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ABSTRACT

Despite the notable advances in graph-based deep multi-view clustering, existing
approaches still suffer from three critical limitations: (1) relying on static graph
structures and being unable to model the global semantic relationships across views;
(2) contamination from false negative samples in contrastive learning frameworks;
and (3) a fundamental trade-off between cross-view consistency and view-specific
discrimination. To address these issues, we introduce Multi-scAle diffusioN-guided
Graph learning with pOwer-smoothing random walk contrast (MANGO) for multi-
view clustering, a unified framework that combines adaptive multi-scale diffusion,
random walk-driven contrastive learning, and structure-aware view consistency
modeling. Specifically, the multi-scale diffusion mechanism leverages local entropy
guidance to dynamically fuse similarity matrices across different diffusion steps,
thereby achieving joint modeling of fine-grained local structures and overall global
semantics. Additionally, we introduce a random walk-based correction strategy
that explores high-probability semantic paths to filter out false negative samples,
and applies a β-power transformation to adaptively reweight contrastive targets,
thereby reducing noise propagation. To further reconcile the consistency-specificity
dilemma, the view consistency module enforces semantic alignment across views by
sharing structural embeddings, ensuring consistent local structures while preserving
heterogeneous features. Extensive experiments on 12 datasets demonstrate the
superior performance of MANGO.

1 INTRODUCTION

Multi-view Clustering (MVC) aims to partition data samples into meaningful clusters by leveraging
the consensus and complementary information across multiple views. By exploiting the synergistic
relationships between diverse data representations, MVC facilitates the discovery of underlying
structures in complex datasets, positioning it as a key research area for integrating heterogeneous
information sources and revealing intrinsic patterns (Gao et al., 2015; Liu et al., 2018; 2020; Xu
et al., 2022a; Yan et al., 2024). From the perspective of learning paradigms, existing MVC methods
can be broadly categorized into traditional techniques and deep learning-based models (Fang et al.,
2023). Among them, deep learning-based approaches have attracted increasing attention due to their
strong capacity for modeling intricate data distributions and extracting highly expressive feature
representations (Huang et al., 2023; Liu et al., 2024; Tang & Liu, 2022).

Deep multi-view clustering leverages the nonlinear mapping capabilities of deep neural networks
to capture the distinctive semantics of each view while effectively integrating complementary infor-
mation, enabling strong performance in complex data scenarios (Lin et al., 2023; Xu et al., 2023;
Yang et al., 2023). Given the ability to explicitly model the topological relationships within the data,
graph-based deep multi-view clustering (GDMVC) methods have garnered considerable attention.
For example, Wen et al. (2024) proposed an adaptive hybrid graph filter that combines high- and
low-frequency signals with fused multi-view embeddings to improve clustering performance on
graphs. Ren et al. (2024) dynamically fuse weighted graphs using deep autoencoders and graph
convolution, enabling efficient self-supervised deep multi-view clustering. Additionally, to accurately
capture the affinity relationships between sample pairs, numerous contrastive learning-driven methods
for graph structure refinement have been proposed Gao et al. (2024); Liu et al. (2023); Smith et al.
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(2025). For example, Yu et al. (2025) proposed a multi-view deep subspace clustering method
leveraging contrastive learning and Cauchy-Schwarz divergence for interactive representation and
clustering optimization. Chen et al. (2023) introduced a cross-view contrastive learning model that
learns view-invariant and robust representations by contrasting cluster assignments across views.
Additionally, Wang et al. (2023) integrated triple contrastive learning at both the feature representation
and graph structure layers to generate a consensus similarity graph with a clear clustering structure.

Despite the notable progress achieved by recent graph-based deep multi-view clustering methods,
three fundamental technical challenges remain unresolved. First, the reliance on static graph structures
imposes inherent limitations in capturing complex semantics across multiple views. Specifically,
such methods only rely on the local neighborhood relationship between samples to calculate the
similarity, ignoring the global semantic connection between views. This limitation leads to inevitable
information loss and distortion, which makes it difficult for the model to accurately capture complex
cross-view semantic associations. Second, the issue of negative sample contamination remains
prominent in graph-based contrastive learning frameworks. When constructing negative pairs, the
model may mistakenly treat semantically similar samples as negatives, introducing false contrastive
signals. These errors can accumulate through gradient backpropagation, forming a positive feedback
loop of "noisy optimization" that progressively degrades the quality of similarity measures and
weakens the effectiveness of contrastive learning. Finally, the dilemma of balancing semantic
consistency and modality specificity plagues multimodal alignment strategies. This trade-off can
undermine the separability of clusters, as over-alignment harms the uniqueness of the modality, while
under-alignment destroys the cross-view semantic correspondence.

To address the aforementioned limitations, this study proposes Multi-scAle diffusion-guided Graph
learning with pOwer-smoothing random walk contrast (MANGO) model, which contains three
technical innovations. First, we introduce an adaptive multi-scale diffusion mechanism. This
module dynamically fuses similarity matrices from multiple diffusion steps based on local entropy
information to build a more resilient and semantically expressive graph structure. By modeling on
multi-scale topology, MANGO can capture local details between directly connected samples and
global semantic connections between distant samples. Second, to address the challenge of negative
sample contamination, random walk path sampling is introduced to dynamically correct the sample
distribution of contrastive learning. This technique explores high-probability semantic paths to filter
out false negative sample pairs, and is supplemented by β-power transformation to adaptively weight
negative samples. The combined method reduces noise propagation and enhances the accuracy of
graph similarity estimation through iterative refinement. Third, regarding the trade-off between
consistency and specificity, our structure-aware cross-view contrastive learning mechanism achieves
a dual goal: to enforce semantic consistency through shared structural embeddings, while retaining
modality-specific discriminative features through a view-aware attention mechanism. This balance
solves the problem of cluster boundary ambiguity by coordinating global semantic alignment and
local modality uniqueness. The core contributions of this paper include the following three aspects:

• A multi-scale diffusion mechanism is proposed to break the performance bottleneck brought
by the fixed diffusion step size, dynamically fuse the similarity information under different
step sizes, take into account both local structure exploration and global semantic modeling,
and realize the effective capture of multi-granularity structural information.

• A random walk correction method is designed to optimize the distribution of contrastive
learning targets. The hybrid transfer matrix is constructed by combining the t-step transfer
matrix and the unit matrix, and the weight of negative samples is adjusted through β-power
transformation to form a more discriminative contrast target, which reduces the impact of
erroneous negative samples.

• We design a structure-aware view consistency module that simultaneously promotes semantic
alignment across views and preserves modality-specific discriminative features, thereby
improving clustering quality in heterogeneous multi-view scenarios.

• Extensive experiments are conducted on 12 benchmark multi-view datasets of varying
types and scales. The results verify the effectiveness of MANGO compared with several
state-of-the-art multi-view clustering methods.
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2 RELATED WORK

Deep multi-view clustering (DMVC) methods can be broadly categorized into three paradigms based
on how they handle inter-view relationships: joint methods, alignment-based methods, and other
methods.

Joint methods integrate feature learning and clustering into unified objectives, leveraging cross-view
collaboration to enhance representation quality. For instance, Li et al. (2021) jointly learned both
view-specific and consensus graphs while adaptively assigning weights to obtain high-confidence
clustering results. Xia et al. (2022) built a self-supervised framework based on Euler transformation
and ℓ1,2-norm, integrating representation learning and clustering. Hu et al. (2023) enhanced feature-
level alignment by incorporating cluster-level contrastive learning and dynamic weight learning to
promote more consistent deep representations.

Alignment-based methods, in contrast, focus on mapping view-specific representations into a shared
subspace to promote consistency. Early work by Hassani & Khasahmadi (2020) introduced a node-
graph dual-granularity alignment framework to address cross-hierarchical redundancy. Building on
this, Liu et al. (2022) mitigated representation collapse by reducing inter-view redundancy from
both sample and feature perspectives. Chen et al. (2023) proposed a clustering-aware contrastive
learning mechanism, which directly enforced semantic consistency across views. Trosten et al.
(2023) identified negative sample bias in traditional contrastive alignment and developed a variational
alignment model that maximized mutual information.

In addition, some approaches combine these strategies or address specific issues such as noise
and incomplete views. For example, Luo et al. (2018) pioneered the combination of consistency
constraints and view-specific modeling to establish a unified theoretical framework for multi-view
subspace representation. Ke et al. (2021) built a full-process integrated framework of feature
extraction-fusion-comparison-clustering, verifying the feasibility of multi-task joint optimization. Xu
et al. (2021) introduced a common-specific variable dual-channel mechanism to separate multi-view
shared clustering features from view-unique information.

3 METHOD

This section provides a detailed introduction to the proposed MANGO model, which primarily con-
sists of four components: the self-expressive module, contrastive learning module, view consistency
module, and adaptive diffusion module, as illustrated in Figure 1.

3.1 SELF-EXPRESSIVE MODULE

Given a multi-view dataset {Xv ∈ Rn×dv}mv=1, where m is the number of views, n denotes the
number of samples, and d1, d2, ..., dm are the dimensionality of each view, we propose a self-
expressive module to effectively integrate heterogeneous views. Specifically, for the v-th view, we
first obtain its embedded representation through the encoder: Zv = fv(Xv), where fv represents
the encoder of v-th view, and Zv is the learned embedded representation. The core of the module
is the encoder that achieves self-reconstruction through sparse combination of latent features. The
reconstruction process is defined as X̂v = CvZv , where Cv is the sparse coefficient matrix obtained
by weighted fusion of sparse matrices under each view. For the v−th view, the sparse adjacency
matrix within the view is generated by filtering the cosine similarity of the sample pairs with an
adaptive threshold b, ensuring that the reconstruction process captures local structural dependencies.
Finally, the reconstruction loss is obtained:

Lrec =
1

2

m∑
v=1

∥∥∥Xv − X̂v
∥∥∥2
F

(1)

In addition, to prevent overfitting, we use the hybrid regularization term following (You et al., 2016):

Lreg =

m∑
v=1

λ∥Cv∥1 +
1− λ

2
∥Cv∥2F (2)
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Figure 1: The Framework of MANGO. First, MANGO obtains embedding representations via
view-specific MLP modules and captures data structure through reconstruction loss. Then, the view
consistency module achieves semantic alignment by sharing structural embeddings, while contrastive
learning and random walks filter high-probability semantic paths and eliminate pseudo-negative
samples. Finally, the affinity matrix undergoes T steps of diffusion, and local structures and global
semantics are fused through information entropy-based weighting.

where λ is used to balance the two regularization terms. This reconstruction loss, combined with
hybrid regularization, yields embeddings that preserve both global semantics and local geometry,
providing robust inputs for downstream modules.

3.2 POWER-SMOOTHING RANDOM WALK ENHANCED CONTRASTIVE LEARNING

Contrastive learning is widely adopted for representation learning in unlabeled multi-view scenarios,
where features are aligned by contrasting positive (similar) and negative (dissimilar) pairs. However,
it relies on two strong assumptions: (1) positive pairs from different views of the same sample
are semantically aligned, and (2) all negative pairs are unrelated. These assumptions often fail in
practice—cross-view heterogeneity can make same-class instances appear dissimilar, producing false
negatives (FNs), while the absence of labels makes it difficult to ensure true negatives. Such false
negatives distort training signals, disrupt the manifold structure, and weaken the discriminative power
of the learned representations.

To tackle this issue, we propose a power-smoothing random walk enhanced contrastive learning
strategy, which integrates two key components: a random walk correction to capture high-order
semantic relations, and a power-smoothing operation to reduce the impact of false negatives by
refining similarity distributions.

Random walk-based correction mechanism: Traditional contrastive learning assumes equal im-
portance for all non-anchor negative samples, overlooking the intrinsic structure of the data. The
proposed random walk correction mechanism simulates random walks on the sample manifold to
uncover and exploit this structural information, enabling more principled weighting of negative
samples. Specifically, we first construct the affinity matrix Aij = exp(−σ ∥zi − zj∥2) through the
Euclidean distance of sample embedding, where σ is the bandwidth parameter of the Gaussian kernel.
After the affinity matrix A is constructed, it needs to be normalized and converted into a transfer
matrix M, where Mij represents the one-step transfer probability from sample i to sample j.To better
capture high-order manifold structures, we compute the t-step transition matrix Mt = M× · · · ×M
(t times), where M is the one-step transition matrix.

Mij =
Aij∑n
k=1 Aik

(3)
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Finally, the interpolation parameter η is used to balance the self-connection strength and the manifold
structure, formulated as T = ηI + (1 − η)Mt, where T is the target distribution matrix, and Tij

denotes the degree to which sample j is a semantic neighbor of sample i. This value can be directly
used as the negative sample weight in the intra-view contrastive loss.

Power-smoothing-induced contrastive learning : In addition, in order to enhance the robustness,
we introduce a smoothing power operation on the basis of InfoNCE loss to control the overall strength
of negative samples, which directly acts on the negative sample term in the contrast loss, thereby
obtaining the expression of the intra-view contrast loss:

Lintra =
1

m

m∑
p=1

− 1

n

n∑
i=1

log
exp

(
s(zpi ,z

p
i )

τ

)
exp

(
s(zp

i ,z
p
i )

τ

)
+

(∑
j ̸=i Tij exp

(
s(zp

i ,z
p
j )

τ

))β

 (4)

where n is the number of samples, s(zi, zj) represents the cosine similarity, and β is the power
operation parameter. Compared with the standard InfoNCE loss, the negative sample item is subjected
to the β power operation. This operation has a nonlinear smoothing effect on the negative sample
item parameter, which is used to reduce the overall impact of negative samples, especially the impact
of extreme value samples.

Similarly, the expression of the contrast loss between m views is as follows:

Linter =
2

m(m− 1)

∑
p̸=q

− 1

n

n∑
i=1

log
exp

(
s(z

p
i
,z

q
i
)

τ

)
exp

(
s(z

p
i
,z

q
i
)

τ

)
+

(∑
j ̸=i Wij exp

(
s
(z

p
i
,z

q
j
)

τ

))β

 (5)

The difference is that s(zpi , z
q
i ) represents the cosine similarity between sample i in view p and

sample j in view q, zpi is the embedding representation of sample i in view p, zqj is the embedding
representation of sample j in view q, and Wij is the uniform weight.

Finally, by integrating the aforementioned intra-view and inter-view contrastive losses, the Power-
Smoothing Random Walk Enhanced Contrastive Learning framework can be formulated as follows,
where µ is the balance parameter of the two contrast losses.

Lcontra = Lintra + µLinter (6)

3.3 VIEW CONSISTENCY MODULE

Due to potential discrepancies in noise distributions and semantic emphasis across different views,
embeddings of the same class can vary significantly among views. Directly inputting such misaligned
embeddings into the subsequent fusion module will destroy the intrinsic consistency of the data and
fuse the conflicting noise. Therefore, in the last step of representation learning, we introduced a view
consistency module, which builds a mapping bridge between views to ensure that the representations
from different views can be aligned and complement each other. Specifically, view consistency is
to maximize the mutual information between representations of different views. Given two view
embeddings Zp and Zq , the mutual information is defined as:

I (Zp;Zq) =

∫∫
p (Zp,Zq) log

p (Zp,Zq)

p (Zp) p (Zq)
dZpdZq (7)

I (Zp;Zq) ≥ H (hi)− Ep(Zp,Zq) [d (fp→q (Z
p) ,Zq)] (8)

where d(·, ·) represents cosine distance. The core of the view consistency module is to learn a
mapping function f such that: Ẑp= fp→q(Z

p) ≈ Zq . Therefore, the consistency loss function can be

defined as Lp→q = 1− d(Ẑp,Zq)
τ , where τ is used to control the sensitivity of the loss.

For the case of m views, we need to calculate the consistency loss between all view pairs:

Lconsist =
1

m(m− 1)

m∑
p̸=q

Lp→q (9)
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3.4 ENTROPY-GUIDED MULTI-SCALE DIFFUSION FOR GRAPH REFINEMENT

After obtaining discriminative representations, a graph A is typically constructed to encode semantic
similarities among samples, serving as a foundation for downstream clustering tasks. However,
most existing graph-based approaches employ static graph structures, which are highly sensitive
to the quality of the learned features. To mitigate this issue, we propose an entropy-guided multi-
scale diffusion strategy for graph refinement, consisting of a multi-scale diffusion module and an
entropy-guided learning module.

Multi-scale graph diffusion: Diffusion-based methods propagate information by repeatedly multi-
plying the transition probability matrix, enabling global semantic aggregation. Formally, the t-step
diffusion is At = A× · · · ×A, where A is the sparse similarity matrix, Aij denotes the one-step
transition probability from node i to j, and At represents the transition probability matrix after t steps.
Unlike traditional diffusion, we compute matrices at multiple diffusion steps to capture structural
information across scales, and dynamically fuse them to balance local structures and global semantics.
Specifically, given the normalized affinity matrix Anorm, we construct {Ã0, Ã1, . . . , Ãt}, where
Ã0 = Anorm. After each step, we retain only the top-K elements per row and re-normalize to obtain
Ãt.

Entropy-guided multi-scale graph learning: In this approach, entropy is used to evaluate the quality
of the diffusion matrix by quantifying the uncertainty or uniformity in the distribution of connection
weights. A lower entropy indicates a more concentrated distribution, which corresponds to more
distinct and clearer semantic structures. Specifically, for each row Ãt

i in the diffusion matrix Ãt, the
entropy is computed over its non-zero elements, where Ãt

ij denotes the weight of the connection
between nodes i and j following the t-th diffusion step.

H(Ãt
i) = −

∑
j:Ãt

ij>0

Ãt
ij · log Ãt

ij (10)

Next, the average entropy of the matrix is computed as H̄(Ãt) = 1
n

∑n
i=1 H(Ãt

i). The inverse
of entropy is used as the weight of the scale because lower entropy indicates a more concentrated
distribution, corresponding to a clearer category structure. This design enables our diffusion model to
automatically adjust the weights and retain complementary information at multiple scales.

Afusion =

T∑
t=0

1

H̄(Ãt)
Ãt (11)

To facilitate subsequent spectral clustering, we further apply symmetric normalization and diagonal
enhancement to the final diffusion matrix. Specifically, the symmetric normalization is achieved by
averaging the matrix with its transpose, while diagonal enhancement is performed by scaling the
diagonal elements using an enhancement coefficient k.

Afinal[i, j] =
1

2
(Afusion[i, j] +Afusion[j, i]) · k (12)

3.5 THE OVERALL LOSS FUNCTION

Combining self-representation and regularization losses, by jointly random Walk modified power
smoothing contrastive learning and view consistency modules, the overall loss function of our
proposed MANGO is formulated as follows:

L = Lreg + αLrec + βLcontra + γLconsist (13)
where hyper-parameters α, β, and γ balance the importance of the three terms.

4 EXPERIMENT

4.1 EXPERIMENTAL SETTINGS

Datasets: Twelve datasets with varying types and scales are used: Yale, ORL, BBC-Sport, Reuters,
Scene-15, MSRC-v1, LandUse-21, Caltech101-20, ALOI-100, STL10, HandWritten, and MNIST-3V.
More detailed descriptions of these datasets can be found in Table 1.
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Table 1: The detail for experimental datasets

Dataset Type # Instances # Classes # Views

Yale Face 165 15 3
ORL Face 400 40 3

BBC-Sport Text 544 5 2
Reuters Text 1200 6 5
Scene-15 Scene 4485 15 3

MSRC-v1 Object 210 7 5
LandUse-21 Object 2100 21 3

Caltech101-20 Object 2386 20 6
ALOI-100 Object 10800 100 4

STL10 Object 13000 10 3
HandWritten Digit 2000 10 6

MNIST-3V Digit 60000 10 3

Baselines: We compare MANGO
with eight SOTA multi-view
clustering methods, including
MFLVC(2022) (Xu et al., 2022b),
MSESC(2023) (Cui et al., 2023),
CVCL(2023) (Chen et al., 2023),
LSGMC(2023) (Lan et al., 2023),
MVD(2023) (Li et al., 2023),
DIVIDE(2024) (Lu et al., 2024),
SCM(2024) (Luo et al., 2024),
CANDY(2024) (Guo et al., 2024).

Evaluation metrics: To compre-
hensively evaluate clustering per-
formance, we adopt three widely
used metrics: clustering accuracy
(ACC), normalized mutual informa-
tion (NMI), and adjusted Rand index
(ARI), where higher values indicate
better performance.

For fair comparison, the hyperparam-
eters of all baseline methods are carefully tuned based on their publicly available code, and the
best-performing settings are adopted. For the MANGO model, a three-layer MLP is employed to
extract features for each view, with hidden layer sizes set to 1024, 512, 256. The input dimension
corresponds to the original feature size, and the output dimension is fixed at 256. In all experiments,
the bandwidth parameter of the Gaussian kernel σ is set to 0.3, the regularization parameter λ to
0.3, the interpolation parameter η to 1.2, the number of random walk steps t to 3, the temperature
parameter τ to 0.6, and the contrastive loss weight µ to 0.1. Hyperparameters α, β, and γ are
selected via grid search over the set 1e3,1e4, 1e4,1e5 and 1e5,1e6. Shallow learning experiments are
implemented in MATLAB 2023b on a workstation with a 2.50GHz 7285H 32-core CPU and 128 GB
RAM, while deep learning experiments are conducted using PyTorch 2.5.1 on an H20-NVLink GPU.

4.2 COMPARISON RESULTS

Table 2 records the experimental comparison of our proposed MANGO with other 8 comparison
methods across twelve datasets, where the best and suboptimal performance are highlighted in bold
and underline respectively, and the abbreviation "OM" indicates the occurrence of out of memory
error. Through comprehensive experiments, we have the following observations:

1) Our MANGO model shows excellent clustering performance in all datasets, significantly outper-
forming its competitors in some scenarios. In particular, on the ALOI-100 dataset, our MANGO
achieves 89.09% ACC, which is about 14.1% higher than the second-best algorithm CDMGC. These
results suggest that MANGO effectively exploits the rich information among multi-view data by
jointly leveraging the random walk-enhanced contrastive learning module and the view consistency
mechanism.

2) Compared with existing contrastive learning-based algorithms (such as CANDY, DIVIDE, and
SCM), the MANGO model achieves the best clustering performance in most cases. This demonstrates
that our power-smoothing and random walk-enhanced contrastive learning mechanism effectively
improves representation quality, which in turn leads to enhanced clustering results.

3) Shallow methods like LSGMC and MVD perform well on small datasets but struggle with
scalability and often face out-of-memory errors on larger ones due to limited representational capacity.
Deep methods such as SCM and CANDY improve on this by learning more expressive features,
achieving better results on complex datasets like STL10 and MNIST-3V. Nonetheless, the proposed
MANGO model consistently outperforms existing shallow and deep multi-view clustering methods
in most cases, demonstrating its superior performance and robustness.

4) To further verify the effectiveness of our method, we take the HandWritten dataset as an example
to visualize the clustering results of other MVC methods and our method. The t-SNE results are

7
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Table 2: Clustering performance of all methods on twelve datasets

Metric Dataset MFLVC MSESC CVCL LSGMC MVD DIVIDE SCM CANDY MANGO

Yale
ACC 0.5993 0.5455 0.6937 0.7152 0.6715 0.6182 0.5455 0.6333 0.7163
NMI 0.5772 0.5811 0.6783 0.7252 0.6999 0.6509 0.5708 0.6416 0.7508
ARI 0.3375 0.3315 0.4939 0.5782 0.4366 0.4114 0.3305 0.4287 0.5843

ORL
ACC 0.4325 0.7125 0.8173 0.8575 0.8897 0.7550 0.6575 0.6075 0.9425
NMI 0.5856 0.8116 0.8155 0.9434 0.9447 0.8783 0.8077 0.7542 0.9663
ARI 0.2572 0.5356 0.5562 0.8202 0.8535 0.6844 0.6900 0.4578 0.9108

BBC-Sport
ACC 0.7224 0.7757 0.6211 0.9412 0.7849 0.4467 0.7298 0.6728 0.9650
NMI 0.5344 0.6183 0.3645 0.8459 0.6828 0.1507 0.5570 0.3812 0.8850
ARI 0.4937 0.5874 0.3137 0.8414 0.6216 0.1091 0.5052 0.3657 0.9118

Reuters
ACC 0.4216 0.4150 0.4696 0.3925 0.4641 0.5632 0.4883 0.5558 0.5865
NMI 0.1895 0.2110 0.2605 0.2655 0.3512 0.3630 0.2642 0.2525 0.3760
ARI 0.3210 0.1418 0.4852 0.1798 0.2712 0.2930 0.2258 0.2970 0.2872

Scene-15
ACC 0.3138 0.4283 0.3719 0.4634 0.4130 0.4744 0.3485 0.3911 0.4980
NMI 0.3513 0.3989 0.3912 0.4647 0.3807 0.4845 0.3175 0.3597 0.5042
ARI 0.1646 0.2438 0.3297 0.3240 0.2379 0.3071 0.1675 0.2149 0.3388

MSRC-v1
ACC 0.8914 0.8114 0.9286 0.9181 0.8714 0.7381 0.6070 0.4738 0.9495
NMI 0.7804 0.6629 0.8721 0.8719 0.7506 0.6531 0.5613 0.3685 0.9084
ARI 0.7389 0.5974 0.8626 0.8586 0.7116 0.5835 0.4742 0.2352 0.8870

LandUse-21
ACC 0.2495 0.2443 0.2922 0.3048 0.2575 0.3129 0.2440 0.2286 0.3270
NMI 0.2663 0.3003 0.3339 0.3282 0.3308 0.2659 0.2942 0.2584 0.3524
ARI 0.0966 0.0906 0.1355 0.1465 0.1144 0.1623 0.0984 0.0918 0.1628

Caltech101-20
ACC 0.6266 0.4678 0.5107 0.6077 0.5731 0.6159 0.5771 0.4662 0.6408
NMI 0.7242 0.6710 0.4055 0.7222 0.6886 0.6266 0.4849 0.3461 0.7329
ARI 0.5162 0.4580 0.5158 0.4983 0.4905 0.5044 0.6271 0.3168 0.5542

ALOI-100
ACC 0.6709 0.5579 0.7205 0.5323 0.7030 0.7499 0.6463 0.6963 0.8909
NMI 0.7866 0.7506 0.6951 0.7177 0.8205 0.8288 0.7825 0.7060 0.9114
ARI 0.5302 0.4562 0.5284 0.2307 0.5841 0.5870 0.5160 0.5821 0.8047

STL10
ACC 0.1246 0.9331 0.7316 0.8309 0.1110 0.9174 0.9394 0.2802 0.9677
NMI 0.0360 0.8589 0.4966 0.8383 0.0013 0.8280 0.8598 0.0867 0.9196
ARI 0.0080 0.8631 0.4930 0.7702 0.0000 0.8384 0.8707 0.0617 0.9300

HandWritten
ACC 0.8990 0.9250 0.9104 0.9720 0.8708 0.8501 0.7940 0.9510 0.9775
NMI 0.8259 0.8540 0.8878 0.9381 0.9127 0.8277 0.7039 0.8796 0.9480
ARI 0.7939 0.8400 0.8473 0.9497 0.8533 0.8086 0.6173 0.8691 0.9505

MNIST-3V
ACC 0.9747 0.9407 0.8186 OM OM 0.9840 0.9206 0.9940 0.9887
NMI 0.9405 0.9032 0.7803 OM OM 0.9538 0.8545 0.9667 0.9663
ARI 0.9443 0.8660 0.7104 OM OM 0.9645 0.8388 0.9735 0.9750

shown in Figure 2. It can be seen that our method obtains more clear and compact clusters, which
further confirms the superiority of our method.

(a) MFLVC (b) MSESC (c) CVCL (d) LSGMC

(e) MVD (f) DIVIDE (g) SCM (h) CANDY (i) MANGO

Figure 2: t-SNE visualization of the consensus affinity matrix on the HandWritten dataset

4.3 PARAMETER SENSITIVITY ANALYSIS

This section studies the impact of three hyper-parameters α, β, and γ on the MANGO model.
Specifically, we perform grid search by adjusting α, β, and γ in the set {1e3, 3e3, 5e3, 7e3, 9e3}, {1e4,
3e4, 5e4, 7e4, 9e4}, and {1e5, 3e5, 5e5, 7e5, 9e5} respectively. Figure 3 shows how the performance
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Figure 3: Parameters sensitivity analysis with parameters α, β, and γ on MSRC-v1.

of the model changes with various combinations of these parameters. The results indicate that the
MANGO model performs well across the specified ranges of α, β, and γ, demonstrating robustness
to variations in these hyperparameters.

4.4 ABLATION STUDY

Finally, we conduct comprehensive ablation experiments to evaluate the contribution of each module
within the MANGO model. Specifically, we remove the contrastive loss (Lcontrat), view consistency
loss (Lconsist), false negative (FN) adjustment strategy, and adaptive diffusion module from the
complete MANGO model in various combinations and record the corresponding performance. The
results on the MSRC-v1 and Reuters datasets are summarized in Table 3. It is evident that the full
MANGO model achieves the best performance, demonstrating that the modules work synergistically
to deliver superior clustering results. Moreover, the performance of configuration (c) surpasses that
of (a), and (h) outperforms (g), indicating that the random walk-enhanced contrastive learning and
view consistency modules effectively exploit view consistency, while the adaptive diffusion module
efficiently captures the underlying graph structure.

Table 3: Ablation study on MSRC-v1 and Reuters dataset

Lrec Lcontra Lconsist random diffusion MSRC-v1 Reuters
ACC NMI ARI ACC NMI ARI

(a) ✓ 0.770 0.758 0.662 0.502 0.347 0.267
(b) ✓ ✓ 0.795 0.780 0.699 0.510 0.347 0.269
(c) ✓ ✓ ✓ 0.800 0.781 0.700 0.535 0.364 0.286
(d) ✓ ✓ ✓ ✓ 0.893 0.845 0.902 0.507 0.344 0.258
(e) ✓ ✓ 0.781 0.749 0.660 0.542 0.360 0.279
(f) ✓ ✓ ✓ 0.790 0.770 0.681 0.546 0.360 0.270
(g) ✓ ✓ ✓ ✓ 0.863 0.818 0.748 0.551 0.340 0.261
(h) ✓ ✓ ✓ ✓ ✓ 0.950 0.908 0.887 0.587 0.376 0.287

5 CONCLUSION

This paper proposes a novel deep multi-view clustering framework, which effectively learns a multi-
view embedding representation with strong discriminative power by integrating the random walk
modified contrastive learning module and the view consistency module. Among them, the random
walk modified contrastive learning module enhances the adaptability of the model to complex data
distribution by dynamically adjusting the weights of negative samples; the view consistency module
realizes deep alignment across view feature spaces through a bidirectional projection mechanism. In
addition, the introduction of the adaptive diffusion module can dynamically capture the multi-scale
structural information of the data, effectively avoiding the over-smoothing and information loss
problems commonly seen in traditional methods. Extensive experiments fully verify the superiority
and effectiveness of MANGO.

9
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ETHICS STATEMENT

In this study, we propose a novel deep multi-view clustering framework to enhance its representation
learning capabilities.This research did not involve human subjects, human-related data (e.g., personal
identifiers, behavioral records), or animal subjects. This research did not receive any external
sponsorship or funding, and none of the authors have any financial, professional, or personal conflicts
of interest. Throughout this research, we strictly adhered to the principles of research integrity. All
experimental procedures, data analysis, and result interpretation were performed in an objective and
transparent manner, with full records maintained for verification. No ethical violations, such as data
fabrication, manipulation, or plagiarism, occurred at any stage.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we have uploaded the source code. All datasets used in
our experiments are from public datasets. In addition, all experimental procedures and result reports
follow transparent standards. Section 4.1 of the main paper details the evaluation metrics (e.g., NMI,
ACC, ARI) and includes the hyperparameter search range. To account for the randomness of model
initialization and data partitioning, we report the average results of 10 independent runs.
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A TECHNICAL APPENDICES AND SUPPLEMENTARY MATERIAL

A.1 ALGORITHM

The entire algorithm of MANGO is summarized in Algorithm 1

Algorithm 1 The algorithm of MANGO

1: Input: Multi-view data {Xv ∈ Rn×dv}mv=1; Training iterations E; Trade-off coefficients α; β
and γ; diffusion steps T .

2: Output Afinal.
3: for epoch = 1 to E do
4: Compute embeddings {Zv}mv=1 via {MLP v}mv=1.
5: Compute reconstruction lossLrec through Eq. equation 1.
6: Compute regularization lossLreg through Eq. equation 2.
7: Compute contrastive lossLinter through Eq. equation 6.
8: Compute consistency lossLconsist through Eq. equation 9.
9: Update the network by optimizing L in Eq. equation 13.

10: end for
11: Build affinity matrix A.
12: for t = 1 to T do
13: Compute the information entropy of Ãt through Eq. equation 10.
14: end for
15: Compute final affinity matrixAfinal through Eq. equation 12
16: Performing the spectral clustering on Afinal to obtain the final clustering results.

A.2 ADDITIONAL EXPERIMENTAL RESULTS

In this section, we provide complete results on all datasets, including parameter sensitivity analysis
and ablation experiments. Table 4-Table 9 summarize the ablation studies of MANGO on all datasets
for the three loss items and other improvements, while Figure 4 shows the sensitivity of MANGO to
parameters α, β, and γ on all datasets.

As shown in Table 4 to Table 9, the complete MANGO model consistently outperforms its ablated
variants across all datasets. This demonstrates that the integration of the self-expressive module,
contrastive learning module, view consistency module, and adaptive diffusion module enables
MANGO to fully exploit the rich information embedded in multi-view data, thereby enhancing
clustering performance.

As for the parameter sensitivity analysis, Figure 4 demonstrates that MANGO consistently achieves
stable and accurate clustering results across all 12 datasets over a broad range of parameter values,
highlighting its robustness and practical reliability.

Table 4: Ablation study on Yale and ORL dataset

Lrec Lcontra Lconsist random diffusion Yale ORL
ACC NMI ARI ACC NMI ARI

(a) ✓ 0.260 0.306 0.058 0.923 0.963 0.892
(b) ✓ ✓ 0.670 0.708 0.517 0.930 0.960 0.893
(c) ✓ ✓ ✓ 0.684 0.704 0.514 0.925 0.961 0.895
(d) ✓ ✓ ✓ ✓ 0.712 0.743 0.568 0.930 0.959 0.885
(e) ✓ ✓ 0.667 0.717 0.533 0.925 0.964 0.896
(f) ✓ ✓ ✓ 0.694 0.744 0.567 0.933 0.964 0.904
(g) ✓ ✓ ✓ ✓ 0.687 0.716 0.526 0.931 0.964 0.897
(h) ✓ ✓ ✓ ✓ ✓ 0.716 0.751 0.584 0.943 0.966 0.911
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Table 5: Ablation study on BBC-Sport and Scene-15 dataset

Lrec Lcontra Lconsist random diffusion BBC-Sport Scene-15
ACC NMI ARI ACC NMI ARI

(a) ✓ 0.778 0.786 0.682 0.481 0.493 0.312
(b) ✓ ✓ 0.695 0.776 0.648 0.492 0.495 0.331
(c) ✓ ✓ ✓ 0.701 0.764 0.590 0.493 0.498 0.327
(d) ✓ ✓ ✓ ✓ 0.959 0.871 0.912 0.493 0.494 0.333
(e) ✓ ✓ 0.432 0.200 0.107 0.477 0.493 0.321
(f) ✓ ✓ ✓ 0.416 0.179 0.099 0.493 0.503 0.330
(g) ✓ ✓ ✓ ✓ 0.681 0.712 0.558 0.490 0.496 0.330
(h) ✓ ✓ ✓ ✓ ✓ 0.965 0.885 0.912 0.498 0.504 0.339

Table 6: Ablation study on MSRC-v1 and Reuters dataset

Lrec Lcontra Lconsist random diffusion MSRC-v1 Reuters
ACC NMI ARI ACC NMI ARI

(a) ✓ 0.770 0.758 0.662 0.502 0.347 0.267
(b) ✓ ✓ 0.795 0.780 0.699 0.510 0.347 0.269
(c) ✓ ✓ ✓ 0.800 0.781 0.700 0.535 0.364 0.286
(d) ✓ ✓ ✓ ✓ 0.893 0.845 0.902 0.507 0.344 0.258
(e) ✓ ✓ 0.781 0.749 0.660 0.542 0.360 0.279
(f) ✓ ✓ ✓ 0.790 0.770 0.681 0.546 0.360 0.270
(g) ✓ ✓ ✓ ✓ 0.863 0.818 0.748 0.551 0.340 0.261
(h) ✓ ✓ ✓ ✓ ✓ 0.950 0.908 0.887 0.587 0.376 0.287

Table 7: Ablation study on LandUse-21 and Caltech101-20 dataset

Lrec Lcontra Lconsist random diffusion LandUse-21 Caltech101-20
ACC NMI ARI ACC NMI ARI

(a) ✓ 0.287 0.329 0.166 0.586 0.719 0.494
(b) ✓ ✓ 0.302 0.352 0.151 0.607 0.713 0.527
(c) ✓ ✓ ✓ 0.317 0.349 0.160 0.632 0.738 0.544
(d) ✓ ✓ ✓ ✓ 0.289 0.330 0.136 0.639 0.724 0.552
(e) ✓ ✓ 0.324 0.345 0.160 0.552 0.687 0.460
(f) ✓ ✓ ✓ 0.316 0.361 0.157 0.587 0.715 0.477
(g) ✓ ✓ ✓ ✓ 0.292 0.336 0.139 0.628 0.722 0.552
(h) ✓ ✓ ✓ ✓ ✓ 0.327 0.352 0.163 0.641 0.733 0.554

Table 8: Ablation study on ALOI-100 and STL10 dataset

Lrec Lcontra Lconsist random diffusion ALOI-100 STL10
ACC NMI ARI ACC NMI ARI

(a) ✓ 0.827 0.893 0.745 0.901 0.832 0.776
(b) ✓ ✓ 0.856 0.894 0.759 0.550 0.578 0.391
(c) ✓ ✓ ✓ 0.872 0.906 0.789 0.841 0.815 0.759
(d) ✓ ✓ ✓ ✓ 0.868 0.902 0.776 0.866 0.820 0.708
(e) ✓ ✓ 0.868 0.901 0.774 0.702 0.753 0.548
(f) ✓ ✓ ✓ 0.869 0.900 0.776 0.618 0.582 0.417
(g) ✓ ✓ ✓ ✓ 0.871 0.901 0.797 0.781 0.795 0.666
(h) ✓ ✓ ✓ ✓ ✓ 0.891 0.911 0.805 0.968 0.920 0.930
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Table 9: Ablation study on HandWritten and MNIST-3V dataset

Lrec Lcontra Lconsist random diffusion HandWritten MNIST-3V
ACC NMI ARI ACC NMI ARI

(a) ✓ 0.967 0.926 0.926 0.949 0.928 0.898
(b) ✓ ✓ 0.971 0.935 0.935 0.988 0.966 0.974
(c) ✓ ✓ ✓ 0.974 0.940 0.942 0.986 0.961 0.970
(d) ✓ ✓ ✓ ✓ 0.977 0.946 0.948 0.988 0.964 0.973
(e) ✓ ✓ 0.970 0.933 0.933 0.956 0.932 0.909
(f) ✓ ✓ ✓ 0.977 0.944 0.948 0.988 0.964 0.973
(g) ✓ ✓ ✓ ✓ 0.970 0.934 0.934 0.988 0.965 0.973
(h) ✓ ✓ ✓ ✓ ✓ 0.978 0.948 0.951 0.989 0.966 0.975

(a) Yale (b) ORL

(c) BBC-Sport (d) Reuters

(e) Scene-15 (f) MSRC-v1

(g) LandUse-21 (h) Caltech101-20

(i) ALOI-100 (j) STL10

(k) HandWritten (l) MNIST-3V

Figure 4: Sensitivity Analysis of the MANGO Model to Parameters α, β and γ on Twelve Datasets

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A.3 THE USE OF LARGE LANGUAGE MODELS

During this research and the writing of this paper, we incorporated a Large Language Model (LLM)
as an auxiliary tool to improve text processing efficiency and facilitate preliminary literature search
preparation. It should be clarified that this tool’s use was strictly limited to auxiliary tasks and did not
participate in the core aspects of this research, including but not limited to research design, primary
data collection, experimental workflow, statistical analysis, and the derivation and demonstration of
scientific conclusions. The scientific integrity, rigor, and originality of the core research content are
the sole responsibility of the authors.

Specifically, the LLM’s auxiliary role in this research focused on the following two aspects:

(1)Text Polishing and Grammar Standardization: Optimizing the language expression of selected
paragraphs in the first draft of the paper primarily involved correcting grammatical errors, improving
sentence fluency, and assisting with standardizing academic terminology to ensure that the text
adheres to the language logic and formatting requirements of academic writing. The final text’s
academic content, logical structure, and core ideas were all reviewed and confirmed by the authors.

(2)Preliminary Literature Review Assistance: During the literature search phase, LLM assisted
in generating a preliminary conceptual framework and keyword list for a specific research field,
providing reference for the authors to determine the scope of their literature search and select their
search strategy. It should be emphasized that all the literature included in the literature review
of this study were read in full by the authors one by one, and their research relevance, content
accuracy and academic value were independently verified before final determination. The literature
recommendation results generated by the model were not directly used.
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