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Abstract

Accuracy-cost trade-offs are a fundamental aspect of scientific computing. Clas-1

sical numerical methods inherently offer such a trade-off: increasing resolution,2

order, or precision typically yields more accurate solutions at higher computational3

cost. Inspired by adaptive-compute language models, we introduce the Recurrent-4

Depth Simulator (RDS), an architecture-agnostic, plug-and-play framework that5

enables explicit test-time control over accuracy-cost trade-offs. By setting the6

number of recurrent steps K, users can generate fast, less-accurate simulations7

for exploratory runs or real-time control loops, or increase K for more-accurate8

simulations in critical applications or offline studies. We validate RDS on several9

fluid-dynamics benchmarks, including Burgers, Korteweg-De Vries, and Kuramoto10

Sivashinsky, and demonstrate 1) physically faithful simulations over long horizons,11

even in low compute settings; 2) superior accuracy-cost trade-offs compared to12

alternative adaptive-compute models, including Deep Equilibrium and diffusion-13

based models. We further validate the recurrent-depth simulator on the challenging14

task generating three-dimensional turbulent compressible Navier-Stokes simula-15

tions, where we demonstrate a 0.8B parameter model with a single recurrent-depth16

Fourier layer attains lower mean-squared error than a 1.6B parameter counterpart17

with six Fourier layers, while matching computational resources and utilizing18

13.5% less memory during training.19

1 Introduction20

Simulations are fundamental to science and engineering. They enable scientists to study and predict21

the behavior of complex systems, and engineers to quickly iterate and optimize designs, without the22

need for expensive or impractical experiments. Early scientific computing, limited by computational23

resources, produced crude simulations with limited practical value. Today, with the wide availability24

of enormous computers, simulations have led to breakthroughs across different domains, including25

numerical weather prediction, fluid and particle flows, and drug and materials design. Still, even26

with today’s computational resources, less accurate but fast simulations are essential for early-stage27

studies and prototyping.28

In scientific computing, techniques for explicit control over accuracy-cost trade-offs are well-29

established. Heuristic search methods, such as genetic algorithms and simulated annealing, can30

balance desired accuracy against available computational resources by controlling the size of the31

search space. For instance, genetic algorithms obtain better solutions with larger population sizes32

or by running more generations. Similarly, numerical methods, which underpin practically all sim-33

ulations, have inherent accuracy-cost trade-offs: using finer discretizations, higher-order methods,34

and lower tolerances yields more accurate solutions but requires more computational resources. For35
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high-dimensional or large-scale problems, this trade-off becomes extremely unfavorable, rendering36

many real-world problems computationally intractable.37

Machine learning provides a promising avenue to overcome this trade-off. Unlike numerical methods,38

which rely on explicitly defined models or heuristics, machine learning methods are general-purpose39

learners that learn directly from the vast amounts of available measurement and observational data,40

and are capable of generating simulations for a wide range of problems, geometries, discretiza-41

tions, and boundary conditions. Machine learning methods also benefit from hardware and software42

advancements specifically developed for machine learning, including GPU acceleration and par-43

allelization. Perhaps most notably, machine learning methods can improve simulation accuracy44

and efficiency: given a desired accuracy, machine learning-based simulations use fewer computa-45

tional resources compared to numerical methods, or, equivalently, given a computational budget,46

deliver greater accuracy. Several works have demonstrated these advantages in applications such as47

atmosphere and weather modeling and automotive design [Price et al., 2025, Bleeker et al., 2025].48

At train-time, there are a number of tunable knobs available for controlling the accuracy-cost trade-off.49

Generally, allocating more computational resources during training leads to more accurate predictions.50

Whether that is by increasing the training dataset through data acquisition, data augmentation, or51

synthetic data; by increasing the model size through stacking more layers or using wider layers; or by52

improving the optimization process through more advanced optimizers, higher numerical precision,53

or training for more steps. Each of these adjustments directly affect the train-time accuracy-cost54

trade-off.55

At test-time, there are fewer tunable knobs. The Deep Equilibrium model can go through more56

computational resources by increasing the iteration limit or by lowering the tolerance [Bai et al.,57

2019]. Diffusion models can make use of additional denoising steps or more advanced samplers58

to generate higher-quality outputs at greater cost [Ho et al., 2020, Lu et al., 2022]. Recent natural59

language processing research proposes reasoning models that spend more “thinking” on hard inputs60

and finish early on easy ones [Wei et al., 2022].61

In this work, we present Recurrent-Depth Simulator (RDS), a framework that enables explicit test-62

time control over accuracy-cost trade-offs, with a simple implementation (see Algorithm 1 and 2).63

Our approach enables adaptive-depth inference without retraining or architectural redesign. By setting64

a small number of recurrent steps K, the model is able to generate fast, less-accurate simulations65

for exploratory runs or real-time control loops. Increasing K generates more accurate simulations66

for critical applications or offline studies. We validate the recurrent-depth simulator on several67

fluid-dynamics benchmarks, including Burgers’, Korteweg-De Vries, and Kuramoto Sivashinsky and68

demonstrate physically faithful simulations over long horizons and superior accuracy-cost trade-offs69

compared to alternative adaptive models, including Deep Equilibrium and diffusion-based models. We70

further validate RDS on the challenging task of generating three-dimensional turbulent compressible71

Navier-Stokes simulations, a 0.8B parameter RDS with a single recurrent-depth Fourier layer attains72

lower mean-squared error than a 1.6B parameter standard Fourier neural operator architecture with73

six Fourier layers, while matching computational resources and utilizing 13.5% less memory during74

training.75

2 Background76

Partial Differential Equations. We consider time-dependent partial differential equations of the77

form78

ut +N (t,x,u,ux,uxx, . . . ) = 0,

where t ∈ [0, T ] represents the temporal dimension, x ∈ X represents the (possibly multiple) spatial79

dimension(s), and u(t,x) : [0, T ]×X → Rn represents the state at (t,x). Here, N is a non-linear80

operator that governs the systems’ dynamics, describing the interactions among the different variables81

and their derivatives. We consider initial conditions given by u(0,x) = u0(x), and unless otherwise82

specified, assume periodic boundary conditions.83

Discretizing the partial differential equations transforms the continuous equations into a discrete84

form, yielding a sequence of states at discrete time steps {Un}Nn=0, where N = T/∆t is the number85

of time steps ∆t. This discretization induces an evolution operator G, which maps the state at any86

given time step to the state at the subsequent time step G : Un → Un+1.87
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Neural Simulators. A neural (physics) simulator approximates the evolution operator G with a88

learned operator Gθ by minimizing the one-step loss L = ||Ut+1 − Gθ(Ut)||22 using data from high-89

fidelity simulations or real-world measurements. Repeated application of Gθ generates a trajectory.90

Because the one-step loss does not measure trajectory performance, accuracy is typically quantified91

by the trajectory error:92

N∑
n=0

∣∣∣∣∣∣Un − G(n)θ (U0)
∣∣∣∣∣∣2
2
,

where G(n)θ denotes the n-fold application of the neural simulator. However, for chaotic systems, the93

trajectory error is unreliable. Instead, let94

τα = min
{
t = n∆t

∣∣ρ(Un,G(n)θ (U0)
)
< α

}
,

denote the earliest time at which the Pearson correlation coefficient ρ between the true and predicted95

state falls below a specified threshold α ∈ (0, 1). Computing τα for every test trajectory yields (i) the96

average correlation horizon, obtained by averaging all τα values, and (ii) the worst-cast correlation97

horizon, obtained by selecting the minimum τα. Together, the trajectory error and correlation horizons98

capture both long-term accuracy and stability.99

Related Work. Training with only a one-step loss can lead to a distribution shift between training100

states and those encountered during unrolling. To mitigate this issue, Brandstetter et al. [2022]101

propose the push-forward trick where the neural simulator is unrolled for two steps, but errors are102

backpropagated only from the second step. Subsequent studies have explored training with longer103

unrolling and backpropagation. Koehler et al. [2024] demonstrate that unrolling and backpropagating104

though 50 steps significantly improves long-term accuracy at the cost of worsened short-term accuracy105

and linear growth in computational and memory demands.106

A wide range of architectures have been explored. For regular domains, convolutional-based architec-107

tures such as the Residual Network (ResNet [He et al., 2016]) and the U-shaped Encoder-Decoder108

(UNet [Ronneberger et al., 2015]) effectively capture local interactions, whereas spectral-based archi-109

tectures, such as the Fourier Neural Operator (FNO [Li et al., 2020]) and its factorized variant (F-FNO110

[Tran et al., 2021]), leverage global frequency-domain features. For irregular domains, Brandstetter111

et al. [2022] propose a message-passing graph neural network, while Li et al. [2023a] extend the112

FNO architecture with a geometry encoder and decoder, deforming an irregular mesh into a uniform113

latent space suitable for FNO application, and subsequently reversing this deformation. Pokle et al.114

[2022] propose FNO-DEQ, a Deep Equilibrium Model (DEQ [Bai et al., 2019]) variant with Fourier115

layers, to solve steady-state PDEs, showing improvements in accuracy and robustness to noise over116

baselines with four times as many parameters. Kohl et al. [2023] demonstrated that diffusion models117

are viable for turbulent flow simulation. Their results show that diffusion models outperform, in terms118

of long-term accuracy and stability, more efficient (and more commonly used) neural simulators.119

Recently, transformer-based architectures have gained prominence. Alkin et al. [2024] introduce120

the Universal Physics Transformer, a unified Eulerian-Lagrangian framework capable of handling121

large-scale simulations. Separately, McCabe et al. [2023] show that a single transformer pre-trained122

on multiple physics tasks can match or exceed task-specific baselines without additional fine-tuning.123

Modern neural simulators achieve state-of-the-art predictive accuracy and computational efficiency124

across complex domains. Kochkov et al. [2021] apply neural simulators to model two-dimensional125

turbulence, achieving comparable errors to numerical solvers while operating at 8–10 times finer126

resolutions, resulting in 40-80-fold speedups. Similarly, Stachenfeld et al. [2021] show that neural127

simulators trained at low spatial and temporal resolutions outperform traditional numerical methods128

at equivalent resolutions and successfully capture turbulent dynamics usually resolved by numerical129

methods only at significantly high resolutions. In weather forecasting, Aurora [Bodnar et al., 2024], a130

foundation model for the Earth system, outperforms the Integrated Forecasting System (IFS)—the131

state-of-the-art numerical forecasting model—with roughly a 5,000-fold speedup, running forecasts132

in approximately 1.1 seconds per forecast hour on a single A100 GPU compared to approximately133

5720 seconds per forecast hour on a high-end CPU node. Similar results have also been reported in134

aerodynamics, plasma physics, and various other scientific domains Galletti et al. [2025], Li et al.135

[2023b], Catalani et al. [2024].136
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Figure 1: Schematic of the Recurrent-Depth Simulator. The framework consists of three main
components: an encoder, a recurrent-depth block, and a decoder. At test-time, the user is able to
control the accuracy-cost trade-off by setting the number of recurrent steps K.

3 Recurrent-Depth Simulator137

Overview. The proposed Recurrent-Depth Simulator (RDS) consists of three main components:138

an encoder, a recurrent-depth block, and a decoder (see Figure 1). The encoder transforms the input139

state x into a conditioning vector c. An initial latent z0 is drawn from a fixed distribution p(z). For140

a user-chosen number of recurrent steps K, the recurrent-depth block R(·, θR)—conditioned on141

c—recursively updates the latent:142

zk = R ([c, zk−1] , θR) , k = 1, . . . ,K.

After the final recurrent step, the decoder maps zK to the predicted state ŷ.143

Training. RDS is trained end-to-end. For each training sample, a number of recurrent steps K is144

drawn from a distribution p(K); the recurrent-depth block is applied for that many steps, a supervised145

loss is evaluated, and gradients are back-propagated through the computation (see Algorithm 1).146

Sampling K across a wide range encourages the recurrent block to contract toward a fixed point.147

Large K values inflate memory because every intermediate activation must ordinarily be stored. To148

bound the memory footprint, we use truncated backpropagation-through-time with a fixed backpropa-149

gation window B [Williams and Peng, 1990]. Gradients are propagated through at most the last B150

recurrent steps, while earlier steps are treated as constants. This caps memory at O(B) regardless151

of K and has proved sufficient for optimization. Empirical results for different backpropagation152

windows B are explored in Appendix D.153

Inference. At test-time, the user is free to choose K according to their desired accuracy and154

available computational resources (see Algorithm 2). Small K values generate fast, less-accurate155

simulations ideal for exploratory runs, or real-time control loops. Large K values generate more-156

accurate slow simulations suitable for critical applications or offline studies. Empirically, the first157

few recurrent steps make the largest adjustments to the latent vector zk; subsequent steps contribute158

progressively smaller, yet still beneficial, adjustments. This behavior mirrors numerical methods,159

such as fixed-point and Newton methods, giving RDS a strong inductive bias that is well-suited for160

physical simulation tasks.161

Modularity. The RDS framework is modular: each of, the encoder, recurrent-depth block, and162

decoder may be instantiated with the architecture primitive best suited to the problem—e.g., convo-163

lutional layers for Eulerian simulations or graph-convolutional layers for Lagrangian simulations—164

without altering the training or inference algorithms. The entire pipeline remains a standard end-165

to-end, supervised model with no custom losses, schedulers, or tricks—so adoption is essentially166

plug-and-play.167
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Algorithm 1 Recurrent-Depth Simulator Training
Input: training data x,y
Output: model parameters θE ,θR,θD
repeat

for i ∈ B do ▷ for every training example index in batch
c← E(xi,θE) ▷ compute conditioning vector
z0 ∼ p(z) ▷ sample initial latent representation
K ∼ p(K) ▷ sample number of recurrent steps
for k = 1 to K do ▷ unroll K recurrent steps

z′k−1 ← [c, zk−1] ▷ concatenate conditioning and latent representation
zk ← R(z′k−1,θR) ▷ apply recurrent block

end for
ŷi ← D(zK ,θD) ▷ decode latent representation
li ← ||yi − ŷi|| ▷ compute individual loss

end for
accumulate losses for batch and take gradient step

until converged

Algorithm 2 Recurrent-Depth Simulator Inference
Input: input state x, number of steps K, model parameters θE ,θR,θD
Output: output state y
c← E(x,θE) ▷ compute conditioning vector
z0 ∼ p(z) ▷ sample initial latent representation
for k = 1 to K do ▷ unroll K recurrent steps

z′k−1 ← [c, zk−1] ▷ concatenate conditioning and latent representation
zk ← R(z′k−1,θR) ▷ apply recurrent block

end for
y← D(zK ,θD) ▷ decode latent representation to predicted state

Initial Latent Distribution. The initial latent vector z0 is drawn from a standard normal distribution168

N (0, I). A Gaussian distribution is a natural default, and is widely used in diffusion models, yet169

other choices are possible. For example, replacing the Gaussian with a Student-t prior to better170

capture heavy-tailed behavior [Pandey et al., 2025], or learning a fixed latent vector directly [Jaegle171

et al., 2021]. The RDS framework is agnostic to this choice; any prior that suits target problem can172

be substituted without changing the rest of the pipeline.173

Recurrent Step Distribution. The number of recurrent steps K is drawn from a Poisson log-normal174

distribution:175

υ ∼ N
(
log K̄ − 1

2
σ2, σ

)
,

K ∼ Poisson (eυ) + 1,

where K̄+1 is the desired mean. This distribution exposes the model to a broad spectrum of compute176

budgets during training: it is positively skewed with most draws landing near K̄, but occasional very177

small and very large values are sampled, encouraging the recurrent-block to remain stable across both178

shallow and deep rollouts. Unless noted otherwise, we use K̄ = 32 and σ = 0.5—alternative values179

are explored in Appendix E.180

Merging Conditioning and Latent Vectors. At each recurrent step, the conditioning vector c must181

be merged with the current latent vector zk. The simplest scheme is plain addition: z′k = c+ zk. A182

slightly richer variant introduces learnable scalar weights: z′k = αc+ βzk. The weights can be made183

element-wise: z′k = α⊙ c+ β ⊙ zk. Alternatives include point-wise projection, or concatenating184

and passing the result through a width-halving layer. All variants are drop-in replacements and are185

explored in Appendix F.186
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Figure 2: Top: Trajectory Error (L2) versus Recurrent Steps (K) for the Burgers (left), short-horizon
KdV (middle), and long-horizon KdV (right). Bottom: Trajectories at K = 4 (orange) and K = 16
(purple) (highlighted above). Increasing K sharpens shocks in Burgers and aligns soliton crests in
KdV, illustrating how recurrent depth controls the accuracy–cost trade-off.

4 Results187

Full specifications of the hardware, data acquisition, data generation, preprocessing pipelines, along188

with training hyper-parameters, are given in Appendix A-C. Unless noted, the main experiments use189

the Recurrent-Depth Simulator with Fourier layers—denoted RDSFourier—whose infinite receptive190

field simplifies analysis for depth-varying models. Other variants are explored in Appendix G.191

4.1 Experiment: Accuracy-Cost Trade-Off192

Commonly used neural simulators are trained for a single accuracy-cost setting: once the model is193

trained, every forward pass delivers the same expected accuracy and incurs the same cost. RDS, on194

the other hand, has a tunable knob for controlling the accuracy-cost setting (the number of recurrent195

steps K). The purpose of this experiment is to empirically demonstrate whether rolling out the196

trajectory across values of recurrent steps K is viable.197

Experimental Setup. We conduct experiments on three datasets: Burgers, short-horizon KdV, and198

long-horizon KdV. Two instantiations of RDS are benchmarked. The first variant (RDSFourier wo/199

EncDec) lifts the input with a point-wise operation, recursively applies a recurrent-depth block with a200

single Fourier layer, and projects back to physical space; the second variant (RDSFourier w/ EncDec)201

inserts an additional Fourier layer in, both, the encoder and decoder. For each variant, we target202

three parameter budgets (∼ 1.0M, 3.5M, 7.5M), yielding six models per dataset. We use K̄ = 32203

and B = 4. After convergence, we generate trajectories for every K ∈ {1, . . . , 32} and measure the204

trajectory error. All experiments are repeated with three seeds and averaged.205

Results. Across all three datasets, both variants show the same qualitative accuracy-cost curve206

(Figure 2), but RDSFourier w/ EncDec achieves consistently lower trajectory error. As K increases,207

the trajectory error falls steadily and plateaus around K = 16 for Burgers and K = 8 for both, short-208

and long-horizon KdV ; further steps neither help nor harm. For each dataset, we plot low-compute209
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Figure 3: Trajectory Error (L2) versus Recurrent Steps (K) for the Burgers (left), and long-horizon
KdV (right). Curves compare RDSFourier (teal), FNO-DEQ (blue) [Marwah et al., 2023], ACDM
(orange) [Kohl et al., 2023], and PDE-Refiner (green) [Lippe et al., 2023]. Across both tasks,
RDSFourier achieves the best accuracy-cost curve and reaches the lowest plateau.

(K = 4) and high-compute (K = 16) trajectories. In Burgers, the two settings reproduce the same210

shock patterns, with the low-compute run showing slightly larger absolute error around the fronts. In211

both KdV datasets, the low-compute run already recovers the full soliton train; the absolute error212

is almost entirely a small amplitude and/or phase offset, visible as narrow streaks along the soliton213

trajectories. Increasing to K = 16 sharpens the shocks and aligns the soliton crests. These results214

demonstrate that RDSFourier delivers physically faithful simulations over a range of accuracy-cost215

settings. Extended results are presented in Appendix G.216

4.2 Experiment: Alternatives217

There are a few recent neural simulators that have test-time controllable knobs. FNO-DEQ is a Deep218

Equilibrium Model with Fourier layers whose runtime is set by a maximum number of iterations219

or a minimum update. ACDM—an autoregressive conditional diffusion model—is able to adjust220

the prediction quality by varying the number and schedule of denoising steps. PDE-Refiner applies221

the same diffusion principle in a direct prediction and refinement process. In this experiment, we222

benchmark RDSFourier against the three alternatives under identical data and training setups.223

Experimental Setup. We conduct experiments on three datasets: Burgers, long-horizon KdV, and224

long-horizon Kuramoto-Sivashinsky. For RDS, we carry over the best variant from the previous set of225

experiments: point-wise lift + Fourier layer encoder, a recurrent-depth block with one Fourier layer,226

Fourier layer with point-wise projection decoder—configured with ∼ 7.5M parameters, K̄ = 32,227

and B = 4 steps. FNO-DEQ follows the setup of Pokle et al. [2022], with its width scaled to match228

a parameter count of ∼ 7.5M. ACDM and PDE-Refiner use a modern UNet backbone from their229

original implementations [Kohl et al., 2023, Lippe et al., 2023]. In early tests, both diffusion-based230

models proved parameter-inefficient and could not rollout beyond a few steps, so we train them with231

∼ 15M parameters for Burgers and KdV, and ∼ 50M parameters for KS (the scale used by Lippe232

et al. [2023]). After convergence, we generate trajectories for every K ∈ {1, . . . , 32} (where K233

is equal to the recurrent steps for RDS, iterations for FNO-DEQ, and denoising steps for ACDM234

and PDE-Refiner). On Burgers and KdV, we measure and report the trajectory error. Since the KS235

equation produces chaotic behavior, we measure the average and worst-case correlation horizon over236

a sweep of 30 thresholds (α = 0.7-0.99 in increments of 0.01).237

Results. On Burgers, FNO-DEQ, ACDM, and PDE-Refiner all plateau by K ≈ 4 (see Figure 3238

(left)); PDE-Refiner gains practically nothing beyond its second refinement step. RDSFourier, by239

contrast, continues to improve until K ≈ 16, while using half the parameters of the diffusion-based240

models. On KdV, FNO-DEQ exhibits the convergence limitation reported by Sittoni and Tudisco241

[2024]—the latent representation oscillates around, rather than converges to, the fixed point—so242

additional iterations provide no improvement. The ten-fold larger training dataset helps the diffusion-243

based models, however, once again, ACDM plateaus near K ≈ 4. PDE-Refiner improves up to244

K = 11 before degrading because larger K values are out-of-distribution. RDSFourier delivers the best245
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Model Params Training
Memory

Training
Epochs

Training
GFLOPs

MSE
×10−2

Density

MSE
×10−2

Pressure

MSE
×10−2

Velocity

FNO 0.5B 38 GB 100 1× 107 9.60 9.59 9.55
FNO 1.0B 57 GB 100 2× 107 7.83 7.79 7.82
FNO 1.6B 73 GB 100 3× 107 7.61 7.59 7.62
RDSFourier 0.8B 64 GB 82 3× 107 7.57 7.51 7.53

RDSFourier 0.8B 64 GB 100 5× 107 7.37 7.33 7.36

Table 1: Performance comparison between FNO and RDSFourier. We report the total number of
learnable parameters, the peak of GPU memory during training, total training epochs and training
GFLOPs. We also report the trajectory MSE, i.e. the MSE between the ground truth trajectory and
the predicted trajectory. We calculate it over 3 different channels, velocity, pressure, and density
fields.

accuracy-cost curves and lowest trajectory errors. On KS (see Appendix G), where the diffusion-based246

models have 7-fold the amount of parameters as RDSFourier, ACDM plateaus early, and PDE-Refiner247

shows erratic worst-case correlation horizons. Taken together, RDSFourier consistently outperforms248

alternatives while using fewer parameters.249

4.3 Experiment: Large-Scale Compressible Navier-Stokes250

Models Details. We train five different variations of Fourier Neural Operator (FNO), each with251

64 channels and 20 modes. Three of these models are FNO with various depths, specifically with252

2, 4, 6 layers. The remaining two are RDSFourier (w/ EncDec) models, each using a single Fourier253

layer in the encoder, decoder, and recurrent block, with a backpropagation window of 4. The main254

architectural difference lies in the value of K̄. In one model, we set K̄ = 16, and we use it to match255

the number of training steps of the other three FNO models. In contrast, the second model uses256

K̄ = 8. It is chosen to match the training FLOPs of the 6-layer FNO. We did not compare against257

DEQ, PDE-Refiner, or diffusion models. Training DEQ is notoriously slow and becomes impractical258

for a problem of this scale. As for PDE-Refiner and diffusion models, implementing a U-Net with259

3D convolutional layers that fits within the same GPU memory budget would result in a model that is260

too shallow, with a limited receptive field. For these reasons, we chose not to include these baselines.261

Training is run for 100 epochs across all models, except for the FLOPs-matched recurrent model,262

which is trained for 82 epochs to match the FLOPs of the deepest baseline.263

Results. As shown in table 1, both RDSFourier models consistently achieve a lower trajectory264

MSE compared to their non-recurrent FNO counterparts. Remarkably, the RDSFourier with K̄ = 8,265

which is constrained to match the 6 layers FNO’s total training FLOPs, still achieves lower trajectory266

MSE than all the standard models. Furthermore, RDSFourier require substantially less GPU memory,267

approximately 13.5% compared to the 6 layer FNO and uses half of the parameters. The encoder and268

decoder of RDSFourier have the same number of parameters as the smallest FNO model. As shown in269

table 1, incorporating the recurrent block leads to a 22% improvement in test performance. Similarly,270

the mid-size FNO can be interpreted as having a single layer in both the encoder and decoder, with271

a 2-layer middle block. Despite having only half as many parameters in the recurrent-depth block,272

RDSFourier consistently outperforms the mid-size FNO.273

Conclusion. We introduce the Recurrent-Depth Simulator (RDS), a simple and general methodol-274

ogy for dynamically adjusting the computational budget at test time. We describe how architectural275

primitives can be integrated into RDS, outline the training procedure, and discuss strategies for man-276

aging the accuracy–cost trade-off. We demonstrate that RDS achieves superior accuracy–efficiency277

trade-offs compared to state-of-the-art alternatives, including Deep Equilibrium and diffusion-based278

models. The experiments for three-dimensional simulation suggest that recurrent-depth is a viable279

and scalable mechanism for improving neural simulators.280
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A Hardware Details456

For the one-dimensional Burgers, Korteweg-De Vries, and Kuramoto-Sivashinsky equations, we457

generated the data using an AMD 7950X processor (16 cores/32 threads). Each example trajectory458

in the Burgers equation and Korteweg-De Vries equation datasets took approximately 10 and 20459

minutes to generate, respectively. The entire datasets, with 600 examples (500 training examples and460

100 testing examples), took approximately 6000 and 12000 minutes to generate, respectively. Each461

training example in the Kuramoto-Sivashinsky equation dataset took approximately 15 minutes to462

generate. The testing examples were twice as long, and took approximately 30 minutes to generate.463

The entire dataset, with 500 training examples and 100 testing examples, took approximately 10500464

minutes to generate. All together, the three one-dimensional datasets took approximately 28500465

minutes (475 hours) to generate.466

All one-dimensional models were trained on a single NVIDIA A100 (40GB) GPU per run, with aver-467

age training times ranging from 15-300 minutes per model—smaller models on the Burgers dataset468

took 15 minutes, whereas larger models trained on Korteweg-De Vries or Kuramoto-Sivashinsky469

datasets, which contained 10 times longer trajectories, took closer to 300 minutes. We trained470

approximately 1000 models for exploratory experiments (e.g., tuning hyperparameters, evaluating471

alternative architectures) and final experiments, and estimate a total of 1000 NVIDIA A100 (40GB)472

GPU hours.473

The three-dimensional models were much larger. Under our experimental setup, only the smallest474

Fourier Neural Operator with two layers managed to fit on a single NVIDIA A100 (40GB) GPU. This475

model did not perform well (approximately 25-30% higher MSE compared to its six layer variant).476

So all three-dimensional experiments were trained on a single NVIDIA A100 (80GB) GPU. On477

average, each training run took 1200-1500 minutes to complete. We trained approximately 10 models478

for exploratory experiments and final experiments, and estimate a total of 225 NVIDIA A100 (80GB)479

GPU hours.480

B Data Details481

B.1 Equations482

Burgers Equation. The Burgers equation is a second-order nonlinear partial differential equation483

derived to model convective steepening and diffusive smoothing. Its one-dimensional variant can be484

expressed as:485

ut + uux = νuxx.

Here, ν plays the role of kinematic viscosity. Setting ν = 0 yields the inviscid form ut + uux = 0,486

whose solutions develop finite-time shock discontinuities; the viscous term νuxx regularises these487

shocks but introduces extremely thin internal layers that remain numerically stiff. Machine learning488

methods must learn to represent sharp gradients, moving shocks and the delicate interplay between489

nonlinearity and diffusion.490

Korteweg-De Vries Equation. The Korteweg-De Vries (KdV) is a third-order nonlinear partial491

differential equation derived to model weakly nonlinear, weakly dispersive unidirectional waves. Its492

one-dimensional variant can be expressed as:493

ut + αuux + uxxx = 0.

Here, α (often set to ±1 or ±6) controls nonlinear steepening while the third-order derivative uxxx494

introduces dispersion. The exact balance of these effects produces solitary-wave solutions (solitons)495

that preserve their shape and speed and undergo only phase shifts upon interaction –small amounts of496

artificial dissipation can destroy these very structures making KdV an ideal candidate for evaluating497

whether machine learning methods can maintain accuracy, stability and conservation over long498

horizons.499

Kuramoto-Sivashinsky Equation. The Kuramoto-Sivashinsky (KS) equation is a fourth-order500

nonlinear partial differential equation derived to model diffusive-thermal instabilities in laminar flame501

fronts. Its one-dimensional variant can be expressed as:502

ut + uxx + uxxxx + uux = 0.
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Here, the fourth-order derivative uxxxx and the nonlinear term uux contribute to complex and chaotic503

behavior which present a challenge for traditional numerical solvers. The challenges and the wide504

applicability of the KS equation make it an ideal candidate for evaluating machine learning methods.505

Compressible Navier-Stokes Equations. The three-dimensional Compressible Navier-Stokes506

(CNS) equations model complex phenomena such as shock wave formation and propagation. They are507

widely used across various engineering and physics applications, including aircraft wing aerodynamics508

and the formation of interstellar gases. The equations can be expressed as:509

∂tρ+∇ · (ρv) = 0, ρ(∂tv + v · ∇v) = −∇p+ η∆v + (ζ + η/3)∇(∇ · v),
∂t(ϵ+ ρv2/2) +∇ ·

[
(p+ ϵ+ ρv2/2)v − v · σ′] = 0,

where ρ is the mass density, v is the fluid velocity, p is the pressure, and ϵ is the internal energy510

determined by the equation of state. The term σ′ denotes the viscous stress tensor, while η and511

ζ represent the shear and bulk viscosities, respectively. In this case, using a classical numerical512

solver to approximate the fluid flow is particularly challenging due to strict stability constraints,513

high computational cost, and the need for accurate yet robust numerical schemes that handle shocks,514

dissipation, and grid adaptivity in large-scale domains. Even though machine learning can overcome515

several of the challenges posed by traditional solvers, training a neural simulator on three-dimensional516

data comes with considerable engineering complexity. The primary limitation arises from storing517

the activations during training, increasing the memory requirement compared to smaller dimensions518

problems.519

B.2 Data Generation520

For the one-dimensional Burgers and Korteweg-De Vries equations, we set T = 10 and T = 100,521

respectively (for both training and testing datasets). For the one-dimensional Kuramoto-Sivashinsky522

equation, we set T = 100 for the training dataset and T = 200 for the training dataset. For all three523

equations, we set ∆t = 0.2. The spatial domain was set to X = [0, 2π] for the Burgers equation524

with ∆x = 2π/8192, X = [0, 128] for the Korteweg-De Vries equation with ∆x = 128/1024,525

and X = [0, 64] for the Kuramoto-Sivashinsky equation with ∆x = 64/4096. For each equation,526

the spatial step ∆x was chosen to be as small as possible while maintaining trajectory generation527

under a pre-specified computational budget. All three domains had periodic boundaries. The initial528

conditions were sampled from a distribution over the truncated Fourier series with random coefficients529

Ak ∼ U(Al, Ar), lk ∼ {la, lb, lc, ld}, and ϕk ∼ (ϕl, ϕr):530

u0(x) =

10∑
k=1

Ak sin

(
2πlkx

L
+ ϕk

)
,

where L is the length of the spatial domain. Each trajectory was generated using the method of531

lines with the spatial derivatives computed using the pseudo-spectral method. For each equation, we532

selected a time-stepping method that balances accuracy and cost: RK23 for the Burgers equation,533

RK45 for the Korteweg-De Vries equation, and LSODA for the Kuramoto-Sivashinsky equation. See534

Table 2 for details.535

Equation Train T Test T ∆t X ∆x {Al, Ar} {la, lb, lc, ld} {ϕl, ϕr} Time-Stepping
Burgers 10 10 0.2 [0, 2π] 2π/8192 {−0.5, 0.5} {3, 4, 5, 6} {0, 2π} RK23
KdV 100 100 0.2 [0, 128] 128/1024 {−0.5, 0.5} {1, 2, 3,−} {0, 2π} RK45
KS 100 200 0.2 [0, 64] 64/4096 {−0.5, 0.5} {1, 2, 3,−} {0, 2π} LSODA

Table 2: Data generation settings.

We construct two additional datasets, short-horizon Korteweg-De Vries and short-horizon Kuratmoto-536

Sivashinsky, by considering the first 400 time steps to be part of a warmup phase and subsequently537

discarding them. See Table Table 3 for details.538

For each of the one-dimensional equations, we generate 500 training trajectories and 100 testing539

trajectories. The data was initially generated using double-precision floating-point format (float64)540

and then converted into single-precision floating-point formation (float32) for our experiments.541
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Equation Warm-Up Steps Train T Test T
Short-Horizon KdV 400 20 20
Short-Horizon KS 400 20 120
Long-Horizon KdV 0 100 100
Long-Horizon KS 0 100 200

Table 3: Short-horizon and long-horizon settings.

Three-dimensional compressible Navier-Stokes dataset542

We use the three-dimensional compressible Navier-Stokes turbulence dataset provided by Takamoto543

et al. [2022]. This dataset consists of 600 trajectories, each containing 21 time steps, with 90% of544

the trajectories used for training and the remaining 10% reserved for testing. The turbulence initial545

condition considers turbulent velocity with uniform mass density and pressure. The initial velocity is546

defined as547

v(x, t = 0) =

4∑
i=1

Ai sin(ki · x+ ϕi),

where the amplitude coefficients are548

Ai =
v̄

|ki|2
,

and the characteristic velocity v̄ = csM is determined by the Mach number M and the speed of549

sound550

cs =

√
Γp

ρ
.

To reduce compressibility effects, the compressible component of the velocity field is removed using a551

Helmholtz decomposition in Fourier space, resulting in a divergence-free velocity field that preserves552

turbulent structures while minimizing artificial acoustic modes.553

The flow parameters are set to554

(η, ζ,M) =
(
10−2, 10−2, 1.0

)
,

where η and ζ are the shear and bulk viscosity coefficients, respectively, and M is the initial Mach555

number.556

The data are simulated using a second-order accurate HLLC Toro et al. [1994] scheme for the inviscid557

terms, the MUSCL Van Leer [1997] method for spatial reconstruction, and a central difference558

scheme for the viscous terms.559

Each time step is composed by five channels: the three velocity components, pressure, and density,560

and each time steps is represented on a 643 grid, resulting in 5× 643 = 5× 262, 144 ≈ 1.31× 106561

data points per step. The whole dataset size is 62 GB, indeed, due to memory constraints, training is562

performed by loading sub-batches of 32 samples directly from the hard disk where the dataset was563

stored. While this approach slows down training, it is necessary given the large dataset size.564
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Figure 4: Example trajectories from the Burgers dataset. Train and test datasets share the same T .
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Figure 5: Example trajectories from the Korteweg-de Vries dataset. Train and test datasets share the
same T .
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Figure 6: Example trajectories from the Kuramoto-Sivashinsky training dataset. The training dataset
has T = 100, whereas the testing dataset has T = 200.
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Figure 7: Example trajectories from the Kuramoto-Sivashinsky testing dataset. The training dataset
has T = 100, whereas the testing dataset has T = 200.
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C Training Details565

Data Preparation. To minimize the one-step loss L = ||Ut+1−Gθ(Ut)||22, we require input-output566

pairs. Consistent with prior work [Li et al., 2021], we set the prediction step size ∆tp = 0.8 and use567

residual prediction (Gθ(Un) ≈ Un+1 −Un) to balance short-term (one-step loss) and long-term568

(trajectory) performance. We also spatially downsample to 256 points. We scale each target by569

dividing by the maximum value across all trajectories, time steps, and spatial points; we found this to570

perform marginally better than normalizing to unit standard deviation.571

Neural Simulator Architectures.572

Fourier Layer. The Fourier layer transforms the input into the frequency domain using a fast573

Fourier transform (FFT), applies a truncated linear transformation to selected Fourier modes, and574

then maps the result back to the spatial domain via an inverse FFT. This spectral transformation is575

typically combined with a skip connection consisting of a point-wise convolution, a bias term, and an576

activation function. Formally, for an input x ∈ Rn, the layer computes:577

F(x) = σ(F−1(R · F(x)) +Wx+ b),

where F and F−1 denote the FFT and inverse FFT respectively, R : Rn → Rn′
is a learned linear578

transformation in frequency space, W : Rn → Rn′
represents a point-wise convolution, and b is a579

bias term.580

Several variations of the Fourier layer have been proposed. One such variant [Tran et al., 2021]581

modifies the layer by introducing a residual connection and a two-layer feedforward network, while582

omitting the point-wise convolution and bias term:583

F(x) = x+ σ(W2σ(W1F−1(R · F(x)) + b1) + b2).

In our early experiments, this modification did not yield noticeable improvements. We also explored584

simply adding a skip connection without the feedforward block and inserting normalization layers at585

various points in the architecture, but these did not result in noticeable improvements.586

RDSFourier. The Fourier Neural Operator is made of a point-wise lifting layer, followed by a587

sequence of Fourier layers, and then a point-wise projection. The Recurrent Depth Simulator588

(RDS) with Fourier layers can be interpreted in two ways: 1) RDSFourier wo/ EncDec, a point-wise589

lifting layer encoder, followed by a sequence of Fourier layers (that make up the recurrent-depth590

block), and then a point-wise projection layer decoder, or 2) RDSFourier w/ EncDec, where the first591

Fourier layer is part of the encoder and the last Fourier layer is part of the decoder. We find that592

RDSFourier w/ EncDec often leads to more consistent and superior performance.593

RDS. The Recurrent Depth Simulator is a highly flexible framework. Each component—the594

encoder, recurrent-depth block, and decoder—may be instantiated with any layer(s) depending on the595

task. For example, in problems with periodic boundaries and a requirement of parameter efficiency,596

where the Fourier Neural Operator would typically shine, Fourier layers can be used. On the other597

hand, if the goal is to develop a foundation model for physics on irregular meshes, where one might598

use a graph-based encoder, with an attention-based bottleneck, and a graph-based decoder, the RDS599

framework can be configured accordingly. With just a few additional lines of code, RDS enables600

explicit control over the accuracy-cost trade-off (see Appendix H for pseudocode).601

Fourier- and attention-based layers are well-suited for recurrent-depth blocks due to their ability to602

model infinite receptive fields. In contrast, convolutional-based layers have a fixed receptive field that603

grow with the depth. For example, a standard convolutional layer in PyTorch with kernelsize=3,604

dialation=1, and stride = 1 has a receptive field of size 3. Stacking two such layers increases605

he receptive field to 5—capturing the center point and two neighboring point on each side. More606

generally, the receptive field after stacking L such layers is given by L · (kernelsize/2) + 1. To607

achieve a receptive field of size 64, to effectively model the Burgers equation, one would need to608

stack 63 layers. In RDS, where K = 1 could be sampled, 63 layers would need to be distributed609

across the encoder, recurrent-depth block, and decoder. To mitigate this, some alternatives can be610

considered to expand the receptive field more efficiently: increasing the kernel size, incorporating611

attention-based layers, or adding downsampling blocks.612
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FNO-DEQ. Similarly to Marwah et al. [2023], we use Anderson acceleration with a maximum of613

16 iterations. For the backward pass of the DEQ layer, we follow the phantom gradient approach614

proposed by Geng et al. [2021], using parameters s = 3 and τ = 0.8. To match the parameter count615

of RDSFourier, we employ a 1D FNO with 8 layers and 120 channels.616

ACDM. We follow the original setup from Kohl et al. [2023], using a linear scheduler and training617

with a maximum of 50 diffusion steps. For conditioning, we concatenate the snapshot from the618

previous time step, i.e., the solution ut when predicting ut+1. To ensure a fair comparison, we619

condition only on ut and do not include earlier time steps.620

PDE-Refiner We use the same scheduler proposed by Lippe et al. [2023], with σ2
min = 2 · 10−7 and621

K = 10. Following a similar approach to Kohl et al. [2023], we implement the following algorithm622

from scratch:623

Algorithm 3 PDE-Refiner: Training and Inference Procedures
1: procedure TRAINSTEP(ut, uprev)
2: k ← random integer in [0, num_steps]
3: if k = 0 then
4: pred← NeuralOperator(zeros_like(ut), uprev, k)
5: target← ut

6: else
7: noise_std← min_noise_stdk/num_steps

8: noise← randn_like(ut)
9: ut,noised ← ut + noise · noise_std

10: pred← NeuralOperator(ut,noised, uprev, k)
11: target← noise
12: end if
13: loss← MSE(pred, target)
14: return loss
15: end procedure

16: procedure PREDICTNEXTSOLUTION 1(uprev)
17: ut̂ ← NeuralOperator(zeros_like(uprev), uprev, 0)
18: for k = 1 to num_steps do
19: noise_std← min_noise_stdk/num_steps

20: noise← randn_like(ut)
21: ut̂,noised ← ut̂ + noise · noise_std
22: pred← NeuralOperator(ut̂,noised, uprev, k)
23: ut̂ ← ut̂,noised − pred · noise_std
24: end for
25: return ut̂
26: end procedure

Algorithm 3 is taken from Lippe et al. [2023], and the number of inference num_steps is fixed at624

test time. To adapt the original algorithm, we investigated two variations: Algorithm 4 and 5. When625

K̄ = num_steps, both methods recover the original procedure proposed in Lippe et al. [2023].626

The first variation, Algorithm 4, adjusts the noise scheduler based on the number of inference steps.627

However, this strategy only performs well when the number of steps matches the training setup. To628

address this limitation, we introduce Algorithm 5, which retains the noise scheduler from training629

while allowing the number of inference steps to vary. This consistency in noise levels enhances630

stability and performance by preserving the distribution the network was trained on.631
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Algorithm 4 Predict Next Solution 1
procedure PREDICTNEXTSOLUTION(uprev)

ut̂ ← NeuralOperator(zeros_like(uprev), uprev, 0)
for k = 1 to K do

noise_std← min_noise_stdk/K

noise← randn_like(ut)
ut̂,noised ← ut̂ + noise · noise_std
pred← NeuralOperator(ut̂,noised, uprev, k)
ut̂ ← ut̂,noised − pred · noise_std

end for
return ut̂

end procedure

Algorithm 5 Predict Next Solution 2
1: procedure PREDICTNEXTSOLUTION(uprev)
2: ut̂ ← NeuralOperator(zeros_like(uprev), uprev, 0)
3: for k = 1 to K do
4: noise_std← min_noise_stdk/num_steps

5: noise← randn_like(ut)
6: ut̂,noised ← ut̂ + noise · noise_std
7: pred← NeuralOperator(ut̂,noised, uprev, k)
8: ut̂ ← ut̂,noised − pred · noise_std
9: end for

10: return ut̂
11: end procedure

Optimzation. All optimization hyperparameters are listed in Table 4 and remain fixed across all632

experiments, except where explicitly stated. We train each model for 100 epochs using the AdamW633

optimizer [Loshchilov and Hutter, 2019], starting with a learning rate of 3× 10−4 and a weight decay634

of 1× 10−5. A cosine annealing schedule is applied to gradually reduce the learning rate to 3× 10−6635

[Loshchilov and Hutter, 2017b]. In early experiments, we observed that using a higher initial learning636

rate (e.g., 1× 10−3) led to less consistent performance, though it occasionally improved performance637

[Sohl-Dickstein, 2024].638

Hyperparameter Value
Epochs 100
Batch Size 256 1

Optimizer AdamW
Starting Learning Rate 3× 10−4

Weight Decay 1× 10−5

Scheduler Cosine Annealing
Ending Learning Rate 3× 10−6

Table 4: Optimization hyperparameters used in all experiments.

1For the three-dimensional experiments, we use a batch size of 32, and perform gradient accumulation to
have an effective batch size of 256.
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D Backpropagation Window639

During training, the recurrent-depth block is repeated K times in the forward pass, after which640

gradients are propagated backward through the same computation. If K is large, which could641

happen because K is drawn from a long-tailed distribution, the backward pass must retain every642

intermediate activation, quickly exhausting GPU memory. To cap the memory usage, we use truncated643

backpropagation-through-time with a fixed backpropagation window B: gradients are backpropagated644

through at most the last B steps, and earlier steps are treated as constants. This bounds memory at645

O(B) independent of K. In this experiment, we study it truncated backpropagation-through-time is646

viable and the effect of different backpropagation windows.647

Experimental Setup. We conduct experiments on three datasets: Burgers, long-horizon KdV, and648

long-horizon KS. We train a recurrent depth simulator with a point-wise lifting layer, a recurrent-depth649

block with a single Fourier layer, and a point-wise projection layer with ∼ 1M parameters. We set650

K̄ = 32, and the backpropagation window is swept over B ∈ {1, 2, 4, 16, 32}. With B = 1 the651

compute for the forward pass is equivalent to a Fourier layer with 33 layers, but the backward pass652

stores only a single activation; with B = 32 the backward pass stores every activation whenever653

K ≤ 32 and the last 32 when K > 32. This would be infeasible for higher-dimensional problems.654

Results. We report the trajectory errors in Table 5. Across all equation B = 1 performs worst and655

moving from B = 1 to B = 2 yields the largest gain, and improvements largely saturate by B = 4.656

Beyond B = 4, larger windows offer only marginal benefit while reinstating a substantial memory657

cost. Note that although trajectory error is not the preferred metric for KS, the same saturation is658

evident. Based on these results, and to balance accuracy and memory, we set B = 4 in all main659

experiments.660

Backpropagation Window B Burgers Korteweg-De Vries Kuramoto-Sivashinsky
1 0.0849 0.1046 1.6341
2 0.0315 0.0522 1.4097
4 0.0199 0.0317 1.3972
16 0.0181 0.0302 1.3960
32 0.0178 0.0298 1.3910

Table 5: Impact of the back-propagation window B on trajectory error. Accuracy improves sharply
up to B = 4 and then plateaus.

E Distribution Parameter K̄661

The distribution parameter K̄ controls the expected number of recurrent steps during training. Setting662

K̄ too low shortens training time but may leave the model under-exposed to large K values during663

inference; setting it too high increases training time. In this experiment, we wish to identify the664

optimal K̄.665

Experimental Setup. We conduct experiments on three datasets: Burgers, long-horizon KdV, and666

long-horizon KS. We train a recurrent depth simulator with a point-wise lifting layer, a recurrent-667

depth block with a single Fourier layer, and a point-wise projection layer with ∼ 1M parameters.668

The backpropagation window is fixed at B = 4, and K̄ is swept over {1, 2, 4, 8, 16, 32, 64, 128}.669

Doubling K̄ roughly doubles the forward cost, yet backward memory remains capped by B; for670

instances, K̄ = 8 matches the forward FLOPS of an 8-layer FNO but the truncated-backpropagation-671

through-time keeps the backward pass FLOPs as cheap as a 4-layer FNO. After training, each model672

is evaluated at all values K ∈ [1, 2K̄] and we report the lowest trajectory error achieved.673

Results. Figure 8-10 plot trajectory error as a function of K̄. Increasing K̄ consistently lowers the674

best achievable trajectory error, but we observe diminishing returns beyond K̄ ≈ 32. We also notice675

that models trained with larger K̄ underperform with small K values (see Figure 15). In other words,676

the additional training compute shifts the accuracy-cost curve to the right and gains appear only once677

K is allowed to grow. Based on these results, we set K̄ = 32 in our main experiments as it captures678

the bulk of the benefit of high-compute settings while leaving the model competitive in low-compute679

settings.680
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Figure 8: Choosing the distribution parameter K̄ on the Burgers dataset.
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Figure 9: Choosing the distribution parameter K̄ on the KdV dataset.
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Figure 10: Choosing the distribution parameter K̄ on the KS dataset.
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F Merging681

At each recurrent step, the recurrent depth simulator must merge the condition vector c with the682

latent vector zk. We consider six merging methods of increasing capacity. Add simply sums the two683

vectors. Adds introduces two learnable parameters α and β (z′k = αc+ βzk). Adde generalizes this684

to element-wise vectors α and β (2×hiddenchannels additional trainable parameters). Projection685

concatenates [c, zk] and applies a point-wise linear map (2×hiddenchannels×hiddenchannels686

additional trainable parameters); ProjectionI uses the same layer but is initialized with 1s along the687

diagonals and 0s everywhere else, so that it is equivalent to Adde at initialization but with increased688

capacity. Concat feeds the raw concatenation into the first layer (in the recurrent-depth block),689

doubling its input channels, and thus, trainable parameters. In this experiment, our goal is to test690

these merging methods.691

Experimental Setup. All experiments run on the one-dimensional Burgers equation. The base692

architecture is fixed—a point-wise lift, a single Fourier layer encoder, a one-layer Fourier recurrent693

block, and a Fourier decoder with point-wise projection—trained with K̄ = 32 and back-propagation694

window B = 4. We sweep five parameter budgets {0.2M, 0.5M, 1.0M, 2.0M, 4.0M} by scaling695

channel width, and implement each of the six merging methods at every budget. After training, each696

model is evaluated at all values K ∈ [1, 2K̄] and we report the lowest trajectory error achieved.697

Results. Table Table 6 reports the lowest trajectory error for every configuration. The three addition698

variants perform almost identically and improve monotonically with parameter count. The Projection699

variant lags behind, but when initialized with 1s along the diagonals (ProjectionI), it matches or700

exceeds the additional family. Concat attains the lowest error overall, but at the price of ∼ 33%701

extra parameters in the recurrent-block’s first layer; we hypothesis that part of its gain stems from702

increased model size rather than a superior merging mechanism.703

Parameters Add Adds Adde Projection ProjectionI Concat
∼ 0.2M 0.0234 0.0230 0.0229 0.0240 0.0240 0.0214
∼ 0.5M 0.0176 0.0173 0.0172 0.0223 0.0135 0.0146
∼ 1.0M 0.0129 0.0126 0.0126 0.0169 0.0101 0.0151
∼ 2.0M 0.0116 0.0115 0.0115 0.0094 0.0093 0.0090
∼ 4.0M 0.0100 0.0098 0.0099 0.0110 0.0100 0.0083

Table 6: Trajectory error on Burgers for six merging methods across five parameter budgets. Best
result in each row is bold, second-best italic.
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G More Experiments704

G.1 Experiment: Accuracy-Cost Trade-Off (Extended)705

Figure 11: Burgers: Trajectories at K = 4 (orange) and K = 16 (purple).

706
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Figure 12: Short-Horizon KdV: Trajectories at K = 4 (orange) and K = 16 (purple).
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Figure 13: Long-Horizon KdV: Trajectories at K = 4 (orange) and K = 16 (purple).
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G.2 Experiment: Alternatives (Extended)707

On the chaotic Kuramoto-Sivashinsky dataset we replace trajectory error with the average and worst-708

case correlation horizon metrics. Figure 14 shows the behavior of the four adaptive-compute simula-709

tors across 30 correlation thresholds (α = 0.70− 0.99) and all inference depths K ∈ {1, . . . , 16}.710

RDSFourier (first column) shows the desired monotone pattern: both the average and the worst-cast711

correlation horizons rise steadily with K. FNO-DEQ delivers flat surfaces—its iterations leave712

the horizon essentially unchanged—so it cannot expliot extra compute. ACDM begins with short713

horizons, improves up to K ≈ 4, and then flattens; only a narrow band of K values is usable, limiting714

its test-time flexibility. PDE-Refiner gains up to K ≈ 8 but then oscillates, making it hard to pick a715

reliable stopping point. Across both average and worst-case statistics RDS attains the longest horizons716

and is the only model whose accuracy scales predictably with additional compute, confirming its717

advantage for controllable accuracy-cost trade-offs in chaotic regimes.718

RDS FNO-DEQ ACDM PDE-Refiner

Av
er

ag
e

Wo
rs

t-
Ca

se

0

20

40

60

80

100

Ti
me

Figure 14: Kuramoto–Sivashinsky: average (top) and worst-case (bottom) correlation horizons and
threshold α versus inference depth K.

G.3 Experiment: Large-Scale Compressible Navier-Stokes (Extended)719

2 4 8 16
Recurrent Steps (K)

10 1

8 × 10 2

9 × 10 2

Tr
aj
ec
to
ry
 E
rr
or
 (
MS
E)

Pressure
Lower training FLOPs
Higher training FLOPs

2 4 8 16
Recurrent Steps (K)

Density
Lower training FLOPs
Higher training FLOPs

2 4 8 16
Recurrent Steps (K)

Velocity
Lower training FLOPs
Higher training FLOPs

Figure 15: Trajectory error (MSE) over the number of recurrent steps K for two RDSFourier models,
trained with lower and higher FLOPs budgets, respectively.

As shown in fig. 15, the two models present distinct trade-offs. When the number of recurrent steps720

during inference exceeds 8, the model trained with a higher FLOPs budget and a higher K̄ yields721

significantly lower MSE. In contrast, for fewer than 8 recurrent steps, the model trained with a lower722

computational budget performs better.723
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H Pseudocode724

1 class Network(Module):725

2 def __init__(self):726

3 super().__init__ ()727

4 # Encoder Layer728

5 self.encoder = Layer ()729

6730

7 # Collect L Intermediate Layers731

8 layers = []732

9 for _ in range(L):733

10 layers.append(Layer())734

11735

12 # Decoder Layer736

13 self.decoder = Layer ()737

14738

15 def forward(self , x):739

16 # Apply Encoder740

17 z = self.encoder(x)741

18742

19 ######################743

20 ##### Main Block #####744

21745

22 # Apply L Intermediate Layers746

23 for layer in self.layers:747

24 z = layer(z)748

25749

26 ##### Main Block #####750

27 ######################751

28752

29753

30754

31755

32756

33757

34758

35759

36760

37761

38762

39763

40764

41765

42766

43767

44768

45769

46770

47771

48772

49773

50774

51775

52776

53777

54778

55 # Apply Decoder779

56 x = self.decoder(z)780

57 return x781

Listing 1: Pseudocode of a standard neural simulator. The neural simulator contains an encoder or
lifting layer (self.encoder), L intermediate layers of any type (residual layers, Fourier layers, etc.),
and an decoder or projection layer (self.decoder).
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1 class Network(Module):782

2 def __init__(self):783

3 super().__init__ ()784

4 # Encoder Layer785

5 self.encoder = Layer ()786

6787

7 # Collect L Intermediate Layers788

8 layers = []789

9 for _ in range(L):790

10 layers.append(Layer())791

11792

12 # Decoder Layer793

13 self.decoder = Layer ()794

14795

15 def forward(self , x, K=None):796

16 # Apply Encoder797

17 c = self.encoder(x)798

18799

19 ######################800

20 ##### Main Block #####801

21802

22 # Sample Noise \w ‘shape=x.shape’803

23 z = sample_noise ()804

24805

25 # During Inference:806

26 if not self.training:807

27 # Loop K Times808

28 for _ in range(K):809

29 # Concatenate x and z810

30 z = cat([c, z], dim =1)811

31 # Apply L Intermediate Layers812

32 for layer in self.layers:813

33 z = layer(z)814

34815

35 # During Training:816

36 if self.training:817

37 # Do Not Use Grad818

38 with no_grad ():819

39 # Sample K (Using K_bar)820

40 K = sample_K ()821

41 # Loop K - B Times822

42 for _ in range(K - B):823

43 z = cat([c, z], dim=1)824

44 for layer in self.layers:825

45 z = layer(z)826

46 # Loop Remaining B Times827

47 for _ in range(B):828

48 z = cat([c, z], dim =1)829

49 for layer in self.layers:830

50 z = layer(z)831

51832

52 ##### Main Block #####833

53 ######################834

54835

55 # Apply Decoder836

56 x = self.decoder(z)837

57 return x838

Listing 2: Pseudocode of the Recurrent Depth Simulator—fewer than 20 new lines compared to
a standard neural simulator. During inference, we apply the intermediate layers K times. During
training, we apply the intermediate layers K - B times without gradient, and B times with gradient.
Nothing else needs to change.
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I Extended Related Work839

Deep Equilibrium Models. Deep Equilibrium Models (DEQs), introduced by Bai et al. [2019], are840

implicit, infinite-depth, weight-tied neural networks. A DEQ directly solves for the fixed point of a841

nonlinear transformation using any black-box root-finding algorithm and instead of backpropagating842

through each layer, which can be infeasible due to memory and numerical stability, the DEQ makes843

use of the Implicit Function Theorem to compute the gradients at the equilibrium—this approach has844

a constant memory requirement regardless of depth. Although the existence of the fixed point, or845

convergence to the fixed point, is not guaranteed; on large-scale language modeling tasks, Bai et al.846

[2019] demonstrated that DEQs can achieve performance comparable with state-of-the-art while using847

significantly less memory. Later, Bai et al. [2020] extended DEQs to large-scale computer vision848

tasks, showing similar performance and memory benefits. Subsequent research explored DEQs for849

various applications. Pokle et al. [2022] represent the entire sampling process in denoising diffusion850

implicit models as a single fixed-point system. Geng et al. [2023] distill diffusion models, directly851

from initial noise to the final image, into a DEQ. In inverse problems, Gilton et al. [2021] model852

a, potentially infinite, iterative reconstruction scheme as a DEQ. For partial differential equations,853

Pokle et al. [2022] propose FNO-DEQ, a DEQ variant with Fourier layers, to solve steady-state PDEs,854

showing improvements in accuracy and robustness to noise over baselines with four times as many855

parameters.856

Denoising Diffusion Models. First introduced by Sohl-Dickstein et al. [2015], diffusion models857

are probabilistic models with an iterative forward diffusion process and a learned reverse diffusion858

process. The forward process gradually adds noise to data until only noise remains, and the reverse859

process gradually removes noise to restore the original data. New samples are generated by sampling860

a noise vector and passing it through the reverse process. Ho et al. [2020] presented high-quality861

image synthesis results using diffusion models. Dhariwal and Nichol [2021] and Karras et al. [2022]862

made further progress leading to state-of-the-art results and widespread adoption. Diffusion models863

have been applied to image generation [Nichol et al., 2021, Ramesh et al., 2022, Saharia et al., 2022b],864

image inpainting and outpainting [Saharia et al., 2022a], super-resolution [Saharia et al., 2022c],865

audio generation [Chen et al., 2020, Kong et al., 2020], text generation [Austin et al., 2021], including866

large language (diffusion) models [Nie et al., 2025]. In scientific domains, diffusion models have867

been applied to medium-range weather forecasting [Price et al., 2023], structure-based drug design868

[Schneuing et al., 2024], and stable materials generation [Yang et al., 2023]. Kohl et al. [2023]869

demonstrated that diffusion models are viable for turbulent flow simulation. Their results show that870

diffusion models outperform, in terms of long-term accuracy and stability, more efficient (and more871

commonly used) neural simulators. Kohl et al. [2023] also compared against PDE-Refiner [Lippe872

et al., 2023], a diffusion-based multi-step refinement process, but found that PDE-Refiner is highly873

sensitive to hyperparameters, and in some cases, generated substantially worse results compared to874

other methods.875

J Extended Discussion876

To our knowledge, this is the first work to study neural simulators in terms of test-time control of877

accuracy-cost trade-offs. Since the performance varies with the chosen number of recurrent steps K,878

a scalar metric is no longer adequate; our experiments therefore focus on full accuracy-cost curve,879

and correlation-horizon surfaces. Across all tasks, the Recurrent-Depth Simulator provides a smooth,880

monotone trade-off, demonstrating that adaptive compute is possible, and we hope these results881

stimulate further work along this new axis.882

Although the main experiments concentrate on RDS instantiated with Fourier layers—chosen for883

their infinite receptive field (see Appendix C)—preliminary tests with convolutional blocks yield884

qualitatively similar results. We also use a recurrent-block with a single-layer for clarity: it delivers the885

most predictable behavior, however, deeper blocks also showed strong performance. Exploring richer886

blocks and alternative layer types under this controllable-compute paradigm remains a promising887

direction for future research.888
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