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Abstract

Accuracy-cost trade-offs are a fundamental aspect of scientific computing. Clas-
sical numerical methods inherently offer such a trade-off: increasing resolution,
order, or precision typically yields more accurate solutions at higher computational
cost. Inspired by adaptive-compute language models, we introduce the Recurrent-
Depth Simulator (RDS), an architecture-agnostic, plug-and-play framework that
enables explicit test-time control over accuracy-cost trade-offs. By setting the
number of recurrent steps K, users can generate fast, less-accurate simulations
for exploratory runs or real-time control loops, or increase K for more-accurate
simulations in critical applications or offline studies. We validate RDS on several
fluid-dynamics benchmarks, including Burgers, Korteweg-De Vries, and Kuramoto
Sivashinsky, and demonstrate 1) physically faithful simulations over long horizons,
even in low compute settings; 2) superior accuracy-cost trade-offs compared to
alternative adaptive-compute models, including Deep Equilibrium and diffusion-
based models. We further validate the recurrent-depth simulator on the challenging
task generating three-dimensional turbulent compressible Navier-Stokes simula-
tions, where we demonstrate a 0.8B parameter model with a single recurrent-depth
Fourier layer attains lower mean-squared error than a 1.6B parameter counterpart
with six Fourier layers, while matching computational resources and utilizing
13.5% less memory during training.

1 Introduction

Simulations are fundamental to science and engineering. They enable scientists to study and predict
the behavior of complex systems, and engineers to quickly iterate and optimize designs, without the
need for expensive or impractical experiments. Early scientific computing, limited by computational
resources, produced crude simulations with limited practical value. Today, with the wide availability
of enormous computers, simulations have led to breakthroughs across different domains, including
numerical weather prediction, fluid and particle flows, and drug and materials design. Still, even
with today’s computational resources, less accurate but fast simulations are essential for early-stage
studies and prototyping.

In scientific computing, techniques for explicit control over accuracy-cost trade-offs are well-
established. Heuristic search methods, such as genetic algorithms and simulated annealing, can
balance desired accuracy against available computational resources by controlling the size of the
search space. For instance, genetic algorithms obtain better solutions with larger population sizes
or by running more generations. Similarly, numerical methods, which underpin practically all sim-
ulations, have inherent accuracy-cost trade-offs: using finer discretizations, higher-order methods,
and lower tolerances yields more accurate solutions but requires more computational resources. For
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high-dimensional or large-scale problems, this trade-off becomes extremely unfavorable, rendering
many real-world problems computationally intractable.

Machine learning provides a promising avenue to overcome this trade-off. Unlike numerical methods,
which rely on explicitly defined models or heuristics, machine learning methods are general-purpose
learners that learn directly from the vast amounts of available measurement and observational data,
and are capable of generating simulations for a wide range of problems, geometries, discretiza-
tions, and boundary conditions. Machine learning methods also benefit from hardware and software
advancements specifically developed for machine learning, including GPU acceleration and par-
allelization. Perhaps most notably, machine learning methods can improve simulation accuracy
and efficiency: given a desired accuracy, machine learning-based simulations use fewer computa-
tional resources compared to numerical methods, or, equivalently, given a computational budget,
deliver greater accuracy. Several works have demonstrated these advantages in applications such as
atmosphere and weather modeling and automotive design [Price et al.| 2025| Bleeker et al.| [2025].

At train-time, there are a number of tunable knobs available for controlling the accuracy-cost trade-off.
Generally, allocating more computational resources during training leads to more accurate predictions.
Whether that is by increasing the training dataset through data acquisition, data augmentation, or
synthetic data; by increasing the model size through stacking more layers or using wider layers; or by
improving the optimization process through more advanced optimizers, higher numerical precision,
or training for more steps. Each of these adjustments directly affect the train-time accuracy-cost
trade-off.

At test-time, there are fewer tunable knobs. The Deep Equilibrium model can go through more
computational resources by increasing the iteration limit or by lowering the tolerance [Bai et al.|
2019|). Diffusion models can make use of additional denoising steps or more advanced samplers
to generate higher-quality outputs at greater cost [Ho et al., [2020| [Lu et al., [2022]]. Recent natural
language processing research proposes reasoning models that spend more “thinking” on hard inputs
and finish early on easy ones [Wei et al., [2022]].

In this work, we present Recurrent-Depth Simulator (RDS), a framework that enables explicit test-
time control over accuracy-cost trade-offs, with a simple implementation (see and 2).
Our approach enables adaptive-depth inference without retraining or architectural redesign. By setting
a small number of recurrent steps K, the model is able to generate fast, less-accurate simulations
for exploratory runs or real-time control loops. Increasing K generates more accurate simulations
for critical applications or offline studies. We validate the recurrent-depth simulator on several
fluid-dynamics benchmarks, including Burgers’, Korteweg-De Vries, and Kuramoto Sivashinsky and
demonstrate physically faithful simulations over long horizons and superior accuracy-cost trade-offs
compared to alternative adaptive models, including Deep Equilibrium and diffusion-based models. We
further validate RDS on the challenging task of generating three-dimensional turbulent compressible
Navier-Stokes simulations, a 0.8B parameter RDS with a single recurrent-depth Fourier layer attains
lower mean-squared error than a 1.6B parameter standard Fourier neural operator architecture with
six Fourier layers, while matching computational resources and utilizing 13.5% less memory during
training.

2 Background

Partial Differential Equations. We consider time-dependent partial differential equations of the
form

w; + N (£, X, U, Uy, Uxx, - - - ) = 0,

where t € [0, T'] represents the temporal dimension, x € X represents the (possibly multiple) spatial
dimension(s), and u(t, x) : [0,7] x X — R™ represents the state at (¢, x). Here, N is a non-linear
operator that governs the systems’ dynamics, describing the interactions among the different variables
and their derivatives. We consider initial conditions given by u(0, x) = ug(x), and unless otherwise
specified, assume periodic boundary conditions.

Discretizing the partial differential equations transforms the continuous equations into a discrete
form, yielding a sequence of states at discrete time steps {U,, }_, where N = T'/At is the number

of time steps At. This discretization induces an evolution operator G, which maps the state at any
given time step to the state at the subsequent time step G : U,, — U,, 4.
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Neural Simulators. A neural (physics) simulator approximates the evolution operator G with a
learned operator Gy by minimizing the one-step loss £ = ||U;41 — Go(Uy)||3 using data from high-
fidelity simulations or real-world measurements. Repeated application of Gy generates a trajectory.
Because the one-step loss does not measure trajectory performance, accuracy is typically quantified
by the trajectory error:

N 2
Z ’ 2’

n=0

Uy = 65" (U0)]

where Qén) denotes the n-fold application of the neural simulator. However, for chaotic systems, the
trajectory error is unreliable. Instead, let

T = min {t = nAt|p (Un,gén) (Uo)) < Oé} ;

denote the earliest time at which the Pearson correlation coefficient p between the true and predicted
state falls below a specified threshold « € (0, 1). Computing 7, for every test trajectory yields (i) the
average correlation horizon, obtained by averaging all 7, values, and (ii) the worst-cast correlation
horizon, obtained by selecting the minimum 7. Together, the trajectory error and correlation horizons
capture both long-term accuracy and stability.

Related Work. Training with only a one-step loss can lead to a distribution shift between training
states and those encountered during unrolling. To mitigate this issue, |[Brandstetter et al.| [2022]
propose the push-forward trick where the neural simulator is unrolled for two steps, but errors are
backpropagated only from the second step. Subsequent studies have explored training with longer
unrolling and backpropagation. [Koehler et al.|[2024] demonstrate that unrolling and backpropagating
though 50 steps significantly improves long-term accuracy at the cost of worsened short-term accuracy
and linear growth in computational and memory demands.

A wide range of architectures have been explored. For regular domains, convolutional-based architec-
tures such as the Residual Network (ResNet [He et al.,|2016]]) and the U-shaped Encoder-Decoder
(UNet [Ronneberger et al.,|20135])) effectively capture local interactions, whereas spectral-based archi-
tectures, such as the Fourier Neural Operator (FNO [Li et al.| |2020]) and its factorized variant (F-FNO
[Tran et al.,|2021]]), leverage global frequency-domain features. For irregular domains, Brandstetter
et al.|[[2022]] propose a message-passing graph neural network, while |Li et al.| [2023al] extend the
FNO architecture with a geometry encoder and decoder, deforming an irregular mesh into a uniform
latent space suitable for FNO application, and subsequently reversing this deformation. |[Pokle et al.
[2022]] propose FNO-DEQ, a Deep Equilibrium Model (DEQ [Bai et al.|[2019]) variant with Fourier
layers, to solve steady-state PDEs, showing improvements in accuracy and robustness to noise over
baselines with four times as many parameters. |[Kohl et al.| [2023] demonstrated that diffusion models
are viable for turbulent flow simulation. Their results show that diffusion models outperform, in terms
of long-term accuracy and stability, more efficient (and more commonly used) neural simulators.
Recently, transformer-based architectures have gained prominence. |Alkin et al.| [2024] introduce
the Universal Physics Transformer, a unified Eulerian-Lagrangian framework capable of handling
large-scale simulations. Separately, McCabe et al.| [2023]] show that a single transformer pre-trained
on multiple physics tasks can match or exceed task-specific baselines without additional fine-tuning.

Modern neural simulators achieve state-of-the-art predictive accuracy and computational efficiency
across complex domains. Kochkov et al.|[2021]] apply neural simulators to model two-dimensional
turbulence, achieving comparable errors to numerical solvers while operating at 8—10 times finer
resolutions, resulting in 40-80-fold speedups. Similarly, Stachenfeld et al.|[2021]] show that neural
simulators trained at low spatial and temporal resolutions outperform traditional numerical methods
at equivalent resolutions and successfully capture turbulent dynamics usually resolved by numerical
methods only at significantly high resolutions. In weather forecasting, Aurora [Bodnar et al.,[2024], a
foundation model for the Earth system, outperforms the Integrated Forecasting System (IFS)—the
state-of-the-art numerical forecasting model—with roughly a 5,000-fold speedup, running forecasts
in approximately 1.1 seconds per forecast hour on a single A100 GPU compared to approximately
5720 seconds per forecast hour on a high-end CPU node. Similar results have also been reported in
aerodynamics, plasma physics, and various other scientific domains |Galletti et al. [2025], [Li et al.
[2023b]], [Catalani et al.| [2024].
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Figure 1: Schematic of the Recurrent-Depth Simulator. The framework consists of three main
components: an encoder, a recurrent-depth block, and a decoder. At test-time, the user is able to
control the accuracy-cost trade-off by setting the number of recurrent steps K.

3 Recurrent-Depth Simulator

Overview. The proposed Recurrent-Depth Simulator (RDS) consists of three main components:
an encoder, a recurrent-depth block, and a decoder (see[Figure T)). The encoder transforms the input
state x into a conditioning vector c. An initial latent z is drawn from a fixed distribution p(z). For
a user-chosen number of recurrent steps K, the recurrent-depth block R (-, 8z )—conditioned on
c—recursively updates the latent:

Zk:R([C,Zk_l],G'R), kil,...,K.

After the final recurrent step, the decoder maps zy to the predicted state y.

Training. RDS is trained end-to-end. For each training sample, a number of recurrent steps K is
drawn from a distribution p(K); the recurrent-depth block is applied for that many steps, a supervised
loss is evaluated, and gradients are back-propagated through the computation (see [Algorithm TJ.
Sampling K across a wide range encourages the recurrent block to contract toward a fixed point.

Large K values inflate memory because every intermediate activation must ordinarily be stored. To
bound the memory footprint, we use truncated backpropagation-through-time with a fixed backpropa-
gation window B [|[Williams and Peng|,[1990]]. Gradients are propagated through at most the last B
recurrent steps, while earlier steps are treated as constants. This caps memory at O(B) regardless
of K and has proved sufficient for optimization. Empirical results for different backpropagation

windows B are explored in[Appendix D]

Inference. At test-time, the user is free to choose K according to their desired accuracy and
available computational resources (see [Algorithm 2). Small K values generate fast, less-accurate
simulations ideal for exploratory runs, or real-time control loops. Large K values generate more-
accurate slow simulations suitable for critical applications or offline studies. Empirically, the first
few recurrent steps make the largest adjustments to the latent vector zy; subsequent steps contribute
progressively smaller, yet still beneficial, adjustments. This behavior mirrors numerical methods,
such as fixed-point and Newton methods, giving RDS a strong inductive bias that is well-suited for
physical simulation tasks.

Modularity. The RDS framework is modular: each of, the encoder, recurrent-depth block, and
decoder may be instantiated with the architecture primitive best suited to the problem—e.g., convo-
lutional layers for Eulerian simulations or graph-convolutional layers for Lagrangian simulations—
without altering the training or inference algorithms. The entire pipeline remains a standard end-
to-end, supervised model with no custom losses, schedulers, or tricks—so adoption is essentially
plug-and-play.
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Algorithm 1 Recurrent-Depth Simulator Training

Input: training data x,y
Output: model parameters O¢, Or, 0p

repeat
for i € Bdo > for every training example index in batch
c <+ E(xi,0¢) > compute conditioning vector
zo ~ p(z) > sample initial latent representation
K ~ p(K) > sample number of recurrent steps
for k =1to K do > unroll K recurrent steps
zj,_, < [c,Zp_1] > concatenate conditioning and latent representation
zy, < R(z),_,,0R) > apply recurrent block
end for
Vi <+ D(zk,0p) > decode latent representation
L < |ly: — ¥l > compute individual loss
end for

accumulate losses for batch and take gradient step
until converged

Algorithm 2 Recurrent-Depth Simulator Inference

Input: input state x, number of steps K, model parameters O¢, 0z, 0p
Output: output state y

c+ &E(x,0¢) > compute conditioning vector

zo ~ p(z) > sample initial latent representation

for k = 1to K do > unroll K recurrent steps
z),_, < [, Zk_1] > concatenate conditioning and latent representation
z, < R(z)_,,0r) > apply recurrent block

end for

y < D(zk,0p) > decode latent representation to predicted state

Initial Latent Distribution. The initial latent vector zq is drawn from a standard normal distribution
N(0,I). A Gaussian distribution is a natural default, and is widely used in diffusion models, yet
other choices are possible. For example, replacing the Gaussian with a Student-t prior to better
capture heavy-tailed behavior [Pandey et al.||2025]], or learning a fixed latent vector directly [Jaegle
et al.| 2021]]. The RDS framework is agnostic to this choice; any prior that suits target problem can
be substituted without changing the rest of the pipeline.

Recurrent Step Distribution. The number of recurrent steps K is drawn from a Poisson log-normal
distribution:

— 1
v~ N <logK— 202,U> ,
K ~ Poisson (e") + 1,

where K 41 is the desired mean. This distribution exposes the model to a broad spectrum of compute
budgets during training: it is positively skewed with most draws landing near K, but occasional very
small and very large values are sampled, encouraging the recurrent-block to remain stable across both
shallow and deep rollouts. Unless noted otherwise, we use K = 32 and o = 0.5—alternative values

are explored in

Merging Conditioning and Latent Vectors. At each recurrent step, the conditioning vector ¢ must
be merged with the current latent vector zy. The simplest scheme is plain addition: zj, = ¢ + z;. A
slightly richer variant introduces learnable scalar weights: zj, = ac + z;,. The weights can be made
element-wise: z}, = o © ¢ + B © z. Alternatives include point-wise projection, or concatenating
and passing the result through a width-halving layer. All variants are drop-in replacements and are

explored in
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Figure 2: Top: Trajectory Error (L2) versus Recurrent Steps (K) for the Burgers (left), short-horizon
KdV (middle), and long-horizon KdV (right). Bottom: Trajectories at K = 4 (orange) and K = 16
(purple) (highlighted above). Increasing K sharpens shocks in Burgers and aligns soliton crests in
KdV, illustrating how recurrent depth controls the accuracy—cost trade-off.

4 Results

Full specifications of the hardware, data acquisition, data generation, preprocessing pipelines, along
with training hyper-parameters, are given in[Appendix Al[C| Unless noted, the main experiments use
the Recurrent-Depth Simulator with Fourier layers—denoted RDSgyrier—Whose infinite receptive
field simplifies analysis for depth-varying models. Other variants are explored in[Appendix G|

4.1 Experiment: Accuracy-Cost Trade-Off

Commonly used neural simulators are trained for a single accuracy-cost setting: once the model is
trained, every forward pass delivers the same expected accuracy and incurs the same cost. RDS, on
the other hand, has a tunable knob for controlling the accuracy-cost setting (the number of recurrent
steps K). The purpose of this experiment is to empirically demonstrate whether rolling out the
trajectory across values of recurrent steps K is viable.

Experimental Setup. We conduct experiments on three datasets: Burgers, short-horizon KdV, and
long-horizon KdV. Two instantiations of RDS are benchmarked. The first variant (RDSgoyier w0/
EncDec) lifts the input with a point-wise operation, recursively applies a recurrent-depth block with a
single Fourier layer, and projects back to physical space; the second variant (RDSgoyier w/ EncDec)
inserts an additional Fourier layer in, both, the encoder and decoder. For each variant, we target
three parameter budgets (~ 1.0M, 3.5M, 7.5M), yielding six models per dataset. We use K = 32
and B = 4. After convergence, we generate trajectories for every K € {1,...,32} and measure the
trajectory error. All experiments are repeated with three seeds and averaged.

Results. Across all three datasets, both variants show the same qualitative accuracy-cost curve
(Figure 2), but RDSgeuier w/ EncDec achieves consistently lower trajectory error. As K increases,
the trajectory error falls steadily and plateaus around K = 16 for Burgers and K = 8 for both, short-
and long-horizon KdV ; further steps neither help nor harm. For each dataset, we plot low-compute
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Figure 3: Trajectory Error (L2) versus Recurrent Steps (K) for the Burgers (left), and long-horizon
KdV (right). Curves compare RDSgqyyier (teal), FNO-DEQ (blue) [Marwah et al.| 2023]], ACDM
(orange) [Kohl et al., [2023]], and PDE-Refiner (green) [Lippe et al.| 2023]]. Across both tasks,
RDSpgouier achieves the best accuracy-cost curve and reaches the lowest plateau.

(K = 4) and high-compute (K = 16) trajectories. In Burgers, the two settings reproduce the same
shock patterns, with the low-compute run showing slightly larger absolute error around the fronts. In
both KdV datasets, the low-compute run already recovers the full soliton train; the absolute error
is almost entirely a small amplitude and/or phase offset, visible as narrow streaks along the soliton
trajectories. Increasing to K = 16 sharpens the shocks and aligns the soliton crests. These results
demonstrate that RDSgqrier delivers physically faithful simulations over a range of accuracy-cost

settings. Extended results are presented in

4.2 Experiment: Alternatives

There are a few recent neural simulators that have test-time controllable knobs. FNO-DEQ is a Deep
Equilibrium Model with Fourier layers whose runtime is set by a maximum number of iterations
or a minimum update. ACDM—an autoregressive conditional diffusion model—is able to adjust
the prediction quality by varying the number and schedule of denoising steps. PDE-Refiner applies
the same diffusion principle in a direct prediction and refinement process. In this experiment, we
benchmark RDSgqier against the three alternatives under identical data and training setups.

Experimental Setup. We conduct experiments on three datasets: Burgers, long-horizon KdV, and
long-horizon Kuramoto-Sivashinsky. For RDS, we carry over the best variant from the previous set of
experiments: point-wise lift + Fourier layer encoder, a recurrent-depth block with one Fourier layer,
Fourier layer with point-wise projection decoder—configured with ~ 7.5M parameters, K = 32,
and B = 4 steps. FNO-DEQ follows the setup of |Pokle et al.| [2022], with its width scaled to match
a parameter count of ~ 7.5M. ACDM and PDE-Refiner use a modern UNet backbone from their
original implementations [[Kohl et al., 2023} [Lippe et al.,2023|]. In early tests, both diffusion-based
models proved parameter-inefficient and could not rollout beyond a few steps, so we train them with
~ 15M parameters for Burgers and KdV, and ~ 50M parameters for KS (the scale used by [Lippe
et al. [2023]]). After convergence, we generate trajectories for every K € {1,...,32} (where K
is equal to the recurrent steps for RDS, iterations for FNO-DEQ, and denoising steps for ACDM
and PDE-Refiner). On Burgers and KdV, we measure and report the trajectory error. Since the KS
equation produces chaotic behavior, we measure the average and worst-case correlation horizon over
a sweep of 30 thresholds (o = 0.7-0.99 in increments of 0.01).

Results. On Burgers, FNO-DEQ, ACDM, and PDE-Refiner all plateau by K ~ 4 (see
(left)); PDE-Refiner gains practically nothing beyond its second refinement step. RDSgoyrier, bY
contrast, continues to improve until K ~ 16, while using half the parameters of the diffusion-based
models. On KdV, FNO-DEQ exhibits the convergence limitation reported by |Sittoni and Tudisco
[2024]]—the latent representation oscillates around, rather than converges to, the fixed point—so
additional iterations provide no improvement. The ten-fold larger training dataset helps the diffusion-
based models, however, once again, ACDM plateaus near K ~ 4. PDE-Refiner improves up to
K = 11 before degrading because larger K values are out-of-distribution. RDSgoyyier delivers the best
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Training Training Training MSE MSE MSE

Model Params .o Epochs GFLOPs x1072 x1072 x1072
y P Density Pressure Velocity

FNO 0.5B 38 GB 100 1 x 107 9.60 9.59 9.55
FNO 1.0B 57 GB 100 2 x 107 7.83 7.79 7.82
FNO 1.6B 73 GB 100 3 x 107 7.61 7.59 7.62
RDSkourier 0.8B 64 GB 82 3 x 107 7.57 7.51 7.53
RDSrourier \ 0.8B 64 GB 100 5 x 107 \ 7.37 7.33 7.36

Table 1: Performance comparison between FNO and RDSgyy .. We report the total number of
learnable parameters, the peak of GPU memory during training, total training epochs and training
GFLOPs. We also report the trajectory MSE, i.e. the MSE between the ground truth trajectory and
the predicted trajectory. We calculate it over 3 different channels, velocity, pressure, and density
fields.

accuracy-cost curves and lowest trajectory errors. On KS (see[Appendix G)), where the diffusion-based
models have 7-fold the amount of parameters as RDSpqyrier, ACDM plateaus early, and PDE-Refiner
shows erratic worst-case correlation horizons. Taken together, RDSgqyier consistently outperforms
alternatives while using fewer parameters.

4.3 Experiment: Large-Scale Compressible Navier-Stokes

Models Details. We train five different variations of Fourier Neural Operator (FNO), each with
64 channels and 20 modes. Three of these models are FNO with various depths, specifically with
2,4, 6 layers. The remaining two are RDSgqyrier (w/ EncDec) models, each using a single Fourier
layer in the encoder, decoder, and recurrent block, with a backpropagation window of 4. The main
architectural difference lies in the value of K. In one model, we set X = 16, and we use it to match
the number of training steps of the other three FNO models. In contrast, the second model uses
K = 8. Itis chosen to match the training FLOPs of the 6-layer FNO. We did not compare against
DEQ, PDE-Refiner, or diffusion models. Training DEQ is notoriously slow and becomes impractical
for a problem of this scale. As for PDE-Refiner and diffusion models, implementing a U-Net with
3D convolutional layers that fits within the same GPU memory budget would result in a model that is
too shallow, with a limited receptive field. For these reasons, we chose not to include these baselines.

Training is run for 100 epochs across all models, except for the FLOPs-matched recurrent model,
which is trained for 82 epochs to match the FLOPs of the deepest baseline.

Results. As shown in table [I} both RDSgourier models consistently achieve a lower trajectory
MSE compared to their non-recurrent FNO counterparts. Remarkably, the RDSgqyrier With K = 8§,
which is constrained to match the 6 layers FNO’s total training FLOPs, still achieves lower trajectory
MSE than all the standard models. Furthermore, RDSgqyyier require substantially less GPU memory,
approximately 13.5% compared to the 6 layer FNO and uses half of the parameters. The encoder and
decoder of RDSggyrier have the same number of parameters as the smallest FNO model. As shown in
table 1} incorporating the recurrent block leads to a 22% improvement in test performance. Similarly,
the mid-size FNO can be interpreted as having a single layer in both the encoder and decoder, with
a 2-layer middle block. Despite having only half as many parameters in the recurrent-depth block,
RDSpgourier consistently outperforms the mid-size FNO.

Conclusion. We introduce the Recurrent-Depth Simulator (RDS), a simple and general methodol-
ogy for dynamically adjusting the computational budget at test time. We describe how architectural
primitives can be integrated into RDS, outline the training procedure, and discuss strategies for man-
aging the accuracy—cost trade-off. We demonstrate that RDS achieves superior accuracy—efficiency
trade-offs compared to state-of-the-art alternatives, including Deep Equilibrium and diffusion-based
models. The experiments for three-dimensional simulation suggest that recurrent-depth is a viable
and scalable mechanism for improving neural simulators.
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A Hardware Details

For the one-dimensional Burgers, Korteweg-De Vries, and Kuramoto-Sivashinsky equations, we
generated the data using an AMD 7950X processor (16 cores/32 threads). Each example trajectory
in the Burgers equation and Korteweg-De Vries equation datasets took approximately 10 and 20
minutes to generate, respectively. The entire datasets, with 600 examples (500 training examples and
100 testing examples), took approximately 6000 and 12000 minutes to generate, respectively. Each
training example in the Kuramoto-Sivashinsky equation dataset took approximately 15 minutes to
generate. The testing examples were twice as long, and took approximately 30 minutes to generate.
The entire dataset, with 500 training examples and 100 testing examples, took approximately 10500
minutes to generate. All together, the three one-dimensional datasets took approximately 28500
minutes (475 hours) to generate.

All one-dimensional models were trained on a single NVIDIA A100 (40GB) GPU per run, with aver-
age training times ranging from 15-300 minutes per model—smaller models on the Burgers dataset
took 15 minutes, whereas larger models trained on Korteweg-De Vries or Kuramoto-Sivashinsky
datasets, which contained 10 times longer trajectories, took closer to 300 minutes. We trained
approximately 1000 models for exploratory experiments (e.g., tuning hyperparameters, evaluating
alternative architectures) and final experiments, and estimate a total of 1000 NVIDIA A100 (40GB)
GPU hours.

The three-dimensional models were much larger. Under our experimental setup, only the smallest
Fourier Neural Operator with two layers managed to fit on a single NVIDIA A100 (40GB) GPU. This
model did not perform well (approximately 25-30% higher MSE compared to its six layer variant).
So all three-dimensional experiments were trained on a single NVIDIA A100 (80GB) GPU. On
average, each training run took 1200-1500 minutes to complete. We trained approximately 10 models
for exploratory experiments and final experiments, and estimate a total of 225 NVIDIA A100 (80GB)
GPU hours.

B Data Details

B.1 Equations

Burgers Equation. The Burgers equation is a second-order nonlinear partial differential equation
derived to model convective steepening and diffusive smoothing. Its one-dimensional variant can be
expressed as:
Ut + Uy = Vlgy-

Here, v plays the role of kinematic viscosity. Setting v = 0 yields the inviscid form u; 4+ uu, = 0,
whose solutions develop finite-time shock discontinuities; the viscous term vu,, regularises these
shocks but introduces extremely thin internal layers that remain numerically stiff. Machine learning
methods must learn to represent sharp gradients, moving shocks and the delicate interplay between
nonlinearity and diffusion.

Korteweg-De Vries Equation. The Korteweg-De Vries (KdV) is a third-order nonlinear partial
differential equation derived to model weakly nonlinear, weakly dispersive unidirectional waves. Its
one-dimensional variant can be expressed as:

Ug + QU + Ugge = 0.

Here, « (often set to +1 or £6) controls nonlinear steepening while the third-order derivative
introduces dispersion. The exact balance of these effects produces solitary-wave solutions (solitons)
that preserve their shape and speed and undergo only phase shifts upon interaction —small amounts of
artificial dissipation can destroy these very structures making KdV an ideal candidate for evaluating
whether machine learning methods can maintain accuracy, stability and conservation over long
horizons.

Kuramoto-Sivashinsky Equation. The Kuramoto-Sivashinsky (KS) equation is a fourth-order
nonlinear partial differential equation derived to model diffusive-thermal instabilities in laminar flame
fronts. Its one-dimensional variant can be expressed as:

Up + Ugz + Ugzar + Uy = 0.

13



503
504
505

506
507
508
509

511
512
513
514
515
516
517
518
519

521
522
523
524
525

527
528
529
530

531
532
533
534
535

536
537
538

539
540
541

Here, the fourth-order derivative w;,,, and the nonlinear term wu, contribute to complex and chaotic
behavior which present a challenge for traditional numerical solvers. The challenges and the wide
applicability of the KS equation make it an ideal candidate for evaluating machine learning methods.

Compressible Navier-Stokes Equations. The three-dimensional Compressible Navier-Stokes
(CNS) equations model complex phenomena such as shock wave formation and propagation. They are
widely used across various engineering and physics applications, including aircraft wing aerodynamics
and the formation of interstellar gases. The equations can be expressed as:

Op+V-(pv)=0, pOv+v-Vv)=-Vp+nAv+ (C+n/3)V(V-v),
Qe+ pv?/2)+ V- [(p+e+pv?/2)v—v- 0] =0,

where p is the mass density, v is the fluid velocity, p is the pressure, and € is the internal energy
determined by the equation of state. The term ¢’ denotes the viscous stress tensor, while 7 and
¢ represent the shear and bulk viscosities, respectively. In this case, using a classical numerical
solver to approximate the fluid flow is particularly challenging due to strict stability constraints,
high computational cost, and the need for accurate yet robust numerical schemes that handle shocks,
dissipation, and grid adaptivity in large-scale domains. Even though machine learning can overcome
several of the challenges posed by traditional solvers, training a neural simulator on three-dimensional
data comes with considerable engineering complexity. The primary limitation arises from storing
the activations during training, increasing the memory requirement compared to smaller dimensions
problems.

B.2 Data Generation

For the one-dimensional Burgers and Korteweg-De Vries equations, we set 7' = 10 and 7' = 100,
respectively (for both training and testing datasets). For the one-dimensional Kuramoto-Sivashinsky
equation, we set 7" = 100 for the training dataset and 1" = 200 for the training dataset. For all three
equations, we set At = 0.2. The spatial domain was set to X = [0, 27] for the Burgers equation
with Az = 27/8192, X = [0, 128] for the Korteweg-De Vries equation with Az = 128/1024,
and X = [0, 64] for the Kuramoto-Sivashinsky equation with Az = 64/4096. For each equation,
the spatial step Az was chosen to be as small as possible while maintaining trajectory generation
under a pre-specified computational budget. All three domains had periodic boundaries. The initial
conditions were sampled from a distribution over the truncated Fourier series with random coefficients
Ay ~U(AL AR, L ~ {lay Uy, le, g}, and o ~ (¢, ¢r):

10 . 2’/le$
ug () :ZAk sin 7 + o |,
k=1

where L is the length of the spatial domain. Each trajectory was generated using the method of
lines with the spatial derivatives computed using the pseudo-spectral method. For each equation, we
selected a time-stepping method that balances accuracy and cost: RK23 for the Burgers equation,
RK45 for the Korteweg-De Vries equation, and LSODA for the Kuramoto-Sivashinsky equation. See
for details.

Equation  Train T Test T’ At X Az {A1, Ar} {lay Ip, 1c, 1a} {1, Dr} Time-Stepping
Burgers 10 10 0.2 [0, 27] 27 /8192 {-0.5,0.5} {3,4,5,6} {0,27} RK23

Kdv 100 100 0.2 [0, 128] 128/1024 {-0.5,0.5} {1,2,3,—} {0,227} RK45

KS 100 200 0.2 [0, 64] 64/4096 {-0.5,0.5} {1,2,3,—-} {0,27} LSODA

Table 2: Data generation settings.

We construct two additional datasets, short-horizon Korteweg-De Vries and short-horizon Kuratmoto-
Sivashinsky, by considering the first 400 time steps to be part of a warmup phase and subsequently
discarding them. See Table for details.

For each of the one-dimensional equations, we generate 500 training trajectories and 100 testing
trajectories. The data was initially generated using double-precision floating-point format (float64)
and then converted into single-precision floating-point formation (f1oat32) for our experiments.
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Equation Warm-Up Steps Train T TestT

Short-Horizon KdV 400 20 20
Short-Horizon KS 400 20 120
Long-Horizon KdV 0 100 100
Long-Horizon KS 0 100 200

Table 3: Short-horizon and long-horizon settings.

Three-dimensional compressible Navier-Stokes dataset

We use the three-dimensional compressible Navier-Stokes turbulence dataset provided by |Takamoto
et al.|[2022]]. This dataset consists of 600 trajectories, each containing 21 time steps, with 90% of
the trajectories used for training and the remaining 10% reserved for testing. The turbulence initial
condition considers turbulent velocity with uniform mass density and pressure. The initial velocity is
defined as

4
v(x,t =0) = ZAi sin(k; - x + ¢;),
i=1

where the amplitude coefficients are

v

T k2

A;

and the characteristic velocity v = c,M is determined by the Mach number M and the speed of
sound

Ip
Cs = 4 —.
P

To reduce compressibility effects, the compressible component of the velocity field is removed using a
Helmholtz decomposition in Fourier space, resulting in a divergence-free velocity field that preserves
turbulent structures while minimizing artificial acoustic modes.

The flow parameters are set to
(n,¢, M) =(10"2,10"2,1.0),

where 7 and ( are the shear and bulk viscosity coefficients, respectively, and M is the initial Mach
number.

The data are simulated using a second-order accurate HLLC Toro et al.|[1994] scheme for the inviscid
terms, the MUSCL [Van Leer| [1997] method for spatial reconstruction, and a central difference
scheme for the viscous terms.

Each time step is composed by five channels: the three velocity components, pressure, and density,
and each time steps is represented on a 643 grid, resulting in 5 x 643 = 5 x 262, 144 ~ 1.31 x 10°
data points per step. The whole dataset size is 62 GB, indeed, due to memory constraints, training is
performed by loading sub-batches of 32 samples directly from the hard disk where the dataset was
stored. While this approach slows down training, it is necessary given the large dataset size.
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Figure 5: Example trajectories from the Korteweg-de Vries dataset. Train and test datasets share the
same 7.



Figure 6: Example trajectories from the Kuramoto-Sivashinsky training dataset. The training dataset
has T" = 100, whereas the testing dataset has 7' = 200.
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Figure 7: Example trajectories from the Kuramoto-Sivashinsky testing dataset. The training dataset
has T" = 100, whereas the testing dataset has 7' = 200.
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C Training Details

Data Preparation. To minimize the one-step loss £ = ||U;41 — Go(U;)||3, we require input-output
pairs. Consistent with prior work [Li et al.,[2021]], we set the prediction step size At,, = 0.8 and use
residual prediction (Go(U,,) ~ U,,;1 — U,) to balance short-term (one-step loss) and long-term
(trajectory) performance. We also spatially downsample to 256 points. We scale each target by
dividing by the maximum value across all trajectories, time steps, and spatial points; we found this to
perform marginally better than normalizing to unit standard deviation.

Neural Simulator Architectures.

Fourier Layer. The Fourier layer transforms the input into the frequency domain using a fast
Fourier transform (FFT), applies a truncated linear transformation to selected Fourier modes, and
then maps the result back to the spatial domain via an inverse FFT. This spectral transformation is
typically combined with a skip connection consisting of a point-wise convolution, a bias term, and an
activation function. Formally, for an input x € R", the layer computes:

F(x) =o(F YR -F(x)) + Wx +b),

where F and F~! denote the FFT and inverse FFT respectively, R : R" — R" is a learned linear

. . ’ . . . .
transformation in frequency space, W : R™ — R™ represents a point-wise convolution, and b is a
bias term.

Several variations of the Fourier layer have been proposed. One such variant [Tran et al., 2021]]
modifies the layer by introducing a residual connection and a two-layer feedforward network, while
omitting the point-wise convolution and bias term:

F(x) = x + oc(Woo (W1 F YR - F(x)) + b1) + ba).

In our early experiments, this modification did not yield noticeable improvements. We also explored
simply adding a skip connection without the feedforward block and inserting normalization layers at
various points in the architecture, but these did not result in noticeable improvements.

RDSrourier- The Fourier Neural Operator is made of a point-wise lifting layer, followed by a
sequence of Fourier layers, and then a point-wise projection. The Recurrent Depth Simulator
(RDS) with Fourier layers can be interpreted in two ways: 1) RDSgqyrier wo/ EncDec, a point-wise
lifting layer encoder, followed by a sequence of Fourier layers (that make up the recurrent-depth
block), and then a point-wise projection layer decoder, or 2) RDSgouier w/ EncDec, where the first
Fourier layer is part of the encoder and the last Fourier layer is part of the decoder. We find that
RDSrgouier W/ EncDec often leads to more consistent and superior performance.

RDS. The Recurrent Depth Simulator is a highly flexible framework. Each component—the
encoder, recurrent-depth block, and decoder—may be instantiated with any layer(s) depending on the
task. For example, in problems with periodic boundaries and a requirement of parameter efficiency,
where the Fourier Neural Operator would typically shine, Fourier layers can be used. On the other
hand, if the goal is to develop a foundation model for physics on irregular meshes, where one might
use a graph-based encoder, with an attention-based bottleneck, and a graph-based decoder, the RDS
framework can be configured accordingly. With just a few additional lines of code, RDS enables
explicit control over the accuracy-cost trade-off (see[Appendix H]for pseudocode).

Fourier- and attention-based layers are well-suited for recurrent-depth blocks due to their ability to
model infinite receptive fields. In contrast, convolutional-based layers have a fixed receptive field that
grow with the depth. For example, a standard convolutional layer in PyTorch with kernelsize=3,
dialation=1, and stride = 1 has a receptive field of size 3. Stacking two such layers increases
he receptive field to 5—capturing the center point and two neighboring point on each side. More
generally, the receptive field after stacking L such layers is given by L - (kernelsize/2) + 1. To
achieve a receptive field of size 64, to effectively model the Burgers equation, one would need to
stack 63 layers. In RDS, where K = 1 could be sampled, 63 layers would need to be distributed
across the encoder, recurrent-depth block, and decoder. To mitigate this, some alternatives can be
considered to expand the receptive field more efficiently: increasing the kernel size, incorporating
attention-based layers, or adding downsampling blocks.
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FNO-DEQ. Similarly to/Marwah et al.[[2023]], we use Anderson acceleration with a maximum of
16 iterations. For the backward pass of the DEQ layer, we follow the phantom gradient approach
proposed by |Geng et al.| [2021]], using parameters s = 3 and 7 = 0.8. To match the parameter count
of RDSgourier, we employ a 1D FNO with 8 layers and 120 channels.

ACDM. We follow the original setup from Kohl et al.|[2023]], using a linear scheduler and training
with a maximum of 50 diffusion steps. For conditioning, we concatenate the snapshot from the
previous time step, i.e., the solution u; when predicting u;4;. To ensure a fair comparison, we
condition only on u; and do not include earlier time steps.

PDE-Refiner We use the same scheduler proposed by [Lippe et al.|[2023], with 02, = 2-10~" and

K = 10. Following a similar approach to|Kohl et al.|[2023]], we implement the following algorithm
from scratch:

Algorithm 3 PDE-Refiner: Training and Inference Procedures
1: procedure TRAINSTEP(u¢, Uprey)

2: k <+ random integer in [0, num_steps]

3: if £ = 0 then

4: pred < NeuralOperator(zeros_like(us), Uprey, k)
5: target < uy

6: else

7: noise_std <~ min_noise_std®/mum-steps

8: noise « randn_like(u;)

9: Ut noised <— U¢ + NOise - noise_std

10: pred < NeuralOperator(t noiseds Uprevs k)
11: target <— noise

12: end if

13: loss <~ MSE(pred, target)

14: return loss

15: end procedure

16: procedure PREDICTNEXTSOLUTION I (tprey)

17: u; < NeuralOperator(zeros_like(uprey ), Uprev, 0)
18: for k = 1 to num_steps do

19: noise_std < min_noise_std*/"m-sePs

20: noise < randn_like(u;)

21: U noised <~ Ui 1 Noise - noise_std

22: pred «— NeuralOperator(u; ,iseds Uprev, k)
23: Uj 4= Uf noisea — Pred - noise_std

24: end for

25: return u;

26: end procedure

624 is taken from [Lippe et al.| [2023]], and the number of inference num_steps is fixed at

625
626

627
628
629
630
631

test time. To adapt the original algorithm, we investigated two variations: [Algorithm 4] and[5] When
K = num_steps, both methods recover the original procedure proposed in|Lippe et al.|[2023].

The first variation, [Algorithm 4] adjusts the noise scheduler based on the number of inference steps.
However, this strategy only performs well when the number of steps matches the training setup. To
address this limitation, we introduce which retains the noise scheduler from training
while allowing the number of inference steps to vary. This consistency in noise levels enhances
stability and performance by preserving the distribution the network was trained on.
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Algorithm 4 Predict Next Solution 1

procedure PREDICTNEXTSOLUTION (Uprey)
u; <— NeuralOperator(zeros_like (tprey ), Uprev, 0)
for k =1to Kdo
noise_std < min_noise_stdk/ K
noise <— randn_like(u;)
Uj noised €~ Ui 1 noise - noise_std
pred <— NeuralOperator(u; ,iseds Uprevs k)
Uf 4= Ujf noisea — Pred - noise_std
end for
return u;
end procedure

Algorithm 5 Predict Next Solution 2

1: procedure PREDICTNEXTSOLUTION(Uprey)
2: u; < NeuralOperator(zeros_like(tprey ), Uprev, 0)

3: for £ = 1to Kdo

4: noise_std +— min_noise_std®/mum-steps

5: noise < randn_like(u;)

6: U noised < Ui 1 Noise - noise_std

7: pred «— NeuralOperator(u; ,iseqs Uprev, k)
8: Uj = Uj noieq — Pred - noise_std

9: end for
10: return u;

11: end procedure

Optimzation. All optimization hyperparameters are listed in[Table 4Jand remain fixed across all
experiments, except where explicitly stated. We train each model for 100 epochs using the AdamW
optimizer [Loshchilov and Hutter, 2019], starting with a learning rate of 3 x 10~% and a weight decay
of 1 x 1075, A cosine annealing schedule is applied to gradually reduce the learning rate to 3 x 10~°
[Loshchilov and Hutter| |2017b]. In early experiments, we observed that using a higher initial learning
rate (e.g., 1 x 1077) led to less consistent performance, though it occasionally improved performance
[Sohl-Dicksteinl 2024]].

Hyperparameter Value
Epochs 100

Batch Size 2561
Optimizer AdamW
Starting Learning Rate 3x 1074
Weight Decay 1x107°
Scheduler Cosine Annealing
Ending Learning Rate 3x1076

Table 4: Optimization hyperparameters used in all experiments.

'For the three-dimensional experiments, we use a batch size of 32, and perform gradient accumulation to
have an effective batch size of 256.

22



639

640
641
642
643
644
645
646
647

648
649
650
651
652
653
654

655
656
657
658
659
660

661

662
663
664
665

666
667
668
669
670
671
672

674
675
676
677

679
680

D Backpropagation Window

During training, the recurrent-depth block is repeated K times in the forward pass, after which
gradients are propagated backward through the same computation. If K is large, which could
happen because K is drawn from a long-tailed distribution, the backward pass must retain every
intermediate activation, quickly exhausting GPU memory. To cap the memory usage, we use truncated
backpropagation-through-time with a fixed backpropagation window B: gradients are backpropagated
through at most the last B steps, and earlier steps are treated as constants. This bounds memory at
O(B) independent of K. In this experiment, we study it truncated backpropagation-through-time is
viable and the effect of different backpropagation windows.

Experimental Setup. We conduct experiments on three datasets: Burgers, long-horizon KdV, and
long-horizon KS. We train a recurrent depth simulator with a point-wise lifting layer, a recurrent-depth
block with a single Fourier layer, and a point-wise projection layer with ~ 1M parameters. We set
K = 32, and the backpropagation window is swept over B € {1,2,4,16,32}. With B = 1 the
compute for the forward pass is equivalent to a Fourier layer with 33 layers, but the backward pass
stores only a single activation; with B = 32 the backward pass stores every activation whenever
K < 32 and the last 32 when K > 32. This would be infeasible for higher-dimensional problems.

Results. We report the trajectory errors in[Table 5] Across all equation B = 1 performs worst and
moving from B = 1 to B = 2 yields the largest gain, and improvements largely saturate by B = 4.
Beyond B = 4, larger windows offer only marginal benefit while reinstating a substantial memory
cost. Note that although trajectory error is not the preferred metric for KS, the same saturation is
evident. Based on these results, and to balance accuracy and memory, we set B = 4 in all main
experiments.

Backpropagation Window B \ Burgers Korteweg-De Vries Kuramoto-Sivashinsky

1 0.0849 0.1046 1.6341
2 0.0315 0.0522 1.4097
4 0.0199 0.0317 1.3972
16 0.0181 0.0302 1.3960
32 0.0178 0.0298 1.3910

Table 5: Impact of the back-propagation window B on trajectory error. Accuracy improves sharply
up to B = 4 and then plateaus.

E Distribution Parameter K

The distribution parameter K controls the expected number of recurrent steps during training. Setting
K too low shortens training time but may leave the model under-exposed to large K values during
inference; setting it too high increases training time. In this experiment, we wish to identify the
optimal K.

Experimental Setup. We conduct experiments on three datasets: Burgers, long-horizon KdV, and
long-horizon KS. We train a recurrent depth simulator with a point-wise lifting layer, a recurrent-
depth block with a single Fourier layer, and a point-wise projection layer with ~ 1M parameters.
The backpropagation window is fixed at B = 4, and K is swept over {1, 2,4, 8,16, 32, 64, 128}.
Doubling K roughly doubles the forward cost, yet backward memory remains capped by B; for
instances, ' = 8 matches the forward FLOPS of an 8-layer FNO but the truncated-backpropagation-
through-time keeps the backward pass FLOPs as cheap as a 4-layer FNO. After training, each model
is evaluated at all values K € [1,2K] and we report the lowest trajectory error achieved.

Results. m.plot trajectory error as a function of K. Increasing K consistently lowers the
best achievable trajectory error, but we observe diminishing returns beyond K~ 32 We also notice
that models trained with larger K underperform with small K values (see [Figure 15). In other words,
the additional training compute shifts the accuracy-cost curve to the right and gams appear only once
K is allowed to grow. Based on these results, we set K = 32 in our main experiments as it captures
the bulk of the benefit of high-compute settings while leaving the model competitive in low-compute
settings.
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Figure 8: Choosing the distribution parameter K on the Burgers dataset.
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Figure 9: Choosing the distribution parameter K on the KdV dataset.

le+014

~

-

S t

c

w *x

>

E L X B 3 *

O 1e+00

_0)

©

|_ T T T T T
816 32 64 128
K

Figure 10: Choosing the distribution parameter K on the KS dataset.
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F Merging

At each recurrent step, the recurrent depth simulator must merge the condition vector ¢ with the
latent vector z;. We consider six merging methods of increasing capacity. Add simply sums the two
vectors. Adds introduces two learnable parameters « and 3 (z; = ac + fzk). Add, generalizes this
to element-wise vectors a and 3 (2 x hiddenchannels additional trainable parameters). Projection
concatenates [c, z] and applies a point-wise linear map (2 X hiddenchannels X hiddenchannels
additional trainable parameters); Projection; uses the same layer but is initialized with 1s along the
diagonals and Os everywhere else, so that it is equivalent to Add, at initialization but with increased
capacity. Concat feeds the raw concatenation into the first layer (in the recurrent-depth block),
doubling its input channels, and thus, trainable parameters. In this experiment, our goal is to test
these merging methods.

Experimental Setup. All experiments run on the one-dimensional Burgers equation. The base
architecture is fixed—a point-wise lift, a single Fourier layer encoder, a one-layer Fourier recurrent
block, and a Fourier decoder with point-wise projection—trained with /' = 32 and back-propagation
window B = 4. We sweep five parameter budgets {0.2M, 0.5M, 1.0M, 2.0M, 4.0M} by scaling
channel width, and implement each of the six merging methods at every budget. After training, each
model is evaluated at all values K € [1,2K] and we report the lowest trajectory error achieved.

Results. Table[Table 6|reports the lowest trajectory error for every configuration. The three addition
variants perform almost identically and improve monotonically with parameter count. The Projection
variant lags behind, but when initialized with 1s along the diagonals (Projectiony), it matches or
exceeds the additional family. Concat attains the lowest error overall, but at the price of ~ 33%
extra parameters in the recurrent-block’s first layer; we hypothesis that part of its gain stems from
increased model size rather than a superior merging mechanism.

Parameters\ Add Add, Add, Projection Projectiony Concat

~ 0.2M 0.0234  0.0230 0.0229 0.0240 0.0240  0.0214
~ 0.5M 0.0176  0.0173 0.0172 0.0223 0.0135 0.0146
~ 1.0M 0.0129 0.0126 0.0126 0.0169 0.0101  0.0151
~ 2.0M 0.0116 0.0115 0.0115 0.0094 0.0093  0.0090
~ 4.0M 0.0100  0.0098 0.0099 0.0110 0.0100  0.0083

Table 6: Trajectory error on Burgers for six merging methods across five parameter budgets. Best
result in each row is bold, second-best italic.
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7« G More Experiments

705 G.1 Experiment: Accuracy-Cost Trade-Off (Extended)
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Figure 11: Burgers: Trajectories at K = 4 (orange) and K = 16 (purple).
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Figure 12: Short-Horizon KdV: Trajectories at K = 4 (orange) and K = 16 (purple).
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G.2 Experiment: Alternatives (Extended)

On the chaotic Kuramoto-Sivashinsky dataset we replace trajectory error with the average and worst-
case correlation horizon metrics. shows the behavior of the four adaptive-compute simula-
tors across 30 correlation thresholds (v = 0.70 — 0.99) and all inference depths K € {1,...,16}.
RDSrourier (first column) shows the desired monotone pattern: both the average and the worst-cast
correlation horizons rise steadily with K. FNO-DEQ delivers flat surfaces—its iterations leave
the horizon essentially unchanged—so it cannot expliot extra compute. ACDM begins with short
horizons, improves up to K = 4, and then flattens; only a narrow band of K values is usable, limiting
its test-time flexibility. PDE-Refiner gains up to K ~ 8 but then oscillates, making it hard to pick a
reliable stopping point. Across both average and worst-case statistics RDS attains the longest horizons
and is the only model whose accuracy scales predictably with additional compute, confirming its
advantage for controllable accuracy-cost trade-offs in chaotic regimes.
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Figure 14: Kuramoto—Sivashinsky: average (top) and worst-case (bottom) correlation horizons and
threshold « versus inference depth K.

G.3 Experiment: Large-Scale Compressible Navier-Stokes (Extended)
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Figure 15: Trajectory error (MSE) over the number of recurrent steps K for two RDSgqyuier models,
trained with lower and higher FLOPs budgets, respectively.

As shown in fig.[T3] the two models present distinct trade-offs. When the number of recurrent steps
during inference exceeds 8, the model trained with a higher FLOPs budget and a higher K yields
significantly lower MSE. In contrast, for fewer than 8 recurrent steps, the model trained with a lower
computational budget performs better.
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722 H Pseudocode

7251 class Network (Module) :

7262 def __init__(self):

7273 super () .__init__ Q)

728 4 # Encoder Layer

7295 self.encoder = Layer ()
730 6

7317 # Collect L Intermediate Layers
732 8 layers = []

7339 for _ in range(L):

73410 layers.append (Layer ())
73511

73612 # Decoder Layer

73713 self.decoder = Layer ()
73814

73915 def forward(self, x):

74016 # Apply Encoder

74117 z = self.encoder (x)
74218

74319 HHHHAAFHHBAAHH R AR SR HHH
7440 ##### Main Block #####
7451

74622 # Apply L Intermediate Layers
74723 for layer in self.layers:
74804 z = layer(z)

7495

7506 ##### Main Block #####
75127 HHAHHAHBEHHAH B HAHHAH RS
7528

7539

75430

7551

75632

75733

7584

7595

76036

76137

76238

7639

76440

765!1

76642

76743

76814

76915

77046

7717

77218

77319

77450

7751

77652

77753

7784

7795 # Apply Decoder

78056 x = self.decoder(z)
78157 return x

Listing 1: Pseudocode of a standard neural simulator. The neural simulator contains an encoder or
lifting layer (self.encoder), L intermediate layers of any type (residual layers, Fourier layers, etc.),
and an decoder or projection layer (self.decoder).
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7821 class Network (Module):

7832 def __init__(self):

7843 super () . __init__Q)

785 4 # Encoder Layer

786 5 self.encoder = Layer ()

787 6

788 7 # Collect L Intermediate Layers
789 8 layers = []

790 9 for _ in range(L):

79110 layers.append (Layer ())

79211

79312 # Decoder Layer

79413 self.decoder = Layer ()

79514

79615 def forward(self, x, K=None):

79716 # Apply Encoder

79817 ¢ = self.encoder (x)

79918

80019 HHAHHARAARAARRARAHAHAH

80120 ##### Main Block #####

80221

80322 # Sample Noise \w ‘shape=x.shape’
80423 z = sample_noise ()

80524

80625 # During Inference:

80726 if not self.training:

80827 # Loop K Times

80928 for _ in range (K):

8109 # Concatenate x and z

81130 z = cat([c, z], dim=1)
81231 # Apply L Intermediate Layers
8132 for layer in self.layers:
81433 z = layer(z)

81534

81635 # During Training:

81736 if self.training:

81837 # Do Not Use Grad

8188 with no_grad():

82039 # Sample K (Using K_bar)
82140 K = sample_K()

82211 # Loop K - B Times

82342 for _ in range(K - B):
82443 z = cat([c, z], dim=1)
82514 for layer in self.layers:
82615 z = layer(z)

82746 # Loop Remaining B Times

82817 for _ in range(B):

82918 z = cat([c, z], dim=1)
83049 for layer in self.layers:
83150 z = layer(z)

8321

83372 ##### Main Block ##H###

83453 HUHHHAHBHAFAHBH AR R RS

83554

83655 # Apply Decoder

83756 x = self.decoder(z)

8387 return x

Listing 2: Pseudocode of the Recurrent Depth Simulator—fewer than 20 new lines compared to
a standard neural simulator. During inference, we apply the intermediate layers K times. During
training, we apply the intermediate layers K - B times without gradient, and B times with gradient.
Nothing else needs to change.
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I Extended Related Work

Deep Equilibrium Models. Deep Equilibrium Models (DEQs), introduced by [Bai et al.|[2019], are
implicit, infinite-depth, weight-tied neural networks. A DEQ directly solves for the fixed point of a
nonlinear transformation using any black-box root-finding algorithm and instead of backpropagating
through each layer, which can be infeasible due to memory and numerical stability, the DEQ makes
use of the Implicit Function Theorem to compute the gradients at the equilibrium—this approach has
a constant memory requirement regardless of depth. Although the existence of the fixed point, or
convergence to the fixed point, is not guaranteed; on large-scale language modeling tasks, |Bai et al.
[2019] demonstrated that DEQs can achieve performance comparable with state-of-the-art while using
significantly less memory. Later, Bai et al.|[2020] extended DEQs to large-scale computer vision
tasks, showing similar performance and memory benefits. Subsequent research explored DEQs for
various applications. [Pokle et al.|[2022] represent the entire sampling process in denoising diffusion
implicit models as a single fixed-point system. |Geng et al.[[2023]] distill diffusion models, directly
from initial noise to the final image, into a DEQ. In inverse problems, |Gilton et al.| [2021]] model
a, potentially infinite, iterative reconstruction scheme as a DEQ. For partial differential equations,
Pokle et al.[[2022] propose FNO-DEQ, a DEQ variant with Fourier layers, to solve steady-state PDEs,
showing improvements in accuracy and robustness to noise over baselines with four times as many
parameters.

Denoising Diffusion Models. First introduced by [Sohl-Dickstein et al.[[2015]], diffusion models
are probabilistic models with an iterative forward diffusion process and a learned reverse diffusion
process. The forward process gradually adds noise to data until only noise remains, and the reverse
process gradually removes noise to restore the original data. New samples are generated by sampling
a noise vector and passing it through the reverse process. |[Ho et al.[[2020] presented high-quality
image synthesis results using diffusion models. Dhariwal and Nichol|[2021]] and |[Karras et al.|[2022]
made further progress leading to state-of-the-art results and widespread adoption. Diffusion models
have been applied to image generation [Nichol et al., 2021, Ramesh et al.| 2022} |Saharia et al.| 2022b],
image inpainting and outpainting [Saharia et al.| 2022a]], super-resolution [Saharia et al., [2022c]],
audio generation [Chen et al.| 2020, Kong et al.| 2020, text generation [Austin et al.,|2021], including
large language (diffusion) models [Nie et al., [2025]]. In scientific domains, diffusion models have
been applied to medium-range weather forecasting [Price et al., 2023]], structure-based drug design
[Schneuing et al.l 2024], and stable materials generation [[Yang et al., 2023]]. [Kohl et al.| [2023]]
demonstrated that diffusion models are viable for turbulent flow simulation. Their results show that
diffusion models outperform, in terms of long-term accuracy and stability, more efficient (and more
commonly used) neural simulators. Kohl et al.|[2023]] also compared against PDE-Refiner [Lippe
et al.| 2023]], a diffusion-based multi-step refinement process, but found that PDE-Refiner is highly
sensitive to hyperparameters, and in some cases, generated substantially worse results compared to
other methods.

J Extended Discussion

To our knowledge, this is the first work to study neural simulators in terms of fest-time control of
accuracy-cost trade-offs. Since the performance varies with the chosen number of recurrent steps K,
a scalar metric is no longer adequate; our experiments therefore focus on full accuracy-cost curve,
and correlation-horizon surfaces. Across all tasks, the Recurrent-Depth Simulator provides a smooth,
monotone trade-off, demonstrating that adaptive compute is possible, and we hope these results
stimulate further work along this new axis.

Although the main experiments concentrate on RDS instantiated with Fourier layers—chosen for
their infinite receptive field (see [Appendix C)—preliminary tests with convolutional blocks yield
qualitatively similar results. We also use a recurrent-block with a single-layer for clarity: it delivers the
most predictable behavior, however, deeper blocks also showed strong performance. Exploring richer
blocks and alternative layer types under this controllable-compute paradigm remains a promising
direction for future research.
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