LLM Bandit: Cost-Efficient LLM Generation via
Preference-Conditioned Dynamic Routing

Anonymous ACL submission

Abstract

The rapid advancement in large language mod-
els (LLMs) has brought forth a diverse range
of models with varying capabilities that excel
in different tasks and domains. However, se-
lecting the optimal LLM for user queries often
involves a challenging trade-off between accu-
racy and cost, a problem exacerbated by the
diverse demands of individual queries. In this
work, we present a novel framework that for-
mulates the LLM selection process as a multi-
armed bandit problem, enabling dynamic and
intelligent routing of queries to the most ap-
propriate model. Our approach incorporates a
preference-conditioned dynamic routing mech-
anism, allowing users to specify their prefer-
ences at inference time, thereby offering a cus-
tomizable balance between performance and
cost. Additionally, our selection policy is de-
signed to generalize to unseen LLMs, ensuring
adaptability to new models as they emerge. Ex-
perimental results demonstrate that our method
achieves significant improvements in both ac-
curacy and cost-effectiveness across various
LLM platforms, showcasing the potential of
our framework to adaptively optimize LLM se-
lection in real-world scenarios.

1 Introduction

The rapid advancement in large language models
(LLMs) has created a diverse ecosystem with vary-
ing capabilities and cost profiles. While larger mod-
els like GPT-4 demonstrate superior reasoning abili-
ties, they come with substantial costs—often $0.03-
0.10 per query—making them impractical for large-
scale deployments (Achiam et al., 2023). In con-
trast, open-source models like Mixtral-8x7B of-
fer competitive performance at roughly 1/10th the
cost (Jiang et al., 2024), while domain-specialized
models excel in specific areas while maintaining
lower operational costs (Roziere et al., 2023; Sing-
hal et al., 2023). This diversity creates a complex
decision space where optimal model selection must

balance performance, cost, and domain-specific
requirements.

Existing approaches to address this performance-
cost dilemma typically fall into three categories.
Ensemble methods (Jiang et al., 2023; Wang et al.,
2023) combine responses from multiple LLMs but
require invoking multiple models per query, mul-
tiplying costs and latency. Cascading approaches
like Frugal GPT (Chen et al., 2023) and AutoMix
(Madaan et al., 2023) implement sequential strate-
gies, starting with cheaper models and escalating
only when necessary, but can increase latency for
complex queries. Direct routing approaches (Ding
et al., 2024; Ong et al., 2024; Nguyen et al., 2024)
select the most appropriate model with a single
inference, but current systems struggle with gener-
alization and adaptation to new models.

Designing effective routing systems presents
several fundamental challenges. First, LLMs en-
counter diverse queries ranging from simple fac-
tual questions to complex reasoning tasks, requir-
ing accurate assessment of both query complexity
and model capabilities. Second, the LLM land-
scape evolves rapidly, demanding adaptation to
new models without extensive retraining. Third, ap-
plications have varying requirements—from cost-
efficient customer service to accuracy-focused legal
analysis—necessitating dynamic adjustment to dif-
ferent preferences. Finally, routing decisions must
be lightweight to minimize processing overhead.

To address these challenges, we propose a
preference-conditioned dynamic routing mecha-
nism that frames LLM selection as a multi-armed
bandit problem. Our approach introduces three key
innovations: (1) model identity vectors that cap-
ture capabilities across different tasks and domains,
enabling efficient comparison; (2) user-specified
preference parameters for dynamic performance-
cost trade-offs at inference time; and (3) efficient
integration of new models using only 20-50 care-
fully selected benchmark prompts.

Model Quizzing

@-» >
Query x Preference @

A w1 :
o > * /
umz § o
= : Routing Policy

L e

Preference Conditioned Routing

rg User

LL

LLM K

LLM Routing Candidates

Figure 1: Overview of our preference-conditioned dy-
namic routing framework. Model quizzing (left) gener-
ates identity vectors capturing model capabilities, while
routing policy (right) determines model selection based
on user preferences and query.

Our contributions span both theoretical and
practical aspects. We formulate routing as a
multi-objective optimization task and develop a
preference-conditioned mechanism that captures
the entire Pareto front of performance-cost trade-
offs. Our action-space aware policy generalizes to
arbitrary sets of LLMs, demonstrated across vari-
ous routing configurations. We introduce an effi-
cient quizzing mechanism that characterizes new
models with minimal evaluation, reducing integra-
tion overhead by 90% compared to full benchmark
evaluation.

Experimental results across multiple bench-
marks demonstrate that our method achieves up
to 27% improvement in cost-efficiency while main-
taining comparable performance. The framework
proves especially effective in real-world scenarios
where requirements vary across applications and
users, enabling organizations to automatically se-
lect the most cost-effective model for each query
while meeting specific performance demands.

2 Method

2.1 Problem Formulation

Let X denote the space of all possible queries and
{M}E | be afinite set of K large language mod-
els. Each model M, is characterized by its gener-
ation capabilities and an associated cost ¢, € R...
For any query x € X and model M}, we define
s(z, k) € [0, 1] as a normalized score measuring
the quality of M}, s response to query x. This score
can be obtained through various evaluation metrics
(e.g., accuracy, F1-score) depending on the task.
We aim to develop a routing policy 7 : X —
P(K), where P(K) denotes the probability sim-
plex over K models, that maps each query to a
distribution over available models. When execut-
ing the policy, a model is sampled according to

this distribution, i.e., & ~ m(z). The routing de-
cision results in a two-dimensional reward vector
r(z,k) = [s(x, k), —cx] € R?, capturing both the
generation quality and the negative cost.

In the context of multi-objective optimization,
we seek to maximize the expected reward vector:

Jr = Exwp(a:),kww(a:) [I‘($, k)]
= [Ex,ﬂ[s(xv k)], _Exm[ck“a

where p(x) denotes the underlying query distribu-
tion and [E; - is shorthand for the expectation over
both = ~ p(x) and k ~ 7(x). Given two policies
71 and 72, we say m; dominates o if Jr, > Jr,
elementwise and the inequality is strict in at least
one dimension. A policy 7 is Pareto optimal if it is
not dominated by any other policy.

The set of all Pareto optimal policies forms the
Pareto set I1*, and their corresponding expected
rewards {J, : m € IT*} form the Pareto front. Due
to the conflicting nature of performance and cost
objectives, there typically exists no single policy
that simultaneously maximizes both objectives. In-
stead, different policies in IT* represent different
trade-offs between performance and cost.

To navigate this trade-off, we introduce a pref-
erence parameter w = [wy,ws] € RZ that spec-
ifies the relative importance of performance ver-
sus cost. This allows us to define a scalarized re-
ward: 7, (2, k) = w'r(z, k) = wis(z, k) — wacy.
For any fixed preference w, the optimal policy
T, maximizes the expected scalarized reward:
Tw = argmax, K,) kor(e) [Tw (@, £)]. While
the instantaneous reward s(z, k) may be discrete
(e.g., binary success/failure outcomes), the ex-
pected reward E, [s(x, k)] is continuous in the
policy parameters under mild regularity conditions
on the policy class (see Theorem A.1 in Appendix).
Specifically, when the policy 7 is parameterized by
continuous functions (e.g., neural networks with
softmax outputs), the expected reward surface re-
mains continuous despite discrete individual re-
wards. This ensures the existence of optimal poli-
cies m,, for each preference vector w. Moreover,
as w varies across Ri, the corresponding optimal
policies {m, : w € R%} trace out the complete
Pareto front of achievable performance-cost trade-
offs (Yang et al., 2019; Basaklar et al., 2022).

This formulation connects our problem to both
multi-armed bandit (Katehakis and Veinott Jr,
1987; Bouneffouf and Rish, 2019) and multi-
objective optimization (Sharma and Kumar, 2022)

literature. The routing policy must learn to select
models (arms) based on query-specific context, sim-
ilar to contextual bandits. However, unlike tradi-
tional bandits that optimize a scalar reward, our
setting involves vector-valued rewards and user-
specified preferences, relating to multi-objective
optimization. This combination presents unique
challenges in policy learning and evaluation, which
we address in subsequent sections.

2.2 Overall Framework

Given the formulation above, our framework ad-
dresses two key challenges: (1) how to efficiently
characterize each model’s capabilities to enable
informed routing decisions, and (2) how to learn
a preference-conditioned policy that generalizes
across different models and queries. We propose a
two-component solution: a model quizzing compo-
nent that generates identity vectors capturing model
capabilities, and a preference-conditioned routing
policy that determines selection probabilities. Fig-
ure 1 illustrates this framework.

2.3 Model Identity Vector

To enable effective routing, we need a compact rep-
resentation of each model’s capabilities across dif-
ferent tasks and domains. Given a set of evaluation
prompts X = {x,,}_, spanning various domains,
we collect evaluation scores V. = {y;m}fyzl for
LLM Mjp. Our goal is to learn a model identity vec-
tor I;, € R? that predicts these evaluation scores.

We employ a variant of Item Response Theory
(IRT) (Hambleton and Swaminathan, 2013) com-
bined with deep neural networks. Unlike IRT, we
leverage pretrained prompt embeddings e,, rather
than learning explicit prompt representations, en-
abling generalization to unseen prompts. The score
prediction model f(e,, I)) outputs the probability
of model M, successfully handling prompt z,,.

For binary evaluation scores ,, we opti-
mize the binary cross-entropy loss: Ly =
E[~¥kn 10g Prn — (1 — Jkn) 10g(1 — ppn)], where
Prn = sigmoid(f(ey, Ix)). For non-binary scores,
we employ a thresholding mechanism in Ap-
pendix B.1.1.

We further incorporate pairwise model com-
parisons to enhance the identity vectors. Given
responses from models M}, and My, with an-
notations z, € {0,1} indicating the win-
ner, we introduce a secondary network g
that predicts winning probabilities: Ly =
]E[_Zn log pr, — (1 - Zn) log(l _pn)]7 where p,, =

Singid(g(ena Ikl) - g(ena Ik;z))

To enhance generalization to unseen models, we
employ variational inference, treating I, as latent
variables. This adds a KL-divergence term for reg-
ularization: Lxr = Ex[Dkr(¢(1x)||p(Ix))], where
both prior p(Ix) and posterior ¢(Ij) are Gaussian
distributions. Please see Appendix B.1 for details.

2.4 Preference-Conditioned Routing Policy

Building on our problem formulation, the core chal-
lenge is to develop a routing policy that can (1)
generalize across different sets of LLMs and (2)
adapt to varying user preferences w. A natural ap-
proach would be to directly estimate the evaluation
scores s(x, k) using our IRT model f(e,I;) and
select models that maximize the scalarized reward
rw(x, k). However, this direct estimation faces
several limitations. The predicted scores may be
inaccurate for specific query-model pairs, the esti-
mation provides no uncertainty quantification, and
most importantly, the deterministic selection strat-
egy cannot balance exploration and exploitation.

We propose to learn a stochastic policy g that
maps queries to routing decisions while incorporat-
ing both the available models and user preferences
as conditioning information: 7y (k'|z,Crx,w)
exp(I] h(x,Cr,w)). Our formulation introduces
three key innovations to address the core challenges.
First, we enable generalization across model sets
through action-space awareness. The policy is
explicitly conditioned on model identity vectors
{I,}X |, making it aware of available actions. The
dot-product structure between model identities and
network outputs allows the policy to work with ar-
bitrary sets of models - once we compute a model’s
identity vector, it can be immediately incorporated
into routing decisions. Second, we enhance rout-
ing decisions by incorporating comprehensive con-
text Crc = {(Iy, cx, Pr) |, which includes not
only identity vectors but also costs c; and pre-
dicted scores py = sigmoid(f(z,Ij)). This con-
text is processed through a permutation-invariant
network h(-), enabling the policy to reason about
relative strengths of different models for each spe-
cific query while maintaining consistency across
different model orderings. Third, we enable dy-
namic preference adaptation by directly condition-
ing the policy on w. This allows the policy to adjust
its routing strategy at inference time without retrain-
ing, efficiently exploring different performance-
cost trade-offs based on user requirements.

We optimize the policy following standard multi-

objective policy gradient algorithms (Xu et al.,
2020; Shu et al., 2024), where the gradient for up-
dating the parameters 6 is given by Vg[w! J,,] =
E [w?A(z,k')Vologmg(k' | z,Ck,w)]|, where
A(z,k') indicates the advantage function esti-
mated from sampled trajectories. The correspond-
ing value function V, (z, Cx) outputs a vector of
expected returns under the current policy my. The
parameters of the value function are updated by a
squared-error 10ss ||V, — Viargl|?, where Vi,
is the target value. Note the value function does
not depend on the preference w, which encourages
shared values estimation across different user pref-
erences. The vectorized value function is inspired
by the core principles of multi-objective Q-learning
algorithms (Yang et al., 2019; Basaklar et al., 2022).
This value network and policy gradient extension
can be seamlessly integrated into most existing pol-
icy gradient methods. In our implementation, we
adapt Proximal Policy Optimization (PPO) (Schul-
man et al., 2017), where the clipped surrogate ob-
jective is used to update policy parameters. Addi-
tionally, Generalized Advantage Estimation (GAE)
(Schulman et al., 2015) is employed to compute the
advantage function A and target values V4. For
detailed derivations and implementation specifics,
please refer to Appendix B.2.

A key advantage of our approach is its scala-
bility. By leveraging model identity vectors and
preference conditioning, the policy can seamlessly
adapt to new models and varying user requirements
without retraining from scratch. However, realiz-
ing these benefits requires careful consideration of
training methodology. In the following sections,
we explore techniques that ensure effective gener-
alization across models, queries, and preferences.

2.5 Training for Generalization

While our policy architecture enables handling dif-
ferent models and preferences, realizing these ca-
pabilities requires careful training strategies. We
identify three key generalization challenges: (1)
handling arbitrary sets of models, (2) generalizing
to unseen queries, and (3) maintaining consistent
performance across preferences.

To handle arbitrary model sets, we employ two
complementary strategies. First, we train the
policy on dynamically sampled sets of models
with varying sizes and capabilities. We lever-
age evaluation leaderboards like HELM (Liang
et al., 2022) that provide scores for diverse mod-
els, randomly selecting different combinations dur-

ing training. This exposure to diverse model com-
binations forces the policy to learn generalizable
routing strategies rather than memorizing specific
model relationships. Second, we address the chal-
lenge of varying score and cost scales across dif-
ferent model combinations. For instance, com-
paring GPT-4 with Mixtral-8x7B yields differ-
ent scales than comparing two open-source mod-
els. We handle this through reward normalization
within each set: 8 = s/ max({s;}*), & =
¢/ max({c, <). This normalization ensures
consistent reward scales regardless of the specific
models, enabling stable optimization. Moreover,
it maintains consistent interpretation of preference
vectors - the same preference w represents similar
trade-offs across different model combinations.

For query generalization, we employ two tech-
niques. First, we perform large-scale pretrain-
ing on pairwise model comparison datasets, such
as Nectar (Zhu et al., 2023) and Chatbot Arena
(Zheng et al., 2023). While these datasets feature
diverse user queries that help learn generalizable
routing behaviors, they only provide binary win-
ning labels rather than model-specific evaluation
scores. To leverage this data, we first obtain pre-
dicted scores from our IRT model, then calibrate
them using Platt scaling (Platt et al., 1999): p, =
sigmoid(avf (z, Ix)+), where o and (3 are learned
to align score predictions with human preferences
(see Appendix B.3.1). The policy is pretrained to
predict actions that maximize the calibrated reward:
G = argmaXpe(k, iy} w! [Py, —cx). Second, we
introduce an on-manifold mixup regularization dur-
ing the subsequent reinforcement learning phase.
When sampling queries from the replay buffer, we
interpolate each prompt embedding with its nearest
neighbor. This neighborhood-based interpolation
ensures the mixed embeddings remain meaningful,
helping the policy learn smoother decision bound-
aries (see Appendix B.3.2).

For preference generalization, the key chal-
lenge is maintaining Pareto optimality while en-
abling efficient learning across different trade-
offs. We leverage two complementary strategies.
First, our decomposed value function V., (z, Ck)
estimates score and cost components indepen-
dently. This decomposition enables value esti-
mation sharing across preferences while maintain-
ing separate tracking of objectives. Second, we
train with dynamically sampled preferences w ~
U (Wmin, Wmax), forcing the policy to learn consis-
tent behaviors across different trade-offs. The pref-

erence range is chosen to cover practical trade-offs
between quality and cost.

2.6 Cold Start for New Routing Candidates

A key advantage of our framework is its ability
to efficiently incorporate new LLMs without re-
training the routing policy. When a new model M
is introduced, we only need to compute its iden-
tity vector I to enable routing. While this vector
could be obtained through full benchmark evalua-
tion, such an approach would be prohibitively ex-
pensive and time-consuming. We propose instead
an efficient characterization method that requires
evaluating only 20-50 carefully selected prompts,
reducing the integration overhead by 90% or more
compared to full evaluation.

Our approach is based on the insight that not
all evaluation prompts are equally informative for
distinguishing model capabilities. Given exist-
ing prompts X = {z,,})_; and binary evaluation
scores Yy = {¥rn N, for existing models, we
compute a discrimination score for each prompt:

wn = Ek[_gkn Ingkn - (1 - gkn) log(l - pkn)]

where pi, = sigmoid(f(z,,Ix)) indicates IRT
model’s prediction. The score 1,, measures the av-
erage prediction error across models for prompt x,.
A high 1, indicates that our IRT model struggles
to accurately predict model performance on this
prompt, often because models with similar capabil-
ities exhibit inconsistent performance. Conversely,
a low 1, suggests model performance is highly
predictable - either consistently successful or un-
successful across models with similar capabilities.

Using these discrimination scores, we select a
representative subset of prompts X through strat-
ified sampling. By sampling from different strata
of 1, values, we ensure our evaluation set covers
prompts with varying discriminative power. Given
the new model’s evaluation scores Y on these se-
lected prompts, we compute its identity vector by:

I= argImiD[E/{gﬁirt + Dxi(gllp)], (D)

where L;y = —gylogp — (1 — y)log(l — p),p =
sigmoid(f(x,I)). The KL term acts as a regu-
larizer, encouraging the identity vector to remain
close to our prior distribution over model capabil-
ities. Importantly, this optimization updates only
the identity vector I while keeping the IRT model
fixed. Once computed, the identity vector I can

be immediately used by our routing policy without

any additional training or fine-tuning. This is en-
abled by our dot-product architecture that naturally
extends to new models. As shown in Fig. 3, routing
performance with these efficiently computed iden-
tity vectors closely matches that of vectors com-
puted using full evaluation.

The combination of discriminative prompt se-
lection and efficient identity vector computation
provides a practical solution for maintaining an up-
to-date routing system in the rapidly evolving LLM
landscape. Implementation details and additional
analysis can be found in Appendix B.3.4.

3 Related Works

LLM Ensemble, Cascade and Routing As LLMs
diversify, researchers have developed strategies to
balance performance and cost. Ensemble methods
(Jiang et al., 2023; Wang et al., 2023; Lu et al.,
2024) aggregate multiple model outputs but mul-
tiply costs. Cascading approaches (Chen et al.,
2023; Madaan et al., 2023; Ramirez et al., 2024)
start with cheaper models but still require multi-
ple inferences for complex queries. In contrast,
routing methods direct queries to the most suitable
model with a single inference, either by predict-
ing evaluation scores (Shnitzer et al., 2023; Lu
et al., 2023; Hari and Thomson, 2023; Sakota et al.,
2024) or win rates between models (Ding et al.,
2024; Ong et al., 2024). Most closely related, Met-
aLLM (Nguyen et al., 2024) frames routing as a
bandit problem but optimizes for fixed preferences
and predefined models, whereas ours generalizes
to dynamic preferences and adapts to new LLMs
without retraining.

Multi-objective Reinforcement Learning
Multi-objective RL optimizes conflicting rewards
to find Pareto-optimal policies. Traditional
methods sample discrete policies (Van Moffaert
and Nowé, 2014; Parisi et al., 2014; Xu et al,,
2020) but face dimensionality challenges as
objectives increase. Modern approaches use
preference-conditioned networks (Yang et al.,
2019; Abels et al., 2019; Basaklar et al., 2022)
or hypernetworks (Chauhan et al., 2023; Shu
et al., 2024) to represent the entire Pareto front
with a single model. Our work employs prefer-
ence conditioning specifically tailored for LLM
routing, enabling efficient adaptation across
performance-cost tradeoffs.

Generalization in Reinforcement Learning
Zero-shot RL enables policies to handle unseen
tasks without retraining (Korkmaz, 2024). Our

approach adopts a representation-based paradigm
where task characteristics are explicitly encoded
as model identity vectors and costs, similar to ac-
tion space generalization (Jain et al., 2020). For
observation distribution generalization, we employ
regularization techniques inspired by Cobbe et al.
(2019) and Zhang and Guo (2021). Additional re-
lated work is discussed in Appendix D.

4 [Experiments

We evaluate our routing policy on five popular
LLM benchmarks: HELM-Lite, HELM-MMLU
(Liang et al., 2022), HuggingFace OpenLLM
Leaderboard, OpenLLLM Leaderboard v2 (Beech-
ing et al., 2023; Fourrier et al., 2024), and AlpacaE-
val 2.0 (Li et al., 2023). For each benchmark, we
divide prompts into training and test splits, with the
former used for policy training and the latter for
evaluation. Our routing policy is pretrained on pair-
wise comparison datasets including Chatbot Arena
(Zheng et al., 2023), Nectar (Zhu et al., 2023), and
RouteLLM’s synthetic dataset (Ong et al., 2024).
The IRT model is trained on these same pairwise
datasets plus training splits from all leaderboards.
We approximate model costs based on processing
and generating 1M tokens each (see Appendix E
for details).

For comparative evaluation, we follow
RouteLLM’s setup with GPT-4 and Mixtral-8x7B
as candidates, noting that while RouteLLM is
specifically trained for this two-model scenario,
our approach handles arbitrary model sets. To
test generalization, we evaluate two additional
multi-model configurations per dataset where
RouteLLM is not applicable. We compare against
several baselines: (1) RouteLLM (two-model
scenarios only), (2) a random selection baseline
(two-model only), (3) a Predictor baseline that
uses predicted scores py to compute utility, (4)
separate PPO policies trained for each LLM set and
preference, and (5) an Oracle policy that selects
models based on actual evaluation scores. For
preference adjustment, RouteLLM uses thresholds
while our method directly accepts preference
parameters as inputs.

Results Figure 2 demonstrates our method’s
routing performance across five major LLM eval-
uation benchmarks with various model combina-
tions. The results reveal several key advantages of
our approach: First, our Predictor baseline consis-
tently outperforms RouteLLM, validating the effec-
tiveness of our model identity vector and score

prediction framework. Second, our preference-
conditioned routing policy further improves upon
the Predictor baseline, particularly in challenging
scenarios where score prediction is less reliable.
This is especially evident in AlpacaEval 2.0 (c) and
HELM-Lite (b), where the routing policy learns
to compensate for prediction uncertainties by in-
corporating broader context about model capabil-
ities and costs. When compared to RouteLLM,
our policy demonstrates substantial cost savings -
on AlpacaEval 2.0 with the GPT4/Mixtral-8x7B
configuration, our approach achieves 46.35% ac-
curacy at $31 cost compared to RouteLLM’s $35,
representing an 11% cost reduction. On MMLU,
the improvement is even more significant, reduc-
ing costs from $33 to $24 (27% reduction) while
maintaining 80% accuracy. Third, our single rout-
ing policy achieves comparable or better perfor-
mance than separately trained PPO policies across
all datasets and LLM configurations. This is a
crucial advantage, as each PPO baseline requires
specific training for its fixed set of models and
preference settings, while our approach generalizes
across arbitrary model combinations and prefer-
ences without retraining. This demonstration of
robust generalization is particularly important for
practical deployments where model sets and re-
quirements frequently change. While these results
demonstrate significant improvements over exist-
ing methods, the performance gap between all rout-
ing policies and the Oracle baseline indicates po-
tential for further optimization. This gap suggests
opportunities for future work in improving both
prediction accuracy and routing strategy.

Cold Start for New Routing Candidates To
simulate the scenario where new models are in-
troduced into the routing system, we select sev-
eral unseen models from the HuggingFace Open-
LLM v2 benchmark. These models are not used for
training either the IRT model or the routing policy.
For detailed evaluation settings, please refer to Ap-
pendix E.9. The identity vectors for these models
are obtained by optimize (1) over a selected subset
of prompts from the OpenLLMv2 benchmark. We
explore different evaluation budgets, selecting 10,
20 or 50 prompts to obtain the evaluation scores for
these newly added models. The Predictor baseline
utilizes the learned identity vectors to predict the
evaluation scores, while the PPO baseline trains
the routing policy using the same set of selected
prompts. For our preference conditioned routing
policy, we directly plug the identity vectors into the

HELM-MMLU AlpacaEval 2.0

HELM-Lite

OpenLLM

OpenLLMv2

Evaluation Score Evaluation Score Evaluation Score Evaluation Score

Evaluation Score

0.55 LLMs
Random

0.50 —— Oracle

+— Predictor
0.45 PPO

—e— RouteLLM
040 pcDR (Ours)
0.35
0.30
0.25

0 5 10 15 20 25 30 35 40
Cost

(a) GPT4/Mixtral-8x7B

LLMs
0.86 Random
0.84 —— Oracle
0.82 <= Predictor
—e— PPO
080 RouteLLM
0.78 =—e— PCDR (Qurs)
0.76
0.74
0.72

0 5 10 15 20 25 30 35 40
Cost

(a) GPT4/Mixtral-8x7B

0.58 LLMs

0.56 Random
—e— Oracle

0.54 +— Predictor
—e— PPO

0.52 —— RouteLLM

0.50 ~e— PCDR (Ours)

0.48

0.46

(a) GPT4/Mixtral-8x7B

LLMs
0.86 —e— Oracle
0.84 <= Predictor
—e— PPO
0.82 —e— PCDR (Ours)
0.80 -
0.78
0.76
0.74
04 05 06 07 08 09 1.0 11 12
Cost
(a) Yil.5 Family
0.70 LLMs
~e— Oracle
0.65 —o— Predictor
0.60 —e— PPO
—e— PCDR (Ours)
0.55
0.50 b
0.45
0.40
0.35

04 05 06 07 08 09
Cost

1.0 11 1.2

(a) Yil.5 Family

Evaluation Score

Evaluation Score

i

Evaluation Score

h

Evaluation Score

{

Evaluation Score

0.6

0.5

0.4

0.3

0.2

0.85

0.80

0.75

0.70

0.65

0.60

0.60

0.55

0.50

0.45

0.40

0.35

0.90

0.88

0.86

0.84

0.82

0.80

0.78

0.8

0.7

0.6

0.5

0.4

0.3

0.2

LLMs
—e— Oracle
<= Predictor
—e— PPO
—e— PCDR (Ours)

20 40 60 80
Cost

(b) GPT Family

LMs

~e— Oracle

<= Predictor
—e— PPO

—e— PCDR (Ours)

0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25
Cost

(b) Mistral Family

o oo

LLMs

~e— Oracle

<= Predictor
—— PPO

- —e— PCDR (Ours)

0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25
Cost

(b) Mistral Family

LLMs

—e— Oracle

< Predictor
—e— PPO

—e— PCDR (Ours)

0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25
Cost

(b) Mistral Family

LLMs

—e— Oracle

<= Predictor
—— PPO

—e— PCDR (Ours)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Cost

(b) Qwen2 Family

Evaluation Score Evaluation Score

Evaluation Score

Evaluation Score
o o o o o
IS 2w @
s 3 3 8 2

o
S
N

Evaluation Score

o
]
LLMs
~—e— Oracle
" <+~ Predictor
] —e— PPO
* —e— PCDR (Ours)
0 20 40 60 80

Cost

(c) Claude Family

LLMs
= Oracle
<= Predictor
—e— PPO
~e— PCDR (Ours)

0 20 40 60 80

Cost

(c) GPT Family

{ LLMs
—e— Oracle

<~ Predictor
/‘L :

—e— PPO
—e— PCDR (Ours)
0 20 40 60 80
Cost

(c) GPT Family

LLMs
—e— Oracle
<= Predictor
—e— PPO
—e— PCDR (Ours)

04 06 08 1.0 12
Cost

14 16 18 20
(¢) LLaMA3 Family

LLMs
~e— Oracle
<= Predictor
—e— PPO
—e— PCDR (Ours)
oy

04 06 08 1.0 12 14 16 18 20
Cost

(c) LLaMA3 Family

Figure 2: Evaluate the routing performance across 5 datasets and various sets of LLM candidates.

038 055

Y 050

w
&

&H 045
S 0.40

®
So3s

Evaluation Score
N

o o o o
&
®
W

@ 0.30
b

W
3

3

O

°

~

3
N

- b - bt
- PCOR (full) - PCOR (full)

04 05 06 07 08 09 10 11 12
Cost

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

(a) Cohere (b) Qwen2.5

Figure 3: Evaluate routing performance on two sets of
new models. the identity vectors are obtained using 10,
20 or 50 selected prompts, respectively.

routing policy trained on OpenLLLMv2 (as shown
in the last row of Figure 2), without further tuning
on these newly added models. Figure 3 presents
the evaluation results. Overall, our routing policy
outperforms the Predictor baseline and performs
comparably to the PPO policy, despite the latter
being specifically trained on the new models. Ad-
ditionally, our approach maintains effectiveness
even with very limited evaluation data - using just
50 prompts achieves performance nearly matching
that of identity vectors computed from the full set.

Computational Overhead The routing over-
head is minimal compared to model inference time.
Our policy requires approximately S5ms per routing
decision on a single GPU, negligible compared to
typical LLM inference times (100ms-1s). Mem-
ory requirements are also modest: the identity vec-
tors and routing policy together require less than
100MB of GPU memory.

Ablation Studies =
Our routing policy R
consists of a super-
vised pretraining stage
followed by a RL
training stage. During
training, we incorporate
on-manifold mixup reg-
ularization to improve
generalization to unseen prompts. Additionally,
our policy leverages the predicted scores py as
contextual information. In this section, we perform
ablation studies to assess the contributions of these
components. Figure 4 presents the results when
each component is removed. The results indicate
that the context information, pretraining stage, and
mixup regularization all contribute to learning a
more effective routing policy.

Evaluation Score

0 5 10 15 20 25 30 35 40
Cost

Figure 4: Ablation stud-
ies on the routing policy
components.

5 Conclusion

In this work, we present a novel preference-
conditioned dynamic routing framework for large

language models that addresses three key chal-
lenges in LLM deployment: balancing perfor-
mance and cost, adapting to user preferences, and
incorporating new models efficiently. We formu-
late LLM routing as a multi-objective optimization
problem and develop a preference-conditioned pol-
icy that dynamically adapts to user requirements at
inference time. Our approach introduces a model
identity vector framework that enables efficient in-
tegration of new LLMs without policy retraining,
reducing adaptation time from hours to minutes.
Through comprehensive experiments on five major
benchmarks, we demonstrate significant improve-
ments over existing methods, achieving up to 27%
cost reduction while maintaining comparable per-
formance.

Our results highlight the potential of intelligent
routing systems in making LLM deployments more
efficient and adaptable. However, several promis-
ing directions remain for future research. While
our current approach operates in an offline setting
with pre-computed evaluation scores, extending
to online learning could improve policy robust-
ness through real-time feedback. This would en-
able continuous adaptation to changing user needs
and model performance patterns. Our framework
currently assumes fixed costs per model, but real-
world costs vary with input length and compu-
tation requirements. Developing adaptive cost
models that account for query-specific characteris-
tics could enable more precise optimization of the
performance-cost trade-off.

Future work could also expand the routing ca-
pability to leverage external tools and API calls
that many modern LLMs support. This could in-
clude incorporating tool use, online search results,
and other augmentations into the routing decision
process. Additionally, while our preference-based
approach offers flexibility, expressing trade-offs
through numerical parameters may not be intuitive
for all users. Developing more natural interfaces
for preference specification and automated prefer-
ence learning from user feedback could improve
usability.

As the LLM ecosystem continues to evolve with
new models and capabilities, efficient routing sys-
tems will become increasingly critical for practical
applications. Our framework provides a founda-
tion for building more sophisticated, adaptive, and
user-friendly LLM routing systems that can meet
the diverse needs of real-world deployments.

Limitations

Our work on efficient LLM routing has several
potential societal implications. On the positive
side, by enabling more cost-efficient use of LLMs,
our approach could help democratize access to ad-
vanced Al capabilities, allowing organizations with
limited resources to leverage these technologies
more effectively. The ability to balance perfor-
mance and cost dynamically could make Al appli-
cations more sustainable and economically viable
for a broader range of users.

However, this work also raises important con-
siderations. By making LLM deployments more
efficient, we could accelerate the adoption of these
technologies, potentially exacerbating existing con-
cerns about AI’s impact on privacy, misinformation,
and labor markets. Additionally, while our rout-
ing system aims to optimize resource allocation, it
could inadvertently reinforce biases present in the
underlying models if not carefully monitored.

To address these concerns, we emphasize that
our framework is designed to be transparent in its
decision-making process and configurable to align
with organizational policies and ethical guidelines.
We encourage users of this technology to carefully
consider their specific use cases and implement ap-
propriate safeguards, particularly when deploying
in sensitive domains.

References

Axel Abels, Diederik Roijers, Tom Lenaerts, Ann Nowé,
and Denis Steckelmacher. 2019. Dynamic weights
in multi-objective deep reinforcement learning. In
International conference on machine learning, pages
11-20. PMLR.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, and 1 others. 2023. Gpt-4 techni-
cal report. arXiv preprint arXiv:2303.08774.

Rishabh Agarwal, Marlos C Machado, Pablo Samuel
Castro, and Marc G Bellemare. 2021. Contrastive
behavioral similarity embeddings for generaliza-
tion in reinforcement learning. arXiv preprint
arXiv:2101.05265.

Toygun Basaklar, Suat Gumussoy, and Umit Y Ogras.
2022. Pd-morl: Preference-driven multi-objective
reinforcement learning algorithm. arXiv preprint
arXiv:2208.07914.

Edward Beeching, Clémentine Fourrier, Nathan Habib,
Sheon Han, Nathan Lambert, Nazneen Rajani, Omar
Sanseviero, Lewis Tunstall, and Thomas Wolf. 2023.

Open llm leaderboard. https://huggingface.co/
spaces/open-11lm-leaderboard-old/open_11m_
leaderboard.

Carolin Benjamins, Theresa Eimer, Frederik Schubert,
Aditya Mohan, Sebastian Dohler, André Biedenkapp,
Bodo Rosenhahn, Frank Hutter, and Marius Lin-
dauer. 2022. Contextualize me—the case for con-

text in reinforcement learning. arXiv preprint
arXiv:2202.04500.

Djallel Bouneffouf and Irina Rish. 2019. A survey on
practical applications of multi-armed and contextual
bandits. arXiv preprint arXiv:1904.10040.

Anthony Brohan, Noah Brown, Justice Carbajal, Yev-
gen Chebotar, Joseph Dabis, Chelsea Finn, Keerthana
Gopalakrishnan, Karol Hausman, Alex Herzog, Jas-
mine Hsu, and 1 others. 2022. Rt-1: Robotics trans-
former for real-world control at scale. arXiv preprint
arXiv:2212.06817.

Vinod Kumar Chauhan, Jiandong Zhou, Ping Lu, So-
heila Molaei, and David A Clifton. 2023. A brief
review of hypernetworks in deep learning. arXiv
preprint arXiv:2306.06955.

Lingjiao Chen, Matei Zaharia, and James Zou. 2023.
Frugalgpt: How to use large language models while
reducing cost and improving performance. arXiv
preprint arXiv:2305.05176.

Karl Cobbe, Oleg Klimov, Chris Hesse, Tachoon Kim,
and John Schulman. 2019. Quantifying general-
ization in reinforcement learning. In International
conference on machine learning, pages 1282—1289.
PMLR.

Dujian Ding, Ankur Mallick, Chi Wang, Robert Sim,
Subhabrata Mukherjee, Victor Ruhle, Laks VS Laksh-
manan, and Ahmed Hassan Awadallah. 2024. Hybrid
Ilm: Cost-efficient and quality-aware query routing.
arXiv preprint arXiv:2404.14618.

Juncheng Dong, Hao-Lun Hsu, Qitong Gao, Vahid
Tarokh, and Miroslav Pajic. 2023. Robust reinforce-
ment learning through efficient adversarial herding.
arXiv preprint arXiv:2306.07408.

Arpad E Elo. 1967. The proposed uscf rating system,
its development, theory, and applications. Chess life,
22(8):242-247.

Jesse Farebrother, Marlos C Machado, and Michael
Bowling. 2018. Generalization and regularization in
dqn. arXiv preprint arXiv:1810.00123.

Clémentine Fourrier, Nathan Habib, Alina Lozovskaya,
Konrad Szafer, and Thomas Wolf. 2024. Open
Ilm leaderboard v2. https://huggingface.
co/spaces/open-11m-1leaderboard/open_11lm_
leaderboard.

Ronald K Hambleton and Hariharan Swaminathan.
2013. Item response theory: Principles and applica-
tions. Springer Science & Business Media.

https://huggingface.co/spaces/open-llm-leaderboard-old/open_llm_leaderboard
https://huggingface.co/spaces/open-llm-leaderboard-old/open_llm_leaderboard
https://huggingface.co/spaces/open-llm-leaderboard-old/open_llm_leaderboard
https://huggingface.co/spaces/open-llm-leaderboard-old/open_llm_leaderboard
https://huggingface.co/spaces/open-llm-leaderboard-old/open_llm_leaderboard
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard

Surya Narayanan Hari and Matt Thomson. 2023.
Tryage: Real-time, intelligent routing of user
prompts to large language model. arXiv preprint
arXiv:2308.11601.

Tyler Ingebrand, Amy Zhang, and Ufuk Topcu. 2024.
Zero-shot reinforcement learning via function en-
coders. arXiv preprint arXiv:2401.17173.

Ayush Jain, Andrew Szot, and Joseph J Lim. 2020. Gen-
eralization to new actions in reinforcement learning.
arXiv preprint arXiv:2011.01928.

Albert Q Jiang, Alexandre Sablayrolles, Antoine
Roux, Arthur Mensch, Blanche Savary, Chris Bam-
ford, Devendra Singh Chaplot, Diego de las Casas,
Emma Bou Hanna, Florian Bressand, and 1 oth-
ers. 2024. Mixtral of experts. arXiv preprint
arXiv:2401.04088.

Dongfu Jiang, Xiang Ren, and Bill Yuchen Lin. 2023.
Llm-blender: Ensembling large language models
with pairwise ranking and generative fusion. arXiv
preprint arXiv:2306.02561.

Michael N Katehakis and Arthur F Veinott Jr. 1987.
The multi-armed bandit problem: decomposition and
computation. Mathematics of Operations Research,
12(2):262-268.

George Konidaris and Finale Doshi-Velez. 2014. Hid-
den parameter markov decision processes: an emerg-
ing paradigm for modeling families of related tasks.
In 2014 AAAI Fall Symposium Series.

Ezgi Korkmaz. 2022. Deep reinforcement learning poli-
cies learn shared adversarial features across mdps.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 36, pages 7229-7238.

Ezgi Korkmaz. 2024. A survey analyzing generaliza-
tion in deep reinforcement learning. arXiv preprint
arXiv:2401.02349.

Misha Laskin, Kimin Lee, Adam Stooke, Lerrel Pinto,
Pieter Abbeel, and Aravind Srinivas. 2020. Rein-
forcement learning with augmented data. Advances
in neural information processing systems, 33:19884—
19895.

Juho Lee, Yoonho Lee, Jungtaeck Kim, Adam Ko-
siorek, Seungjin Choi, and Yee Whye Teh. 2019a.
Set transformer: A framework for attention-based
permutation-invariant neural networks. In Interna-
tional conference on machine learning, pages 3744—
3753. PMLR.

Kimin Lee, Kibok Lee, Jinwoo Shin, and Honglak Lee.
2019b. Network randomization: A simple technique
for generalization in deep reinforcement learning.
arXiv preprint arXiv:1910.05396.

Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori,
Ishaan Gulrajani, Carlos Guestrin, Percy Liang, and
Tatsunori B Hashimoto. 2023. Alpacaeval: An auto-
matic evaluator of instruction-following models.

10

Percy Liang, Rishi Bommasani, Tony Lee, Dimitris
Tsipras, Dilara Soylu, Michihiro Yasunaga, Yian
Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Ku-
mar, and 1 others. 2022. Holistic evaluation of lan-
guage models. arXiv preprint arXiv:2211.09110.

Keming Lu, Hongyi Yuan, Runji Lin, Junyang Lin,
Zheng Yuan, Chang Zhou, and Jingren Zhou. 2023.
Routing to the expert: Efficient reward-guided en-
semble of large language models. arXiv preprint
arXiv:2311.08692.

Xiaoding Lu, Adian Liusie, Vyas Raina, Yuwen Zhang,
and William Beauchamp. 2024. Blending is all
you need: Cheaper, better alternative to trillion-
parameters llm. arXiv preprint arXiv:2401.02994.

Aman Madaan, Pranjal Aggarwal, Ankit Anand, Sriv-
idya Pranavi Potharaju, Swaroop Mishra, Pei Zhou,
Aditya Gupta, Dheeraj Rajagopal, Karthik Kappagan-
thu, Yiming Yang, and 1 others. 2023. Automix: Au-
tomatically mixing language models. arXiv preprint
arXiv:2310.12963.

Luckeciano C Melo. 2022. Transformers are meta-
reinforcement learners. In international conference
on machine learning, pages 15340-15359. PMLR.

Janosch Moos, Kay Hansel, Hany Abdulsamad, Svenja
Stark, Debora Clever, and Jan Peters. 2022. Robust
reinforcement learning: A review of foundations and
recent advances. Machine Learning and Knowledge
Extraction, 4(1):276-315.

Quang H Nguyen, Duy C Hoang, Juliette Decugis,
Saurav Manchanda, Nitesh V Chawla, and Khoa D
Doan. 2024. Metallm: A high-performant and
cost-efficient dynamic framework for wrapping llms.
arXiv preprint arXiv:2407.10834.

Isaac Ong, Amjad Almahairi, Vincent Wu, Wei-Lin
Chiang, Tianhao Wu, Joseph E Gonzalez, M Waleed
Kadous, and Ion Stoica. 2024. Routellm: Learning
to route 1llms with preference data. arXiv preprint
arXiv:2406.18665.

Simone Parisi, Matteo Pirotta, Nicola Smacchia, Luca
Bascetta, and Marcello Restelli. 2014. Policy gra-
dient approaches for multi-objective sequential de-
cision making. In 2014 International Joint Confer-
ence on Neural Networks (IJCNN), pages 2323-2330.
IEEE.

John Platt and 1 others. 1999. Probabilistic outputs for
support vector machines and comparisons to regular-

ized likelihood methods. Advances in large margin
classifiers, 10(3):61-74.

Guillem Ramirez, Alexandra Birch, and Ivan Titov.
2024. Optimising calls to large language models with
uncertainty-based two-tier selection. arXiv preprint
arXiv:2405.02134.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Romain Sauvestre, Tal Remez, and 1

others. 2023. Code llama: Open foundation models
for code. arXiv preprint arXiv:2308.12950.

Marija §akota, Maxime Peyrard, and Robert West. 2024.
Fly-swat or cannon? cost-effective language model
choice via meta-modeling. In Proceedings of the
17th ACM International Conference on Web Search
and Data Mining, pages 606-615.

John Schulman, Philipp Moritz, Sergey Levine, Michael
Jordan, and Pieter Abbeel. 2015. High-dimensional
continuous control using generalized advantage esti-
mation. arXiv preprint arXiv:1506.02438.

John Schulman, Filip Wolski, Prafulla Dhariwal,
Alec Radford, and Oleg Klimov. 2017. Proxi-
mal policy optimization algorithms. arXiv preprint
arXiv:1707.06347.

Shubhkirti Sharma and Vijay Kumar. 2022. A com-
prehensive review on multi-objective optimization
techniques: Past, present and future. Archives of
Computational Methods in Engineering, 29(7):5605—
5633.

Tal Shnitzer, Anthony Ou, Mirian Silva, Kate Soule,
Yuekai Sun, Justin Solomon, Neil Thompson, and
Mikhail Yurochkin. 2023. Large language model
routing with benchmark datasets. arXiv preprint
arXiv:2309.15789.

Tianye Shu, Ke Shang, Cheng Gong, Yang Nan, and
Hisao Ishibuchi. 2024. Learning pareto set for multi-
objective continuous robot control. arXiv preprint
arXiv:2406.18924.

Karan Singhal, Shekoofeh Azizi, Tao Tu, S Sara Mah-
davi, Jason Wei, Hyung Won Chung, Nathan Scales,
Ajay Tanwani, Heather Cole-Lewis, Stephen Pfohl,
and 1 others. 2023. Large language models encode
clinical knowledge. Nature, 620(7972):172-180.

Remi Tachet, Philip Bachman, and Harm van Seijen.
2018. Learning invariances for policy generalization.
arXiv preprint arXiv:1809.02591.

Ahmed Touati and Yann Ollivier. 2021. Learning one
representation to optimize all rewards. Advances in
Neural Information Processing Systems, 34:13-23.

Kristof Van Moffaert and Ann Nowé. 2014. Multi-
objective reinforcement learning using sets of pareto
dominating policies. The Journal of Machine Learn-
ing Research, 15(1):3483-3512.

Hongyi Wang, Felipe Maia Polo, Yuekai Sun, Souvik
Kundu, Eric Xing, and Mikhail Yurochkin. 2023.
Fusing models with complementary expertise. arXiv
preprint arXiv:2310.01542.

Kaixin Wang, Bingyi Kang, Jie Shao, and Jiashi Feng.
2020. Improving generalization in reinforcement
learning with mixture regularization. Advances in
Neural Information Processing Systems, 33:7968—
7978.

11

Jie Xu, Yunsheng Tian, Pingchuan Ma, Daniela
Rus, Shinjiro Sueda, and Wojciech Matusik.
2020. Prediction-guided multi-objective reinforce-
ment learning for continuous robot control. In In-
ternational conference on machine learning, pages
10607-10616. PMLR.

Runzhe Yang, Xingyuan Sun, and Karthik Narasimhan.
2019. A generalized algorithm for multi-objective
reinforcement learning and policy adaptation. Ad-
vances in neural information processing systems, 32.

Denis Yarats, Ilya Kostrikov, and Rob Fergus. 2021. Im-
age augmentation is all you need: Regularizing deep
reinforcement learning from pixels. In International
conference on learning representations.

Amy Zhang, Rowan McAllister, Roberto Calandra,
Yarin Gal, and Sergey Levine. 2020. Learning invari-
ant representations for reinforcement learning with-
out reconstruction. arXiv preprint arXiv:2006.10742.

Hanping Zhang and Yuhong Guo. 2021. Generaliza-
tion of reinforcement learning with policy-aware
adversarial data augmentation. arXiv preprint
arXiv:2106.15587.

Hongyi Zhang. 2017. mixup: Beyond empirical risk
minimization. arXiv preprint arXiv:1710.09412.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric. P Xing, Hao Zhang,
Joseph E. Gonzalez, and Ion Stoica. 2023. Judg-
ing llm-as-a-judge with mt-bench and chatbot arena.
Preprint, arXiv:2306.05685.

Banghua Zhu, Evan Frick, Tianhao Wu, Hanlin Zhu,
and Jiantao Jiao. 2023. Starling-7b: Improving llm
helpfulness & harmlessness with rlaif.

https://arxiv.org/abs/2306.05685
https://arxiv.org/abs/2306.05685
https://arxiv.org/abs/2306.05685

A Theoretical Analysis

A.1 Continuity and Existence of Optimal
Policies

Consider a policy my parameterized by 6 € ©,
where O is a compact subset of R?. Let s(z, k) €
{0,1} be a binary reward function and p(x) be the
query distribution.

Theorem A.1. If the policy mg(k|x) is continu-
ous in 0 for all x and k, then the expected reward
J(0) = Epp(a) kmmy(2)[8(x, k)] is continuous in

0.

Proof. For any 0,6 € ©:
7(0) — J (0]

|3 st k) mo(hla) = o (ko) o)
Xk

< /X > lte i (klx) = mor (ki) p(e)da

</ 5 Ira(kle) = (k))

Since 7y (k|z) is continuous in 6, for any € > 0,
there exists § > 0 such that ||0 — ¢'|| < ¢ im-
plies |mg(k|z) — 7o (k|z)| < €/K for all k and z.
Therefore, |J(0) — J(0')| < e when [|§ — 0'|| < 0,
proving continuity. 0

Corollary A.2. For any preference vector w, there
exists an optimal policy T, that maximizes the ex-
pected scalarized reward.

This follows from the extreme value theorem,
as we are maximizing a continuous function over
a compact set. For the relationship between the
preference vectors and the Pareto front, we refer
readers to Yang et al. (2019) who provide a detailed
analysis in the context of multi-objective reinforce-
ment learning.

B Method

B.1 Model Identity Vector

We learn the model identity vector Ij, following a
variational variant of the IRT model. Given eval-
uation scores Yy = {yxn})_; for model M}, on
a set of prompts X = {z,}_,, we maximize
the following variational lower bound of the log-

12

likelihood:

log p(Ykn | Tn)

= log/P(ykn,Ik | 2n)dI
> Eqq1,) 102 (Ykn | 2n, I)] — Drr(q(Te)|[p(Tx)).

Here, the model embedding I, is treated as a la-
tent variable, with the posterior and prior distribu-
tions over Iy denoted by ¢(Ij) and p(Ij), respec-
tively. In practice, both distributions are modeled as
Gaussians, with the posterior ¢(I) = N (ug, Xk)
and the prior p(Iy) = AN(0,I). The posterior
mean u and variance X, are represented as em-
bedding vectors of dimension d, with the variance
assumed to be diagonal. The predictive distribution
P(Ykn | Tn, i) is implemented as a neural network
that concatenates of prompt and model embeddings
as input and outputs the score prediction logits.
During training, the loss is computed over the entire
evaluation benchmarks, involving multiple prompts
and models, i.e., —=E ; log p(ykn, | zn).

B.1.1 Training with Real-valued Evaluation
Scores

Certain evaluation datasets produce real-valued
evaluation scores, such as F1 and RougeL. In or-
der to unify the training procedure, we propose to
binarize the real-valued scores. Specifically, given
a set of real-valued scores Y = {y,})_;, where
yn € [0, 1], we find an optimal threshold n* so that
the average performance across instances are close

to the original scores, that is

1 TR
“—argmin [<> Ly >n) - — >
n argnrnln (N Z (yn 77) N Z yn) s

where I(y,, > 1) is the indicator function, which
equals to 1 only when the condition y, > 7 is
true. Therefore, the binarized evaluation scores are
derived as Y = {I(y, > n*)}2_,.

B.2 Preference Conditioned Routing Policy

In the main text, we derived the routing policy as

Wa(k, | @, {(Ik,ck,ﬁk)}i{:pw)
X ICZ;h(‘,E7 {(Ik;a Ck‘aﬁk’)}?:l?w)a

where h(-) is a neural network that is permutation
invariant to the set {(Ix, cx, Pr) He_ ;. We achieve
the permutation invariance by using a permutation
invariant embeddings of the set, implemented via
the SetTransformer architecture(Lee et al., 2019a).

The prompt x is encoded using pretrained prompt
embeddings. The preference vector w is projected
through a linear layer for integration into the rout-
ing policy. The neural network then concatenates
the embeddings and passes them through several
linear layers, resulting in a vector representation
in R%. The inner product between h(-) and each
model embedding ;s determines which model to
select based on the policy. Specifically, the rout-
ing probability for selecting model M} follows the
softmax distribution:

7T9(k/ | Z, {(Ik7 Ckvf)k)}f;(:lu w)
_exp (Lo h(e, {(Tes o Pr) Hoy @)
by exp (I (@, { (T, e, i) HE,, w))

We train the routing policy following the multi-
objective PPO algorithm, where the gradient for
updating the policy parameters 6 is given by

VolwIr,] = Epp [wl Az, k') Vologme(K |)],

where A (x, k') indicates the advantage function es-
timated via GAE (Schulman et al., 2015). The PPO
algorithm also requires a value estimation to reduce
the gradient variance. Following multi-objective
RL literature (Xu et al., 2020; Shu et al., 2024), we
define a value network V., (z, {(Tx, cx, Pr) })
that outputs a vector of expected returns under the
current policy my. The value estimation is not
conditioned on the preference, therefore, it can
be shared across different user preferences. We
train the values network by optimizing a MSE loss
[Vz, — Viarg |2, where Viarg indicates the target
values estimated via GAE.

B.3 Generalization of the Routing Policy

In this section, we discuss the training procedure
of the dynamic routing policy, which is designed to
enhance the generalizability of the policy to various
scenarios.

B.3.1 Supervised Pretraining

The supervised pretraining stage leverages diverse
prompts from pairwise comparison datasets to en-
hance generalization to unseen prompts. Given a
pairwise comparison dataset }, where each exam-
ple consists of a prompt z,,, a pair of models M
and My, and a winning label z,, € {0, 1}, we first
train a logistic regression model to calibrate the pre-
dicted evaluation scores, p = sigmoid(f(z, Ix)),
using the winning label z,,. Specifically, the log-
ical regression model predicts the wining proba-
bility as p(z, = 1) = sigmoid(a(f(zn, k1) —

13

f(xn, Ix2)) +), where a and j3 are learnable pa-
rameters. After training, the calibrated evaluation
scores are given by p = sigmoid(a.f (z, 1) + 5).
The calibration follows the well-known Platt scal-
ing (Platt et al., 1999) algorithm, which refines
the evaluation scores using human-labeled winning
labels to produce more accurate predictions.

With the calibrated evaluation scores p on
a prompt x and a user preference vector w,
the routing action is determined by a

T
Arg MaXpe (k1 k2} W [

Pk, —Ck). We then pretrain
the routing policy in a supervised manner using the
following negative log-likelihood loss:

Ep'ret'rain
= —logm(a | x, {(Tk, ck, Pr) brefr1 ko), @)-
(B.1)
It is important to note that the policy utilizes the
original predicted scores p as input, rather than the
calibrated scores, to maintain consistency with the
subsequent RL training stage.

B.3.2 On-Manifold Mixup Regularization

The mixup regularization technique was initially
introduced for supervised learning tasks (Zhang,
2017), where new input-output pairs are generated
by taking convex combinations of pairs of train-
ing samples. Wang et al. (2020) extended this ap-
proach to RL, where observations and their asso-
ciated supervision signals from two transitions are
combined convexly. In our case, the observation
corresponds to the prompt embeddings. However,
naively combining two prompt embeddings may
produce vectors that lie outside the prompt mani-
fold. To address this, we use the nearest neighbor
from the replay buffer for each prompt z. Given
the embedding e for prompt = and the embedding
e, for its nearest neighbor, the interpolated prompt
embedding is obtained as:

é=Xe+ (1= Ney,, (B.2)

where A ~ Beta(&, €), and & is a hyperparameter,
set to 0.2 as recommended in the original mixup
paper. To train the routing policy on the interpo-
lated prompt embeddings using PPO, we similarly
interpolate the associated supervision signals:

Told = AToig + (1 — A)ng

A=)A+(1-NA,

Viarg = AWViarg + (1= MVi2)

(B.3)

The interpolated routing action a is chosen as a if
A > 0.5, otherwise a,,. Similarly, routing-relevant

parameters, including I, and w are chosen based
on A as well.

B.3.3 Reward Normalization

Our routing policy is designed to generalize across
different sets of LLM candidates. However, the
varying score and cost scales across these sets
can pose challenges. For instance, routing deci-
sions involving proprietary API models often in-
volve higher costs compared to open-source mod-
els, where the cost is significantly lower. These
discrepancies in scale can complicate the training
of the routing policy, as the preference vector must
be adjusted to suit each scenario. Moreover, the
same preference vector might favor higher costs
for one set of models while preferring lower costs
for another, introducing inconsistency and instabil-
ity during training. To address this, we propose
normalizing both the scores and costs across all
LLM sets. Given a set of LLMs {M;}X | with
scores {sy < | and costs {cx}X |, we normalize
the scores and costs by

5k = s/ max({sg }r=),

¢k = ci/ max({ck}le).

(B.4)
This normalization ensures that both scores and
costs are scaled such that their maximum value is
1.0. By standardizing the range of values, the pol-
icy can learn a consistent mapping from user pref-
erences to routing decisions across various LLM
sets. This approach prevents the policy from dispro-
portionately favoring either high-cost or low-cost
models based purely on their relative scales, pro-
moting more balanced decisions that accurately
reflect trade-offs between performance and cost.

In theory, the preference vector w can take any
value in the range of [0, o0). However, for simplic-
ity, we define it as w = [1, w], fixing the preference
weight for scores at 1 and only varying the weight
for cost. When w = 0, the model selection priori-
tizes high scores regardless of cost, while w = oo
indicates a preference for the lowest-cost model. In
practice, we found that sampling w from the range
[0, 2] effectively captures the Pareto front.

B.3.4 Stratified Sampling

Generalizing the routing policy to a new model
M requires to obtain its identity vector I, which
captures the model’s unique strengths and weak-
nesses. However, evaluating the model on all avail-
able prompts is often prohibitively expensive, espe-
cially when new models are frequently introduced.

14

In order to reduce the evaluation cost, we propose
selecting a subset of informative prompts that effec-
tively assess the model’s capabilities. Specifically,
given a set of prompts X = {x,,})_; and the bi-
narized evaluation scores Y}, = {#,, }/_; for each
available LLM M}, we assess the difficulty of each
prompt based on the average prediction accuracy
across all models M, i.e.,

¢n = Ek [_gkn Ingkn - (1 - gkn) log(l - pkn)] .

We then apply stratified sampling using the dif-
ficulty ¢, as the strata. The stratified sampling
ensures the selected prompts covers a range of dif-
ficulties, from easy to hard, providing a more bal-
anced and informative assessment of the model’s
strengths and weaknesses. Once the subsets X is
selected, the model identity vector is computed as:

T =argming [EsLive + Dic. (a(D)p(D)]
where
Lirt = —ylogp — (1 —7)log(1 — p),
p = sigmoid(f(é f))

and € is the prompt embedding for prompts Z € X.

The stratified sampling approach described
above can also be extended to sample prompts from
pairwise comparison datasets. Given a pairwise
comparison dataset V, where each example con-
sists of a prompt x,,, a pair of models My; and
My, and a winning label z,, € {0, 1}. We first as-
sess each model’s capability using Elo score (Elo,
1967). The Elo scores are then used as strata to
sample a set of models as the comparison baselines.
For each baseline M}, we uniformly select a set
of prompts X}, on which to run inference with the
new model M and compare its performance to the
baseline M. After obtaining the baseline models
and pairwise comparison labels, the model identity
vector is computed as:

I = argmin; Lpeir + LK1 (B.5)

In our experiments, we opted to sample prompts
from existing evaluation benchmarks for simplicity.
We leave the exploration of sampling from pairwise

comparison datasets as future work.

C Training Algorithm

Algorithm 1 Training Procedure of Preference Conditioned Dynamic Routing

Require: Model identify vectors I, Pretraining steps 7’1, Training steps 712

Require: Comparison dataset V for pretraining, Evaluation leaderboard D for training
Require: Evaluation score predictor f(x, I), Calibration parameters « and [
Require: Routing policy 7y, Preference range [wiin, Wmaz|, RL training procedure P

1. ## Pretraining Stage

2: for stepin [1,...,7'1] do

3: sample a batch of pretraining data (x, (k1, k2), (c1,¢2)) ~ V

4: sample a batch of preference w = [1,w] and w ~ U (wmin, Wmaz) {uniform for cost}

5: compute score predictions py, = sigmoid(f(z, 1)) {auxiliary info to the policy}

6: calibrate the score predictions py, = sigmoid(a.f(z, 1) +) {only used to predict action}
7. normalize scores py, = Pr/ max({Pk } e(k1,k2)) and costs ¢ = ¢/ max({ck }pefr1,k2})
8: obtain routing action & = arg maxyc 1 y2) w! [P, —¢;] {maximize scalarized reward}

9: pretrain the policy by optimizing —log 7(a | , {(Ix, €k, k) f ke {k1,k2}> @)
10: end for

Training Stage

. Initialize a replay buffer B {with on-manifold mixup regularization}

13: for stepin [1,...,72] do

14: sample a batch of training data (z, {(Mk, cx, s) }5_,) ~ D {K is different across batches}

15: sample a batch of preference w = [1,w] and w ~ U(wWyin, Wmaz) {uniform for cost}

16: normalize scores 5 = s/ max({sg}1_,) and costs ¢ = ¢/ max({cg}~_,)

17: compute score predictions pj, = sigmoid(f(x,I;)) {auxiliary info to the policy}

18: run the current policy a ~ 7(z, {(Ix, Gk, Pr) < |, w) and obtain reward [3,, —Cq]

19: update replay buffer B < (z, a, {(My, e, 5x) H |, w)

20: RL training on data sampled from the replay buffer P(7y, B) {with mixup interpolation}

21: end for

D Additional Related Works selection of LLM. These methods either predict

LLM Ensemble, Cascade and Routing As the
number of LLMs grows, there is increasing interest
in combining them to optimize performance and
balance costs. LLM ensemble methods improve
response quality by aggregating outputs from multi-
ple LLMs but incur high computational costs since
they require running inference on multiple models
(Jiang et al., 2023; Wang et al., 2023; Lu et al.,
2024). LLM cascading reduces costs by invoking
LLMs sequentially, starting with the least expen-
sive model and progressing to more costly ones
until a satisfactory response (Chen et al., 2023;
Madaan et al., 2023; Ramirez et al., 2024). While
effective in reducing costs, cascading still requires
multiple inferences, especially for complex queries,
and often depends on an additional model to assess
the response quality.

In contrast, LLM routing sends queries directly
to the most appropriate model, requiring only a
single inference and thus offering a more cost-
efficient solution. Typical routing methods rely
on performance prediction models to guide the

15

downstream evaluation or reward scores for a given
query (Shnitzer et al., 2023; Lu et al., 2023; Hari
and Thomson, 2023; Sakota et al., 2024), or esti-
mate win rates between pairs of models (Ding et al.,
2024; Ong et al., 2024). The chosen LLM is then
selected based on predicted performance and any
additional constraints, such as cost or latency.

The most relevant work to ours is MetaLLM
(Nguyen et al., 2024), which also frames the rout-
ing task as a multi-armed bandit problem. However,
MetalLLM optimizes a scalarized reward and oper-
ates on a fixed set of LLMs, limiting the learned
policy to specific user preferences and a predefined
set of models. Our approach, by contrast, gener-
alizes to varied user preferences and dynamically
adapts to new LLMs added to the system, ensuring
broader applicability and greater flexibility.

Multi-objective Reinforcement Learning
Multi-objective RL seeks to optimize multi-
ple, often conflicting reward signals within a
Markov decision process, resulting in a set of
Pareto-optimal policies known as the Pareto set
rather than a single optimal policy. Traditional

algorithms typically aim to approximate this
Pareto set by searching for a finite number of
policies (Van Moffaert and Nowé, 2014; Parisi
et al., 2014; Xu et al., 2020). However, these
methods face the curse of dimensionality, where
the number of policies needed to accurately
approximate the Pareto set grows exponentially
with the number of objectives. To address this,
recent approaches have proposed using a single
deep neural network conditioned on preferences to
represent the entire Pareto set (Yang et al., 2019;
Abels et al., 2019; Basaklar et al., 2022). Another
approach involves using hypernetworks (Chauhan
et al., 2023), which map user preferences to the
parameters of the policy network (Shu et al., 2024).
Our routing policy aligns with the conditional
neural network framework, where a single model
is conditioned on user preferences to adapt to
different user requirements. We further tailor this
conditional architecture specifically for routing
LLMs, allowing for efficient decision-making
across a diverse and expanding set of models.
Generalization in Reinforcement Learning
Generalizing RL policies to new tasks, often re-
ferred to as zero-shot RL, is a growing area of
research focused on enabling policies to handle
unseen tasks without retraining (Korkmaz, 2024).
Approaches typically fall into three categories: The
first category focuses on maximizing worst-case
performance across tasks, often using adversarial
training (Moos et al., 2022; Dong et al., 2023).
This approach is commonly used when no data is
available to identify the current task. The second
category aims to compute task representations from
data, allowing agents to adapt their policies to the
specific task at hand. This approach is commonly
employed in multi-task RL and hidden-parameter
MDPs (Konidaris and Doshi-Velez, 2014), where
task representations are inferred from exploration
data within the task environment (Touati and OI-
livier, 2021; Agarwal et al., 2021; Benjamins et al.,
2022; Ingebrand et al., 2024). The third category
leverages in-context learning by feeding data from
the current task directly into a pretrained trans-
former as context (Melo, 2022; Brohan et al., 2022).
Although transformers have demonstrated effective-
ness, their high memory consumption, training in-
stability, and data inefficiency present challenges to
their broader application. Our routing policy falls
into the second category, where the task represen-
tation is explicitly provided as a set of LLMs and
their associated costs. In a similar vein, Jain et al.

16

(2020) explore RL generalization to new action
spaces using a VAE to learn action representations,
whereas we capture LLM capabilities via identity
vectors.

In addition to task generalization, research has
also explored generalizing RL policies to new ob-
servation distributions. Techniques include data
augmentation (Cobbe et al., 2019; Yarats et al.,
2021; Laskin et al., 2020), specialized architectures
(Lee et al., 2019b), regularization methods (Fare-
brother et al., 2018; Wang et al., 2020), invariant
representation learning (Tachet et al., 2018; Zhang
et al., 2020; Agarwal et al., 2021), and adversarial
observation perturbations (Zhang and Guo, 2021;
Korkmaz, 2022). Our approach explores a simple
regularization technique that encourage smooth-
ness across prompt distributions.

E Experiment

E.1 Model Cost

In Table E.1, we list the costs for each model. For
proprietary APIs, the costs are based on their offi-
cial API pricing, while for open-source models, we
reference pricing from TogetherAl'. All costs are
normalized by estimating the expense of process-
ing 1 million input tokens and generating 1 million
output tokens.

E.2 Dataset Statistics

Our framework consists of three training stages:
First, we train the IRT model to obtain model iden-
tity vectors I and the evaluation score prediction
model f. Second, we perform supervised pretrain-
ing of the routing policy on diverse prompts. Third,
we train the routing policy using a reinforcement
learning procedure. Below, we summarize the
datasets used in each training stage.

The datasets used in this work fall into two cate-
gories: First, pairwise comparison datasets, where
annotations indicate which of two models provides
a higher-quality response. Second, LLM evalua-
tion datasets, which provide evaluation scores for
various models on a set of prompts. Table E.2
summarizes the statistics of these two types of
datasets. We apply basic preprocessing, such as
removing multi-turn prompts and excluding ties
from pairwise comparisons. For LLM evaluation
benchmarks, we select a subset of popular LL.Ms.
Please see Table E.3 for the full list of LLMs in-
volved in this work.

"https://www. together.ai/pricing

https://www.together.ai/pricing

Table E.1: The estimated cost of invoking the models for
processing 1M input tokens and generating 1M output
tokens.

Model ‘ Cost ($)
gpt-3.5-turbo-0125 2
gpt-3.5-turbo-0301 3.5
gpt-3.5-turbo-0613 3.5
gpt-3.5-turbo-1106 3
gpt-4-0125-preview 40
gpt-40-2024-05-13 20

gpt-40-mini-2024-07-18 0.75

gpt-4 90

gpt-4-1106-preview 40
gpt-4-turbo-2024-04-09 40
gpt-4-turbo 40
claude-3-opus 90
claude-3.5-sonnet 18
claude-3-sonnet 18
claude-3-haiku 1.5
claude-2.1 32
claude-2 32
claude-instant 32
claude-1 32
gemini-pro-1.5 14
gemini-flash-1.5 0.375
llama3.1-405b 9
llama3.1-70b 1.584
llama3.1-8b 0.324
llama3-70b 1.584
llama3-8b 0.324
mistral-large 12
mistral-medium 10.8
mistral-small 8
mixtral-8x22b 2.16
mixtral-8x7b 1.08
mixtral-7b 0.36
command-r-plus 18
command-r 2
command 3
command-light 0.9
gwen-1.5-110b 3.24
gqwen-1.5-72b 1.62
yi-large 6

17

The IRT model is trained using the pairwise com-
parison datasets and the training splits of the evalu-
ation datasets. The pretraining stage also uses these
pairwise comparison datasets. For the policy train-
ing stage, the routing policy is trained separately on
each LLM evaluation dataset. We do not train the
policy across different evaluation benchmarks, as
they employ different scoring mechanisms, leading
to variations in score scales.

E.3 Training the IRT Model

The IRT model for evaluation outcome prediction
consist of four component: the prompt represen-
tation e, the model identity vector I, the evalua-
tion score predictor f(e, I), and the pairwise win-
ner predictor g(e, I). The prompt representation
e is obtained using a pretrained text embedding
model, meaning it contains no learnable parame-
ters. The model identity vector is initialized as
random embeddings for each model listed in Ta-
ble E.3, with the embedding dimension set to 128.
The two neural networks, f and g, share a common
backbone, differing only in their final linear layer.
This shared architecture encourages the model iden-
tity vector to capture both types of evaluation out-
comes, enabling more accurate representation of
each model’s strengths and weaknesses.

The IRT model is trained using both the pairwise
comparison datasets and the training splits of the
evaluation datasets, with a combined loss function,
Lirt + Lpair- The model is trained for 10 epochs
with a batch size of 256. We use the Adam opti-
mizer with a learning rate of 0.001. The learning
rate is decayed by 0.95 after each epoch. We did
not conduct extensive hyperparameter tuning, and
no signs of overfitting were observed during prelim-
inary experiments. Additionally, training beyond
10 epochs did not lead to further improvements in
validation performance and downstream routing
performance.

E.4 Supervised Pretraining of the Routing
Policy

The supervised pretraining stage for the routing pol-
icy optimizes the following negative log-likelihood
—logm(a | x,{(Lk,Ck,Pk) b reiri k2y, w) using
the pairwise comparison dataset V. Given
two models My, and My, compared on the
prompt z, we first sample a preference vector
w [1,w], where w is uniformly sampled
from the predefined distribution U (wimin, Wmaz)-
The routing decision is then estimated as a =

Table E.2: Two types of datasets used in the training process.

Category | Dataset | #Prompts # Models
berkeley-nest/Nectar® 182954 39
Imsys/lmsys-arena-human-preference-55k> 39716 64
Pairwise Model Comparison Imsys/chatbot_arena_conversations® 18320 20
Imsys/mt_bench_human_judgments® 894 6
routellm/gpt4_judge_battles® 84864 2
AlpacaEval 2.0’ 805 61
HELM-Lite® 13021 61
Single Model Evaluation HELM-MMLU® 14042 45
OpenLLM Leaderboard'’ 14617 41
OpenLLM Leaderboard v2"! 21606 39

Table E.3: The models used in this work for training and evaluating the routing policy.

ai21_j2-grande
alpaca-13b
claude-1
claude-instant-1.2
claude-3-haiku-20240307
cohere_command-light
codellama-34b-instruct
dolphin-2.2.1-mistral-7b
falcon-7b-instruct
gemini-1.5-pro
gemma-2-27b-it
recurrentgemma-9b-it
gpt2-large
gpt-3.5-turbo-0314
gpt-4
gpt-4-turbo-2024-04-09
guanaco-13b
koala-13b
llama-2-70b-chat
Ilama-3-8b-instruct
luminous-base
metamath-13b
mistral-7b-instruct-v0.3
mixtral-8x7b-instruct-v0. 1
nous-hermes-2-mixtral-8x7b-dpo
opt-350m
openchat-3.5
phi-2-dpo
phi-3-mini
pplx-7b-online
qwen1.5-0.5b-chat
qwenl.5-14b-chat
qwenl.5-moe-a2.7b-chat
qwen2-72b-instruct
rwkv-4-raven-14b
stripedhyena-nous-7b
tulu-2-dpo-7b
ultralm-65b
wizardlm-7b
yi-34b-chat
yil.5-34b-chat

ai21_j2-jumbo
chatglm-6b
claude-2.0
claude-3-5-sonnet-20240620
cohere_command-r
cohere_command-xlarge
codellama-70b-instruct
dialogpt-large
fastchat-t5-3b
gemini-1.5-flash
gemma-2b-it
google-text-unicorn
gpt2-medium
gpt-3.5-turbo-0613
gpt-4-0314
gpt-40-2024-05-13
guanaco-33b
llama-13b
llama-2-7b-chat
Ilama-3.1-405b-instruct-turbo
luminous-supreme
metamath-70b
mistral-large
mixtral-8x22b-instruct-v0.1
oasst-pythia-12b
opt-6.7b
openchat-3.5-0106
phi-2-sft
palm-2
palmyra-x-v3
qwenl.5-1.8b-chat
qwen1.5-32b-chat
qwen2-0.5b-instruct
rwkv-4-raven-1b5
solar-10.7b-instruct-v1.0
text_davinci_001
tulu-2-dpo-13b
vicuna-13b
wizardlm-13b
yi-large
zephyr-7b-alpha

ai21_jamba-instruct
chatglm?2-6b
claude-2.1
claude-3-opus-20240229
cohere_command
codellama-7b-instruct
deepseek-1lm-67b-chat
falcon-180b-chat
flat-t5-small
gemini-pro-dev-api
gemma-7b-it
google-text-bison
gpt2-xl
gpt-3.5-turbo-1106
gpt-4-0613
gpt-40-mini-2024-07-18
guanaco-65b
1lama-65b
1lama2-70b-steerlm-chat
Ilama-3.1-70b-instruct-turbo
luminous-extended
mistral-7b-instruct-v0.1
mistral-medium
mpt-30b-chat
opt-1.3b
opt-iml-max-1.3b
openhermes-2.5-mistral-7b
phi-3-medium
pythia-12b
palmyra-x-v2
qwenl.5-4b-chat
qwenl.5-7b-chat
qwen2-1.5b-instruct
rwkv-4-raven-3b
stablelm-tuned-alpha-7b
text_davinci_002
tulu-2-dpo-70b
vicuna-33b
wizardlm-70b
yil.5-6b-chat
zephyr-7b-beta

alpaca-7b
chatglm3-6b
claude-instant-1
claude-3-sonnet-20240229
cohere_command-r-plus
codellama-13b-instruct
dolly-v2-12b
falcon-40b-instruct
gemini-1.0-pro
gemma-2-9b-it
recurrentgemma-2b-it
gpt2
gpt-3.5-turbo-0125
gpt-4-0125-preview
gpt-4-1106-preview
gptdall-13b-snoozy
guanaco-7b
1lama-2-13b-chat
1lama-3-70b-instruct
llama-3.1-8b-instruct-turbo
mamba-gpt-7b-v2
mistral-7b-instruct-v0.2
mistral-small
mpt-7b-chat
opt-2.7b
opt-iml-max-30b
phi-2
phi-3-small
pplx-70b-online
qwen-14b-chat
qwen1.5-72b-chat
qwen1.5-110b-chat
gqwen2-7b-instruct
rwkv-4-raven-7b
starling-lm-7b-alpha
text_davinci_003
ultralm-13b
vicuna-7b
yi-6b-chat
yil.5-9b-chat

18

arg MaXpe k1 k2} w!'[pr, —Cx], where ¢ repre-
sents the normalized cost ¢, = ¢,/ max(ck1, Ck2),
and pj, represent the calibrated evaluation score
D sigmoid(af (z,Ix) + 5). The evaluation
scores are further normalized by dividing by the
maximum calibrated scores, ensuring consistency
with the scale used in the RL training stage. Note
that these calibrated and normalized scores are used
only for routing action estimation during pretrain-
ing, the policy takes in the original score prediction
pr. = sigmoid(f(x,I)) as auxiliary inputs, since
the normalized scores are not available during the
test phase.

The pretraining stage runs for 500 steps with
a batch size of 1024, using the Adam optimizer
with a learning rate of 0.001. The calibration pa-
rameters, « and 3, are learned by fitting a logistic
regression model. Again, we did not conduct ex-
tensive hyperparameter tuning, further tuning may
improve the performance.

E.5 RL Training of the Routing Policy

The RL training stage follows a modified PPO pro-
cedure tailored for the multi-objective optimiza-
tion task. Specifically, from the evaluation leader-
board D, we sample K models, {Mk}szl, as
routing candidates. The costs ¢, of these mod-
els are normalized by ¢, = c;/ max({c;}),
and the their evaluation scores s are normalized
by 51, = s/ max({sg}X). The user preference
w = [1,w] and w is sampled from the distribution
U (Wiin, Wmaz)- The training process starts with
generating the trajectories following the current
policy a ~ (x, {(Ix, ek,)}, w). The multi-
objective reward for action a is represented as a
vector [S,, —¢,|. We update the replay buffer with
these sampled trajectories and use samples from the
buffer to train the policy. For mixup regularization,
we identify the nearest neighbor for each sampled
prompt and perform a weighted linear combination
of the prompt embedding and its neighbors, where
the weights are drawn from Beta(0.2,0.2). Both
the reward and the advantage are linearly combined
using the same weights.

At each training step, we sample 256 new
prompts, along with their routing candidates and
preference vectors, to obtain the routing trajecto-
ries and update the replay buffer. The training stage
runs for 500 steps with a batch size of 256, using
Adam optimizer with learning rate of 0.001.

19

E.6 Evaluation Setup

We evaluate the routing performance on 5 LLM
evaluation benchmarks and various sets of routing
candidates. Table E.4 presents the detailed evalua-
tion settings.

E.7 Baselines

In this section, we describe the implementation
details of the baseline methods.

E.7.1 RouteLLM

RouteLLM (Ong et al., 2024) develops a model
that predicts the winning label between a pair of
LLMs and selects the model based on a threshold
applied to the predicted probability. To account for
varying user preferences, we evaluate Route LLM
using a range of different thresholds.

E.7.2 Predictor

The predicted evaluation scores pi
sigmoid(f(x,Ix)) can be used directly to
compute the scalarized reward for an LLM M}, as
rw(z, k) = W’ [pr, —cx]. The routing decision is
then made by selecting @ = arg maxy, r, (z, k).

E.7.3 Random

The random routing policy selects models based
on predefined probabilities for each model. Dif-
ferent user preferences are reflected by adjusting
these probabilities. However, when there are more
than two LLLM candidates, specifying the probabil-
ities becomes non-trivial, so we omit the random
baseline in these scenarios.

E.7.4 Oracle

The oracle routing policy selects the model based
on the actual evaluation scores, making the rout-
ing decision as a arg maxy, 1, (z, k)
arg max; w’ [s(z, k), —cy], where s(z, k) repre-
sents the true performance score for model M
on prompt x.

E.7.5 PPO

For each LLM candidate set and each user pref-
erence, we train a separate PPO routing policy
to maximize the scalarized reward r(z,k) =
wl's(z, k), —ck).

E.8 Additional Evaluation Results

We also evaluate our preference-conditioned dy-
namic routing (PCDR) approach on MT-Bench, a

Table E.4: Evaluation settings.

Benchmark

| Setting

| Models

AlpacaEval 2.0

GPT4/Mixtral-8x7B

gpt4_1106_preview
Mixtral-8x7B-Instruct-v0.1

GPT Family

gpt-3.5-turbo-0301
gpt-3.5-turbo-0613
gpt-3.5-turbo-1106
gpt-4-0125-preview
gpt-40-2024-05-13
gpt4
gpt4_0314
gptd_0613
gptd_1106_preview

Claude Family

claude
claude-2
claude-2.1
claude-3-5-sonnet-20240620
claude-3-opus-20240229
claude-3-sonnet-20240229
claude-instant-1.2

HELM-MMLU

GPT4/Mixtral-8x7B

gptd_1106_preview
mixtral-8x7b-32kseqlen

Mistral Family

mistral-7b-instruct-v0.3
mixtral-8x22b
mixtral-8x7b-32kseqlen

GPT Family

gpt-3.5-turbo-0613
gpt-4-0613

gpt-4-1106-preview

gpt-40-2024-05-13

HELM-Lite

GPT4/Mixtral-8x7B

gptd_1106_preview
mixtral-8x7b-32kseqlen

Mistral Family

mistral-7b-instruct-v0.3
mixtral-8x7b-32kseqlen
mixtral-8x22b

GPT Family

gpt-40-2024-05-13
gpt-40-mini-2024-07-18
gpt-3.5-turbo-0613
gpt-4-0613
gpt-4-1106-preview

OpenLLM

Yil.5 Family

Yi-1.5-34B-Chat
Yi-1.5-6B-Chat
Yi-1.5-9B-Chat

Mistral Family

Mistral-7B-Instruct-v0.2
Mixtral-8x22B-Instruct-v0.1
Mixtral-8x7B-Instruct-v0.1

LLaMA3 Family

Llama-3-70B-Instruct
Llama-3-8B-Instruct

OpenLLMv2

Yil.5 Family

Yi-1.5-34B-Chat
Yi-1.5-6B-Chat
Yi-1.5-9B-Chat

Qwen?2 Family

Qwen2-0.5B-Instruct

Qwen2-1.5B-Instruct
Qwen2-72B-Instruct
Qwen2-7B-Instruct

LLaMA3 Family

Llama-3-70B-Instruct

Llama-3-8B-Instruct

20

LLMs
Random

0.86

Evaluation Score

+— Oracle
—e— RoutelLLM
== PCDR (Ours)

0 5 10 15 20 25 30 35 40
Cost

Figure E.1: Performance-cost trade-off on MTBench
dataset.

Table E.5: Evaluation setting fro new routing candi-
dates.

Benchmark | Setting | Models
OpenLLMv2 | Cohere aya-23-35B
aya-23-8B
Qwen2.5 | Qwen2.5-0.5B-Instruct

Qwen2.5-1.5B-Instruct
Qwen2.5-7B-Instruct
Qwen2.5-14B-Instruct
Qwen2.5-32B-Instruct
Qwen2.5-72B-Instruct

widely-used benchmark for assessing LLM per-
formance. Figure E.1 shows the performance-
cost trade-off curves for different routing meth-
ods. While the Oracle policy achieves the best
performance-cost trade-off as expected, our PCDR
approach performs competitively with RouteLLM,
particularly in the mid-to-high cost regime ($20-
40). Both methods significantly outperform ran-
dom routing. Again, the gap between all routing
policies and the Oracle baseline suggests potential
room for improvement in routing decisions.

E.9 Cold Start for New Routing Candidates

To simulate the scenario where new models are
introduced into the routing system, we select sev-
eral unseen models from the HuggingFace Open-
LLM v2 benchmark. These models are not used for

Zhttps://huggingface.co/datasets/
berkeley-nest/Nectar
Shttps://huggingface.co/datasets/lmsys/
Imsys-arena-human-preference-55k
4https://huggingface.co/datasets/lmsys/
chatbot_arena_conversations
5https://huggingface.co/datasets/lmsys/mt_
bench_human_judgments
®https://huggingface.co/datasets/routellm/
gpt4_judge_battles
"https://tatsu-lab.github.io/alpaca_eval/
8https://crfm.stanford.edu/helm/lite/latest/
9https://crfm.stanford.edu/helm/mmlu/latest/
10https://huggingface.co/spaces/
open-11lm-leaderboard-old/open_l1m_leaderboard
llhttps://huggingface.co/spaces/
open-11m-leaderboard/open_l1m_leaderboard

21

training either the IRT model or the routing policy.
Table E.5 shows the detailed evaluation settings.

https://huggingface.co/datasets/berkeley-nest/Nectar
https://huggingface.co/datasets/berkeley-nest/Nectar
https://huggingface.co/datasets/lmsys/lmsys-arena-human-preference-55k
https://huggingface.co/datasets/lmsys/lmsys-arena-human-preference-55k
https://huggingface.co/datasets/lmsys/chatbot_arena_conversations
https://huggingface.co/datasets/lmsys/chatbot_arena_conversations
https://huggingface.co/datasets/lmsys/mt_bench_human_judgments
https://huggingface.co/datasets/lmsys/mt_bench_human_judgments
https://huggingface.co/datasets/routellm/gpt4_judge_battles
https://huggingface.co/datasets/routellm/gpt4_judge_battles
https://tatsu-lab.github.io/alpaca_eval/
https://crfm.stanford.edu/helm/lite/latest/
https://crfm.stanford.edu/helm/mmlu/latest/
https://huggingface.co/spaces/open-llm-leaderboard-old/open_llm_leaderboard
https://huggingface.co/spaces/open-llm-leaderboard-old/open_llm_leaderboard
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard

	Introduction
	Method
	Problem Formulation
	Overall Framework
	Model Identity Vector
	Preference-Conditioned Routing Policy
	Training for Generalization
	Cold Start for New Routing Candidates

	Related Works
	Experiments
	Conclusion
	Theoretical Analysis
	Continuity and Existence of Optimal Policies

	Method
	Model Identity Vector
	Training with Real-valued Evaluation Scores

	Preference Conditioned Routing Policy
	Generalization of the Routing Policy
	Supervised Pretraining
	On-Manifold Mixup Regularization
	Reward Normalization
	Stratified Sampling

	Training Algorithm
	Additional Related Works
	Experiment
	Model Cost
	Dataset Statistics
	Training the IRT Model
	Supervised Pretraining of the Routing Policy
	RL Training of the Routing Policy
	Evaluation Setup
	Baselines
	RouteLLM
	Predictor
	Random
	Oracle
	PPO

	Additional Evaluation Results
	Cold Start for New Routing Candidates

