmark Setting Models

OpenLLMv2 Cohere aya-23-35B
aya-23-8B

Qwen2.5 Qwen2.5-0.5B-Instruct
Qwen2.5-1.5B-Instruct
Qwen2.5-7B-Instruct
Qwen2.5-14B-Instruct
Qwen2.5-32B-Instruct
Qwen2.5-72B-Instruct

widely-used benchmark for assessing LLM per-1515

formance. Figure E.1 shows the performance-1516

cost trade-off curves for different routing meth-1517

ods. While the Oracle policy achieves the best1518

performance-cost trade-off as expected, our PCDR1519

approach performs competitively with RouteLLM,1520

particularly in the mid-to-high cost regime ($20-1521

40). Both methods significantly outperform ran-1522

dom routing. Again, the gap between all routing1523

policies and the Oracle baseline suggests potential1524

room for improvement in routing decisions.1525

E.9 Cold Start for New Routing Candidates1526

To simulate the scenario where new models are1527

introduced into the routing system, we select sev-1528

eral unseen models from the HuggingFace Open-1529

LLM v2 benchmark. These models are not used for1530

2https://huggingface.co/datasets/
berkeley-nest/Nectar

3https://huggingface.co/datasets/lmsys/
lmsys-arena-human-preference-55k

4https://huggingface.co/datasets/lmsys/
chatbot_arena_conversations

5https://huggingface.co/datasets/lmsys/mt_
bench_human_judgments

6https://huggingface.co/datasets/routellm/
gpt4_judge_battles

7https://tatsu-lab.github.io/alpaca_eval/
8https://crfm.stanford.edu/helm/lite/latest/
9https://crfm.stanford.edu/helm/mmlu/latest/

10https://huggingface.co/spaces/
open-llm-leaderboard-old/open_llm_leaderboard

11https://huggingface.co/spaces/
open-llm-leaderboard/open_llm_leaderboard

training either the IRT model or the routing policy. 1531

Table E.5 shows the detailed evaluation settings. 1532
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