
Test-Time Control Over Accuracy-Cost Trade-Offs in Neural Physics Simulators via Recurrent Depth

Anonymous Author(s)

Affiliation

Address

email

Abstract

1 Accuracy-cost trade-offs are a fundamental aspect of scientific computing. Classical
2 numerical methods inherently offer such a trade-off: increasing resolution,
3 order, or precision typically yields more accurate solutions at higher computational
4 cost. Inspired by adaptive-compute language models, we introduce the **Recurrent-
5 Depth Simulator (RDS)**, an architecture-agnostic, plug-and-play framework that
6 enables explicit test-time control over accuracy-cost trade-offs. By setting the
7 number of recurrent steps K , users can generate fast, less-accurate simulations
8 for exploratory runs or real-time control loops, or increase K for more-accurate
9 simulations in critical applications or offline studies. We validate RDS on several
10 fluid-dynamics benchmarks, including Burgers, Korteweg-De Vries, and Kuramoto
11 Sivashinsky, and demonstrate 1) physically faithful simulations over long horizons,
12 even in low compute settings; 2) superior accuracy-cost trade-offs compared to
13 alternative adaptive-compute models, including Deep Equilibrium and diffusion-
14 based models. We further validate the recurrent-depth simulator on the challenging
15 task generating three-dimensional turbulent compressible Navier-Stokes simula-
16 tions, where we demonstrate a 0.8B parameter model with a single recurrent-depth
17 Fourier layer attains lower mean-squared error than a 1.6B parameter counterpart
18 with six Fourier layers, while matching computational resources and utilizing
19 13.5% less memory during training.

20

1 Introduction

21 Simulations are fundamental to science and engineering. They enable scientists to study and predict
22 the behavior of complex systems, and engineers to quickly iterate and optimize designs, without the
23 need for expensive or impractical experiments. Early scientific computing, limited by computational
24 resources, produced crude simulations with limited practical value. Today, with the wide availability
25 of enormous computers, simulations have led to breakthroughs across different domains, including
26 numerical weather prediction, fluid and particle flows, and drug and materials design. Still, even
27 with today’s computational resources, less accurate but fast simulations are essential for early-stage
28 studies and prototyping.

29 In scientific computing, techniques for explicit control over accuracy-cost trade-offs are well-
30 established. Heuristic search methods, such as genetic algorithms and simulated annealing, can
31 balance desired accuracy against available computational resources by controlling the size of the
32 search space. For instance, genetic algorithms obtain better solutions with larger population sizes
33 or by running more generations. Similarly, numerical methods, which underpin practically all sim-
34 ulations, have inherent accuracy-cost trade-offs: using finer discretizations, higher-order methods,
35 and lower tolerances yields more accurate solutions but requires more computational resources. For

36 high-dimensional or large-scale problems, this trade-off becomes extremely unfavorable, rendering
 37 many real-world problems computationally intractable.
 38 Machine learning provides a promising avenue to overcome this trade-off. Unlike numerical methods,
 39 which rely on explicitly defined models or heuristics, machine learning methods are general-purpose
 40 learners that learn directly from the vast amounts of available measurement and observational data,
 41 and are capable of generating simulations for a wide range of problems, geometries, discretiza-
 42 tions, and boundary conditions. Machine learning methods also benefit from hardware and software
 43 advancements specifically developed for machine learning, including GPU acceleration and par-
 44 allelization. Perhaps most notably, machine learning methods can improve simulation accuracy
 45 and efficiency: given a desired accuracy, machine learning-based simulations use fewer computa-
 46 tional resources compared to numerical methods, or, equivalently, given a computational budget,
 47 deliver greater accuracy. Several works have demonstrated these advantages in applications such as
 48 atmosphere and weather modeling and automotive design [Price et al., 2025, Bleeker et al., 2025].
 49 At train-time, there are a number of tunable knobs available for controlling the accuracy-cost trade-off.
 50 Generally, allocating more computational resources during training leads to more accurate predictions.
 51 Whether that is by increasing the training dataset through data acquisition, data augmentation, or
 52 synthetic data; by increasing the model size through stacking more layers or using wider layers; or by
 53 improving the optimization process through more advanced optimizers, higher numerical precision,
 54 or training for more steps. Each of these adjustments directly affect the train-time accuracy-cost
 55 trade-off.
 56 At test-time, there are fewer tunable knobs. The Deep Equilibrium model can go through more
 57 computational resources by increasing the iteration limit or by lowering the tolerance [Bai et al.,
 58 2019]. Diffusion models can make use of additional denoising steps or more advanced samplers
 59 to generate higher-quality outputs at greater cost [Ho et al., 2020, Lu et al., 2022]. Recent natural
 60 language processing research proposes reasoning models that spend more “thinking” on hard inputs
 61 and finish early on easy ones [Wei et al., 2022].
 62 In this work, we present Recurrent-Depth Simulator (RDS), a framework that enables explicit test-
 63 time control over accuracy-cost trade-offs, with a simple implementation (see Algorithm 1 and 2).
 64 Our approach enables adaptive-depth inference without retraining or architectural redesign. By setting
 65 a small number of recurrent steps K , the model is able to generate fast, less-accurate simulations
 66 for exploratory runs or real-time control loops. Increasing K generates more accurate simulations
 67 for critical applications or offline studies. We validate the recurrent-depth simulator on several
 68 fluid-dynamics benchmarks, including Burgers’, Korteweg-De Vries, and Kuramoto Sivashinsky and
 69 demonstrate physically faithful simulations over long horizons and superior accuracy-cost trade-offs
 70 compared to alternative adaptive models, including Deep Equilibrium and diffusion-based models. We
 71 further validate RDS on the challenging task of generating three-dimensional turbulent compressible
 72 Navier-Stokes simulations, a 0.8B parameter RDS with a single recurrent-depth Fourier layer attains
 73 lower mean-squared error than a 1.6B parameter standard Fourier neural operator architecture with
 74 six Fourier layers, while matching computational resources and utilizing 13.5% less memory during
 75 training.

76 2 Background

77 **78 Partial Differential Equations.** We consider time-dependent partial differential equations of the
 form

$$79 \mathbf{u}_t + \mathcal{N}(t, \mathbf{x}, \mathbf{u}, \mathbf{u}_x, \mathbf{u}_{xx}, \dots) = 0,$$

80 where $t \in [0, T]$ represents the temporal dimension, $\mathbf{x} \in \mathcal{X}$ represents the (possibly multiple) spatial
 81 dimension(s), and $\mathbf{u}(t, \mathbf{x}) : [0, T] \times \mathcal{X} \rightarrow \mathbb{R}^n$ represents the state at (t, \mathbf{x}) . Here, \mathcal{N} is a non-linear
 82 operator that governs the systems’ dynamics, describing the interactions among the different variables
 83 and their derivatives. We consider initial conditions given by $\mathbf{u}(0, \mathbf{x}) = \mathbf{u}_0(\mathbf{x})$, and unless otherwise
 84 specified, assume periodic boundary conditions.

85 Discretizing the partial differential equations transforms the continuous equations into a discrete
 86 form, yielding a sequence of states at discrete time steps $\{\mathbf{U}_n\}_{n=0}^N$, where $N = T/\Delta t$ is the number
 87 of time steps Δt . This discretization induces an evolution operator \mathcal{G} , which maps the state at any
 given time step to the state at the subsequent time step $\mathcal{G} : \mathbf{U}_n \rightarrow \mathbf{U}_{n+1}$.

88 **Neural Simulators.** A neural (physics) simulator approximates the evolution operator \mathcal{G} with a
 89 learned operator \mathcal{G}_θ by minimizing the one-step loss $\mathcal{L} = \|U_{t+1} - \mathcal{G}_\theta(U_t)\|_2^2$ using data from high-
 90 fidelity simulations or real-world measurements. Repeated application of \mathcal{G}_θ generates a trajectory.
 91 Because the one-step loss does not measure trajectory performance, accuracy is typically quantified
 92 by the *trajectory error*:

$$\sum_{n=0}^N \left\| U_n - \mathcal{G}_\theta^{(n)}(U_0) \right\|_2^2,$$

93 where $\mathcal{G}_\theta^{(n)}$ denotes the n -fold application of the neural simulator. However, for chaotic systems, the
 94 trajectory error is unreliable. Instead, let

$$\tau_\alpha = \min \left\{ t = n\Delta t \mid \rho \left(\mathbf{U}_n, \mathcal{G}_\theta^{(n)}(\mathbf{U}_0) \right) < \alpha \right\},$$

95 denote the earliest time at which the Pearson correlation coefficient ρ between the true and predicted
 96 state falls below a specified threshold $\alpha \in (0, 1)$. Computing τ_α for every test trajectory yields (i) the
 97 *average correlation horizon*, obtained by averaging all τ_α values, and (ii) the *worst-case correlation*
 98 *horizon*, obtained by selecting the minimum τ_α . Together, the trajectory error and correlation horizons
 99 capture both long-term accuracy and stability.

100 **Related Work.** Training with only a one-step loss can lead to a distribution shift between training
 101 states and those encountered during unrolling. To mitigate this issue, Brandstetter et al. [2022]
 102 propose the push-forward trick where the neural simulator is unrolled for two steps, but errors are
 103 backpropagated only from the second step. Subsequent studies have explored training with longer
 104 unrolling and backpropagation. Koehler et al. [2024] demonstrate that unrolling and backpropagating
 105 through 50 steps significantly improves long-term accuracy at the cost of worsened short-term accuracy
 106 and linear growth in computational and memory demands.

107 A wide range of architectures have been explored. For regular domains, convolutional-based architec-
 108 tures such as the Residual Network (ResNet [He et al., 2016]) and the U-shaped Encoder-Decoder
 109 (UNet [Ronneberger et al., 2015]) effectively capture local interactions, whereas spectral-based archi-
 110 tectures, such as the Fourier Neural Operator (FNO [Li et al., 2020]) and its factorized variant (F-FNO
 111 [Tran et al., 2021]), leverage global frequency-domain features. For irregular domains, Brandstetter
 112 et al. [2022] propose a message-passing graph neural network, while Li et al. [2023a] extend the
 113 FNO architecture with a geometry encoder and decoder, deforming an irregular mesh into a uniform
 114 latent space suitable for FNO application, and subsequently reversing this deformation. Pokle et al.
 115 [2022] propose FNO-DEQ, a Deep Equilibrium Model (DEQ [Bai et al., 2019]) variant with Fourier
 116 layers, to solve steady-state PDEs, showing improvements in accuracy and robustness to noise over
 117 baselines with four times as many parameters. Kohl et al. [2023] demonstrated that diffusion models
 118 are viable for turbulent flow simulation. Their results show that diffusion models outperform, in terms
 119 of long-term accuracy and stability, more efficient (and more commonly used) neural simulators.
 120 Recently, transformer-based architectures have gained prominence. Alkin et al. [2024] introduce
 121 the Universal Physics Transformer, a unified Eulerian-Lagrangian framework capable of handling
 122 large-scale simulations. Separately, McCabe et al. [2023] show that a single transformer pre-trained
 123 on multiple physics tasks can match or exceed task-specific baselines without additional fine-tuning.

124 Modern neural simulators achieve state-of-the-art predictive accuracy and computational efficiency
 125 across complex domains. Kochkov et al. [2021] apply neural simulators to model two-dimensional
 126 turbulence, achieving comparable errors to numerical solvers while operating at 8–10 times finer
 127 resolutions, resulting in 40-80-fold speedups. Similarly, Stachenfeld et al. [2021] show that neural
 128 simulators trained at low spatial and temporal resolutions outperform traditional numerical methods
 129 at equivalent resolutions and successfully capture turbulent dynamics usually resolved by numerical
 130 methods only at significantly high resolutions. In weather forecasting, Aurora [Bodnar et al., 2024], a
 131 foundation model for the Earth system, outperforms the Integrated Forecasting System (IFS)—the
 132 state-of-the-art numerical forecasting model—with roughly a 5,000-fold speedup, running forecasts
 133 in approximately 1.1 seconds per forecast hour on a single A100 GPU compared to approximately
 134 5720 seconds per forecast hour on a high-end CPU node. Similar results have also been reported in
 135 aerodynamics, plasma physics, and various other scientific domains Galletti et al. [2025], Li et al.
 136 [2023b], Catalani et al. [2024].

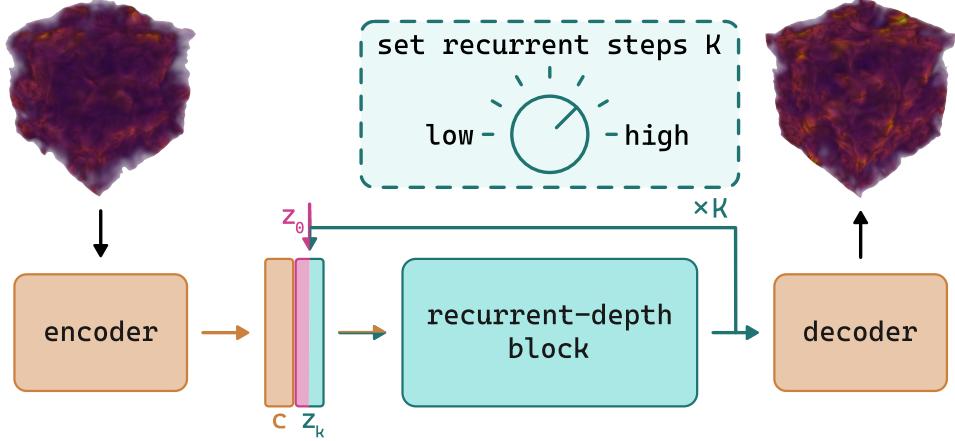


Figure 1: Schematic of the **Recurrent-Depth Simulator**. The framework consists of three main components: an encoder, a recurrent-depth block, and a decoder. At test-time, the user is able to control the accuracy-cost trade-off by setting the number of recurrent steps K .

137 3 Recurrent-Depth Simulator

138 **Overview.** The proposed **Recurrent-Depth Simulator (RDS)** consists of three main components:
 139 an encoder, a recurrent-depth block, and a decoder (see Figure 1). The encoder transforms the input
 140 state \mathbf{x} into a conditioning vector \mathbf{c} . An initial latent \mathbf{z}_0 is drawn from a fixed distribution $p(\mathbf{z})$. For
 141 a user-chosen number of recurrent steps K , the recurrent-depth block $\mathcal{R}(\cdot, \theta_{\mathcal{R}})$ —conditioned on
 142 \mathbf{c} —recursively updates the latent:

$$\mathbf{z}_k = \mathcal{R}([\mathbf{c}, \mathbf{z}_{k-1}], \theta_{\mathcal{R}}), \quad k = 1, \dots, K.$$

143 After the final recurrent step, the decoder maps \mathbf{z}_K to the predicted state $\hat{\mathbf{y}}$.

144 **Training.** RDS is trained end-to-end. For each training sample, a number of recurrent steps K is
 145 drawn from a distribution $p(K)$; the recurrent-depth block is applied for that many steps, a supervised
 146 loss is evaluated, and gradients are back-propagated through the computation (see Algorithm 1).
 147 Sampling K across a wide range encourages the recurrent block to contract toward a fixed point.

148 Large K values inflate memory because every intermediate activation must ordinarily be stored. To
 149 bound the memory footprint, we use truncated backpropagation-through-time with a fixed *backpropagation*
 150 *window* B [Williams and Peng, 1990]. Gradients are propagated through at most the last B
 151 recurrent steps, while earlier steps are treated as constants. This caps memory at $O(B)$ regardless
 152 of K and has proved sufficient for optimization. Empirical results for different backpropagation
 153 windows B are explored in Appendix D.

154 **Inference.** At test-time, the user is free to choose K according to their desired accuracy and
 155 available computational resources (see Algorithm 2). Small K values generate fast, less-accurate
 156 simulations ideal for exploratory runs, or real-time control loops. Large K values generate more
 157 accurate slow simulations suitable for critical applications or offline studies. Empirically, the first
 158 few recurrent steps make the largest adjustments to the latent vector \mathbf{z}_k ; subsequent steps contribute
 159 progressively smaller, yet still beneficial, adjustments. This behavior mirrors numerical methods,
 160 such as fixed-point and Newton methods, giving RDS a strong inductive bias that is well-suited for
 161 physical simulation tasks.

162 **Modularity.** The RDS framework is modular: each of, the encoder, recurrent-depth block, and
 163 decoder may be instantiated with the architecture primitive best suited to the problem—e.g., convo-
 164 lutional layers for Eulerian simulations or graph-convolutional layers for Lagrangian simulations—
 165 without altering the training or inference algorithms. The entire pipeline remains a standard end-
 166 to-end, supervised model with no custom losses, schedulers, or tricks—so adoption is essentially
 167 plug-and-play.

Algorithm 1 Recurrent-Depth Simulator Training

Input: training data \mathbf{x}, \mathbf{y}
Output: model parameters $\theta_{\mathcal{E}}, \theta_{\mathcal{R}}, \theta_{\mathcal{D}}$

repeat

- for** $i \in \mathcal{B}$ **do**
- $\mathbf{c} \leftarrow \mathcal{E}(\mathbf{x}_i, \theta_{\mathcal{E}})$ ▷ for every training example index in batch
- $\mathbf{z}_0 \sim p(\mathbf{z})$ ▷ compute conditioning vector
- $K \sim p(K)$ ▷ sample initial latent representation
- for** $k = 1$ to K **do**
- $\mathbf{z}'_{k-1} \leftarrow [\mathbf{c}, \mathbf{z}_{k-1}]$ ▷ sample number of recurrent steps
- $\mathbf{z}_k \leftarrow \mathcal{R}(\mathbf{z}'_{k-1}, \theta_{\mathcal{R}})$ ▷ unroll K recurrent steps
- end for**
- $\hat{\mathbf{y}}_i \leftarrow \mathcal{D}(\mathbf{z}_K, \theta_{\mathcal{D}})$ ▷ concatenate conditioning and latent representation
- $l_i \leftarrow \|\mathbf{y}_i - \hat{\mathbf{y}}_i\|$ ▷ apply recurrent block
- end for**
- accumulate losses for batch and take gradient step
- until** converged

Algorithm 2 Recurrent-Depth Simulator Inference

Input: input state \mathbf{x} , number of steps K , model parameters $\theta_{\mathcal{E}}, \theta_{\mathcal{R}}, \theta_{\mathcal{D}}$
Output: output state \mathbf{y}

$\mathbf{c} \leftarrow \mathcal{E}(\mathbf{x}, \theta_{\mathcal{E}})$ ▷ compute conditioning vector

$\mathbf{z}_0 \sim p(\mathbf{z})$ ▷ sample initial latent representation

for $k = 1$ to K **do**

- $\mathbf{z}'_{k-1} \leftarrow [\mathbf{c}, \mathbf{z}_{k-1}]$ ▷ unroll K recurrent steps
- $\mathbf{z}_k \leftarrow \mathcal{R}(\mathbf{z}'_{k-1}, \theta_{\mathcal{R}})$ ▷ concatenate conditioning and latent representation
- $\mathbf{y} \leftarrow \mathcal{D}(\mathbf{z}_K, \theta_{\mathcal{D}})$ ▷ apply recurrent block

end for

end for

168 **Initial Latent Distribution.** The initial latent vector \mathbf{z}_0 is drawn from a standard normal distribution
169 $\mathcal{N}(\mathbf{0}, \mathbf{I})$. A Gaussian distribution is a natural default, and is widely used in diffusion models, yet
170 other choices are possible. For example, replacing the Gaussian with a Student- t prior to better
171 capture heavy-tailed behavior [Pandey et al., 2025], or learning a fixed latent vector directly [Jaegle
172 et al., 2021]. The RDS framework is agnostic to this choice; any prior that suits target problem can
173 be substituted without changing the rest of the pipeline.

174 **Recurrent Step Distribution.** The number of recurrent steps K is drawn from a Poisson log-normal
175 distribution:

$$v \sim \mathcal{N}\left(\log \bar{K} - \frac{1}{2}\sigma^2, \sigma\right),$$
$$K \sim \text{Poisson}(e^v) + 1,$$

176 where $\bar{K} + 1$ is the desired mean. This distribution exposes the model to a broad spectrum of compute
177 budgets during training: it is positively skewed with most draws landing near \bar{K} , but occasional very
178 small and very large values are sampled, encouraging the recurrent-block to remain stable across both
179 shallow and deep rollouts. Unless noted otherwise, we use $\bar{K} = 32$ and $\sigma = 0.5$ —alternative values
180 are explored in Appendix E.

181 **Merging Conditioning and Latent Vectors.** At each recurrent step, the conditioning vector \mathbf{c} must
182 be merged with the current latent vector \mathbf{z}_k . The simplest scheme is plain addition: $\mathbf{z}'_k = \mathbf{c} + \mathbf{z}_k$. A
183 slightly richer variant introduces learnable scalar weights: $\mathbf{z}'_k = \alpha \mathbf{c} + \beta \mathbf{z}_k$. The weights can be made
184 element-wise: $\mathbf{z}'_k = \alpha \odot \mathbf{c} + \beta \odot \mathbf{z}_k$. Alternatives include point-wise projection, or concatenating
185 and passing the result through a width-halving layer. All variants are drop-in replacements and are
186 explored in Appendix F.

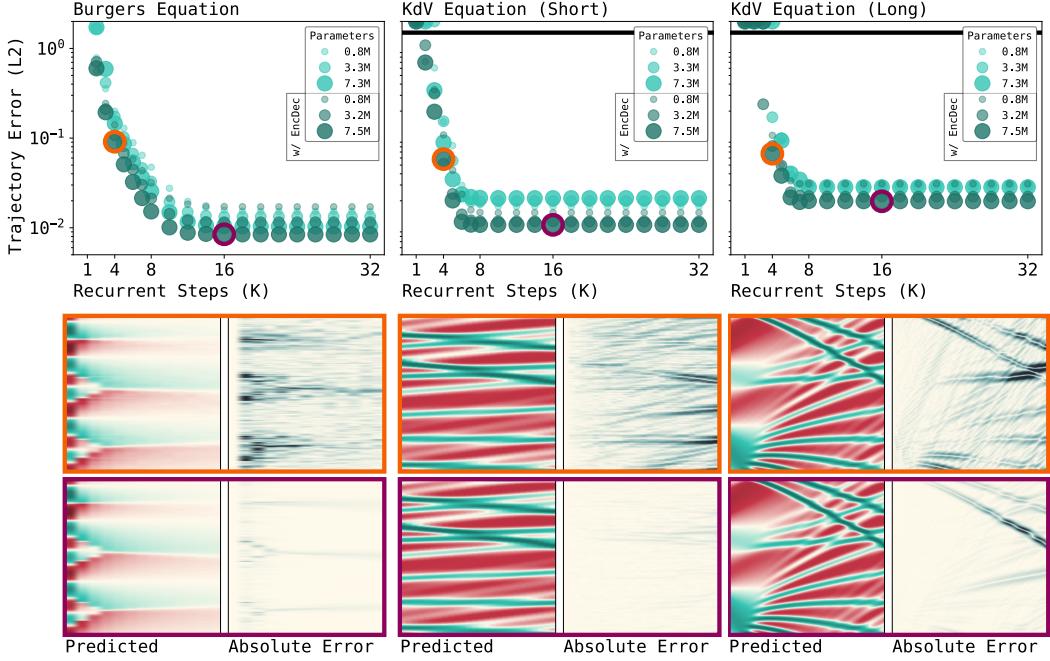


Figure 2: **Top:** Trajectory Error (L2) versus Recurrent Steps (K) for the Burgers (left), short-horizon KdV (middle), and long-horizon KdV (right). **Bottom:** Trajectories at $K = 4$ (orange) and $K = 16$ (purple) (highlighted above). Increasing K sharpens shocks in Burgers and aligns soliton crests in KdV, illustrating how recurrent depth controls the accuracy–cost trade-off.

187 4 Results

188 Full specifications of the hardware, data acquisition, data generation, preprocessing pipelines, along
 189 with training hyper-parameters, are given in Appendix A-C. Unless noted, the main experiments use
 190 the Recurrent-Depth Simulator with Fourier layers—denoted $\text{RDS}_{\text{Fourier}}$ —whose infinite receptive
 191 field simplifies analysis for depth-varying models. Other variants are explored in Appendix G.

192 4.1 Experiment: Accuracy-Cost Trade-Off

193 Commonly used neural simulators are trained for a single accuracy-cost setting: once the model is
 194 trained, every forward pass delivers the same expected accuracy and incurs the same cost. RDS, on
 195 the other hand, has a tunable knob for controlling the accuracy-cost setting (the number of recurrent
 196 steps K). The purpose of this experiment is to empirically demonstrate whether rolling out the
 197 trajectory across values of recurrent steps K is viable.

198 **Experimental Setup.** We conduct experiments on three datasets: Burgers, short-horizon KdV, and
 199 long-horizon KdV. Two instantiations of RDS are benchmarked. The first variant ($\text{RDS}_{\text{Fourier}}$ w/o /
 200 EncDec) lifts the input with a point-wise operation, recursively applies a recurrent-depth block with a
 201 single Fourier layer, and projects back to physical space; the second variant ($\text{RDS}_{\text{Fourier}}$ w/ EncDec)
 202 inserts an additional Fourier layer in, both, the encoder and decoder. For each variant, we target
 203 three parameter budgets ($\sim 1.0\text{M}, 3.5\text{M}, 7.5\text{M}$), yielding six models per dataset. We use $K = 32$
 204 and $B = 4$. After convergence, we generate trajectories for every $K \in \{1, \dots, 32\}$ and measure the
 205 trajectory error. All experiments are repeated with three seeds and averaged.

206 **Results.** Across all three datasets, both variants show the same qualitative accuracy-cost curve
 207 (Figure 2), but $\text{RDS}_{\text{Fourier}}$ w/ EncDec achieves consistently lower trajectory error. As K increases,
 208 the trajectory error falls steadily and plateaus around $K = 16$ for Burgers and $K = 8$ for both, short-
 209 and long-horizon KdV ; further steps neither help nor harm. For each dataset, we plot low-compute

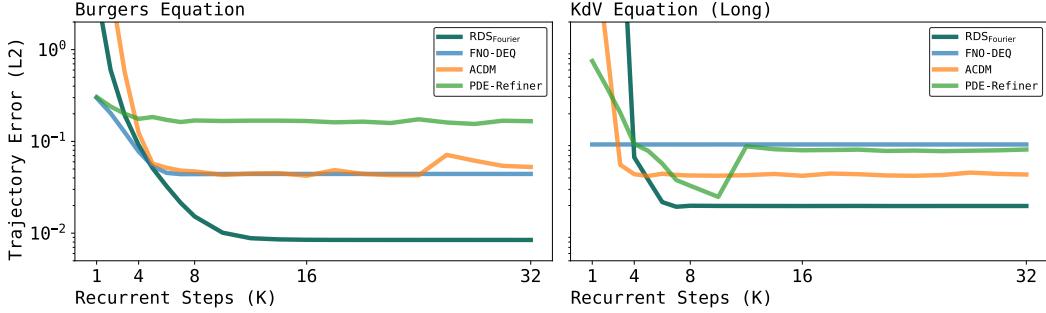


Figure 3: Trajectory Error (L2) versus Recurrent Steps (K) for the Burgers (left), and long-horizon KdV (right). Curves compare $\text{RDS}_{\text{Fourier}}$ (teal), FNO-DEQ (blue) [Marwah et al., 2023], ACDM (orange) [Kohl et al., 2023], and PDE-Refiner (green) [Lippe et al., 2023]. Across both tasks, $\text{RDS}_{\text{Fourier}}$ achieves the best accuracy-cost curve and reaches the lowest plateau.

(K = 4) and high-compute (K = 16) trajectories. In Burgers, the two settings reproduce the same shock patterns, with the low-compute run showing slightly larger absolute error around the fronts. In both KdV datasets, the low-compute run already recovers the full soliton train; the absolute error is almost entirely a small amplitude and/or phase offset, visible as narrow streaks along the soliton trajectories. Increasing to K = 16 sharpens the shocks and aligns the soliton crests. These results demonstrate that $\text{RDS}_{\text{Fourier}}$ delivers physically faithful simulations over a range of accuracy-cost settings. Extended results are presented in Appendix G.

4.2 Experiment: Alternatives

There are a few recent neural simulators that have test-time controllable knobs. FNO-DEQ is a Deep Equilibrium Model with Fourier layers whose runtime is set by a maximum number of iterations or a minimum update. ACDM —an autoregressive conditional diffusion model—is able to adjust the prediction quality by varying the number and schedule of denoising steps. PDE-Refiner applies the same diffusion principle in a direct prediction and refinement process. In this experiment, we benchmark $\text{RDS}_{\text{Fourier}}$ against the three alternatives under identical data and training setups.

Experimental Setup. We conduct experiments on three datasets: Burgers, long-horizon KdV, and long-horizon Kuramoto-Sivashinsky. For RDS, we carry over the best variant from the previous set of experiments: point-wise lift + Fourier layer encoder, a recurrent-depth block with one Fourier layer, Fourier layer with point-wise projection decoder—configured with $\sim 7.5\text{M}$ parameters, $\bar{K} = 32$, and $B = 4$ steps. FNO-DEQ follows the setup of Pokle et al. [2022], with its width scaled to match a parameter count of $\sim 7.5\text{M}$. ACDM and PDE-Refiner use a modern UNet backbone from their original implementations [Kohl et al., 2023, Lippe et al., 2023]. In early tests, both diffusion-based models proved parameter-inefficient and could not rollout beyond a few steps, so we train them with $\sim 15\text{M}$ parameters for Burgers and KdV, and $\sim 50\text{M}$ parameters for KS (the scale used by Lippe et al. [2023]). After convergence, we generate trajectories for every $K \in \{1, \dots, 32\}$ (where K is equal to the recurrent steps for RDS, iterations for FNO-DEQ, and denoising steps for ACDM and PDE-Refiner). On Burgers and KdV, we measure and report the trajectory error. Since the KS equation produces chaotic behavior, we measure the average and worst-case correlation horizon over a sweep of 30 thresholds ($\alpha = 0.7\text{-}0.99$ in increments of 0.01).

Results. On Burgers, FNO-DEQ, ACDM , and PDE-Refiner all plateau by $K \approx 4$ (see Figure 3 (left)); PDE-Refiner gains practically nothing beyond its second refinement step. $\text{RDS}_{\text{Fourier}}$, by contrast, continues to improve until $K \approx 16$, while using half the parameters of the diffusion-based models. On KdV, FNO-DEQ exhibits the convergence limitation reported by Sittoni and Tudisco [2024]—the latent representation oscillates around, rather than converges to, the fixed point—so additional iterations provide no improvement. The ten-fold larger training dataset helps the diffusion-based models, however, once again, ACDM plateaus near $K \approx 4$. PDE-Refiner improves up to $K = 11$ before degrading because larger K values are out-of-distribution. $\text{RDS}_{\text{Fourier}}$ delivers the best

Model	Params	Training Memory	Training Epochs	Training GFLOPs	MSE $\times 10^{-2}$ Density	MSE $\times 10^{-2}$ Pressure	MSE $\times 10^{-2}$ Velocity
FNO	0.5B	38 GB	100	1×10^7	9.60	9.59	9.55
FNO	1.0B	57 GB	100	2×10^7	7.83	7.79	7.82
FNO	1.6B	73 GB	100	3×10^7	7.61	7.59	7.62
RDS _{Fourier}	0.8B	64 GB	82	3×10^7	7.57	7.51	7.53
RDS _{Fourier}	0.8B	64 GB	100	5×10^7	7.37	7.33	7.36

Table 1: Performance comparison between FNO and RDS_{Fourier}. We report the total number of learnable parameters, the peak of GPU memory during training, total training epochs and training GFLOPs. We also report the trajectory MSE, i.e. the MSE between the ground truth trajectory and the predicted trajectory. We calculate it over 3 different channels, velocity, pressure, and density fields.

accuracy-cost curves and lowest trajectory errors. On KS (see Appendix G), where the diffusion-based models have 7-fold the amount of parameters as RDS_{Fourier}, Λ CDM plateaus early, and PDE-Refiner shows erratic worst-case correlation horizons. Taken together, RDS_{Fourier} consistently outperforms alternatives while using fewer parameters.

4.3 Experiment: Large-Scale Compressible Navier-Stokes

Models Details. We train five different variations of Fourier Neural Operator (FNO), each with 64 channels and 20 modes. Three of these models are FNO with various depths, specifically with 2, 4, 6 layers. The remaining two are RDS_{Fourier} (w/ EncDec) models, each using a single Fourier layer in the encoder, decoder, and recurrent block, with a backpropagation window of 4. The main architectural difference lies in the value of \bar{K} . In one model, we set $\bar{K} = 16$, and we use it to match the number of training steps of the other three FNO models. In contrast, the second model uses $\bar{K} = 8$. It is chosen to match the training FLOPs of the 6-layer FNO. We did not compare against DEQ, PDE-Refiner, or diffusion models. Training DEQ is notoriously slow and becomes impractical for a problem of this scale. As for PDE-Refiner and diffusion models, implementing a U-Net with 3D convolutional layers that fits within the same GPU memory budget would result in a model that is too shallow, with a limited receptive field. For these reasons, we chose not to include these baselines.

Training is run for 100 epochs across all models, except for the FLOPs-matched recurrent model, which is trained for 82 epochs to match the FLOPs of the deepest baseline.

Results. As shown in table 1, both RDS_{Fourier} models consistently achieve a lower trajectory MSE compared to their non-recurrent FNO counterparts. Remarkably, the RDS_{Fourier} with $\bar{K} = 8$, which is constrained to match the 6 layers FNO’s total training FLOPs, still achieves lower trajectory MSE than all the standard models. Furthermore, RDS_{Fourier} require substantially less GPU memory, approximately 13.5% compared to the 6 layer FNO and uses half of the parameters. The encoder and decoder of RDS_{Fourier} have the same number of parameters as the smallest FNO model. As shown in table 1, incorporating the recurrent block leads to a 22% improvement in test performance. Similarly, the mid-size FNO can be interpreted as having a single layer in both the encoder and decoder, with a 2-layer middle block. Despite having only half as many parameters in the recurrent-depth block, RDS_{Fourier} consistently outperforms the mid-size FNO.

Conclusion. We introduce the Recurrent-Depth Simulator (RDS), a simple and general methodology for dynamically adjusting the computational budget at test time. We describe how architectural primitives can be integrated into RDS, outline the training procedure, and discuss strategies for managing the accuracy–cost trade-off. We demonstrate that RDS achieves superior accuracy–efficiency trade-offs compared to state-of-the-art alternatives, including Deep Equilibrium and diffusion-based models. The experiments for three-dimensional simulation suggest that recurrent-depth is a viable and scalable mechanism for improving neural simulators.

281 **References**

282 Benedikt Alkin, Andreas Fürst, Simon Schmid, Lukas Gruber, Markus Holzleitner, and Johannes
283 Brandstetter. Universal physics transformers: A framework for efficiently scaling neural operators.
284 *Advances in Neural Information Processing Systems*, 2024.

285 Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg. Structured
286 denoising diffusion models in discrete state-spaces. *Advances in neural information processing
287 systems*, 34:17981–17993, 2021.

288 Shaojie Bai, J Zico Kolter, and Vladlen Koltun. Deep equilibrium models. *Advances in neural
289 information processing systems*, 32, 2019.

290 Shaojie Bai, Vladlen Koltun, and J Zico Kolter. Multiscale deep equilibrium models. *Advances in
291 neural information processing systems*, 33:5238–5250, 2020.

292 Maurits Bleeker, Matthias Dorfer, Tobias Kronlachner, Reinhard Sonnleitner, Benedikt Alkin, and
293 Johannes Brandstetter. Neuralcfd: Deep learning on high-fidelity automotive aerodynamics
294 simulations. *arXiv preprint arXiv:2502.09692*, 2025.

295 Cristian Bodnar, Wessel P Bruinsma, Ana Lucic, Megan Stanley, Johannes Brandstetter, Patrick
296 Garvan, Maik Riechert, Jonathan Weyn, Haiyu Dong, Anna Vaughan, et al. Aurora: A foundation
297 model of the atmosphere. *arXiv preprint arXiv:2405.13063*, 2024.

298 Johannes Brandstetter, Daniel Worrall, and Max Welling. Message passing neural pde solvers. *arXiv
299 preprint arXiv:2202.03376*, 2022.

300 Charles G Broyden. A class of methods for solving nonlinear simultaneous equations. *Mathematics
301 of computation*, 19(92):577–593, 1965.

302 Giovanni Catalani, Siddhant Agarwal, Xavier Bertrand, Frédéric Tost, Michael Bauerheim, and
303 Joseph Morlier. Neural fields for rapid aircraft aerodynamics simulations. *Scientific Reports*, 14
304 (1):25496, 2024.

305 Nanxin Chen, Yu Zhang, Heiga Zen, Ron J Weiss, Mohammad Norouzi, and William Chan. Wavegrad:
306 Estimating gradients for waveform generation. *arXiv preprint arXiv:2009.00713*, 2020.

307 Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. *Advances
308 in neural information processing systems*, 34:8780–8794, 2021.

309 Gianluca Galletti, Fabian Paischer, Paul Setinek, William Hornsby, Lorenzo Zanisi, Naomi Carey,
310 Stanislas Pamela, and Johannes Brandstetter. 5d neural surrogates for nonlinear gyrokinetic
311 simulations of plasma turbulence. *arXiv preprint arXiv:2502.07469*, 2025.

312 Jonas Geiping, Sean McLeish, Neel Jain, John Kirchenbauer, Siddharth Singh, Brian R Bartoldson,
313 Bhavya Kailkhura, Abhinav Bhatele, and Tom Goldstein. Scaling up test-time compute with latent
314 reasoning: A recurrent depth approach. *arXiv preprint arXiv:2502.05171*, 2025.

315 Zhengyang Geng, Xin-Yu Zhang, Shaojie Bai, Yisen Wang, and Zhouchen Lin. On training implicit
316 models. *Advances in Neural Information Processing Systems*, 34:24247–24260, 2021.

317 Zhengyang Geng, Ashwini Pokle, and J Zico Kolter. One-step diffusion distillation via deep
318 equilibrium models. *Advances in Neural Information Processing Systems*, 36:41914–41931, 2023.

319 Dobrik Georgiev, Joseph Wilson, Davide Buffelli, and Pietro Liò. Deep equilibrium algorithmic
320 reasoning. *Advances in Neural Information Processing Systems*, 37:33638–33667, 2024.

321 Davis Gilton, Gregory Ongie, and Rebecca Willett. Deep equilibrium architectures for inverse
322 problems in imaging. *IEEE Transactions on Computational Imaging*, 7:1123–1133, 2021.

323 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
324 recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*,
325 pages 770–778, 2016.

326 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in
327 neural information processing systems*, 33:6840–6851, 2020.

328 Andrew Jaegle, Felix Gimeno, Andy Brock, Oriol Vinyals, Andrew Zisserman, and Joao Carreira.
329 Perceiver: General perception with iterative attention. In *International conference on machine
330 learning*, pages 4651–4664. PMLR, 2021.

331 Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
332 based generative models. *Advances in neural information processing systems*, 35:26565–26577,
333 2022.

334 Dmitrii Kochkov, Jamie A Smith, Ayya Alieva, Qing Wang, Michael P Brenner, and Stephan Hoyer.
335 Machine learning–accelerated computational fluid dynamics. *Proceedings of the National Academy
336 of Sciences*, 118(21):e2101784118, 2021.

337 Felix Koehler, Simon Niedermaier, Nils Thuerey, et al. Apebench: A benchmark for autoregressive
338 neural emulators of pdes. *Advances in Neural Information Processing Systems*, 37:120252–120310,
339 2024.

340 Georg Kohl, Li-Wei Chen, and Nils Thuerey. Benchmarking autoregressive conditional diffusion
341 models for turbulent flow simulation. *arXiv preprint arXiv:2309.01745*, 2023.

342 Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and Bryan Catanzaro. Diffwave: A versatile
343 diffusion model for audio synthesis. *arXiv preprint arXiv:2009.09761*, 2020.

344 Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew
345 Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential equations.
346 *arXiv preprint arXiv:2010.08895*, 2020.

347 Zongyi Li, Miguel Liu-Schiavone, Nikola Kovachki, Burigede Liu, Kamyar Azizzadenesheli, Kaushik
348 Bhattacharya, Andrew Stuart, and Anima Anandkumar. Learning dissipative dynamics in chaotic
349 systems. *arXiv preprint arXiv:2106.06898*, 2021.

350 Zongyi Li, Daniel Zhengyu Huang, Burigede Liu, and Anima Anandkumar. Fourier neural operator
351 with learned deformations for pdes on general geometries. *Journal of Machine Learning Research*,
352 24(388):1–26, 2023a.

353 Zongyi Li, Nikola Kovachki, Chris Choy, Boyi Li, Jean Kossaifi, Shourya Otta, Mohammad Amin
354 Nabian, Maximilian Stadler, Christian Hundt, Kamyar Azizzadenesheli, et al. Geometry-informed
355 neural operator for large-scale 3d pdes. *Advances in Neural Information Processing Systems*, 36:
356 35836–35854, 2023b.

357 Zongyi Li, Hongkai Zheng, Nikola Kovachki, David Jin, Haoxuan Chen, Burigede Liu, Kamyar
358 Azizzadenesheli, and Anima Anandkumar. Physics-informed neural operator for learning partial
359 differential equations. *ACM/JMS Journal of Data Science*, 1(3):1–27, 2024.

360 Phillip Lippe, Bas Veeling, Paris Perdikaris, Richard Turner, and Johannes Brandstetter. Pde-
361 refiner: Achieving accurate long rollouts with neural pde solvers. *Advances in Neural Information
362 Processing Systems*, 36:67398–67433, 2023.

363 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. *arXiv preprint
364 arXiv:1711.05101*, 2017a.

365 Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts, 2017b. URL
366 <https://arxiv.org/abs/1608.03983>.

367 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2019. URL <https://arxiv.org/abs/1711.05101>.

368 Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver++: Fast
369 solver for guided sampling of diffusion probabilistic models. *arXiv preprint arXiv:2211.01095*,
370 2022.

372 Harris Abdul Majid, Pietro Sittoni, and Francesco Tudisco. Solaris: A foundation model for the
 373 sun. In *Neurips 2024 Workshop Foundation Models for Science: Progress, Opportunities, and*
 374 *Challenges*, 2024. URL <https://openreview.net/forum?id=FUZryaIpV2>.

375 Tanya Marwah, Ashwini Pokle, J Zico Kolter, Zachary Lipton, Jianfeng Lu, and Andrej Risteski.
 376 Deep equilibrium based neural operators for steady-state pdes. *Advances in Neural Information*
 377 *Processing Systems*, 36:15716–15737, 2023.

378 Michael McCabe, Bruno Régaldo-Saint Blanchard, Liam Holden Parker, Ruben Ohana, Miles Cranmer,
 379 Alberto Bietti, Michael Eickenberg, Siavash Golkar, Geraud Krawezik, Francois Lanusse, et al.
 380 Multiple physics pretraining for physical surrogate models. *arXiv preprint arXiv:2310.02994*,
 381 2023.

382 Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob McGrew,
 383 Ilya Sutskever, and Mark Chen. Glide: Towards photorealistic image generation and editing with
 384 text-guided diffusion models. *arXiv preprint arXiv:2112.10741*, 2021.

385 Shen Nie, Fengqi Zhu, Zebin You, Xiaolu Zhang, Jingyang Ou, Jun Hu, Jun Zhou, Yankai Lin, Ji-
 386 Rong Wen, and Chongxuan Li. Large language diffusion models. *arXiv preprint arXiv:2502.09992*,
 387 2025.

388 Kushagra Pandey, Jaideep Pathak, Yilun Xu, Stephan Mandt, Michael Pritchard, Arash Vahdat, and
 389 Morteza Mardani. Heavy-tailed diffusion models. In *The Thirteenth International Conference on*
 390 *Learning Representations*, 2025. URL <https://openreview.net/forum?id=toz10EN4qp>.

391 Ashwini Pokle, Zhengyang Geng, and J Zico Kolter. Deep equilibrium approaches to diffusion
 392 models. *Advances in Neural Information Processing Systems*, 35:37975–37990, 2022.

393 Ilan Price, Alvaro Sanchez-Gonzalez, Ferran Alet, Tom R Andersson, Andrew El-Kadi, Dominic
 394 Masters, Timo Ewalds, Jacklynn Stott, Shakir Mohamed, Peter Battaglia, et al. Gencast: Diffusion-
 395 based ensemble forecasting for medium-range weather. *arXiv preprint arXiv:2312.15796*, 2023.

396 Ilan Price, Alvaro Sanchez-Gonzalez, Ferran Alet, Tom R Andersson, Andrew El-Kadi, Dominic
 397 Masters, Timo Ewalds, Jacklynn Stott, Shakir Mohamed, Peter Battaglia, et al. Probabilistic
 398 weather forecasting with machine learning. *Nature*, 637(8044):84–90, 2025.

399 Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
 400 conditional image generation with clip latents. *arXiv preprint arXiv:2204.06125*, 1(2):3, 2022.

401 Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
 402 image segmentation. In *Medical image computing and computer-assisted intervention—MICCAI*
 403 *2015: 18th international conference, Munich, Germany, October 5–9, 2015, proceedings, part III*
 404 *18*, pages 234–241. Springer, 2015.

405 Chitwan Saharia, William Chan, Huiwen Chang, Chris Lee, Jonathan Ho, Tim Salimans, David Fleet,
 406 and Mohammad Norouzi. Palette: Image-to-image diffusion models. In *ACM SIGGRAPH 2022*
 407 *conference proceedings*, pages 1–10, 2022a.

408 Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
 409 Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic
 410 text-to-image diffusion models with deep language understanding. *Advances in neural information*
 411 *processing systems*, 35:36479–36494, 2022b.

412 Chitwan Saharia, Jonathan Ho, William Chan, Tim Salimans, David J Fleet, and Mohammad Norouzi.
 413 Image super-resolution via iterative refinement. *IEEE transactions on pattern analysis and machine*
 414 *intelligence*, 45(4):4713–4726, 2022c.

415 Arne Schneuing, Charles Harris, Yuanqi Du, Kieran Didi, Arian Jamasb, Ilia Igashov, Weitao Du,
 416 Carla Gomes, Tom L Blundell, Pietro Lio, et al. Structure-based drug design with equivariant
 417 diffusion models. *Nature Computational Science*, 4(12):899–909, 2024.

418 Tal Schuster, Adam Fisch, Jai Gupta, Mostafa Dehghani, Dara Bahri, Vinh Tran, Yi Tay, and Donald
 419 Metzler. Confident adaptive language modeling. *Advances in Neural Information Processing*
 420 *Systems*, 35:17456–17472, 2022.

421 Pietro Sittoni and Francesco Tudisco. Subhomogeneous deep equilibrium models. In *International
422 Conference on Machine Learning*, pages 45794–45812. PMLR, 2024.

423 Jascha Sohl-Dickstein. The boundary of neural network trainability is fractal. *arXiv preprint
424 arXiv:2402.06184*, 2024.

425 Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
426 learning using nonequilibrium thermodynamics. In *International conference on machine learning*,
427 pages 2256–2265. pmlr, 2015.

428 Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
429 *Advances in neural information processing systems*, 32, 2019.

430 Kimberly Stachenfeld, Drummond B Fielding, Dmitrii Kochkov, Miles Cranmer, Tobias Pfaff,
431 Jonathan Godwin, Can Cui, Shirley Ho, Peter Battaglia, and Alvaro Sanchez-Gonzalez. Learned
432 coarse models for efficient turbulence simulation. *arXiv preprint arXiv:2112.15275*, 2021.

433 Makoto Takamoto, Timothy Praditia, Raphael Leiteritz, Daniel MacKinlay, Francesco Alesiani, Dirk
434 Pflüger, and Mathias Niepert. Pdebench: An extensive benchmark for scientific machine learning.
435 *Advances in Neural Information Processing Systems*, 35:1596–1611, 2022.

436 Eleuterio F Toro, Michael Spruce, and William Speares. Restoration of the contact surface in the
437 hll-riemann solver. *Shock waves*, 4(1):25–34, 1994.

438 Alasdair Tran, Alexander Mathews, Lexing Xie, and Cheng Soon Ong. Factorized fourier neural
439 operators. *arXiv preprint arXiv:2111.13802*, 2021.

440 Bram Van Leer. Towards the ultimate conservative difference scheme. *Journal of computational
441 physics*, 135(2):229–248, 1997.

442 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
443 Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural information processing
444 systems*, 30, 2017.

445 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
446 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in
447 neural information processing systems*, 35:24824–24837, 2022.

448 Ronald J Williams and Jing Peng. An efficient gradient-based algorithm for on-line training of
449 recurrent network trajectories. *Neural computation*, 2(4):490–501, 1990.

450 Sherry Yang, KwangHwan Cho, Amil Merchant, Pieter Abbeel, Dale Schuurmans, Igor Mordatch, and
451 Ekin Dogus Cubuk. Scalable diffusion for materials generation. *arXiv preprint arXiv:2311.09235*,
452 2023.

453 Xiaohui Zhong, Lei Chen, Xu Fan, Wenxu Qian, Jun Liu, and Hao Li. Fuxi-2.0: Advancing machine
454 learning weather forecasting model for practical applications. *arXiv preprint arXiv:2409.07188*,
455 2024.

456 **A Hardware Details**

457 For the one-dimensional Burgers, Korteweg-De Vries, and Kuramoto-Sivashinsky equations, we
 458 generated the data using an AMD 7950X processor (16 cores/32 threads). Each example trajectory
 459 in the Burgers equation and Korteweg-De Vries equation datasets took approximately 10 and 20
 460 minutes to generate, respectively. The entire datasets, with 600 examples (500 training examples and
 461 100 testing examples), took approximately 6000 and 12000 minutes to generate, respectively. Each
 462 training example in the Kuramoto-Sivashinsky equation dataset took approximately 15 minutes to
 463 generate. The testing examples were twice as long, and took approximately 30 minutes to generate.
 464 The entire dataset, with 500 training examples and 100 testing examples, took approximately 10500
 465 minutes to generate. All together, the three one-dimensional datasets took approximately 28500
 466 minutes (475 hours) to generate.

467 All one-dimensional models were trained on a single NVIDIA A100 (40GB) GPU per run, with aver-
 468 age training times ranging from 15-300 minutes per model—smaller models on the Burgers dataset
 469 took 15 minutes, whereas larger models trained on Korteweg-De Vries or Kuramoto-Sivashinsky
 470 datasets, which contained 10 times longer trajectories, took closer to 300 minutes. We trained
 471 approximately 1000 models for exploratory experiments (e.g., tuning hyperparameters, evaluating
 472 alternative architectures) and final experiments, and estimate a total of 1000 NVIDIA A100 (40GB)
 473 GPU hours.

474 The three-dimensional models were much larger. Under our experimental setup, only the smallest
 475 Fourier Neural Operator with two layers managed to fit on a single NVIDIA A100 (40GB) GPU. This
 476 model did not perform well (approximately 25-30% higher MSE compared to its six layer variant).
 477 So all three-dimensional experiments were trained on a single NVIDIA A100 (80GB) GPU. On
 478 average, each training run took 1200-1500 minutes to complete. We trained approximately 10 models
 479 for exploratory experiments and final experiments, and estimate a total of 225 NVIDIA A100 (80GB)
 480 GPU hours.

481 **B Data Details**

482 **B.1 Equations**

483 **Burgers Equation.** The Burgers equation is a second-order nonlinear partial differential equation
 484 derived to model convective steepening and diffusive smoothing. Its one-dimensional variant can be
 485 expressed as:

$$u_t + uu_x = \nu u_{xx}.$$

486 Here, ν plays the role of kinematic viscosity. Setting $\nu = 0$ yields the inviscid form $u_t + uu_x = 0$,
 487 whose solutions develop finite-time shock discontinuities; the viscous term νu_{xx} regularises these
 488 shocks but introduces extremely thin internal layers that remain numerically stiff. Machine learning
 489 methods must learn to represent sharp gradients, moving shocks and the delicate interplay between
 490 nonlinearity and diffusion.

491 **Korteweg-De Vries Equation.** The Korteweg-De Vries (KdV) is a third-order nonlinear partial
 492 differential equation derived to model weakly nonlinear, weakly dispersive unidirectional waves. Its
 493 one-dimensional variant can be expressed as:

$$u_t + \alpha uu_x + u_{xxx} = 0.$$

494 Here, α (often set to ± 1 or ± 6) controls nonlinear steepening while the third-order derivative u_{xxx}
 495 introduces dispersion. The exact balance of these effects produces solitary-wave solutions (solitons)
 496 that preserve their shape and speed and undergo only phase shifts upon interaction—small amounts of
 497 artificial dissipation can destroy these very structures making KdV an ideal candidate for evaluating
 498 whether machine learning methods can maintain accuracy, stability and conservation over long
 499 horizons.

500 **Kuramoto-Sivashinsky Equation.** The Kuramoto-Sivashinsky (KS) equation is a fourth-order
 501 nonlinear partial differential equation derived to model diffusive-thermal instabilities in laminar flame
 502 fronts. Its one-dimensional variant can be expressed as:

$$u_t + u_{xx} + u_{xxxx} + uu_x = 0.$$

503 Here, the fourth-order derivative u_{xxxx} and the nonlinear term uu_x contribute to complex and chaotic
 504 behavior which present a challenge for traditional numerical solvers. The challenges and the wide
 505 applicability of the KS equation make it an ideal candidate for evaluating machine learning methods.

506 **Compressible Navier-Stokes Equations.** The three-dimensional Compressible Navier-Stokes
 507 (CNS) equations model complex phenomena such as shock wave formation and propagation. They are
 508 widely used across various engineering and physics applications, including aircraft wing aerodynamics
 509 and the formation of interstellar gases. The equations can be expressed as:

$$\begin{aligned}\partial_t \rho + \nabla \cdot (\rho \mathbf{v}) &= 0, \quad \rho(\partial_t \mathbf{v} + \mathbf{v} \cdot \nabla \mathbf{v}) = -\nabla p + \eta \Delta \mathbf{v} + (\zeta + \eta/3) \nabla(\nabla \cdot \mathbf{v}), \\ \partial_t(\epsilon + \rho \mathbf{v}^2/2) + \nabla \cdot [(p + \epsilon + \rho \mathbf{v}^2/2) \mathbf{v} - \mathbf{v} \cdot \sigma'] &= 0,\end{aligned}$$

510 where ρ is the mass density, \mathbf{v} is the fluid velocity, p is the pressure, and ϵ is the internal energy
 511 determined by the equation of state. The term σ' denotes the viscous stress tensor, while η and
 512 ζ represent the shear and bulk viscosities, respectively. In this case, using a classical numerical
 513 solver to approximate the fluid flow is particularly challenging due to strict stability constraints,
 514 high computational cost, and the need for accurate yet robust numerical schemes that handle shocks,
 515 dissipation, and grid adaptivity in large-scale domains. Even though machine learning can overcome
 516 several of the challenges posed by traditional solvers, training a neural simulator on three-dimensional
 517 data comes with considerable engineering complexity. The primary limitation arises from storing
 518 the activations during training, increasing the memory requirement compared to smaller dimensions
 519 problems.

520 B.2 Data Generation

521 For the one-dimensional Burgers and Korteweg-De Vries equations, we set $T = 10$ and $T = 100$,
 522 respectively (for both training and testing datasets). For the one-dimensional Kuramoto-Sivashinsky
 523 equation, we set $T = 100$ for the training dataset and $T = 200$ for the training dataset. For all three
 524 equations, we set $\Delta t = 0.2$. The spatial domain was set to $\mathcal{X} = [0, 2\pi]$ for the Burgers equation
 525 with $\Delta x = 2\pi/8192$, $\mathcal{X} = [0, 128]$ for the Korteweg-De Vries equation with $\Delta x = 128/1024$,
 526 and $\mathcal{X} = [0, 64]$ for the Kuramoto-Sivashinsky equation with $\Delta x = 64/4096$. For each equation,
 527 the spatial step Δx was chosen to be as small as possible while maintaining trajectory generation
 528 under a pre-specified computational budget. All three domains had periodic boundaries. The initial
 529 conditions were sampled from a distribution over the truncated Fourier series with random coefficients
 530 $A_k \sim U(A_l, A_r)$, $l_k \sim \{l_a, l_b, l_c, l_d\}$, and $\phi_k \sim (\phi_l, \phi_r)$:

$$u_0(x) = \sum_{k=1}^{10} A_k \sin\left(\frac{2\pi l_k x}{L} + \phi_k\right),$$

531 where L is the length of the spatial domain. Each trajectory was generated using the method of
 532 lines with the spatial derivatives computed using the pseudo-spectral method. For each equation, we
 533 selected a time-stepping method that balances accuracy and cost: RK23 for the Burgers equation,
 534 RK45 for the Korteweg-De Vries equation, and LSODA for the Kuramoto-Sivashinsky equation. See
 535 Table 2 for details.

Equation	Train T	Test T	Δt	\mathcal{X}	Δx	$\{A_l, A_r\}$	$\{l_a, l_b, l_c, l_d\}$	$\{\phi_l, \phi_r\}$	Time-Stepping
Burgers	10	10	0.2	$[0, 2\pi]$	$2\pi/8192$	$\{-0.5, 0.5\}$	$\{3, 4, 5, 6\}$	$\{0, 2\pi\}$	RK23
KdV	100	100	0.2	$[0, 128]$	$128/1024$	$\{-0.5, 0.5\}$	$\{1, 2, 3, -\}$	$\{0, 2\pi\}$	RK45
KS	100	200	0.2	$[0, 64]$	$64/4096$	$\{-0.5, 0.5\}$	$\{1, 2, 3, -\}$	$\{0, 2\pi\}$	LSODA

Table 2: Data generation settings.

536 We construct two additional datasets, short-horizon Korteweg-De Vries and short-horizon Kuratmoto-
 537 Sivashinsky, by considering the first 400 time steps to be part of a *warmup phase* and subsequently
 538 discarding them. See Table Table 3 for details.

539 For each of the one-dimensional equations, we generate 500 training trajectories and 100 testing
 540 trajectories. The data was initially generated using double-precision floating-point format (float64)
 541 and then converted into single-precision floating-point formation (float32) for our experiments.

Equation	Warm-Up Steps	Train T	Test T
Short-Horizon KdV	400	20	20
Short-Horizon KS	400	20	120
Long-Horizon KdV	0	100	100
Long-Horizon KS	0	100	200

Table 3: Short-horizon and long-horizon settings.

542 **Three-dimensional compressible Navier-Stokes dataset**

543 We use the three-dimensional compressible Navier-Stokes turbulence dataset provided by Takamoto
 544 et al. [2022]. This dataset consists of 600 trajectories, each containing 21 time steps, with 90% of
 545 the trajectories used for training and the remaining 10% reserved for testing. The turbulence initial
 546 condition considers turbulent velocity with uniform mass density and pressure. The initial velocity is
 547 defined as

$$\mathbf{v}(\mathbf{x}, t = 0) = \sum_{i=1}^4 A_i \sin(\mathbf{k}_i \cdot \mathbf{x} + \phi_i),$$

548 where the amplitude coefficients are

$$A_i = \frac{\bar{v}}{|\mathbf{k}_i|^2},$$

549 and the characteristic velocity $\bar{v} = c_s M$ is determined by the Mach number M and the speed of
 550 sound

$$c_s = \sqrt{\frac{\Gamma p}{\rho}}.$$

551 To reduce compressibility effects, the compressible component of the velocity field is removed using a
 552 Helmholtz decomposition in Fourier space, resulting in a divergence-free velocity field that preserves
 553 turbulent structures while minimizing artificial acoustic modes.

554 The flow parameters are set to

$$(\eta, \zeta, M) = (10^{-2}, 10^{-2}, 1.0),$$

555 where η and ζ are the shear and bulk viscosity coefficients, respectively, and M is the initial Mach
 556 number.

557 The data are simulated using a second-order accurate HLLC Toro et al. [1994] scheme for the inviscid
 558 terms, the MUSCL Van Leer [1997] method for spatial reconstruction, and a central difference
 559 scheme for the viscous terms.

560 Each time step is composed by five channels: the three velocity components, pressure, and density,
 561 and each time steps is represented on a 64^3 grid, resulting in $5 \times 64^3 = 5 \times 262,144 \approx 1.31 \times 10^6$
 562 data points per step. The whole dataset size is 62 GB, indeed, due to memory constraints, training is
 563 performed by loading sub-batches of 32 samples directly from the hard disk where the dataset was
 564 stored. While this approach slows down training, it is necessary given the large dataset size.

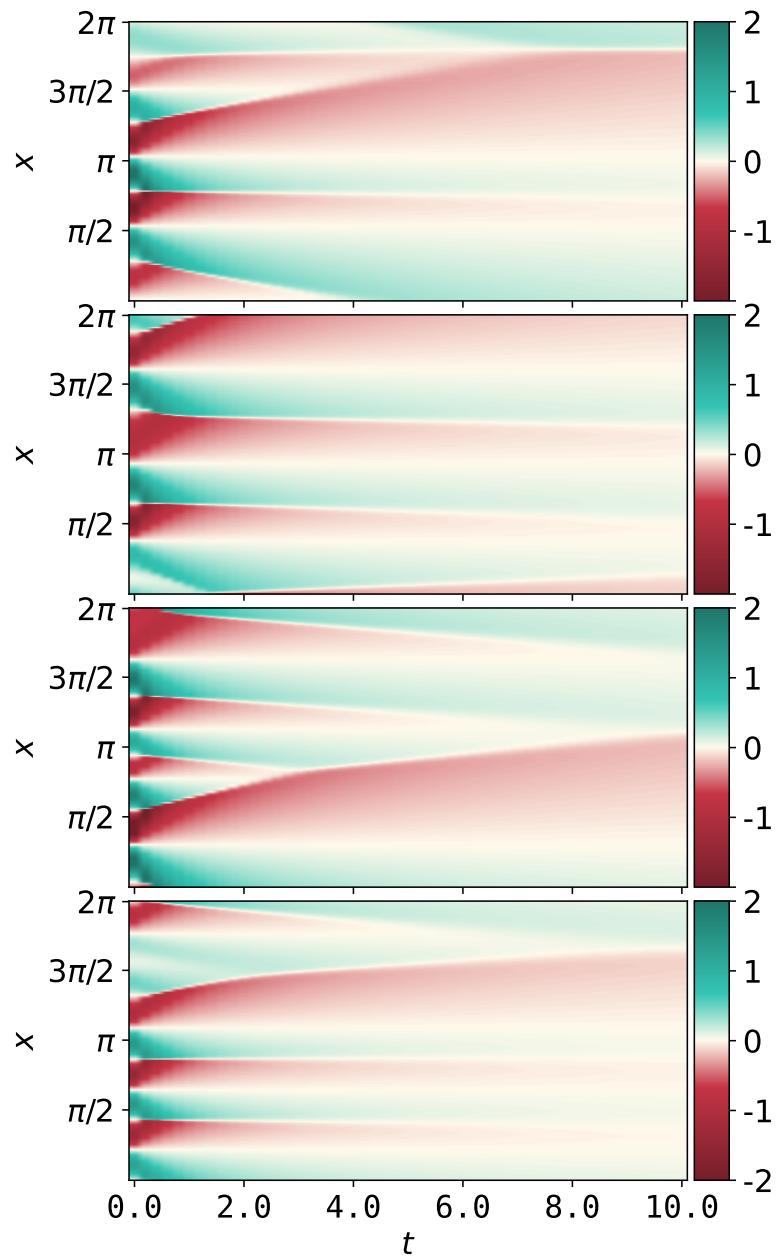


Figure 4: Example trajectories from the Burgers dataset. Train and test datasets share the same T .

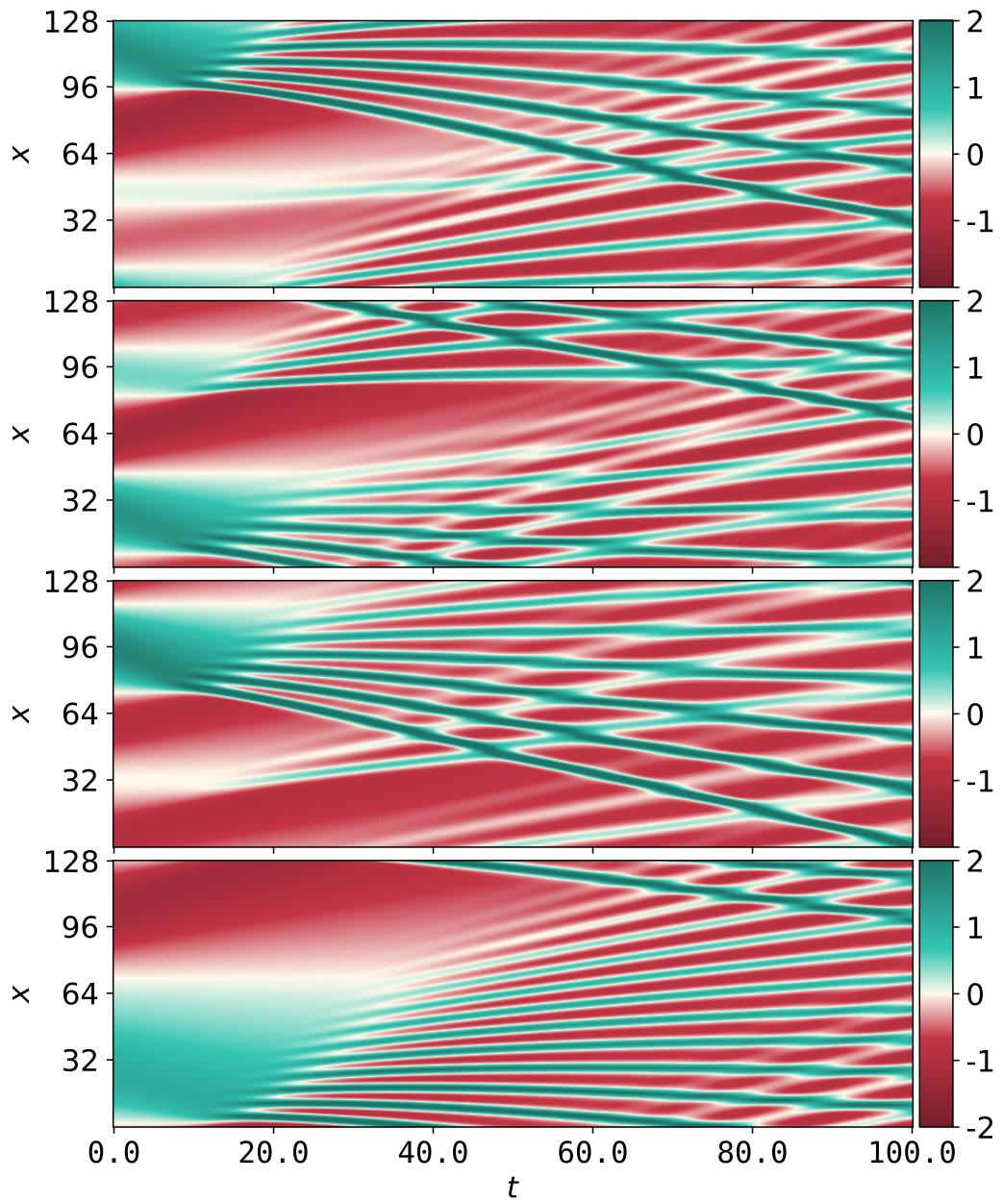


Figure 5: Example trajectories from the Korteweg-de Vries dataset. Train and test datasets share the same T .

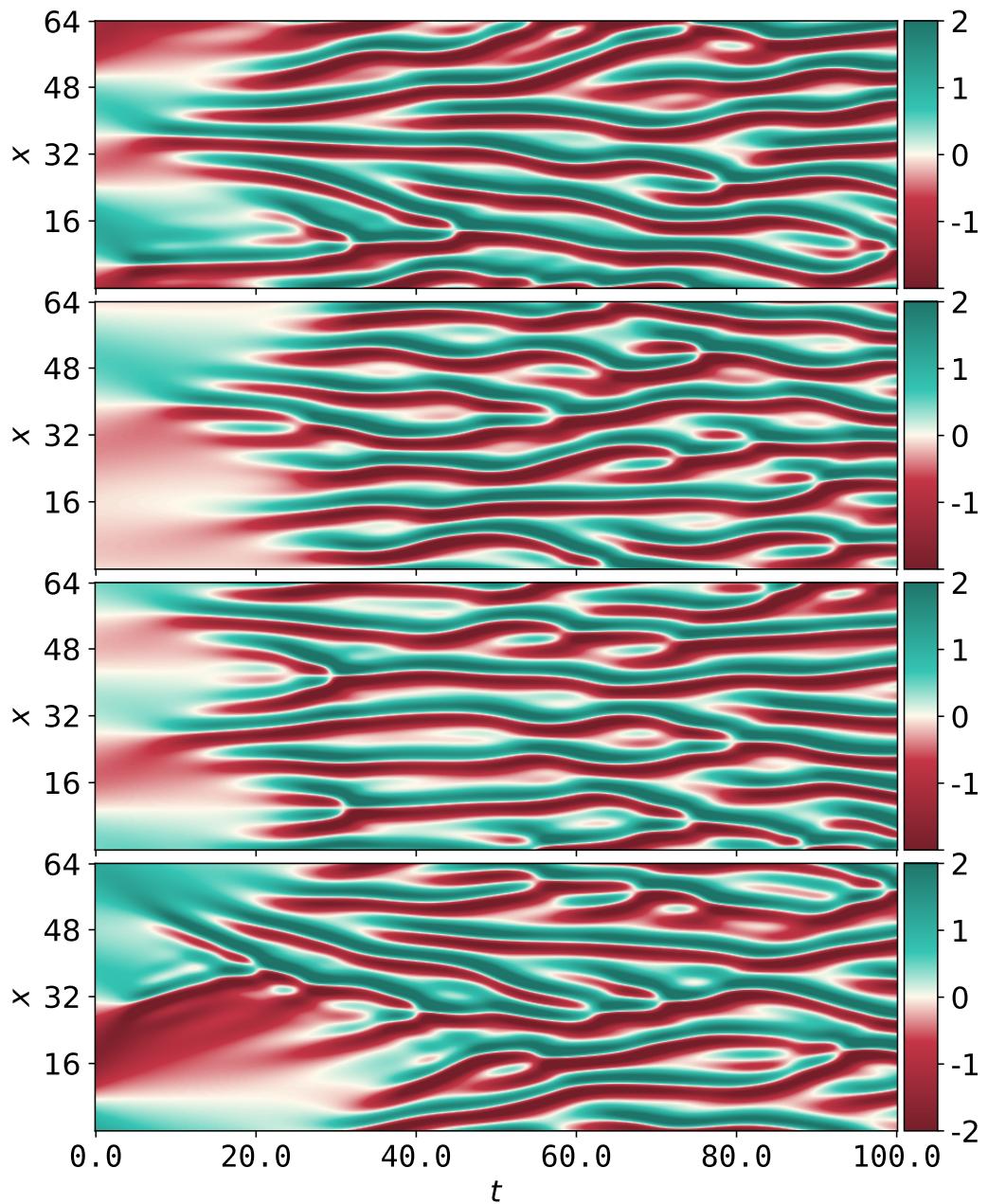


Figure 6: Example trajectories from the Kuramoto-Sivashinsky training dataset. The training dataset has $T = 100$, whereas the testing dataset has $T = 200$.

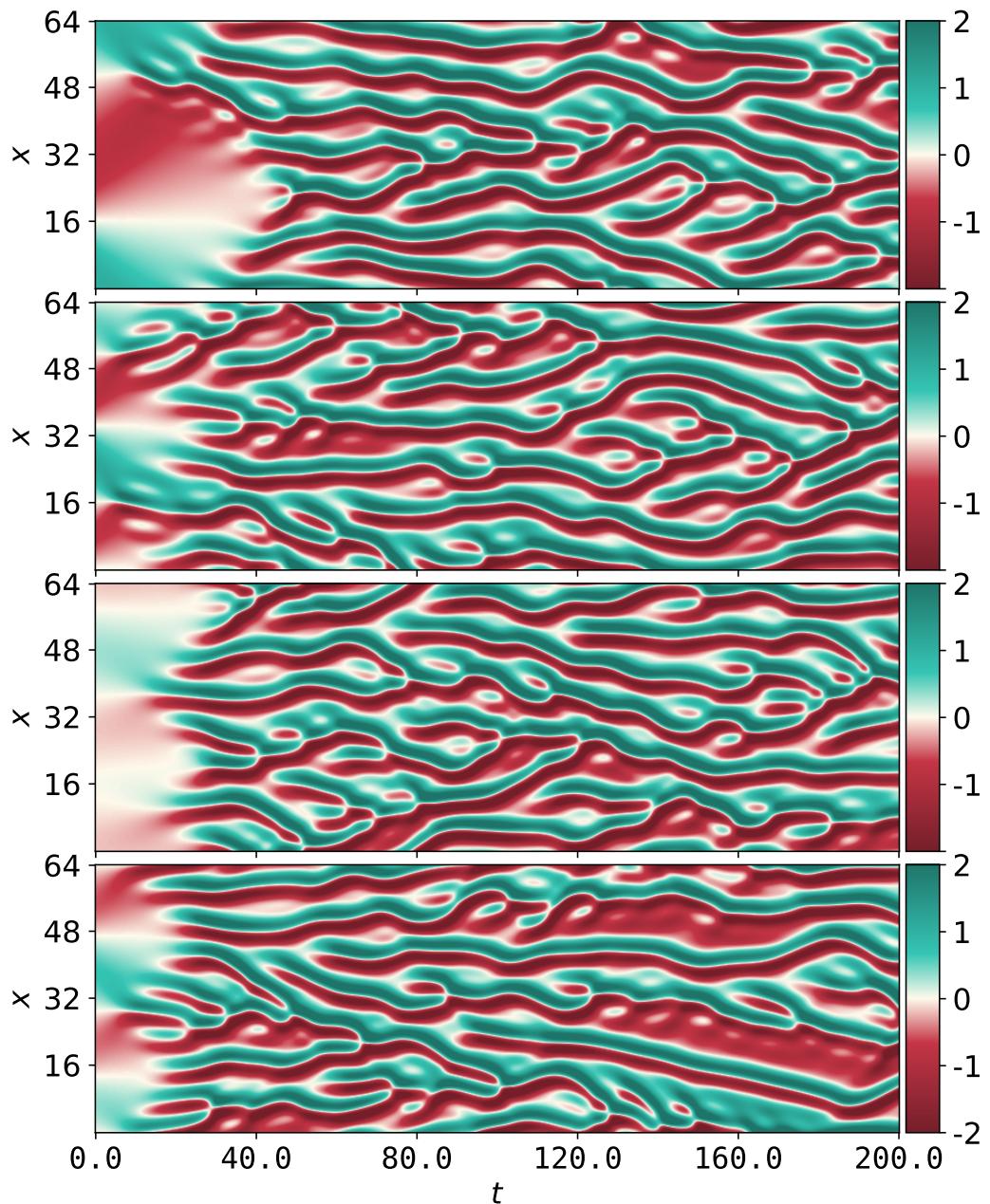


Figure 7: Example trajectories from the Kuramoto-Sivashinsky testing dataset. The training dataset has $T = 100$, whereas the testing dataset has $T = 200$.

565 **C Training Details**

566 **Data Preparation.** To minimize the one-step loss $\mathcal{L} = \|\mathbf{U}_{t+1} - \mathcal{G}_\theta(\mathbf{U}_t)\|_2^2$, we require input-output
 567 pairs. Consistent with prior work [Li et al., 2021], we set the prediction step size $\Delta t_p = 0.8$ and use
 568 residual prediction ($\mathcal{G}_\theta(\mathbf{U}_n) \approx \mathbf{U}_{n+1} - \mathbf{U}_n$) to balance short-term (one-step loss) and long-term
 569 (trajectory) performance. We also spatially downsample to 256 points. We scale each target by
 570 dividing by the maximum value across all trajectories, time steps, and spatial points; we found this to
 571 perform marginally better than normalizing to unit standard deviation.

572 **Neural Simulator Architectures.**

573 **Fourier Layer.** The Fourier layer transforms the input into the frequency domain using a fast
 574 Fourier transform (FFT), applies a truncated linear transformation to selected Fourier modes, and
 575 then maps the result back to the spatial domain via an inverse FFT. This spectral transformation is
 576 typically combined with a skip connection consisting of a point-wise convolution, a bias term, and an
 577 activation function. Formally, for an input $\mathbf{x} \in \mathbb{R}^n$, the layer computes:

$$F(\mathbf{x}) = \sigma(\mathcal{F}^{-1}(R \cdot \mathcal{F}(\mathbf{x})) + W\mathbf{x} + \mathbf{b}),$$

578 where \mathcal{F} and \mathcal{F}^{-1} denote the FFT and inverse FFT respectively, $R : \mathbb{R}^n \rightarrow \mathbb{R}^{n'}$ is a learned linear
 579 transformation in frequency space, $W : \mathbb{R}^n \rightarrow \mathbb{R}^{n'}$ represents a point-wise convolution, and \mathbf{b} is a
 580 bias term.

581 Several variations of the Fourier layer have been proposed. One such variant [Tran et al., 2021]
 582 modifies the layer by introducing a residual connection and a two-layer feedforward network, while
 583 omitting the point-wise convolution and bias term:

$$F(\mathbf{x}) = \mathbf{x} + \sigma(W_2 \sigma(W_1 \mathcal{F}^{-1}(R \cdot \mathcal{F}(\mathbf{x})) + \mathbf{b}_1) + \mathbf{b}_2).$$

584 In our early experiments, this modification did not yield noticeable improvements. We also explored
 585 simply adding a skip connection without the feedforward block and inserting normalization layers at
 586 various points in the architecture, but these did not result in noticeable improvements.

587 **RDS_{Fourier}.** The Fourier Neural Operator is made of a point-wise lifting layer, followed by a
 588 sequence of Fourier layers, and then a point-wise projection. The Recurrent Depth Simulator
 589 (RDS) with Fourier layers can be interpreted in two ways: 1) RDS_{Fourier} wo/ EncDec, a point-wise
 590 lifting layer encoder, followed by a sequence of Fourier layers (that make up the recurrent-depth
 591 block), and then a point-wise projection layer decoder, or 2) RDS_{Fourier} w/ EncDec, where the first
 592 Fourier layer is part of the encoder and the last Fourier layer is part of the decoder. We find that
 593 RDS_{Fourier} w/ EncDec often leads to more consistent and superior performance.

594 **RDS.** The Recurrent Depth Simulator is a highly flexible framework. Each component—the
 595 encoder, recurrent-depth block, and decoder—may be instantiated with any layer(s) depending on the
 596 task. For example, in problems with periodic boundaries and a requirement of parameter efficiency,
 597 where the Fourier Neural Operator would typically shine, Fourier layers can be used. On the other
 598 hand, if the goal is to develop a foundation model for physics on irregular meshes, where one might
 599 use a graph-based encoder, with an attention-based bottleneck, and a graph-based decoder, the RDS
 600 framework can be configured accordingly. With just a few additional lines of code, RDS enables
 601 explicit control over the accuracy-cost trade-off (see Appendix H for pseudocode).

602 Fourier- and attention-based layers are well-suited for recurrent-depth blocks due to their ability to
 603 model infinite receptive fields. In contrast, convolutional-based layers have a fixed receptive field that
 604 grow with the depth. For example, a standard convolutional layer in PyTorch with `kernelsize=3`,
 605 `dilation=1`, and `stride = 1` has a receptive field of size 3. Stacking two such layers increases
 606 the receptive field to 5—capturing the center point and two neighboring point on each side. More
 607 generally, the receptive field after stacking L such layers is given by $L \cdot (\text{kernelsize}/2) + 1$. To
 608 achieve a receptive field of size 64, to effectively model the Burgers equation, one would need to
 609 stack 63 layers. In RDS, where $K = 1$ could be sampled, 63 layers would need to be distributed
 610 across the encoder, recurrent-depth block, and decoder. To mitigate this, some alternatives can be
 611 considered to expand the receptive field more efficiently: increasing the kernel size, incorporating
 612 attention-based layers, or adding downsampling blocks.

613 **FNO-DEQ.** Similarly to Marwah et al. [2023], we use Anderson acceleration with a maximum of
 614 16 iterations. For the backward pass of the DEQ layer, we follow the phantom gradient approach
 615 proposed by Geng et al. [2021], using parameters $s = 3$ and $\tau = 0.8$. To match the parameter count
 616 of RDS_{Fourier}, we employ a 1D FNO with 8 layers and 120 channels.

617 **ACDM.** We follow the original setup from Kohl et al. [2023], using a linear scheduler and training
 618 with a maximum of 50 diffusion steps. For conditioning, we concatenate the snapshot from the
 619 previous time step, i.e., the solution u_t when predicting u_{t+1} . To ensure a fair comparison, we
 620 condition only on u_t and do not include earlier time steps.

621 **PDE-Refiner** We use the same scheduler proposed by Lippe et al. [2023], with $\sigma_{\min}^2 = 2 \cdot 10^{-7}$ and
 622 $K = 10$. Following a similar approach to Kohl et al. [2023], we implement the following algorithm
 623 from scratch:

Algorithm 3 PDE-Refiner: Training and Inference Procedures

```

1: procedure TRAINSTEP( $u_t, u_{\text{prev}}$ )
2:    $k \leftarrow$  random integer in  $[0, \text{num\_steps}]$ 
3:   if  $k = 0$  then
4:     pred  $\leftarrow$  NeuralOperator(zeros_like( $u_t$ ),  $u_{\text{prev}}, k$ )
5:     target  $\leftarrow u_t$ 
6:   else
7:     noise_std  $\leftarrow \text{min\_noise\_std}^{k/\text{num\_steps}}$ 
8:     noise  $\leftarrow \text{randn\_like}(u_t)$ 
9:      $u_{t,\text{noised}} \leftarrow u_t + \text{noise} \cdot \text{noise\_std}$ 
10:    pred  $\leftarrow$  NeuralOperator( $u_{t,\text{noised}}$ ,  $u_{\text{prev}}, k$ )
11:    target  $\leftarrow \text{noise}$ 
12:  end if
13:  loss  $\leftarrow \text{MSE}(\text{pred}, \text{target})$ 
14:  return loss
15: end procedure

16: procedure PREDICTNEXTSOLUTION 1( $u_{\text{prev}}$ )
17:    $u_{\hat{t}} \leftarrow \text{NeuralOperator}(\text{zeros\_like}(u_{\text{prev}}), u_{\text{prev}}, 0)$ 
18:   for  $k = 1$  to  $\text{num\_steps}$  do
19:     noise_std  $\leftarrow \text{min\_noise\_std}^{k/\text{num\_steps}}$ 
20:     noise  $\leftarrow \text{randn\_like}(u_t)$ 
21:      $u_{\hat{t},\text{noised}} \leftarrow u_{\hat{t}} + \text{noise} \cdot \text{noise\_std}$ 
22:     pred  $\leftarrow$  NeuralOperator( $u_{\hat{t},\text{noised}}$ ,  $u_{\text{prev}}, k$ )
23:      $u_{\hat{t}} \leftarrow u_{\hat{t},\text{noised}} - \text{pred} \cdot \text{noise\_std}$ 
24:   end for
25:   return  $u_{\hat{t}}$ 
26: end procedure

```

624 Algorithm 3 is taken from Lippe et al. [2023], and the number of inference num_steps is fixed at
 625 test time. To adapt the original algorithm, we investigated two variations: Algorithm 4 and 5. When
 626 $\bar{K} = \text{num_steps}$, both methods recover the original procedure proposed in Lippe et al. [2023].

627 The first variation, Algorithm 4, adjusts the noise scheduler based on the number of inference steps.
 628 However, this strategy only performs well when the number of steps matches the training setup. To
 629 address this limitation, we introduce Algorithm 5, which retains the noise scheduler from training
 630 while allowing the number of inference steps to vary. This consistency in noise levels enhances
 631 stability and performance by preserving the distribution the network was trained on.

Algorithm 4 Predict Next Solution 1

```
procedure PREDICTNEXTSOLUTION( $u_{\text{prev}}$ )
     $u_{\hat{t}} \leftarrow \text{NeuralOperator}(\text{zeros\_like}(\mathbf{u}_{\text{prev}}), \mathbf{u}_{\text{prev}}, 0)$ 
    for  $k = 1$  to  $K$  do
        noise_std  $\leftarrow \text{min\_noise\_std}^{k/K}$ 
        noise  $\leftarrow \text{randn\_like}(\mathbf{u}_t)$ 
         $u_{\hat{t}, \text{noised}} \leftarrow u_{\hat{t}} + \text{noise} \cdot \text{noise\_std}$ 
        pred  $\leftarrow \text{NeuralOperator}(\mathbf{u}_{\hat{t}, \text{noised}}, \mathbf{u}_{\text{prev}}, k)$ 
         $u_{\hat{t}} \leftarrow u_{\hat{t}, \text{noised}} - \text{pred} \cdot \text{noise\_std}$ 
    end for
    return  $u_{\hat{t}}$ 
end procedure
```

Algorithm 5 Predict Next Solution 2

```
1: procedure PREDICTNEXTSOLUTION( $u_{\text{prev}}$ )
2:    $u_{\hat{t}} \leftarrow \text{NeuralOperator}(\text{zeros\_like}(\mathbf{u}_{\text{prev}}), \mathbf{u}_{\text{prev}}, 0)$ 
3:   for  $k = 1$  to  $K$  do
4:     noise_std  $\leftarrow \text{min\_noise\_std}^{k/\text{num\_steps}}$ 
5:     noise  $\leftarrow \text{randn\_like}(\mathbf{u}_t)$ 
6:      $u_{\hat{t}, \text{noised}} \leftarrow u_{\hat{t}} + \text{noise} \cdot \text{noise\_std}$ 
7:     pred  $\leftarrow \text{NeuralOperator}(\mathbf{u}_{\hat{t}, \text{noised}}, \mathbf{u}_{\text{prev}}, k)$ 
8:      $u_{\hat{t}} \leftarrow u_{\hat{t}, \text{noised}} - \text{pred} \cdot \text{noise\_std}$ 
9:   end for
10:  return  $u_{\hat{t}}$ 
11: end procedure
```

632 **Optimization.** All optimization hyperparameters are listed in Table 4 and remain fixed across all
633 experiments, except where explicitly stated. We train each model for 100 epochs using the AdamW
634 optimizer [Loshchilov and Hutter, 2019], starting with a learning rate of 3×10^{-4} and a weight decay
635 of 1×10^{-5} . A cosine annealing schedule is applied to gradually reduce the learning rate to 3×10^{-6}
636 [Loshchilov and Hutter, 2017b]. In early experiments, we observed that using a higher initial learning
637 rate (e.g., 1×10^{-3}) led to less consistent performance, though it occasionally improved performance
638 [Sohl-Dickstein, 2024].

Hyperparameter	Value
Epochs	100
Batch Size	256 ¹
Optimizer	AdamW
Starting Learning Rate	3×10^{-4}
Weight Decay	1×10^{-5}
Scheduler	Cosine Annealing
Ending Learning Rate	3×10^{-6}

Table 4: Optimization hyperparameters used in all experiments.

¹For the three-dimensional experiments, we use a batch size of 32, and perform gradient accumulation to have an effective batch size of 256.

639 **D Backpropagation Window**

640 During training, the recurrent-depth block is repeated K times in the forward pass, after which
 641 gradients are propagated backward through the same computation. If K is large, which could
 642 happen because K is drawn from a long-tailed distribution, the backward pass must retain every
 643 intermediate activation, quickly exhausting GPU memory. To cap the memory usage, we use truncated
 644 backpropagation-through-time with a fixed backpropagation window B : gradients are backpropagated
 645 through at most the last B steps, and earlier steps are treated as constants. This bounds memory at
 646 $O(B)$ independent of K . In this experiment, we study it truncated backpropagation-through-time is
 647 viable and the effect of different backpropagation windows.

648 **Experimental Setup.** We conduct experiments on three datasets: Burgers, long-horizon KdV, and
 649 long-horizon KS. We train a recurrent depth simulator with a point-wise lifting layer, a recurrent-depth
 650 block with a single Fourier layer, and a point-wise projection layer with $\sim 1M$ parameters. We set
 651 $\bar{K} = 32$, and the backpropagation window is swept over $B \in \{1, 2, 4, 16, 32\}$. With $B = 1$ the
 652 compute for the forward pass is equivalent to a Fourier layer with 33 layers, but the backward pass
 653 stores only a single activation; with $B = 32$ the backward pass stores every activation whenever
 654 $K \leq 32$ and the last 32 when $K > 32$. This would be infeasible for higher-dimensional problems.

655 **Results.** We report the trajectory errors in Table 5. Across all equation $B = 1$ performs worst and
 656 moving from $B = 1$ to $B = 2$ yields the largest gain, and improvements largely saturate by $B = 4$.
 657 Beyond $B = 4$, larger windows offer only marginal benefit while reinstating a substantial memory
 658 cost. Note that although trajectory error is not the preferred metric for KS, the same saturation is
 659 evident. Based on these results, and to balance accuracy and memory, we set $B = 4$ in all main
 660 experiments.

Backpropagation Window B	Burgers	Korteweg-De Vries	Kuramoto-Sivashinsky
1	0.0849	0.1046	1.6341
2	0.0315	0.0522	1.4097
4	0.0199	0.0317	1.3972
16	0.0181	0.0302	1.3960
32	0.0178	0.0298	1.3910

Table 5: Impact of the back-propagation window B on trajectory error. Accuracy improves sharply up to $B = 4$ and then plateaus.

661 **E Distribution Parameter \bar{K}**

662 The distribution parameter \bar{K} controls the expected number of recurrent steps during training. Setting
 663 \bar{K} too low shortens training time but may leave the model under-exposed to large K values during
 664 inference; setting it too high increases training time. In this experiment, we wish to identify the
 665 optimal \bar{K} .

666 **Experimental Setup.** We conduct experiments on three datasets: Burgers, long-horizon KdV, and
 667 long-horizon KS. We train a recurrent depth simulator with a point-wise lifting layer, a recurrent-
 668 depth block with a single Fourier layer, and a point-wise projection layer with $\sim 1M$ parameters.
 669 The backpropagation window is fixed at $B = 4$, and \bar{K} is swept over $\{1, 2, 4, 8, 16, 32, 64, 128\}$.
 670 Doubling \bar{K} roughly doubles the forward cost, yet backward memory remains capped by B ; for
 671 instances, $\bar{K} = 8$ matches the forward FLOPS of an 8-layer FNO but the truncated-backpropagation-
 672 through-time keeps the backward pass FLOPs as cheap as a 4-layer FNO. After training, each model
 673 is evaluated at all values $K \in [1, 2\bar{K}]$ and we report the lowest trajectory error achieved.

674 **Results.** Figure 8-10 plot trajectory error as a function of \bar{K} . Increasing \bar{K} consistently lowers the
 675 best achievable trajectory error, but we observe diminishing returns beyond $\bar{K} \approx 32$. We also notice
 676 that models trained with larger \bar{K} underperform with small K values (see Figure 15). In other words,
 677 the additional training compute shifts the accuracy-cost curve to the right and gains appear only once
 678 K is allowed to grow. Based on these results, we set $\bar{K} = 32$ in our main experiments as it captures
 679 the bulk of the benefit of high-compute settings while leaving the model competitive in low-compute
 680 settings.

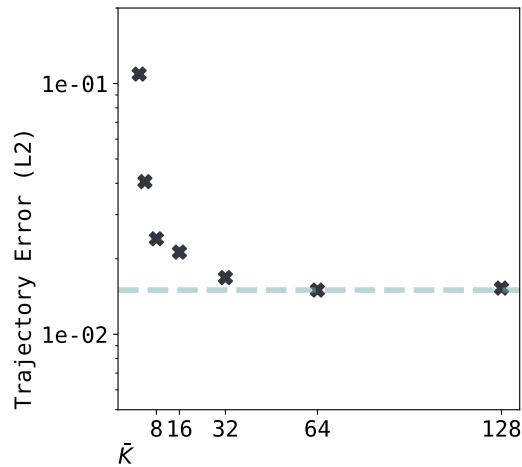


Figure 8: Choosing the distribution parameter \bar{K} on the Burgers dataset.

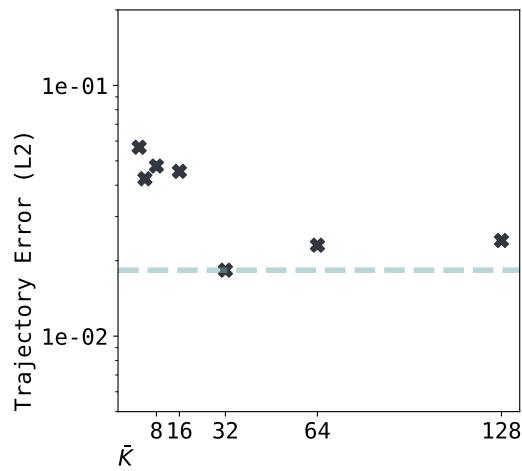


Figure 9: Choosing the distribution parameter \bar{K} on the KdV dataset.

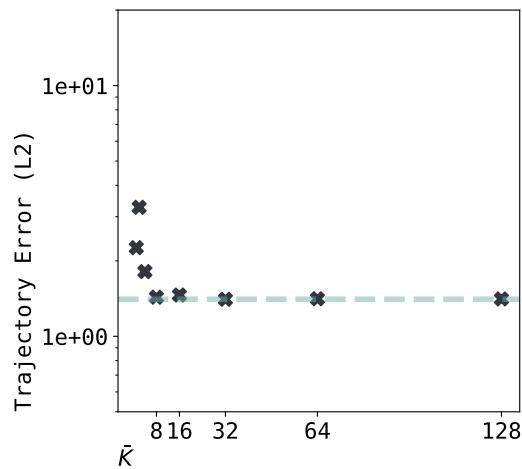


Figure 10: Choosing the distribution parameter \bar{K} on the KS dataset.

681 **F Merging**

682 At each recurrent step, the recurrent depth simulator must merge the condition vector \mathbf{c} with the
 683 latent vector \mathbf{z}_k . We consider six merging methods of increasing capacity. **Add** simply sums the two
 684 vectors. **Add_s** introduces two learnable parameters α and β ($\mathbf{z}'_k = \alpha\mathbf{c} + \beta\mathbf{z}_k$). **Add_e** generalizes this
 685 to element-wise vectors α and β ($2 \times \text{hiddenchannels}$ additional trainable parameters). **Projection**
 686 concatenates $[\mathbf{c}, \mathbf{z}_k]$ and applies a point-wise linear map ($2 \times \text{hiddenchannels} \times \text{hiddenchannels}$
 687 additional trainable parameters); **Projection_I** uses the same layer but is initialized with 1s along the
 688 diagonals and 0s everywhere else, so that it is equivalent to **Add_e** at initialization but with increased
 689 capacity. **Concat** feeds the raw concatenation into the first layer (in the recurrent-depth block),
 690 doubling its input channels, and thus, trainable parameters. In this experiment, our goal is to test
 691 these merging methods.

692 **Experimental Setup.** All experiments run on the one-dimensional Burgers equation. The base
 693 architecture is fixed—a point-wise lift, a single Fourier layer encoder, a one-layer Fourier recurrent
 694 block, and a Fourier decoder with point-wise projection—trained with $\bar{K} = 32$ and back-propagation
 695 window $B = 4$. We sweep five parameter budgets $\{0.2\text{M}, 0.5\text{M}, 1.0\text{M}, 2.0\text{M}, 4.0\text{M}\}$ by scaling
 696 channel width, and implement each of the six merging methods at every budget. After training, each
 697 model is evaluated at all values $K \in [1, 2\bar{K}]$ and we report the lowest trajectory error achieved.

698 **Results.** Table Table 6 reports the lowest trajectory error for every configuration. The three addition
 699 variants perform almost identically and improve monotonically with parameter count. The **Projection**
 700 variant lags behind, but when initialized with 1s along the diagonals (**Projection_I**), it matches or
 701 exceeds the additional family. **Concat** attains the lowest error overall, but at the price of $\sim 33\%$
 702 extra parameters in the recurrent-block’s first layer; we hypothesis that part of its gain stems from
 703 increased model size rather than a superior merging mechanism.

Parameters	Add	Add _s	Add _e	Projection	Projection _I	Concat
$\sim 0.2\text{M}$	0.0234	0.0230	<i>0.0229</i>	0.0240	0.0240	0.0214
$\sim 0.5\text{M}$	0.0176	0.0173	<i>0.0172</i>	0.0223	0.0135	<i>0.0146</i>
$\sim 1.0\text{M}$	0.0129	<i>0.0126</i>	<i>0.0126</i>	0.0169	0.0101	0.0151
$\sim 2.0\text{M}$	0.0116	0.0115	<i>0.0115</i>	0.0094	<i>0.0093</i>	0.0090
$\sim 4.0\text{M}$	0.0100	<i>0.0098</i>	0.0099	0.0110	0.0100	0.0083

Table 6: Trajectory error on Burgers for six merging methods across five parameter budgets. Best
 result in each row is **bold**, second-best *italic*.

704 **G More Experiments**

705 **G.1 Experiment: Accuracy-Cost Trade-Off (Extended)**

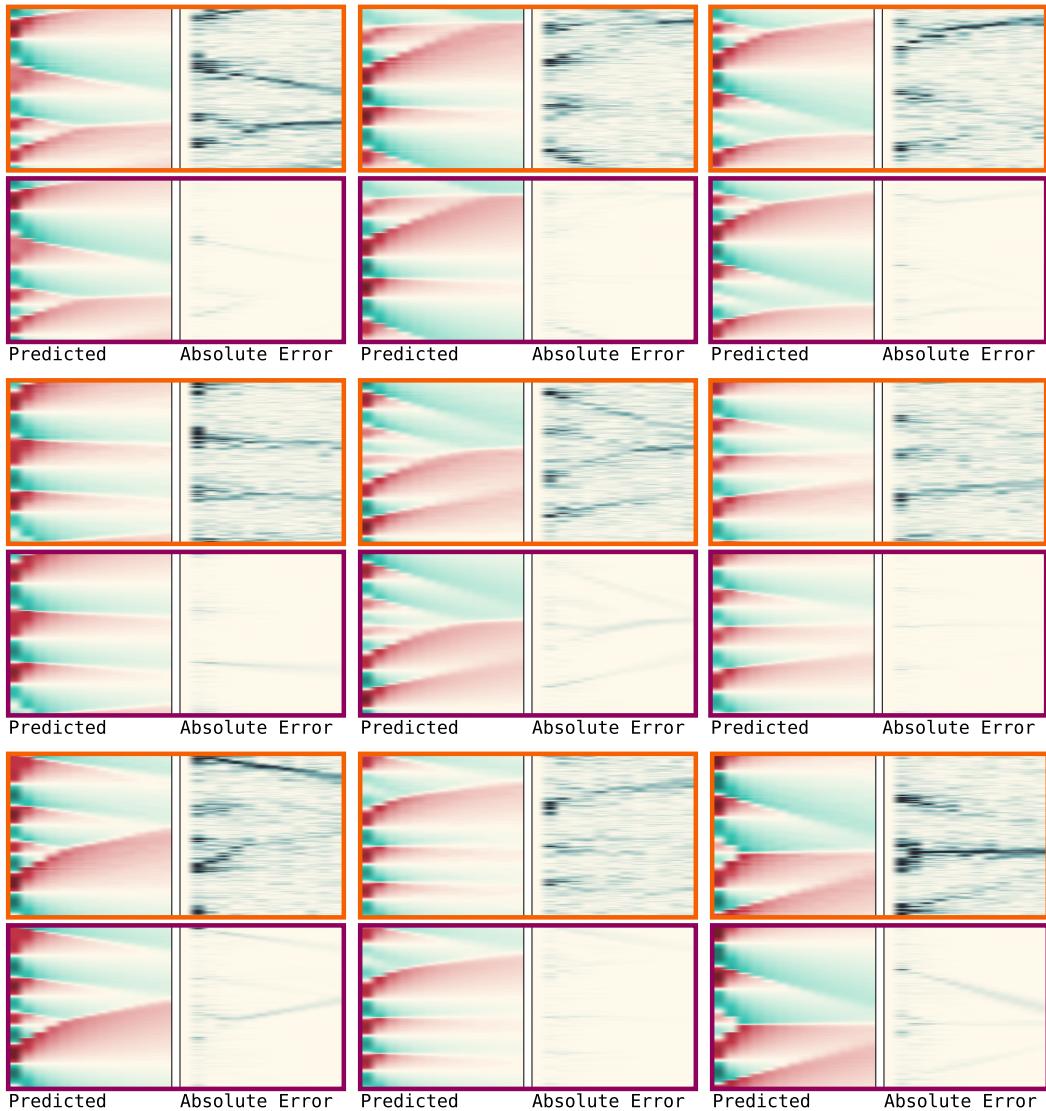


Figure 11: Burgers: Trajectories at $K = 4$ (orange) and $K = 16$ (purple).

Figure 12: Short-Horizon KdV: Trajectories at $K = 4$ (orange) and $K = 16$ (purple).

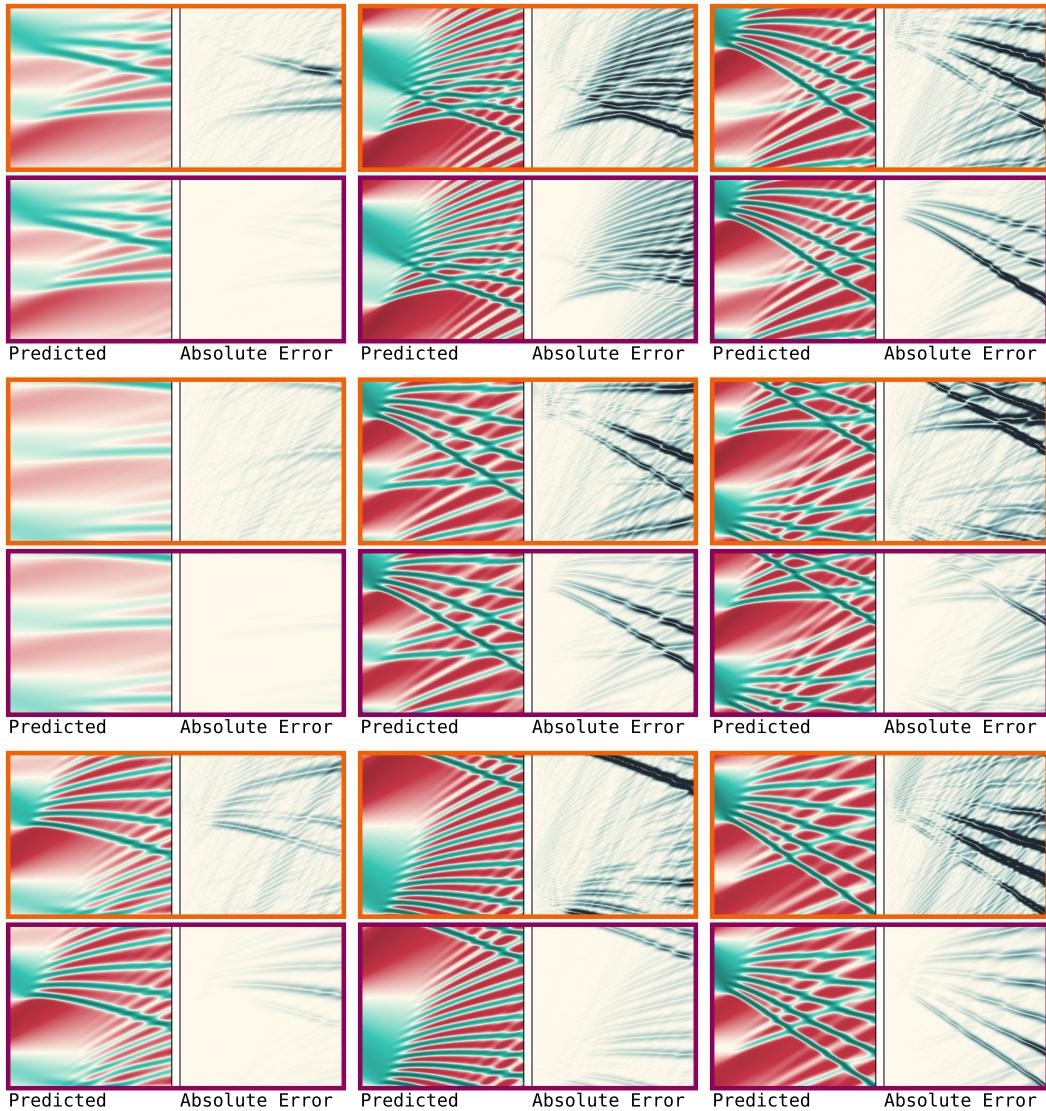


Figure 13: Long-Horizon KdV: Trajectories at $K = 4$ (orange) and $K = 16$ (purple).

707 **G.2 Experiment: Alternatives (Extended)**

708 On the chaotic Kuramoto-Sivashinsky dataset we replace trajectory error with the average and worst-
709 case correlation horizon metrics. Figure 14 shows the behavior of the four adaptive-compute simula-
710 tors across 30 correlation thresholds ($\alpha = 0.70 - 0.99$) and all inference depths $K \in \{1, \dots, 16\}$.
711 RDS_{Fourier} (first column) shows the desired monotone pattern: both the average and the worst-case
712 correlation horizons rise steadily with K . FNO-DEQ delivers flat surfaces—itts iterations leave
713 the horizon essentially unchanged—so it cannot exploit extra compute. ACDM begins with short
714 horizons, improves up to $K \approx 4$, and then flattens; only a narrow band of K values is usable, limiting
715 its test-time flexibility. PDE-Refiner gains up to $K \approx 8$ but then oscillates, making it hard to pick a
716 reliable stopping point. Across both average and worst-case statistics RDS attains the longest horizons
717 and is the only model whose accuracy scales predictably with additional compute, confirming its
718 advantage for controllable accuracy-cost trade-offs in chaotic regimes.

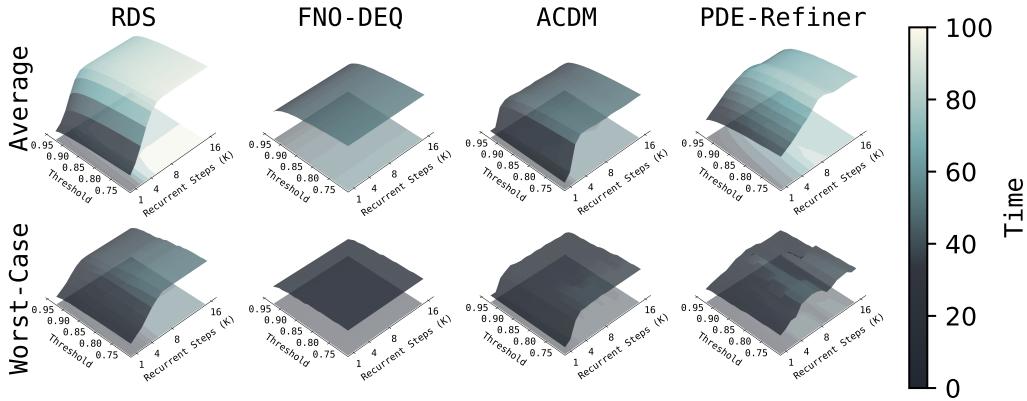


Figure 14: Kuramoto–Sivashinsky: average (top) and worst-case (bottom) correlation horizons and threshold α versus inference depth K .

719 **G.3 Experiment: Large-Scale Compressible Navier-Stokes (Extended)**

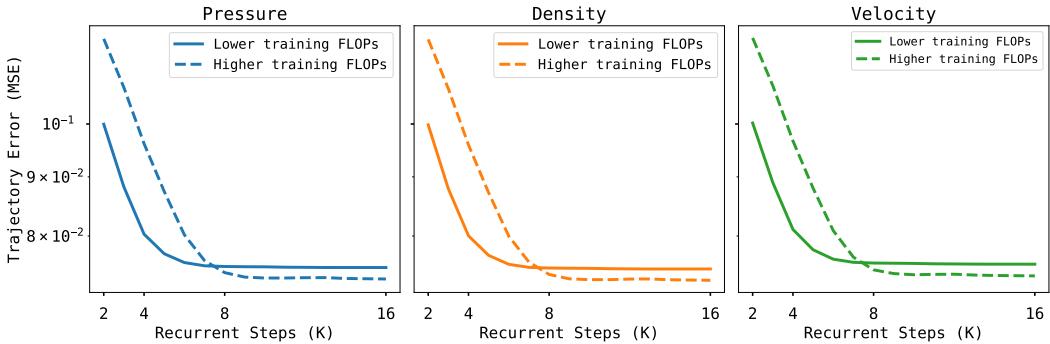


Figure 15: Trajectory error (MSE) over the number of recurrent steps K for two RDS_{Fourier} models, trained with lower and higher FLOPs budgets, respectively.

720 As shown in fig. 15, the two models present distinct trade-offs. When the number of recurrent steps
721 during inference exceeds 8, the model trained with a higher FLOPs budget and a higher \bar{K} yields
722 significantly lower MSE. In contrast, for fewer than 8 recurrent steps, the model trained with a lower
723 computational budget performs better.

724 H Pseudocode

```

725 1 class Network(Module):
726 2     def __init__(self):
727 3         super().__init__()
728 4         # Encoder Layer
729 5         self.encoder = Layer()
730 6
731 7         # Collect L Intermediate Layers
732 8         layers = []
733 9         for _ in range(L):
73410             layers.append(Layer())
73511
73612         # Decoder Layer
73713         self.decoder = Layer()
73814
73915     def forward(self, x):
74016         # Apply Encoder
74117         z = self.encoder(x)
74218
74319         ##### Main Block #####
74420
74521
74622         # Apply L Intermediate Layers
74723         for layer in self.layers:
74824             z = layer(z)
74925
75026         ##### Main Block #####
75127
75228
75329
75430
75531
75632
75733
75834
75935
76036
76137
76238
76339
76440
76541
76642
76743
76844
76945
77046
77147
77248
77349
77450
77551
77652
77753
77854
77955         # Apply Decoder
78056         x = self.decoder(z)
78157         return x

```

Listing 1: Pseudocode of a *standard* neural simulator. The neural simulator contains an encoder or lifting layer (`self.encoder`), L intermediate layers of any type (residual layers, Fourier layers, etc.), and an decoder or projection layer (`self.decoder`).

```

782 1 class Network(Module):
783 2     def __init__(self):
784 3         super().__init__()
785 4         # Encoder Layer
786 5         self.encoder = Layer()
787 6
788 7         # Collect L Intermediate Layers
789 8         layers = []
790 9         for _ in range(L):
791 10             layers.append(Layer())
792 11
793 12         # Decoder Layer
794 13         self.decoder = Layer()
795 14
796 15     def forward(self, x, K=None):
797 16         # Apply Encoder
798 17         c = self.encoder(x)
799 18
800 19         ##### Main Block #####
801 20
802 21         # Sample Noise \w 'shape=x.shape'
803 22         z = sample_noise()
804 23
805 24
806 25         # During Inference:
807 26         if not self.training:
808 27             # Loop K Times
809 28             for _ in range(K):
810 29                 # Concatenate x and z
811 30                 z = cat([c, z], dim=1)
812 31                 # Apply L Intermediate Layers
813 32                 for layer in self.layers:
814 33                     z = layer(z)
815 34
816 35         # During Training:
817 36         if self.training:
818 37             # Do Not Use Grad
819 38             with no_grad():
820 39                 # Sample K (Using K_bar)
821 40                 K = sample_K()
822 41                 # Loop K - B Times
823 42                 for _ in range(K - B):
824 43                     z = cat([c, z], dim=1)
825 44                     for layer in self.layers:
826 45                         z = layer(z)
827 46                 # Loop Remaining B Times
828 47                 for _ in range(B):
829 48                     z = cat([c, z], dim=1)
830 49                     for layer in self.layers:
831 50                         z = layer(z)
832 51
833 52         ##### Main Block #####
834 53
835 54
836 55         # Apply Decoder
837 56         x = self.decoder(z)
838 57         return x

```

Listing 2: Pseudocode of the Recurrent Depth Simulator—fewer than 20 new lines compared to a *standard* neural simulator. During inference, we apply the intermediate layers K times. During training, we apply the intermediate layers K - B times without gradient, and B times with gradient. Nothing else needs to change.

839 **I Extended Related Work**

840 **Deep Equilibrium Models.** Deep Equilibrium Models (DEQs), introduced by Bai et al. [2019], are
841 implicit, infinite-depth, weight-tied neural networks. A DEQ directly solves for the fixed point of a
842 nonlinear transformation using any black-box root-finding algorithm and instead of backpropagating
843 through each layer, which can be infeasible due to memory and numerical stability, the DEQ makes
844 use of the Implicit Function Theorem to compute the gradients at the equilibrium—this approach has
845 a constant memory requirement regardless of depth. Although the existence of the fixed point, or
846 convergence to the fixed point, is not guaranteed; on large-scale language modeling tasks, Bai et al.
847 [2019] demonstrated that DEQs can achieve performance comparable with state-of-the-art while using
848 significantly less memory. Later, Bai et al. [2020] extended DEQs to large-scale computer vision
849 tasks, showing similar performance and memory benefits. Subsequent research explored DEQs for
850 various applications. Pokle et al. [2022] represent the entire sampling process in denoising diffusion
851 implicit models as a single fixed-point system. Geng et al. [2023] distill diffusion models, directly
852 from initial noise to the final image, into a DEQ. In inverse problems, Gilton et al. [2021] model
853 a, potentially infinite, iterative reconstruction scheme as a DEQ. For partial differential equations,
854 Pokle et al. [2022] propose FNO-DEQ, a DEQ variant with Fourier layers, to solve steady-state PDEs,
855 showing improvements in accuracy and robustness to noise over baselines with four times as many
856 parameters.

857 **Denoising Diffusion Models.** First introduced by Sohl-Dickstein et al. [2015], diffusion models
858 are probabilistic models with an iterative forward diffusion process and a learned reverse diffusion
859 process. The forward process gradually adds noise to data until only noise remains, and the reverse
860 process gradually removes noise to restore the original data. New samples are generated by sampling
861 a noise vector and passing it through the reverse process. Ho et al. [2020] presented high-quality
862 image synthesis results using diffusion models. Dhariwal and Nichol [2021] and Karras et al. [2022]
863 made further progress leading to state-of-the-art results and widespread adoption. Diffusion models
864 have been applied to image generation [Nichol et al., 2021, Ramesh et al., 2022, Saharia et al., 2022b],
865 image inpainting and outpainting [Saharia et al., 2022a], super-resolution [Saharia et al., 2022c],
866 audio generation [Chen et al., 2020, Kong et al., 2020], text generation [Austin et al., 2021], including
867 large language (diffusion) models [Nie et al., 2025]. In scientific domains, diffusion models have
868 been applied to medium-range weather forecasting [Price et al., 2023], structure-based drug design
869 [Schneuing et al., 2024], and stable materials generation [Yang et al., 2023]. Kohl et al. [2023]
870 demonstrated that diffusion models are viable for turbulent flow simulation. Their results show that
871 diffusion models outperform, in terms of long-term accuracy and stability, more efficient (and more
872 commonly used) neural simulators. Kohl et al. [2023] also compared against PDE-Refiner [Lippe
873 et al., 2023], a diffusion-based multi-step refinement process, but found that PDE-Refiner is highly
874 sensitive to hyperparameters, and in some cases, generated substantially worse results compared to
875 other methods.

876 **J Extended Discussion**

877 To our knowledge, this is the first work to study neural simulators in terms of *test-time control of*
878 *accuracy-cost trade-offs*. Since the performance varies with the chosen number of recurrent steps K ,
879 a scalar metric is no longer adequate; our experiments therefore focus on full accuracy-cost curve,
880 and correlation-horizon surfaces. Across all tasks, the Recurrent-Depth Simulator provides a smooth,
881 monotone trade-off, demonstrating that adaptive compute is possible, and we hope these results
882 stimulate further work along this new axis.

883 Although the main experiments concentrate on RDS instantiated with Fourier layers—chosen for
884 their infinite receptive field (see Appendix C)—preliminary tests with convolutional blocks yield
885 qualitatively similar results. We also use a recurrent-block with a single-layer for clarity: it delivers the
886 most predictable behavior, however, deeper blocks also showed strong performance. Exploring richer
887 blocks and alternative layer types under this controllable-compute paradigm remains a promising
888 direction for future research.