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Abstract
Unsupervised learning of node embeddings for directed graphs (digraphs) requires careful
handling to ensure unbiased modelling. This paper addresses two key challenges: (1) the
obstruction of information propagation in random walk and message-passing methods due
to local sinks, and (2) the representation of multiple multi-step directed neighbourhoods,
arising from the distinction between in- and out-neighbours. These challenges are intercon-
nected—local sinks can be mitigated by treating the graph as undirected, but this comes
at the cost of discarding all directional information. We make two main contributions to
unsupervised embedding learning for digraphs. First, we introduce ReachNEs (Reachability
Node Embeddings), a general framework for analysing embedding models and diagnosing
local sink behaviour on digraphs. ReachNEs defines the reachability filter, a matrix
polynomial over normalized adjacency matrices that captures multi-step, direction-sensitive
proximity. It unifies the analysis of message-passing and random walk models, making
its insights applicable across a wide range of embedding methods. Second, we propose
DirSwitch, a novel embedding model that resolves both local sink bias and neighbourhood
multiplicity via switching random walks. These walks use directed edges for local steps,
preserving directional structure, then switch to undirected edges for long-range transitions,
enabling escape from local sinks and improving information dispersal. Empirical results
on node classification benchmarks demonstrate that DirSwitch consistently outperforms
state-of-the-art unsupervised digraph proximity embedding methods, and also serves as a
flexible digraph extension for self-supervised graph neural networks.

1 Introduction

Directed graphs (digraphs) and node embeddings are both essential modelling tools for graph data. Digraphs
are ubiquitous for describing networks with asymmetric relationships, such as citation networks (McCallum
et al., 2000), online dating platforms (Takac & Zabovsky, 2012), financial transactions (Fire & Guestrin,
2020), brain connectomes (Winding et al., 2023), and the Internet (Faloutsos et al., 1999). Similarly, node
embeddings are key to solving machine learning and data mining tasks on graphs, including node classification
(Hou et al., 2023), node clustering (Wang et al., 2017b), graph alignment (Heimann et al., 2018), and
link prediction (Virinchi & Saladi, 2023). Despite their combined prevalence, the field of unsupervised
embedding learning for digraphs remains under-explored. Most research has focused on undirected graphs
and (semi-)supervised learning, even though task-specific labelled data is often scarce (Hu et al., 2020b).

Embedding modelling for digraphs presents several challenges. A primary requirement is the ability to
capture the asymmetric nature of digraphs. Conventional spectral-based approaches fall short, as asymmetric
matrices do not admit eigendecomposition (Zhang et al., 2021b). As a result, it is common practice to treat
digraphs as undirected, thereby discarding important relational information (Rossi et al., 2023).
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Figure 1: Visualization of local sinks and neighbourhood multiplicity. Each digraph shows a valid definition
of the 2-step neighbourhood of node 1, highlighted in black. Note that each directed neighbourhood is unique,
carrying independent information. (a) uses undirected edges, resulting in the maximum number of reachable
nodes at the expense of the digraph structure. (b) shows the neighbourhood using the default, outgoing edge
directions. The local sink, node 2, obstructs the information flow, so the neighbourhood consists of a single
node. In (c), the reverse, incoming edges are followed, and (d) and (e) use mixed edge directions. (d) uses
outgoing edges for the first step and incoming edges for the second, and vice versa for (e).

Recent research on digraph node embeddings has focused on adapting random walk and message-passing
approaches to capture digraph asymmetry (Zhou et al., 2017; Khosla et al., 2020; Tong et al., 2020; Zhang
et al., 2021b; Virinchi & Saladi, 2023; Rossi et al., 2023). These approaches rely on information propagation
between nodes to generate embeddings that represent the connectivity of multi-step node neighbourhoods.
To account for digraph asymmetry, these models separate propagation along outgoing (default) edges from
reverse (incoming) edges, creating two sets of paired node embeddings.

While these models address digraph asymmetry, other challenges have been overlooked. This work tackles
two such challenges: local sinks and neighbourhood multiplicity, visualized in Figure 1. The unidirectionality
of digraph edges means information flows in only one direction. As a result, digraphs contain local sinks,
i.e., nodes without outgoing edges. As shown in Figure 1b, these sinks obstruct information propagation and
hinder exploration of multi-step neighbourhoods. This leads to a disproportionate influence of sink nodes,
resulting in biased embedding models. For instance, in Figure 1b, node 1 only sees the sink node (node 2).

As highlighted in Figure 1, the multi-step neighbourhood in digraphs is not uniquely defined. This multiplic-
ity arises from the fact that each node has two distinct sets of neighbours: out-neighbours and in-neighbours.
When multi-step neighbourhoods are considered, this multiplicity is exponentially amplified, as each node
can have up to 2r distinct r-step neighbourhoods. The challenge for unsupervised node embedding models is
to represent this multitude of distinct neighbourhoods as accurately as possible, since it is generally unknown
a priori which neighbourhoods are key for solving downstream tasks.

In this work, we present two key contributions to address the challenges of unsupervised embedding learn-
ing for digraphs: (1) ReachNEs (Reachability Node Embeddings), a unifying framework for analysing node
embedding models, and (2) DirSwitch, a flexible approach for mitigating the issues of local sinks and neigh-
bourhood multiplicity, applicable to both random walk and message-passing embedding models.1

ReachNEs is a mathematical framework designed to study and analyse the challenges of digraph node em-
bedding modelling. Flexibility and analytical tractability are prioritized in its design. To achieve this,
ReachNEs is built around the reachability graph filter, a matrix computed as a polynomial of normalized
adjacency matrices, capturing asymmetric node proximity through multi-step random walk transition prob-
abilities between node pairs in the graph.

The reachability matrix unifies random walk and message-passing embedding models. To generate random
walk-based proximity embeddings (Zhou et al., 2017; Zhu et al., 2021a), matrix factorization is used to decom-
pose the reachability matrix into low-dimensional factors. Conversely, the reachability matrix can serve as a
neighbourhood smoothing filter to produce linear message-passing embeddings (Wu et al., 2019). This versa-
tility makes the insights drawn from ReachNEs analysis applicable to a wide range of embedding techniques.

The ReachNEs framework is also flexible with respect to modelling different neighbourhood scales, supporting
multi-scale embeddings, which are crucial in the unsupervised setting (Rozemberczki et al., 2021). This
control is provided by the coefficients of the reachability matrix’s defining polynomial, which are interpreted
as random walk length probabilities.

1Our source code: https://github.com/ciwanceylan/dirswitch-experiments-tmlr2025.git
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Figure 2: A qualitative illustration of DirSwitch. (a): The Cora-ML citation graph, with nodes coloured by
class label (for visualization purposes only; not used in the model). (b) and (c): Random walk transition
probabilities from a specific initialization node. The graph in (b) shows the default edge directions, while the
graphs in (c) employ our DirSwitch-1 approach. DirSwitch-1 performs one directed step using either default
(left) or reverse (right) edge directions, followed by undirected transitions. (d): UMAP (Sainburg et al.,
2021) visualizations of the resulting node embeddings. The DirSwitch-1 embedding space better reflects the
spatial ground truth class separation, demonstrating its improved neighbourhood smoothing on digraphs.

We use ReachNEs to quantify the effects of local sinks on information flow and to mathematically character-
ize the multiplicity of distinct directed neighbourhoods in digraphs. This analysis reveals a tension between
these two issues. The local sink problem can be easily resolved by treating digraphs as undirected, allowing
information to flow freely within each weakly connected component. However, this comes at the cost of losing
the distinction between directed neighbourhoods, reducing the expressivity of the embedding model. There-
fore, we seek a model that can address local sinks while preserving the capture of directed neighbourhoods.

Our second contribution, DirSwitch, achieves this balance. The core idea of DirSwitch is to decouple local,
short-range random walk behaviour from global, long-range behaviour. Specifically, DirSwitch preserves
local edge direction expressivity by performing directed random walks in the initial steps. It then switches
to treating the graph as undirected, allowing information to propagate freely and escape local sinks. The
effectiveness of this approach is illustrated in Figure 2.

We empirically evaluate DirSwitch both within and beyond the ReachNEs framework. First, we verify the
that DirSwitch both improves information propagation on digraphs compared to fully directed approaches,
without comprimisign the representation of local neighbourhood multiplicity.

We then demonstrate that this results in higher-quality embeddings and increased effectiveness by bench-
marking DirSwitch on 14 standard node classification benchmark datasets. Compared to ReachNEs models
that do not distinguish between local and global random walk behaviours, DirSwitch either achieves the
highest accuracy or performs within one standard deviation of the best result across all datasets. This
holds true for both the random walk-based proximity embedding setting and the message-passing setting.
Importantly, DirSwitch performs well on both homophilic and heterophilic datasets (Zhu et al., 2020). This
is desirable as it implies a broad applicability of the DirSwitch in real-world unsupervised settings where the
validity of a homophily assumption is in question (Wang et al., 2023).

To further assess DirSwitch’s practical effectiveness, we evaluate it against recent state-of-the-art digraph
methods. On six proximity embedding benchmarks without node attributes, DirSwitch achieves the highest
accuracy on all datasets except one, where it performs within one standard deviation of the best.
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For message-passing embeddings, we apply DirSwitch as a digraph extension of the GraphSAGE graph neural
network (GNN) model (Hamilton et al., 2017) and integrate it with self-supervised loss functions, which have
previously been limited to undirected graphs (Zhang et al., 2021a; Hou et al., 2023). This demonstrates how
insights from ReachNEs can be leveraged to enhance embedding models more broadly. As a baseline, we use
the recent digraph GNN extension by Rossi et al. (2023), designed for supervised learning. Again, DirSwitch
achieves higher accuracy on all but one dataset, underscoring the need for additional considerations when
modelling digraphs in the unsupervised setting.

2 ReachNEs: Reachability Node Embeddings
This section introduces the ReachNEs framework for learning and analysing node embeddings in digraphs.
It consists of two components: the reachability graph filter, which represents multi-step node relations, and
reduction methods, which extract embeddings. Section 2.1 derives reachability filters from random walks,
while Section 2.2 describes the walk length distributions that determine the filter’s smoothing properties.
Finally, Section 2.3 presents reduction methods that unify message-passing and proximity-based embeddings.

2.1 The random walk reachability filter
Let G = (N,M) be a directed, potentially weighted graph without self-loops, where N is the set of nodes and
M is the set of edges. The graph has n = |N| nodes and m = |M| edges. The adjacency matrix A ∈ Rn×n is
defined as follows, along with the out-degree and in-degree of a node j:

Ai,j =
{

Wj 7→i if (j, i) ∈ M,

0 otherwise,
degO(j) =

n∑
k=1

Ak,j , degI(j) =
n∑

k=1
Aj,k. (1)

Here, Wj 7→i ∈ R≥0 is a nonnegative weight associated with the edge (j, i). Note that the columns of A
correspond to out-neighbourhoods, while the rows correspond to in-neighbourhoods.

We treat undirected graphs as a special case of the above definitions, where Ai,j = Aj,i for all edges in M.
Consequently, a digraph can be transformed into its corresponding undirected graph by adding the reverse
edge (j, i) to M for every edge (i, j) ∈ M, forming the edge set Mundir. In terms of the adjacency matrix,
this symmetrization is achieved by summing A and its transpose A⊺, Aundir = A + A⊺.

Next, we define three random walk normalized adjacency matrices, denoted as AO, AI, and AU, which we
collectively refer to as A∗ ∈ [0, 1]n×n. Each of these matrices is a column-stochastic matrix (Horn & Johnson,
2012, Ch. 8.7) and serves as a random walk state transition matrix. Specifically, given a probability state
vector p(k) ∈ [0, 1]n, where p

(k)
i represents the probability of a random walker being at node i after k steps,

the state vector after k + 1 steps is computed as p(k+1) = A∗p(k).

Each normalized adjacency matrix defines a different random walk behaviour with respect to the edge
directions. For AO, a random walker follows the default edge directions, transitioning from a node to its
neighbours along outgoing edges. Conversely, transitions using AI follow the reverse edge directions, meaning
the walker traverses incoming edges. For AU, the edges are treated as undirected, allowing the random walker
to move across both outgoing and incoming edges. These behaviours are formally defined as follows:

AOi,j =
{

1 if i = j and degO(j) = 0,
Ai,j

degO(j) otherwise, AIi,j =
{

1 if i = j and degI(j) = 0,
Aj,i

degI(j) otherwise,

AUi,j =
{

1 if i = j and deg(j) = 0,
Aundiri,j

deg(j) otherwise,
deg(i) =

n∑
k=1

Aundirk,i.

To ensure column stochasticity, diagonal elements are set to 1 for nodes without legal edges to follow. Such
nodes are referred to as sink nodes, as a random walker gets stuck on these nodes. For digraphs without sink
nodes, the above definitions can be expressed compactly in matrix form:

AO = AD−1
O , AI = A⊺D−1

I , AU = AundirD
−1,

where DO, DI, and D are diagonal matrices of the respective node degrees.
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Each A∗ describe immediate neighbourhoods, which can be extended to capture multi-step connectivity
through matrix powers. Specifically, the jth column of the power matrix Ak

∗ encodes the transition prob-
abilities of a random walk of length k initialized at node j. This follows directly from the state transition
formula p(k+1) = A∗p(k). Accordingly, we denote element (i, j) of Ak

∗ as P (j ⇝ i|k), representing the
probability of transitioning from node j to node i in exactly k steps.

Each matrix power Ak
∗ provides a snapshot of transition probabilities at a specific walk length k. However,

any fixed k inherently restricts the description of node neighbourhoods and introduces potential biases. For
example, setting k = 2 might fail to capture immediate neighbours if no 2-step paths exist between them,
resulting in zero transition probabilities for such nodes.

To mitigate the bias and sensitivity introduced by single walk lengths, we instead impose a probability
distribution over the walk length: Pw(k). Using this distribution, the node transition probabilities are
computed by marginalizing over the walk length. This leads to the definition of the reachability matrix
R ∈ Rn×n, where each element Ri,j represents the probability of transitioning from node j to node i, with
the walk length sampled from Pw(k):

R(A∗; Pw) =
∞∑

k=0
Pw(k)Ak

∗, Ri,j(A∗; Pw) = P (j ⇝ i| Pw) =
∞∑

k=0
Pw(k)P (j ⇝ i|k). (2)

Figure 3a shows an example of the reachability matrix R(AU; Pw) using the U.S. political blogs graph (Adamic
& Glance, 2005). Each column represents the transition probabilities from a random walk starting at the
corresponding node. The two prominent blocks reflect the political alignments in the dataset. Figure 3b
visualizes one such column vector, overlaid on a ridiculogram of the graph. The separation between the two
political communities appears clearly as two clusters.

2.2 Walk length distributions

As defined in Equation 2, the walk length distribution Pw(k) controls the weighting of each adjacency
power Ak

∗, thereby shaping the filter’s smoothing behaviour. While ReachNEs is compatible with any such
distribution, in this work we focus on four commonly used ones: geometric, binomial, Poisson, and uniform.

Table 1 lists the corresponding probability mass functions (pmfs), each parameterized by the expected walk
length τ = E[Pw]. Figure 3c visualizes the pmfs for τ = 2. We briefly describe each distribution below;
further analysis appears in Appendix C.

The geometric distribution is central to the PageRank algorithm (Page et al., 1999), where α = τ
τ+1 denotes

the probability of continuing a walk, and 1 − α the restart probability. It is monotonically decreasing for all
τ , and remains mode-centred at k = 0, even as it flattens with increasing τ . Owing to PageRank’s influence,
the geometric distribution is widely used in embedding methods (Zhou et al., 2017; Yan et al., 2024).

The binomial distribution has a finite maximum walk length K, where α = τ
K denotes the probability of

stepping, and 1 − α the probability of remaining in place. As discussed in Appendix C.5, this distribution
naturally arises when self-loops are added to graphs, a common practice in graph convolutional networks
(Kipf & Welling, 2017; Wu et al., 2019).

Table 1: Overview of the studied random walk length distributions Pw(k; τ), where k represents the walk
length variable. Each distribution is parameterized by the average walk length τ . For readability, we use α
as a substitution variable in the geometric and binomial distributions. The binomial distribution includes an
additional parameter, K, representing the maximum walk length. Distribution plots are shown in Figure 3c.

Name Geometric Binomial Poisson Uniform

Abbreviation Geom Binom Pois U

Pw(k; τ) (1 − α)αk, α = τ

τ + 1
(

K
k

)
(1 − α)K−kαk, α = τ

K
e−τ τk

k!

{ 1
2τ + 1 if k ∈ [0, 2τ ],

0 otherwise
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Figure 3: (a) The reachability matrix R(AU; Pois(τ = 2)) for the Polblogs graph. Each column encodes
the transition probabilities of a random walk starting at the corresponding node. (b) A single column of R
visualized on a ridiculogram of the graph, illustrating the locality of the reachability distribution. (c) The
four walk length distributions used in this work, evaluated at τ = 2: Geometric, Poisson, Binomial, and
Uniform. These distributions weight the contribution of different walk lengths in the computation of R.

In the limit K → ∞, the binomial distribution converges to the Poisson distribution. The Poisson distribution
has been used in structural embedding methods (Donnat et al., 2018; Zhu et al., 2021a; Ceylan et al., 2022)
and connects reachability to heat diffusion on graphs.

Unlike the geometric distribution, both the binomial and Poisson distributions tend toward non-informative
filters as τ → ∞. Their modes shift with τ , emphasizing larger k values, which leads to over-smoothing:
columns of R become nearly uniform, reducing embedding discriminability. This effect, analysed in detail
in Appendix C, plays a key role in interpreting some of our experimental results.

Finally, the uniform distribution is widely used in node embedding models, as it naturally arises from common
negative sampling schemes (Perozzi et al., 2014; Qiu et al., 2018; Chanpuriya & Musco, 2020).

2.3 Reachability reduction into node embeddings

To complete the ReachNEs framework, the pairwise multi-step relationships encoded in the reachability
matrix R must be transformed into node embeddings. We refer to these transformations as reduction
methods, as they reduce the n × n matrix R into a lower-dimensional embedding matrix Z ∈ Rn×p.

The reduction method serves two main purposes. First, it projects nodes into a lower-dimensional space
(p < n), improving computational efficiency for downstream tasks and alleviating the curse of dimensionality
(Hastie et al., 2009, Ch. 2.5). Second, the choice of reduction method encodes specific equivalence relation-
ships into the embeddings (Zhu et al., 2021a). We explore two reduction approaches: proximity embeddings
and message-passing embeddings, which capture structural and automorphic equivalence respectively.

2.3.1 Proximity embedding reduction and structural equivalence

Proximity embeddings capture mutual node connectivity and closeness, and are often referred to as positional
embeddings in the context of undirected graphs (Zhu et al., 2021a). However, the asymmetric nature of
digraphs makes the concept of “position” in a symmetric, Euclidean sense inappropriate. Instead, we define
node proximity asymmetrically using the reachability matrix R(A∗; Pw), where the element Ri,j quantifies
the closeness of node j to node i. The walk length distribution Pw controls the resolution of this proximity.

To derive proximity embeddings from R, we employ Singular Value Decomposition (SVD) (Golub &
Van Loan, 2013, Ch. 2.4), a widely used technique in proximity embedding methods (Qiu et al., 2018;
Zhu et al., 2021a). Let U , Σ, V ⊺ = SVD(R) represent the SVD of R, and let U:,:q, Σ:q,:q, and V:,:q denote the
q-truncation of U , Σ, and V , respectively, where q = p/2. The proximity embeddings are then defined as:

Z =
[
ZU ZV

]
∈ Rn×2q, ZU = U:,:q

√
Σ:q,:q ∈ Rn×q, ZV = V:,:q

√
Σ:q,:q ∈ Rn×q. (3)
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The proximity embeddings capture node proximity in two key ways. First, the inner product of the left
and right embeddings approximates the reachability matrix: R ≈ ZU Z⊺

V = U:,:qΣ:q,:qV:,:q
⊺. Second, the

Euclidean distance between embeddings in Z reflects the overlap of multi-step neighbourhoods. The latter is
particularly important for downstream tasks such as clustering, where embedding distances are often utilized.

The following equality (derived in Appendix A.3) formalizes the relationship between reachability similarity
and embedding distance:

∥Ri,: − Rj,:∥2
2 + ∥R:,i − R:,j∥2

2 =
∥∥∥(Zi,: − Zj,:)

√
Σ̂
∥∥∥2

2
, Σ̂ =

[
Σ:q,:q 0

0 Σ:q,:q

]
. (4)

The left-hand side measures the difference between rows and columns of R for nodes i and j, quantifying
the overlap of their multi-step neighbourhoods. The right-hand side represents the distance between their
respective proximity embeddings in Z. This equivalence implies that, for q ≤ rank(R), two nodes have
identical embeddings in Z if and only if their multi-step neighbourhoods perfectly overlap.

This property is particularly valuable for distance-based downstream tasks. However, its validity relies on
the first term in the definition of R in Equation 2, i.e., Pw(k = 0)In, being zero. This term introduces
a constant, non-neighbourhood-dependent contribution that prevents structurally equivalent nodes from
having identical embeddings. To address this, we compute R for proximity embeddings using a shifted walk-
length distribution; meaning that the coefficients in Equation 2 are replaced with Pw(k−1), using Pw(−1) = 0.

Another modification to the definition of R is the application of the elementwise thresholding function
f(Ri,j) = log(max(nRi,j , 1)) before performing the SVD. This contrast-enhancing function amplifies the
difference between elements where Ri,j < 1

n and those where Ri,j ∈
[

1
n , 1

log n

]
. This type of contrast

enhancement has been shown to yield practical benefits for undirected graphs (Qiu et al., 2018; Chanpuriya
& Musco, 2020; Zhu et al., 2021a), and we find that these advantages extend to digraphs as well.

Structural equivalence. Two nodes i and j are structurally equivalent if they have identical in- and out-
neighbours, i.e., Ai,: = Aj,: and A:,i = A:,j (Borgatti & Everett, 1992). In undirected graphs, this implies
that structurally equivalent nodes are at most two steps apart, highlighting the close connection between
structural equivalence and node proximity.

Proximity ReachNEs embeddings preserve this equivalence under mild conditions. If nodes i and j are
structurally equivalent and have nonzero in- and out-degrees, and if the walk length distribution satisfies
Pw(k = 0) = 0, then Zi,: = Zj,: holds as long as q ≤ rank(R). The reason is straightforward: structural
equivalence implies that the i-th and j-th rows and columns of Ak

∗ are identical for all k ≥ 1, and thus also
in R =

∑
k≥1 Pw(k)Ak

∗. It follows from Equation 4 that the embeddings must be equal, since the diagonal
elements of Σ̂ are positive under the assumption q ≤ rank(R).

An exception occurs for sink nodes. When a node lacks outgoing edges, the normalization of AO sets the
corresponding diagonal entry to 1, violating the condition that A∗i,: = A∗j,:. As a result, structurally
equivalent sink nodes (with identical incoming edges) can receive different embeddings. The same issue
applies under AI for nodes without incoming edges.

This limitation is shared by many random-walk-based proximity embeddings (Perozzi et al., 2014; Grover
& Leskovec, 2016; Zhou et al., 2017; Qiu et al., 2018; Khosla et al., 2020). A simple workaround is to
assign the zero vector 0 to all zero-degree sink nodes in post-processing. Whether this improves downstream
performance remains an open research question.

2.3.2 Message-passing embedding reduction and automorphic equivalence

Message-passing embedding reduction requires an initial set of node representations, i.e., a matrix of node
attribute vectors X ∈ Rn×d. These attributes typically supplement the graph structure, such as text embed-
dings of paper abstracts in citation graphs (Hu et al., 2020a). Alternatively, X may consist of graph-derived
properties, such as node degrees or local clustering coefficients.
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The ReachNEs message-passing embeddings are smoothed versions of the node attribute vectors, with the
columns of the reachability matrix R defining the multi-step smoothing filter over each node’s local neigh-
bourhood. Thus, initial d-dimensional message-passing embeddings are straightforwardly obtained via the
matrix multiplication Z = R⊺X. To further reduce the dimensionality to p dimensions, techniques like PCA
(Murphy, 2012, Ch. 12.2) can be applied, yielding the embeddings Z = PCA(R⊺X).

Connection to message-passing. Message-passing is commonly used in the context of graph neural
networks (Gilmer et al., 2017). In typical descriptions, each node receives messages from its neighbours in the
form of embedding vectors, which are aggregated and then used to update its own embedding representation.
Given this, it may not be immediately clear how the linear model R⊺X relates to message-passing.

To establish this connection, we expand R⊺X by bringing the transpose inside the sum of Equation 2:

R⊺X =
( ∞∑

k=0
Pw(k)Ak

∗

)⊺

X =
∞∑

k=0
Pw(k)

(
Ak

∗
)⊺

X =
∞∑

k=0
Pw(k)A⊺

∗
kX. (5)

Next, we let H(0) = X and Z(0) = Pw(0)X, and express the sum in Equation 5 as an iterative algorithm:

For k ∈ {1, 2, . . . },

{
H(k) = A⊺

∗H(k−1),

Z(k) = Z(k−1) + Pw(k)H(k).
(6)

This iterative formulation connects directly to message-passing. To clarify the connection, consider the
update H(k) = A⊺

U H(k−1) for the undirected random walk matrix. Assuming no sink nodes and uniform
edge weights for simplicity, the process can be expressed as:

A⊺
U H = D−1A⊺

undirH, [A⊺
U H]i,: = 1

deg(i)
∑

j:(j,i)∈Mundir

Hj,:. (7)

The right-hand side describes mean neighbourhood aggregation, where messages (represented by H) are
averaged over a node’s immediate neighbours. This mirrors the aggregation function used in GraphSAGE
(Hamilton et al., 2017, Alg. 1). Similarly, A⊺

O and A⊺
I aggregate messages over outgoing and incoming

neighbourhoods, respectively, as in the directed GraphSAGE extension proposed by Rossi et al. (2023). Full
mathematical expressions for the directed case are provided in Appendix A.2.

Automorphic equivalence. Two nodes i and j are automorphically equivalent if there exists a permu-
tation matrix Pπ ∈ {0, 1}n×n such that A = PπAP ⊺

π and Pπj,i = 1. Intuitively, this means that i and
j are indistinguishable in terms of all graph-theoretic properties, such as degree, centrality, and clustering
coefficients, and differ only in their labels. Automorphic equivalence is implied by structural equivalence,
but not vice versa. Notably, automorphically equivalent nodes can be arbitrarily far apart in the graph, or
even belong to disconnected components.

Message-passing ReachNEs preserves automorphic equivalence, provided that the node attributes are also
invariant under the automorphism. Specifically, if X = PπX, which holds whenever X consists of graph-
derived features, then the embeddings satisfy PπZ = Z. In this case, automorphically equivalent nodes
receive identical message-passing embeddings. A proof and further discussion are provided in Appendix B.

3 Local sinks and directed neighbourhood multiplicity

In this section, we use the ReachNEs framework to study local sinks and neighbourhood multiplicity. We ex-
amine how local sinks obstruct information propagation and quantify their effects using entropy. We formal-
ize the multiplicity of directed neighbourhoods within ReachNEs and discuss its implications for embedding
model expressivity. Finally, we explore how expressivity can be improved through embedding concatenation.
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(a) Cora-ML. Left: Default (O), Right: Undirected (U) (b) Fly Larva. Left: Default (O), Right: Undirected (U)

Figure 4: Visualization of transition probability accumulation in local sinks. Node size and colour indicate
the magnitude of reachability, with black denoting zero. (a) shows the Cora-ML citation graph using default
directed edges (O, left) and undirected edges (U, right). In the directed case, reachability is concentrated
in a small set of sink nodes, whereas the undirected version yields more uniform coverage of the multi-step
neighbourhood. (b) shows similar behaviour for the Fly Larva dataset: reachability under O accumulates
disproportionately in sinks, while U promotes broader dispersal.

3.1 Local sink analysis

As seen in Section 2, the elements of the reachability matrix R represent random walk transition probabilities,
with each column describing a smoothing over multi-step neighbourhoods for a given node. However, local
sinks in digraphs can significantly disrupt this smoothing process.

As highlighted in Figure 1b, local sinks are nodes, or small sets of nodes, without directed paths to the rest of
the graph. Random walks initiated at sink nodes remain trapped, preventing them from gathering additional
neighbourhood information. Moreover, transition probabilities of walks starting at other nodes tend to
accumulate in sinks, as random walkers can enter but cannot escape. This accumulation disproportionately
amplifies the influence of sink nodes on the reachability filter, introducing bias into the embedding model.

Figure 4 illustrates these effects using ridiculograms of real-world graphs. In Figure 4a, the Cora-ML citation
graph shows strong accumulation in sink nodes when using default edge directions, i.e., R(AO)), while the
undirected variant, i.e., R(AU), achieves broader coverage over the multi-step neighbourhood. Figure 4b
shows a similar pattern in the denser Fly Larva brain connectome (Winding et al., 2023).

The columns of the reachability matrix reflect how local sinks restrict information propagation. Consider a
node j, whose random walk probabilities are given by the column R:,j . If j is a sink node, or if its transition
probabilities are largely absorbed by a sink, the reachability will be concentrated in a few nonzero values in
R:,j ; a property we refer to as low dispersal. Conversely, high dispersal indicates that probabilities are more
evenly distributed across j’s multi-step neighbourhood.

This notion of dispersal is naturally captured by Shannon entropy (Cover & Thomas, 2005, Ch. 2.1). We
define the reachability entropy of node j as H(j; R) = −

∑n
i=1 Ri,j log2 Ri,j . Entropy is always non-negative,

reaching zero when all probability is concentrated in a single node. Conversely, it attains its maximum value,
log2 n, when probabilities are uniformly distributed across all n nodes. Thus, higher entropy corresponds to
reduced bias toward sink nodes and improved dispersal.

In Figure 5, we plot the entropy for the Cora-ML and Fly Larva graphs. The y-axes represent entropy,
H(j; R), while the x-axes correspond to nodes j, sorted by entropy values. We use Pw = Pois(τ), with
each coloured line representing a distinct τ value. The dashed line indicates the entropy of the asymptotic
reachability matrix as τ → ∞ for the undirected graph (see Appendix C.1).

Transitioning from the directed to the undirected graph yields a notable increase in entropy for Cora-ML (cf.
Figure 5a and Figure 5b), reflecting improved dispersal in the absence of sink nodes. The effect of the neigh-
bourhood scale parameter τ also differs: in the undirected case, entropy grows steadily toward its asymptotic
limit, while in the directed case, it eventually declines as probability mass accumulates in sink nodes.
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(c) Fly Larva, O
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(d) Fly Larva, U

Figure 5: Reachability under Pw = Pois(τ), using AO and AU. The x-axes correspond to nodes sorted
by their entropy value. The colours represent various values of τ . The black dashed line indicates the
entropy of a reachability distribution proportional to the node degrees, which corresponds to the limiting
and uninformative distribution as τ → ∞. See Appendix C.1 for further details.

For the Fly Larva graph, entropy differences between the directed and undirected cases are smaller, as
expected given the graph’s higher density. Still, entropy is consistently higher in the undirected case, with
the largest gap appearing at the highest τ , as reachability in the directed graph again concentrates in sinks.

It is important to note that high dispersal alone does not guarantee embedding quality. This becomes evident
when considering that maximum entropy is achieved when Ri,j = 1

n , meaning smoothing is performed uni-
formly across the graph. While this maximizes dispersal, it renders the embeddings uninformative. Instead,
dispersal must be complemented by another key property, which we discuss in the next section: expressivity.

3.2 Embedding model expressivity and neighbourhood multiplicity

As discussed in Section 2.3, ReachNEs respects node equivalence under mild conditions: proximity ReachNEs
yields identical embeddings for structurally equivalent nodes, and message-passing ReachNEs does so for
automorphically equivalent ones. However, this alone is not sufficient for producing high-quality embeddings.
We also require model expressivity, which we define as the ability to distinguish nonequivalent nodes.

A fully expressive model would assign identical embeddings to equivalent nodes, and distinct embeddings
to nonequivalent ones. Achieving this for automorphic equivalence is particularly challenging; in fact, any
model that perfectly encodes automorphic equivalence would effectively solve the graph isomorphism problem
(Grohe & Schweitzer, 2020). The expressivity of message-passing models is therefore an active area of research
(Xu et al., 2019; Morris et al., 2019) (see Section 5.4 for further discussion).

Structural equivalence is simpler to handle. Since structurally equivalent nodes have identical rows and
columns in the adjacency matrix A, one can construct a fully expressive, albeit impractical, embedding matrix
by concatenating A and its transpose: Z =

[
A A⊺

]
. This model captures structural distinctions perfectly

but ignores multi-step relationships and produces a prohibitively large embedding space. Consequently,
expressivity remains a key concern for proximity ReachNEs, as both the random-walk smoothing in R and the
information loss from SVD reduction can limit the model’s ability to distinguish between nonequivalent nodes.

Model expressivity is especially important for digraphs due to the existence of neighbourhood multiplicity.
As illustrated in Figure 1, the neighbourhood of a node in a digraph is not uniquely defined. At each
step of a random walk, the walker can follow either incoming or outgoing edges, leading to 2K possible
neighbourhoods for a walk of length K. Embedding models that fail to capture the distinctions among these
directed neighbourhoods inherently suffer from reduced expressivity.

We formalize this idea using a truncated K-step reachability matrix. Let the edge orientation specifier be
a string σ of length K, where each character σl ∈ {U, O, I} indicates whether the l-th step uses undirected,
outgoing, or incoming edges, respectively. Given a specifier σ, the corresponding reachability matrix is:

R(K)(A; Pw, σ) = Pw(0)In +
K∑

k=1
Pw(k)

↶
k∏

l=1
Aσl

,

↶
k∏

l=1
Aσl

= Aσk
. . . Aσ2Aσ1 . (8)
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Like the reachability definition in Equation 2, the matrix R(K)(A; Pw, σ) is a column-stochastic transition
matrix, provided that Pw is properly normalized over K steps. It captures transition probabilities for multi-
directional random walks defined by the edge orientation specifier σ. For instance, σ = OIO corresponds to
walks that follow outgoing, then incoming, then outgoing edges. Our definition also allows walk steps over
undirected edges (U), which will be relevant for defining DirSwitch in Section 4.

Equation 8 defines how to compute multi-directional reachability matrices, but it remains to determine how
best to incorporate them into node embeddings. A widely used and effective strategy for this purpose is
embedding concatenation (Jin et al., 2019; Corso et al., 2020). This approach involves extracting multiple sets
of embeddings that capture different structural aspects of the graph, e.g., Z(1) ∈ Rn×p1 and Z(2) ∈ Rn×p2 ,
and combining them into a joint embedding space, Z =

[
Z(1) Z(2)] ∈ Rn×(p1+p2). Concatenation is

particularly advantageous in unsupervised settings, as it ensures that all constituent embeddings contribute
to the final representation.

Concatenation is particularly popular for producing multi-scale embeddings (Rozemberczki et al., 2021).
The goal of multi-scale embeddings is to represent the inherent hierarchical structure of real-world graphs
(Newman, 2018, Ch. 14.7.2) by concatenating embeddings that capture different neighbourhood scales. The
ReachNEs framework enables this by incorporating multiple walk length distributions, Pw. For example,
using Pw

(1) = Geom(τ = 1) and Pw
(2) = Pois(τ = 3) results in two reachability matrices, R(Pw

(1)) and
R(Pw

(2)), which focus on immediate and 3-step neighbourhoods, respectively.

The same principle extends to directed neighbourhoods. By concatenating embeddings generated from
different edge direction specifiers σ, we obtain multi-directional embeddings. This approach can be further
combined with multi-scale embeddings to jointly encode both aspects of graph structure.

However, a key limitation of embedding concatenation is that the embedding dimensionality, p, grows with
each additional concatenation. This increase can be rapid, given the exponential number of distinct directed
neighbourhoods and their possible combinations with multi-scale embeddings. Excessively high dimension-
ality leads to increased memory and computational costs, as well as potential issues related to the curse of
dimensionality. Therefore, it is beneficial to pair concatenation with dimensionality reduction techniques,
such as PCA (Murphy, 2012, Ch. 12.2).

4 DirSwitch: Switching reachability filters

The previous section highlights a dual challenge in digraph embedding modelling. Local sinks obstruct
information propagation, leading to embeddings biased toward sink nodes. This issue can be easily mitigated
by treating the digraph as undirected, effectively ignoring edge directions. However, this approach reduces
model expressivity by discarding information about the multiplicity of directed neighbourhoods.

To address these intertwined issues, we propose switching random walks. The key idea is to generate multi-
directional embeddings by following directed edges for the first r steps of a random walk, thereby capturing
local directed neighbourhood structure. After r steps, the graph is treated as undirected, allowing the walk
to escape sinks and achieve broader dispersal.

We name this approach DirSwitch. To formally define the DirSwitch model, we introduce a shorthand
notation for the edge direction specifier σ. For a K-step random walk, we define σ as a string of length
r + 1, where r < K. The final character, σr+1, determines the direction for the last K − r steps of the walk.

Rewriting Equation 8 using this notation and taking the limit as K → ∞, we obtain:

R(A; Pw, σ) = Pw(0)In +
r∑

k=1
Pw(k)

↶
k∏

l=1
Aσl

+
∞∑

k=r+1
Pw(k)Ak−r

σr+1

↶
r∏

l=1
Aσl

. (9)

In this formulation, a DirSwitch model is characterized by the first r letters in σ being either O or I,
representing directed walk steps, while the final character, σr+1, is set to U, ensuring undirected propagation
for the remaining steps.
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The switch to undirected edges addresses the issue of local sinks, but it remains necessary to incorporate
representations of different directed neighbourhoods. To achieve this, we use the multi-directional concate-
nation approach described in Section 3.2. For a given value of r, we define the DirSwitch-r embedding
model as the concatenation of all 2r possible configurations of a σ sequence of length r + 1 ending with
σr+1 = U. For example, DirSwitch-1 concatenates embeddings using σ = OU and σ = IU, while DirSwitch-2
uses σ ∈ {OOU, OIU, IOU, IIU}, and so on for any DirSwitch-r model.

As a baseline in our experiments, we define MultiDir-r using the same notation as above. Specifically,
MultiDir-1 uses σ = O and σ = I, while MultiDir-2 includes all two-step combinations σ ∈ {O, OI, IO, I},
and so on, covering all 2r possible r-step direction sequences. Unlike DirSwitch, however, MultiDir does not
transition to undirected edges after the specified sequence. Instead, the walk continues in the last specified
direction. For example, with K total steps and σ = OI, the walk takes one step in the O direction, one in
the I direction, and then continues the remaining K − 2 steps in the I direction.

As noted in Section 3.2, multi-directional concatenation can be combined with multi-scale concatenation
to improve embedding quality. However, this combination exhibits diminishing returns: using r steps of
directionality with s walk length distributions for a fixed embedding dimension p means that each (σ, Pw)-
pair contributes only p

2rs dimensions. We discuss these diminishing returns further in Appendix A.6, where
we also present a practical guide to DirSwitch-r hyperparameter selection based on our experiments and
experience. Additionally, increasing r and s raises computational costs, which we analyse in Appendix A.5.

5 Related Work

5.1 Relation to node embedding and graph learning frameworks

The ReachNEs framework is built around the reachability matrix, interpreted as random walk transition
probabilities, and two embedding reduction strategies: matrix decomposition and message passing. Similar
ideas appear throughout the graph learning literature. Below, we highlight key connections and distinctions.

Sampled random walks. The use of random walks for proximity-based embeddings was popularized
by Perozzi et al. (2014) and Grover & Leskovec (2016), who combined sampled walks with negative sam-
pling—originally introduced for word embeddings (Mikolov et al., 2013). As shown by Qiu et al. (2018), these
methods asymptotically approximate a matrix factorization of log(R) + b, where log is applied elementwise,
b is a constant, and R is the random walk transition probability matrix, as in ReachNEs.

This suggests that sampled walk models and proximity ReachNEs converge to similar embeddings in the
limit of infinite samples. However, in practice, sampling is expensive, and only a small fraction of possible
walks and non-edges are used. As a result, sampled random walk models and proximity ReachNEs typically
yield different embeddings in finite regimes.

Additionally, sampled walk methods usually rely on a single walk length distribution; commonly uniform,
though Zhou et al. (2017) use the geometric distribution. In contrast, ReachNEs supports multiple walk
length distributions, enabling multi-scale embeddings.

Proximity matrix reduction. Extending the idea of proximity embeddings via matrix decomposition,
Zhu et al. (2021a) introduced the PhUSION framework. Like ReachNEs, PhUSION generates embeddings
by applying reduction functions to a node proximity matrix, and can encode either structural or automorphic
equivalence depending on the chosen reduction. We compare this aspect of the two frameworks in Section 5.2.

In other aspects, PhUSION differs from ReachNEs in two key ways. First, it is restricted to undirected
graphs. Second, it interprets the proximity matrix through the lens of matrix functions (Higham, 2008),
treating the scalars Pw(k) in Equation 2 as Taylor coefficients rather than probabilities. While this perspective
is mathematically more general, it limits analysability. For example, our analysis of reachability entropy in
Section 3.1 depends on interpreting R as a transition probability matrix.
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Graph convolutional filters. Like matrix functions, graph convolutional filters generalize the reachability
matrix (Defferrard et al., 2016; Isufi et al., 2024). They are defined and applied similarly to message-passing
ReachNEs, also assuming the presence of initial node features X. However, the series coefficients, Pw(k) in
Equation 2, can take arbitrary real values, making random walk interpretations generally inapplicable.

Instead, convolutional filters are viewed as extensions of classical convolutions to graphs and are typically
analysed using spectral methods based on eigenfunctions (Bronstein et al., 2017). Since asymmetric matrices
lack a standard eigendecomposition, spectral analysis becomes difficult on digraphs, and most research in this
area focuses on undirected graphs (Zhang et al., 2021b). In contrast, ReachNEs defines R purely through ran-
dom walk probabilities, making the framework naturally applicable to both directed and undirected graphs.

Message-passing graph neural networks. The dominant paradigm in node embedding learning is
message-passing graph neural networks (GNNs) (Gilmer et al., 2017). GNNs are typically nonlinear and pa-
rameterized, requiring training via non-convex optimization. While this complicates their analysis compared
to ReachNEs, their overall algorithmic structure is similar. In fact, only minor modifications to Equation 6
are needed to recover the GraphSAGE encoder (Hamilton et al., 2017). We exploit this connection in
Section 6.5 to show how our results extend to the self-supervised GNN setting.

Interestingly, the binomial walk length distribution in ReachNEs is related to the self-loops added in convo-
lutional GNNs (Kipf & Welling, 2017; Wu et al., 2019). We explore this connection further in Appendix C.5.

Graph kernels. While many embedding methods implicitly rely on walk length distributions, few works
explicitly analyse or compare their effects as we do. In contrast, the graph kernel literature, particularly
random walk kernels, has explored related formulations, including both geometric and Poisson walk length
distributions (Vishwanathan et al., 2010). However, since graph kernels are designed for graph-level com-
parison rather than node-level tasks, it remains an open question which insights transfer to ReachNEs.

5.2 Structural and automorphic equivalence

Recent work has highlighted the distinction between embedding models that capture structural versus auto-
morphic node equivalence (Jin et al., 2021; Zhu et al., 2021a; Yan et al., 2024). Models targeting structural
equivalence are often called positional embeddings, while those targeting automorphic equivalence are referred
to as structural embeddings. The terminology is admittedly confusing, as the term structural is used in two
different senses.

ReachNEs draws inspiration from the PhUSION framework (Zhu et al., 2021a), which also produces both
positional and structural embeddings by applying different reduction methods to a node proximity matrix
(analogous to our reachability matrix). For positional embeddings, both ReachNEs and PhUSION use SVD
reduction. However, PhUSION assumes undirected graphs and retains only the left singular vectors U , while
ReachNEs concatenates both U and V to handle directed graphs.

For structural embeddings, PhUSION applies the permutation-invariant empirical characteristic function to
each column of R, following the approach introduced by Donnat et al. (2018). In contrast, ReachNEs uses
message-passing reduction, aligning more directly with the message-passing GNN literature.

Finally, while some argue that positional and structural embeddings represent fundamentally different ob-
jectives (Rossi et al., 2020), Srinivasan & Ribeiro (2020) established a statistical equivalence between them.
However, the practical consequences of this result remain an open question.

5.3 Digraph models

Research on message-passing embedding models, particularly GNNs, has primarily focused on undirected
graphs (Rossi et al., 2023). This is especially true in unsupervised and self-supervised learning, where recent
state-of-the-art models remain constrained to undirected graphs (Hassani & Khasahmadi, 2020; Thakoor
et al., 2022; Zhang et al., 2021a; Hou et al., 2023).
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For (semi-)supervised learning, Rossi et al. (2023) proposed digraph extensions for common GNN embedding
encoders. Unlike DirSwitch, which uses concatenation to preserve the contributions of different directed
neighbourhoods in distinct embedding components, Rossi et al. (2023) employs parameterized mixing of these
components. This approach requires the model to learn how to extract and preserve relevant information
from multi-directional neighbourhoods. However, this filtering process is more challenging in unsupervised
settings due to the weaker learning signal.

In contrast, research on unsupervised proximity embeddings for digraphs has progressed further than its
message-passing counterpart. The models HOPE (Ou et al., 2016), APP (Zhou et al., 2017), and NERD
(Khosla et al., 2020) follow a similar approach to ReachNEs and DirSwitch, leveraging random walks and
matrix factorization of proximity matrices. However, none of these models explicitly address local sinks and
neighbourhood multiplicity, which are the primary focus of our work.

Additionally, there are several notable algorithmic differences. Both HOPE and APP use the geometric walk
length distribution, while NERD employs the uniform distribution. In contrast, ReachNEs treats the choice
of distribution as a parameter. NERD also introduces alternating walks, where edge direction specifiers
switch between outgoing and incoming edges (e.g., σ = OIOI...or σ = IOIO...). While this pattern may help
random walks escape some sinks, restricting the model to only these sequences introduces bias by excluding
other directed neighbourhood definitions.

Furthermore, HOPE utilizes partial and generalized SVD (Hochstenbach, 2009) for matrix factorization,
whereas ReachNEs employs the more scalable single-pass SVD (Yu et al., 2017). Both APP and NERD
rely on Monte Carlo sampling of random walks and implicit matrix factorization via gradient descent and
negative sampling, while ReachNEs directly computes the reachability matrix using matrix multiplication.

Finally, DGGAN (Zhu et al., 2021b) and BLADE (Virinchi & Saladi, 2023) are unsupervised digraph embed-
ding methods that incorporate neural networks. While neither explicitly addresses the issue of local sinks,
BLADE follows an embedding mixing strategy similar to Rossi et al. (2023), where a GNN is responsible for
filtering information from distinct directed neighbourhoods.

5.4 Expressivity of message-passing models

The expressivity of message-passing models is a central topic in graph representation learning due to its
connection with the graph isomorphism problem (Grohe & Schweitzer, 2020). Li & Leskovec (2022, Def. 5.5)
offers a formal definition, characterizing model expressivity as the ability to produce distinct representations
for non-isomorphic graphs. While their formulation is mathematically rigorous, our definition in Section 3.2
captures the same core idea in a more intuitive manner, with a focus on node equivalence rather than full
graph isomorphism.

The foundational works of Xu et al. (2019) and Morris et al. (2019) relate the expressivity of message-passing
graph neural networks (MP-GNNs) to the Weisfeiler-Leman (WL) colour refinement algorithm (Grohe et al.,
2021), an iterative method used to test graph isomorphism. Rossi et al. (2023) extended these results to
digraphs by incorporating both in- and out-neighbourhoods in the message-passing process, in a manner
analogous to our MultiDir and DirSwitch approaches.

These studies demonstrate that the expressive power of MP-GNNs is upper-bounded by the WL algorithm.
This also applies to message-passing ReachNEs, which can be viewed as a linear MP-GNN. Moreover, they
show that MP-GNNs can match the expressivity of the WL test if their message aggregation functions are
sufficiently flexible—specifically, if they can form injective mappings from multisets to vectors, mimicking
the WL hashing mechanism. These assumptions, however, do not hold for ReachNEs, which is linear and
parameterized solely through scalar-valued walk length distributions.

The use of flexible, non-linear aggregation functions is well-suited to the supervised, end-to-end learning
context studied by Xu et al. (2019), Morris et al. (2019), and Rossi et al. (2023), where parameters can be
optimized to task-specific objectives. In contrast, the unsupervised setting considered in this work demands
greater interpretability and analytical tractability, especially for downstream tasks such as anomaly detection.
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Table 2: Graph statistics for the datasets. The columns report the number of nodes (n) and edges (m), the
median out- and in-degrees (|degO|, |degI|), the number of weakly and strongly connected components (#CC
and #SCC), the global clustering coefficient (CG), and the average path length (⟨lpath⟩) computed on the
undirected version of the graph. Additionally, when available, we list the number of node attributes (d), the
number of node label classes (|Y|), and the homophily coefficient of the undirected graph (hU). The final column
specifies the graph type. We use the shorthand notation with K=103 and M=106 for large values.

Dataset n m | degO | | degI | # CC # SCC CG ⟨lpath⟩ d |Y| hU Type

Arxiv1 170K 1.2M 4 1 1 141K 0.017 5.7 128 40 0.64 Citation
Arxiv-Year2 170K 1.2M 4 1 1 141K 0.017 5.7 128 5 0.29 Citation
Citeseer3 4.2K 5.4K 1 0 515 4209 0.084 7.4 602 6 0.96 Citation
CoCite4 44K 20K 2 2 652 44K 0.081 5.5 – 15 0.42 Citation
Cora3 20K 65K 2 1 364 16K 0.14 6.2 8710 70 0.59 Citation
Cora-ML3 3K 8.4K 2 1 61 2603 0.12 5.3 2879 7 0.82 Citation
Cora (Subelj)4 23K 92K 3 1 1 18K 0.12 5.8 – 70 0.56 Citation
Enron5 7.9K 142K 3 7 58 861 0.16 3.1 – – – Email
EU-Email6 1K 25K 14 17 20 203 0.29 2.6 – 42 0.47 Email
Fly Larva7 3K 116K 33 33 5 136 0.30 2.7 – 93 0.14 Connectome
Polblogs8 1.5K 19K 4 2 268 688 0.25 2.7 – 2 0.91 Hyperlink
Pokec2 1.6M 31M 8 8 1 326K 0.058 4.7 65 3 0.43 Dating
Pubmed4 20K 44K 0 1 1 20K 0.054 6.4 – 3 0.79 Citation
Roman Empire2 23K 33K 1 1 1 23K 0.28 2.4K 300 18 0.05 Text
Snap Patents2 2.9M 14M 3 3 181K 2.9M 0.066 6.8 269 5 0.22 Citation
WikiVote9 7K 103K 2 0 24 5816 0.14 3.2 – – – Voting

1 Hu et al. (2020a) 2 Lim et al. (2021) 3 Bojchevski & Günnemann (2018) 4 Khosla et al. (2020) 5 Klimt & Yang (2004)
6 Yin et al. (2017) 7 Winding et al. (2023) 8 Adamic & Glance (2005) 9 Leskovec et al. (2010)

In this regard, our work aligns more closely with Jin et al. (2019) and Corso et al. (2020), who emphasize
embedding concatenation as a strategy for increasing expressivity. While their approaches combine em-
beddings from different aggregation operators (e.g., mean, max, sum), we instead concatenate embeddings
derived from multiple edge directions and walk length distributions. This preserves both interpretability
and theoretical clarity, as each component of the embedding retains a well-defined meaning grounded in
random-walk semantics.

6 Experiments

Our experiments focus on evaluating DirSwitch and are divided into three parts. First, we validate that
DirSwitch mitigates low dispersal caused by local sinks in digraphs (Section 6.1) while preserving the ability
to represent directed neighbourhoods (Section 6.2). Second, in Section 6.3, we demonstrate that these
improvements lead to higher-quality embeddings by evaluating DirSwitch in combination with ReachNEs on
14 node classification benchmark datasets.

Third, we evaluate DirSwitch’s practical effectiveness by comparing it to recent digraph embedding models
on node classification benchmarks. Specifically, we first assess DirSwitch with ReachNEs proximity embed-
dings against state-of-the-art unsupervised digraph proximity embedding approaches (Section 6.4). Then, in
Section 6.5, we demonstrate DirSwitch’s flexibility by applying it beyond the ReachNEs framework. We ex-
tend self-supervised GNNs to digraphs using ReachNEs and compare this approach to the method proposed
by Rossi et al. (2023), which generalizes GNNs to digraphs in the semi-supervised setting.

Our experiments use the graph learning datasets summarized in Table 2, which span a diverse range of graph
types and properties, including variations in density, connectivity, and node attributes. Unless otherwise
specified, we compute truncated reachability using K = 12 steps. All experiments were conducted in a
Google Cloud environment with an Nvidia L4 24GB GPU, 32 vCPUs @ 2.20GHz, and 128GB of memory.

6.1 Improving dispersal

To verify that DirSwitch mitigates local sinks and improves dispersal, we measure the reachability entropy
H(j; R) = −

∑n
i=1 Ri,j log2 Ri,j (see Section 3.1) for various reachability matrices R(Pw, σ). Specifically, we
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Figure 6: Neighbourhood dispersal evaluation for four graphs, measured via reachability entropy,
−
∑n

i=1 Ri,j log2 Ri,j , computed for each node and sorted. Each curve corresponds to a different edge direc-
tion specifier σ, with the top row showing results for Pw(k; τ) = Pois(τ = 2) (local dispersal) and the bottom
row for U(τ = 5) (long-range dispersal). DirSwitch variants (e.g., OU, OIU, OIOU) demonstrate high dispersal,
comparable to U, while purely directed specifiers (O, OI, OIO) exhibit lower entropy due to sink effects.

compare DirSwitch edge direction specifiers σ ∈ {OU, OIU, OIOU} against MultiDir specifiers σ ∈ {O, OI, OIO}
and purely undirected edges, σ = U. We use two walk length distributions: Pois(τ = 2), which highlights
short-range differences, and U(τ = 5), which captures long-range behaviour.

Figure 6 presents results for four representative graphs, with additional datasets provided in Appendix E.
The top row shows results for Pois(τ = 2), while the bottom row corresponds to U(τ = 5).

The entropy associated with DirSwitch specifiers closely approaches that of undirected edges, which consis-
tently achieve the highest entropy due to the absence of sinks. This outcome is both expected and desirable,
highlighting how the switch to undirected edges mitigates the dispersal-limiting effects of local sinks.

These effects are most pronounced for long-range walks using U(τ = 5), shown in the bottom row. In
Figures 6a, 6b, and 6c, there is a significant entropy gap between the DirSwitch curves and the MultiDir
curves (O, OI, OIO). The Cora-ML, Arxiv, and Wikivote graphs are sparsely connected (see Table 2), leading
to increased reachability concentration in local sinks and lower entropy. In contrast, the densely connected
Fly Larva graph in Figure 6d exhibits a less pronounced but still noticeable entropy difference.

For local smoothing with Pois(τ = 2) (top row), the entropy increase for DirSwitch over OI and OIO is visible
but small. This is because alternating O- and I-steps allows short-range walkers to partially escape sinks.
Moreover, we observe a discernible gap between U and the DirSwitch directions. This gap reflects the reduced
dispersal caused by using edge directions in the initial steps of DirSwitch random walks. As walk length
increases, both effects vanish as the undirected regime of DirSwitch dominates, as seen in the bottom row.

6.2 Directed neighbourhood expressivity

We use node embedding graph alignment (Heimann et al., 2018) to verify that DirSwitch can represent the
diversity of directed neighborhoods. Graph alignment is a generalized version of the graph isomorphism
problem, where nodes in two graphs are matched based on structural similarity (Skitsas et al., 2023).

Following the embedding benchmark protocols of Heimann et al. (2018) and Jin et al. (2021), we construct
a second graph G2 = (N,M2) from a given graph G1 = (N,M1) by removing 15% of the edges from M1 and
randomly permuting the node indices. Node embeddings are then computed for both graphs, and each node
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Figure 7: Evaluation of edge direction expressivity for four graphs using the geometric, Geom(τ), and
Poisson, Pois(τ), walk length distributions. The y-axes represent graph alignment accuracy under 15% edge
removal, while the x-axes correspond to τ , the average walk length. The curve colours and styles denote
different sets of edge direction specifiers, σ.

in G2 is matched to a node in G1 based on the shortest Euclidean distance between embeddings. This process
is repeated five times with different random seeds.

The graph alignment task benefits significantly from embedding expressivity, particularly the ability to
distinguish distinct directed neighbourhoods, as this reduces the risk of erroneous matches. However, for
matching to be feasible, embeddings must also capture local graph structure that generalizes across separate
graph components. To achieve this, we use ReachNEs message-passing embeddings combined with node
attributes derived from graph structure, including out- and in-degrees and the four digraph local clustering
coefficients—out, in, cycle, and middleman—as defined by Fagiolo (2007).

We compare the multi-directional DirSwitch-r against MultiDir-r for r ≤ 3, as well as undirected (σ = U)
and default directed (σ = O) edges. To account for the influence of walk length distribution on embedding
expressivity, we evaluate both Pw = Geom(τ) and Pw = Pois(τ) for τ ∈ (0, 20], using a reachability truncation
of K = 30 steps.

Figure 7 presents results for four datasets, with τ values along the x-axes and graph alignment accuracy on
the y-axes. Additional results for other datasets and walk length distributions are provided in Appendix F.
DirSwitch-r and MultiDir-r achieve comparable accuracies for each r, with accuracy increasing as r grows.
This similarity is expected, as both methods use concatenation to represent 2r directed neighbourhoods.

A closer comparison reveals that DirSwitch-r consistently outperforms MultiDir-r, provided τ is not too
large. This improvement stems from DirSwitch mitigating sink bias. When reachability is concentrated in
small node sets, embeddings become overly sensitive to edge removal, as this can then radically change the
reachability distribution. This sensitivity reduces the alignment accuracy. By alleviating this bias, DirSwitch
provides more robust representations.

For the same reason, the undirected edges perform better than the default directed edges. However, overall,
both these single-neighbourhood baselines achieve the lowest overall accuracies due to their inability to
capture directed neighbourhood multiplicity.

Another notable observation is the impact of the walk length distribution Pw(τ). In all cases, accuracy
collapses as τ → 0, corresponding to the use of node attributes without smoothing. Additionally, for the
Poisson distribution, accuracy decreases as τ increases, whereas for the geometric distribution, it plateaus.
This behaviour aligns with the expected asymptotic properties of both distributions.
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Table 3: Abbreviations used when reporting results for multi-scale reachability embeddings. Visualizations
are available in Figure 11 in the Appendix.
Abbreviation Geom Pois Geom-U Binom-3 Geom-4
Distributions, Pw Geom(k; τ = 1) Pois(k; τ = 2) Geom(k; τ = 1),

U(k − 1; τ = 2)
Binom(k; τ = 1), Binom(k − 2; τ = 2),
Binom(k − 5; τ = 3)

Geom(k; τ = 1), Geom(k − 1; τ = 2),
Geom(k − 2; τ = 3), Geom(k − 3; τ = 4)

In short, as τ increases, the mode of Pois(τ) shifts continuously, emphasizing long-range walks over local
smoothing. This results in less distinguishable embeddings and lower alignment accuracy. In contrast, the
geometric distribution maintains local neighbourhood smoothing, preventing significant accuracy drops at
higher τ values. See Appendix C for further details.

The difference between Pois and Geom is also evident in the comparison between DirSwitch-r and MultiDir-r.
With the geometric distribution, DirSwitch consistently achieves higher alignment accuracy across varying τ
values, as discussed above. However, for the Poisson distribution, DirSwitch’s accuracy declines more rapidly
than that of MultiDir as τ increases in some datasets. For instance, this effect is observed for DirSwitch-3
and MultiDir-3 in Figures 7b and 7d.

This behaviour stems from the shifting mode of Pois. In the limit τ → ∞, DirSwitch embeddings converge
to identical representations within a weakly connected component. In contrast, MultiDir embeddings retain
finer granularity, as equivalence groups in the directed case remain more distinct, see our discussion at the end
of Appendix C.1. This explains why MultiDir can surpass DirSwitch in alignment accuracy at large τ values.

6.3 DirSwitch embedding quality evaluation

In this section, we demonstrate that DirSwitch’s increased dispersal and multi-directionality lead to
higher-quality embeddings. To assess this, we use node classification as a representative downstream task,
comparing ReachNEs embeddings generated with DirSwitch-r, MultiDir-r, undirected edges (U), and default
directed edges (O).

Setup Table 2 lists the node classification benchmark datasets. For datasets with node attributes, we
evaluate message-passing ReachNEs, while for those without attributes, we use proximity ReachNEs.

Node embeddings are computed in a fully unsupervised manner, after which a logistic regression classifier
is trained on frozen embeddings. We employ a 3x repeated 5-fold cross-validation strategy to obtain mean
performance and standard deviations.

To assess the impact of both multi-directional and multi-scale concatenation, we include both single- and
multi-scale embeddings in our analysis. Table 3 details the walk length distributions used for single- and
multi-scale embeddings. We consider two single-scale distributions and three multi-scale distributions, incor-
porating two, three, and four scales, respectively. The embedding dimensions are set to p = 1024 and p = 512.

Results Overview Table 4 reports classification accuracies for message-passing ReachNEs using datasets
with node attributes, while Table 6 presents results for proximity ReachNEs for datasets without attributes,
both using p = 1024. Across all datasets and embedding types, DirSwitch-r consistently achieves the highest
accuracies or performs within one to two standard deviations of the best results. In the tables, we highlight
the best results for each scale in bold blue and results within one standard deviation in light blue. The
consistent top performance of DirSwitch across datasets and multi-scale choices underscores its superior
embedding quality compared to non-switching approaches. Similar trends are observed for p = 512, with
further analysis provided in Appendix G.

A notable trend is that σ = O (default) yields some of the lowest accuracies across all datasets and scales,
as highlighted in orange. This suggests that embedding quality improves both by using undirected edges
(U) and by concatenating σ = I embeddings, as done in MultiDir-1. These results further support the claim
that mitigating local sinks and capturing different directed neighbourhoods enhances embedding quality.

Next, we conduct a deeper analysis of these results. To facilitate this, we use the relative accuracy improve-
ments in Tables 5 and 7. These values represent the highest accuracy in each row of Tables 4 and 6, relative
to the accuracy of the default. For default edge directions themselves, absolute accuracy values are reported.
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Table 4: Node classification accuracy for message-passing ReachNEs with p = 1024 embedding dimensions.
Columns correspond to different datasets and multi-scale walk length distributions, while rows represent
various edge direction specifiers. Each entry reports the mean accuracy and standard deviation. Bold
blue highlights the highest accuracy in each column, with light blue indicating results within one standard
deviation of the best. Similarly, bold orange denotes the lowest accuracy, and light orange represents values
within one standard deviation of the worst.

Edge directions Arxiv Arxiv Year
Geom Pois Geom-U Binom-3 Geom-4 Geom Pois Geom-U Binom-3 Geom-4

Default 55.0±0.2 42.4±0.3 55.5±0.3 54.2±0.2 55.4±0.3 36.5±0.3 35.4±0.5 36.7±0.2 37.8±0.2 38.2±0.2

Undirected 61.6±0.2 64.9±0.3 67.0±0.2 69.8±0.2 69.1±0.2 36.4±0.2 36.5±0.2 37.1±0.2 37.6±0.3 38.3±0.3

MultiDir-1 59.8±0.3 59.4±0.3 60.2±0.3 60.5±0.2 60.3±0.2 37.0±0.3 35.3±0.8 38.1±0.2 39.3±0.2 39.7±0.3
MultiDir-2 61.2±0.3 65.3±0.3 65.2±0.3 64.9±0.3 65.3±0.3 38.5±0.3 37.9±0.4 40.9±0.2 42.0±0.2 41.7±0.2
MultiDir-3 61.5±0.3 65.5±0.3 65.9±0.3 65.9±0.3 65.7±0.3 40.0±0.3 40.6±0.3 42.3±0.2 43.2±0.3 42.4±0.3

DirSwitch-1 61.5±0.3 65.9±0.2 67.3±0.3 69.7±0.2 68.4±0.3 38.2±0.3 37.8±0.2 39.9±0.3 40.2±0.3 41.5±0.2
DirSwitch-2 61.5±0.3 65.8±0.3 66.9±0.3 69.6±0.3 68.4±0.2 39.6±0.2 39.5±0.3 41.4±0.3 41.9±0.3 42.4±0.2
DirSwitch-3 61.5±0.3 65.8±0.3 66.7±0.3 69.0±0.3 67.8±0.3 40.0±0.3 40.9±0.4 42.4±0.3 43.3±0.3 43.3±0.3

Edge directions Cora-ML Citeseer Cora
Geom Pois Geom-U Binom-3 Geom-4 Geom Pois Geom-U Binom-3 Geom-4 Geom Pois Geom-U Binom-3 Geom-4

Default 31.5±1.6 35.8±2.4 46.1±2.1 58.4±2.2 63.2±2.3 67.5±2.0 56.5±1.9 60.8±2.7 70.0±2.0 72.9±2.1 52.4±0.6 51.2±0.7 57.6±0.7 59.3±0.7 60.2±0.8

Undirected 31.2±1.9 41.0±2.2 54.5±1.7 72.1±2.2 76.1±1.8 76.2±1.8 83.7±1.4 72.6±1.8 88.0±1.7 89.0±1.2 59.4±0.6 64.9±0.8 67.5±0.7 69.3±0.7 69.6±0.7

MultiDir-1 55.1±2.1 53.2±2.0 66.9±2.1 72.2±2.1 75.4±2.3 66.1±2.0 60.8±1.8 73.8±1.3 78.6±1.7 81.0±1.6 64.3±0.6 63.3±0.6 65.8±0.8 65.3±1.0 64.8±1.0
MultiDir-2 71.3±1.6 71.1±2.3 78.4±1.8 79.8±2.1 82.3±1.4 79.4±1.2 78.4±1.2 84.3±1.4 85.0±1.2 86.0±1.4 67.1±0.7 68.4±0.7 67.8±0.9 66.5±0.9 66.0±0.9
MultiDir-3 78.9±1.9 80.0±1.0 84.0±1.4 83.9±1.4 84.5±1.5 84.7±1.7 87.2±1.2 87.0±1.5 87.3±1.3 87.5±1.2 66.7±0.9 68.5±0.9 66.8±0.9 65.3±0.8 64.4±0.9

DirSwitch-1 56.9±2.9 57.5±2.4 72.0±2.0 79.4±1.6 82.3±2.0 73.9±1.2 76.5±1.9 85.6±1.5 91.4±0.8 91.3±1.5 65.6±0.7 67.5±0.8 69.5±0.8 70.1±0.9 69.7±0.8
DirSwitch-2 71.6±1.8 72.4±2.4 80.7±1.6 84.3±1.6 84.4±1.9 80.4±1.3 85.1±1.4 88.6±1.0 90.9±1.0 90.1±1.0 67.5±0.6 68.9±0.7 68.9±0.9 69.0±0.7 68.0±0.7
DirSwitch-3 79.1±2.0 80.6±1.6 84.0±1.5 85.6±1.6 85.7±1.4 84.7±1.3 88.0±0.9 87.7±1.3 89.6±0.8 88.5±1.2 66.4±0.8 68.7±0.8 67.0±0.8 67.1±0.6 65.6±0.9

Edge directions Roman Empire Pokec Snap Patents
Geom Pois Geom-U Binom-3 Geom-4 Geom Pois Geom-U Binom-3 Geom-4 Geom Pois Geom-U Binom-3 Geom-4

Default 69.3±0.9 32.5±0.4 68.5±0.6 51.2±0.6 67.2±0.8 60.1±0.2 59.0±0.8 61.7±0.1 60.7±0.1 65.4±0.1 35.7±0.1 41.7±0.1 39.2±0.1 42.2±0.2 43.1±0.3

Undirected 67.2±0.8 46.9±0.7 70.9±0.7 65.9±0.8 70.0±0.4 60.3±0.1 59.6±0.5 62.0±0.1 62.3±0.1 71.7±0.1 30.8±0.1 29.9±0.1 31.8±0.1 33.2±0.1 34.7±0.4

MultiDir-1 71.8±0.8 42.0±0.8 66.7±0.8 56.6±0.7 69.9±0.9 61.3±0.1 60.1±0.1 62.2±0.1 61.7±0.1 67.3±0.1 41.0±0.1 43.9±0.4 45.7±0.1 47.8±0.2 46.9±0.2
MultiDir-2 71.9±0.5 60.4±0.7 71.1±0.5 65.2±0.6 75.5±0.6 61.5±0.1 61.1±0.1 63.2±0.1 63.0±0.1 69.1±0.1 45.2±0.1 46.5±0.2 46.8±0.2 49.8±0.2 48.1±0.2
MultiDir-3 73.1±0.6 68.0±0.6 73.7±0.7 69.2±0.7 76.0±0.5 61.8±0.1 63.5±0.0 64.8±0.1 64.8±0.1 70.7±0.1 45.9±0.1 49.1±0.1 47.4±0.1 49.8±0.7 46.5±0.1

DirSwitch-1 73.0±0.6 58.4±0.8 72.4±0.9 67.5±0.5 74.6±0.6 61.2±0.1 60.3±0.3 62.8±0.1 62.8±0.1 70.0±0.1 40.8±0.1 40.8±0.1 42.7±0.1 43.8±0.1 44.8±0.3
DirSwitch-2 72.0±0.5 62.8±0.7 74.2±0.5 70.8±0.6 76.4±0.7 61.4±0.1 60.9±0.1 63.5±0.1 64.1±0.1 71.5±0.1 46.6±0.1 48.1±0.2 46.8±0.1 47.2±0.2 47.6±0.4
DirSwitch-3 72.8±0.6 67.9±0.6 75.1±0.6 72.5±0.6 76.4±0.6 61.6±0.1 62.7±0.1 64.7±0.1 64.4±0.1 70.3±0.1 46.3±0.1 50.8±0.3 49.2±0.1 49.4±0.3 48.8±0.3

Table 5: Relative improvements in node classification accuracy for message-passing ReachNEs with p = 1024.
The values reflect the maximum accuracy for per row and dataset in Table 4. The top row displays absolute
accuracies for the default edge directions, with standard deviations expressed as percentages. The subsequent
rows present the relative improvements compared to the top row. The table is structured with the four
homophilic datasets on the left and the four heterophilic datasets on the right.

Edge directions Cora-ML Citeseer Cora Arxiv Roman Empire Arxiv Year Pokec Snap Patents

Default 63.2±3.4% 72.9±3.0% 60.2±1.1% 55.5±0.5% 69.3±0.9% 38.2±0.8% 65.4±0.4% 43.1±0.4%

Undirected +20.5% +22.0% +15.5% +25.8% +2.2% +0.2% +9.5% -19.3%

MultiDir-1 +19.4% +11.1% +9.2% +9.0% +3.5% +3.9% +2.8% +11.0%
MultiDir-2 +30.3% +18.0% +13.5% +17.7% +8.9% +9.9% +5.6% +15.6%
MultiDir-3 +33.7% +20.0% +13.6% +18.9% +9.6% +12.9% +8.0% +15.6%

DirSwitch-1 +30.3% +25.4% +16.3% +25.7% +7.5% +8.5% +6.9% +4.1%
DirSwitch-2 +33.6% +24.7% +14.5% +25.4% +10.2% +10.9% +9.3% +11.7%
DirSwitch-3 +35.7% +22.9% +14.0% +24.5% +10.2% +13.4% +7.5% +17.9%

Homophilic vs heterophilic datasets for message-passing embeddings The node classification
datasets in Table 2 exhibit varying levels of homophily (Zhu et al., 2020), i.e., the tendency of nodes with the
same class label to connect. The homophily level is quantified in the hU column, representing the average
fraction of a node’s neighbours that share its label (Rossi et al., 2023, Eq. 1).

19



Published in Transactions on Machine Learning Research (06/2025)

Table 6: Node classification accuracy for proximity ReachNEs with p = 1024 embedding dimensions.
Columns correspond to different datasets and multi-scale walk length distributions, while rows represent
various edge direction specifiers. The values denote average accuracies with standard deviations. Bold blue
highlights the best results in each column, with light blue indicating results within one standard deviation.
Similarly, bold orange marks the worst results, with light orange showing values within one standard devia-
tion of the lowest performance.

Edge directions Fly Larva EU-Email Polblogs
Geom Pois Geom-U Binom-3 Geom-4 Geom Pois Geom-U Binom-3 Geom-4 Geom Pois Geom-U Binom-3 Geom-4

Default 42.2±2.0 45.2±2.0 49.0±1.9 49.5±1.7 50.1±2.0 30.3±3.3 36.6±2.9 54.0±3.0 65.0±2.8 66.0±3.2 61.8±2.7 70.2±2.4 73.0±2.7 79.1±1.9 82.0±2.1

Undirected 45.0±1.7 50.9±2.0 53.7±2.1 54.6±1.7 55.4±1.7 29.8±3.0 35.4±3.7 57.2±3.5 70.6±2.9 72.5±3.1 64.4±3.3 76.8±2.0 79.1±2.4 84.3±2.2 85.7±1.9

MultiDir-1 47.3±1.6 49.1±1.8 50.8±1.8 51.9±1.9 52.0±1.9 50.2±3.1 59.7±3.7 68.1±2.9 72.2±2.8 73.5±3.0 73.7±2.6 74.7±2.6 83.6±1.9 85.2±1.7 86.7±2.1
MultiDir-2 50.3±2.3 50.7±2.1 52.4±2.2 54.2±2.0 53.6±1.7 66.8±3.2 69.5±3.3 74.9±3.0 75.2±2.8 74.7±2.6 83.4±2.3 84.4±2.1 88.2±2.0 88.7±1.6 89.2±1.5
MultiDir-3 51.8±2.6 52.6±2.2 53.8±2.1 53.6±1.8 53.0±1.5 73.5±3.4 74.2±2.4 74.9±2.3 73.1±3.3 70.4±2.9 88.0±1.7 88.0±2.0 89.2±1.4 89.7±1.5 89.8±1.6

DirSwitch-1 48.8±1.7 51.6±1.6 53.8±2.4 55.8±1.7 55.8±2.4 50.9±3.2 59.8±3.7 70.5±3.1 74.8±2.8 75.6±2.4 75.6±2.6 75.3±2.2 85.5±2.4 86.6±2.1 86.2±2.2
DirSwitch-2 50.3±1.7 51.9±2.1 54.1±1.5 56.7±2.0 56.2±1.9 66.8±2.7 69.8±3.5 74.6±2.9 75.7±2.5 74.8±2.5 83.8±2.2 85.2±1.7 88.4±2.1 87.1±2.1 89.7±1.6
DirSwitch-3 52.4±1.7 52.8±1.6 55.6±1.8 55.6±1.8 55.6±1.8 73.3±2.6 73.8±2.7 75.3±2.6 72.2±2.9 70.6±2.8 87.9±1.8 88.4±1.6 89.4±1.6 87.1±2.0 89.8±1.5

Edge directions CoCite Pubmed Cora (subelj)
Geom Pois Geom-U Binom-3 Geom-4 Geom Pois Geom-U Binom-3 Geom-4 Geom Pois Geom-U Binom-3 Geom-4

Default 38.6±0.4 39.0±0.4 39.9±0.5 39.8±0.4 40.2±0.6 72.4±0.7 72.6±0.7 73.3±0.8 73.1±0.7 72.6±0.6 58.2±0.7 58.2±1.0 59.0±0.8 59.2±0.9 59.3±0.8

Undirected 45.3±0.5 45.8±0.6 46.6±0.4 47.9±0.5 47.6±0.5 81.9±0.5 82.2±0.6 82.2±0.5 82.4±0.6 82.2±0.6 65.7±0.7 66.0±0.8 66.7±0.7 67.1±0.8 67.0±0.8

MultiDir-1 39.8±0.5 40.0±0.5 40.8±0.5 41.3±0.6 41.3±0.5 73.9±0.7 73.5±0.8 72.9±0.6 72.7±0.8 71.5±0.7 58.7±0.8 58.5±0.8 58.7±0.7 58.3±0.8 58.3±0.7
MultiDir-2 42.5±0.6 43.2±0.5 43.9±0.6 45.0±0.6 45.0±0.5 77.8±0.6 77.4±0.7 77.0±0.6 76.3±0.6 75.7±0.9 61.3±0.8 61.5±0.7 61.7±0.6 61.6±0.7 61.8±0.8
MultiDir-3 44.2±0.5 44.7±0.5 44.6±0.4 46.4±0.4 46.1±0.5 79.3±0.6 79.0±0.6 78.7±0.6 78.0±0.6 77.7±0.6 61.6±0.8 62.1±0.7 62.4±0.7 62.2±0.7 62.5±0.7

DirSwitch-1 45.3±0.4 45.9±0.5 46.9±0.5 48.4±0.4 47.9±0.5 81.6±0.7 81.9±0.6 82.0±0.7 82.3±0.6 81.9±0.7 65.2±0.7 65.7±0.8 66.0±0.8 66.4±0.7 66.4±0.7
DirSwitch-2 44.9±0.5 45.9±0.5 46.8±0.5 48.3±0.5 48.0±0.4 81.8±0.7 81.8±0.7 81.8±0.6 81.9±0.7 81.1±0.6 64.0±0.9 64.7±0.8 65.1±0.8 65.6±0.9 65.4±0.7
DirSwitch-3 43.8±0.5 45.1±0.5 45.8±0.5 48.3±0.5 47.5±0.5 81.3±0.6 81.4±0.6 80.9±0.7 81.2±0.7 80.4±0.6 61.8±0.8 62.9±0.8 63.1±0.9 64.4±0.8 63.9±0.9

We observe distinct differences between homophilic and heterophilic datasets in the message-passing results
in Table 5. The three homophilic datasets—Cora-ML, Citeseer, and Cora (leftmost in the table)—experience
a 15–26% accuracy improvement when using undirected edges. In contrast, the heterophilic Roman Empire
and Arxiv Year datasets show no significant improvement over default directions, while Snap Patents exhibits
a 19% accuracy drop. Pokec is a partial exception, where undirected edges yield benefits with Geom-4, a
case analysed in Appendix G.

On the other hand, heterophilic datasets such as Arxiv Year and Snap Patents see substantial accuracy gains
as r increases in DirSwitch-r and MultiDir-r. For instance, DirSwitch-3 improves accuracy by +17.9% on
Snap Patents, compared to +4.1% for DirSwitch-1. Meanwhile, in homophilic datasets, DirSwitch’s accuracy
remains stable across different r values.

Together, these results indicate that multi-directional representations are more important for heterophilic
datasets, whereas using undirected edges is beneficial in homophilic cases. These findings align with prior
observations in supervised graph neural networks for digraphs (Rossi et al., 2023).

This contrasting behaviour can be explained through the lens of reachability. In homophilic datasets, nodes
with the same label tend to cluster locally. Removing edge directions improves dispersal and promotes
local smoothing, resulting in more similar embeddings for same-label nodes and improved classification
performance. This effect is illustrated in Figure 2.

In heterophilic graphs, however, capturing local connectivity patterns that repeat across different regions
is essential for distinguishing node roles. Here, multi-directional approaches play a crucial role, as discard-
ing edge direction information can introduce spurious similarities between nodes with distinct, direction-
dependent neighbourhoods.

Sparse vs dense graphs for proximity embeddings We next analyse classification accuracies for
proximity embeddings in Table 7, observing distinct trends based on graph density. Denser graphs (Fly Larva,
EU-Email, and Polblogs) benefit more from multi-directional embeddings, whereas sparser graphs (CoCite,
Pubmed, and Cora (subelj)) achieve higher accuracies when dispersal is increased using undirected edges. For
instance, the sparse CoCite graph improves by 19% with undirected edges, with a similar 20% improvement

20



Published in Transactions on Machine Learning Research (06/2025)

Table 7: Relative improvements in node classification accuracy for proximity ReachNEs with p = 1024. The
values reflect the maximum accuracy for per row and dataset in Table 6. The top row displays absolute
accuracies for the default edge directions, with standard deviations expressed as percentages. The subsequent
rows present the relative improvements compared to the top row. The table is structured with the three
denser graphs on the left and the three sparser graphs on the right.

Edge directions Fly Larva EU-Email Polblogs CoCite Pubmed Cora (subelj)

Default 50.1±3.9% 66.0±4.6% 82.0±2.9% 40.2±1.2% 73.3±1.0% 59.3±1.4%

Undirected +10.6% +9.8% +4.5% +19.0% +12.4% +13.2%

MultiDir-1 +3.9% +11.3% +5.8% +2.7% +0.8% -1.0%
MultiDir-2 +8.2% +14.0% +8.8% +11.9% +6.1% +4.3%
MultiDir-3 +7.5% +13.4% +9.5% +15.5% +8.2% +5.4%

DirSwitch-1 +11.5% +14.5% +5.6% +20.2% +12.3% +12.1%
DirSwitch-2 +13.2% +14.7% +9.4% +20.2% +11.7% +10.7%
DirSwitch-3 +11.1% +14.0% +9.5% +20.2% +11.0% +8.6%

for each DirSwitch model. Conversely, the dense Polblogs graph gains only 4.5% from undirected edges but
sees a 9.5% boost with DirSwitch-3.

This difference between dense and sparse graphs can be explained by reachability entropy. Even with purely
directed edges, entropy remains high for the dense Fly Larva graph (see Figure 6d), indicating that local
sinks do not significantly hinder dispersal. A similar pattern is observed for EU-Email and Polblogs in
Appendix E, explaining why undirected edges provide less benefit in these graphs.

Instead, increasing embedding distinguishability by representing directed neighbourhoods becomes more
important. Comparing default edges and DirSwitch-1 in Table 6, we observe significant accuracy gains when
transitioning from single-scale to multi-scale walk length distributions. For example, Polblogs achieves only
61% accuracy with single-scale Geom but improves to 82% with multi-scale Geom-4. Conversely, sparser
datasets show only minor improvements with multi-scale embeddings, with dispersal remaining the primary
factor influencing embedding quality.

Further analysis Additional discussion of these results is provided in Appendix G, where we examine
the accuracy improvements from multi-scale embeddings, the diminishing returns of repeated concatenation
and perform further analysis of the results for the Pokec dataset. We also present evaluation results using
unsupervised community detection as an alternative to node classification.

6.4 Comparison to state-of-the-art digraph proximity embeddings

We compare DirSwitch with proximity ReachNEs embeddings against state-of-the-art unsupervised digraph
proximity embedding approaches discussed in Section 5.3. Hyperparameters for each model are optimized
via cross-validation grid search, with the search grids and best values reported in Appendix D.2.

Table 8: Node classification accuracies for proximity node embedding models. Bold indicate the
top accuracy, and results within one standard deviation, for each dataset. Average and standard
deviations are calculated over 3x repeated 5-fold cross validations, and 5 different random seeds.

Model Flylarva EU-Email Polblogs CoCite Pubmed Cora (subelj)

HOPE1 35.8 ± 1.9 49.3 ± 3.6 83.2 ± 3.1 30.4 ± 1.2 65.3 ± 0.9 34.0 ± 0.8
APP2 42.8 ± 2.3 76.3 ± 2.8 88.9 ± 1.7 46.7 ± 0.5 81.2 ± 0.6 65.6 ± 0.7
NERD3 40.3 ± 2.2 71.3 ± 3.2 89.4 ± 1.7 28.1 ± 0.5 76.5 ± 0.7 45.7 ± 0.6
DGGAN4 16.5 ± 1.4 11.7 ± 2.5 54.6 ± 2.9 17.7 ± 0.4 41.5 ± 0.9 6.2 ± 0.3
BLADE5 49.2 ± 2.2 66.7 ± 3.0 89.3 ± 1.9 24.2 ± 0.5 60.2 ± 1.2 27.7 ± 1.0

DirSwitch 56.8 ± 2.2 75.6 ± 2.7 90.0 ± 1.7 48.3 ± 0.5 82.2 ± 0.6 66.6 ± 0.7
1 Ou et al. (2016) 2 Zhou et al. (2017) 3 Khosla et al. (2020) 4 Zhu et al. (2021b) 5 Virinchi & Saladi (2023)

21



Published in Transactions on Machine Learning Research (06/2025)

Table 9: Node classification accuracy for self-supervised GraphSAGE embeddings using training via Graph-
MAEv2 and CCA-SSG losses. Bold indicate the top accuracy for each dataset. Average and standard
deviations are calculated over 3x repeated 5-fold cross validations and 5 different seeds.

(a) GraphMAEv2

Edge directions Roman Empire Arxiv Year Pokec Snap Patents Cora-ML Citeseer Cora Arxiv

Default 66.09±0.79 44.49±0.24 64.62±0.20 45.68±0.26 79.61±1.76 80.13±1.28 59.48±0.61 59.81±0.25
Undirected 68.17±0.74 40.08±0.26 65.99±0.52 33.82±0.07 86.03±1.42 90.71±0.92 68.54±0.74 70.49±0.23

Rossi et al. (2023) 67.05±1.85 46.38±0.34 57.93±0.55 61.34±0.28 81.88±3.94 87.53±2.30 34.35±4.42 65.53±0.52

DirSwitch-1 71.76±0.76 41.28±0.28 67.16±0.34 39.49±0.30 85.79±1.48 89.03±1.19 68.01±0.83 69.95±0.21
DirSwitch-3 71.90±0.78 46.65±0.31 67.57±0.25 57.99±0.21 85.24±1.37 86.67±1.06 66.31±0.80 68.40±0.23

(b) CCA-SSG

Edge directions Roman Empire Arxiv Year Pokec Snap Patents Cora-ML Citeseer Cora Arxiv

Default 53.73±0.94 45.01±0.26 58.07±0.27 46.37±0.25 61.70±3.82 69.72±1.77 39.70±0.94 36.73±1.46
Undirected 53.85±2.45 35.82±0.28 60.38±0.74 38.60±0.13 82.64±1.59 80.71±1.36 52.35±1.30 45.93±1.18

Rossi et al. (2023) 53.74±0.75 46.83±0.44 60.54±0.50 65.55±0.28 60.44±2.94 64.64±2.41 31.28±2.21 34.92±0.54

DirSwitch-1 56.77±2.36 45.19±0.35 66.23±0.70 49.84±0.60 82.00±1.76 77.35±2.53 52.70±1.28 61.63±0.38
DirSwitch-3 66.39±1.24 52.64±0.30 67.25±0.21 64.08±0.19 82.27±1.42 85.26±1.32 61.07±0.80 63.58±0.30

Following hyperparameter tuning, test accuracy is evaluated using the best hyperparameter setting on new
3x repeated 5-fold CV splits, with five different random seeds per model. We use the official implementations
for all baselines except BLADE, which we reimplement as its source code is not publicly available.

Table 8 presents the average test accuracies and standard deviations for each proximity embedding dataset.
DirSwitch consistently achieves the highest average accuracy across datasets or performs within one standard
deviation of the best model (EU-Email). Notably, DirSwitch outperforms competing approaches by a signif-
icant margin on Fly Larva, achieving 57% accuracy compared to 49% for BLADE. These results highlight
DirSwitch’s ability to leverage both multi-directional and multi-scale embeddings while avoiding local sinks,
distinguishing it from prior proximity embedding models.

6.5 Applying DirSwitch to self-supervised message-passing graph neural networks

DirSwitch is not limited to the ReachNEs framework and can also be applied to message-passing graph
neural networks (GNNs). The most natural integration is with the GraphSAGE model (Hamilton et al.,
2017), given its structural similarity to ReachNEs. By defining H(0) = Z(0) = X, we can represent the
DirSwitch-GraphSAGE model using the following iterative formulation, analogous to Equation 6:

For k ∈ {1, 2, . . . },

{
H(k) = A⊺

∗H(k−1),

Z(k) = σ
(

Z(k−1)W
(k−1)
1 + H(k)W

(k−1)
2

)
,

(10)

The key differences are the weight matrices W1 and W2, which replace the walk length probability coeffi-
cients, and the non-linear activation function σ.

For training the weight matrices, we employ self-supervised learning, the current state-of-the-art approach for
unsupervised GNN training. These loss functions typically combine reconstruction and contrastive learning
objectives. In our experiments, we use two recent and efficient methods: GraphMAEv2 (Hou et al., 2023)
and CCA-SSG (Zhang et al., 2021a). We adopt the default hyperparameters for both loss functions and
optimizers, as recommended by the original implementations. We train DirSwitch-1 and DirSwitch-3 models
but exclude DirSwitch-2 due to the high computational cost of GNN training.

As baselines, we compare against GraphSAGE with default (O) and undirected (U) edges, as well as the
digraph extension of GraphSAGE proposed by Rossi et al. (2023). Like DirSwitch, Rossi et al. (2023)
incorporates multi-directional neighbourhoods but does not include a switch to undirected edges.

22



Published in Transactions on Machine Learning Research (06/2025)

Unlike ReachNEs, GNNs typically use a small number of aggregation steps to balance computational ef-
ficiency and mitigate over-smoothing (Chen et al., 2020). We set K = 4 aggregation steps, following the
default in GraphMAEv2 (Hou et al., 2023).

Table 9 presents the results for GraphMAEv2 and CCA-SSG. As observed in the ReachNEs experiments
(Section 6.3), performance varies qualitatively between heterophilic and homophilic datasets, with undirected
edges generally performing better in homophilic cases. This is particularly evident in Cora, where DirSwitch
and undirected edges significantly outperform both the default edges and Rossi et al. (2023).

The only dataset where Rossi et al. (2023) surpasses DirSwitch in accuracy is Snap Patents. As shown in
Table 5, using undirected edges causes a substantial accuracy drop for Snap Patents in ReachNEs, and the
same trend is observed with GraphSAGE.

7 Limitations and future work

This work addresses two key challenges in digraph embedding: the dispersal-obstructing effects of local sinks
and the need for expressive embeddings that capture multiple directed neighbourhoods. A limitation of our
approach is its reliance on embedding concatenation to achieve both multi-directionality and multi-scale
representation, which incurs notable computational overhead. While our results suggest that few directed
neighbourhoods and scales are often sufficient—due to the typically short characteristic path lengths of real-
world networks (Watts & Strogatz, 1998)—further work is needed to better quantify diminishing returns and
to explore more efficient alternatives to concatenation. Additionally, other structural properties of digraphs,
such as the role of cycles and self-loops, may be equally important and deserve further investigation.

For tractability, our analysis considered graphs with a single type of supplementary information: node
attributes. In reality, graphs are often far more complex, incorporating multiple edge types, attributed edges
(as in knowledge graphs (Wang et al., 2017a)), or temporal dynamics where edges evolve over time. While
we expect the DirSwitch principle, i.e., separating short-range and long-range behaviours, to generalize to
these cases, addressing expressivity in multi-modal graphs will likely require specialized techniques beyond
our current concatenation approach.

Another limitation lies in the embedding reduction methods explored. We focused on two widely used
techniques: node attribute smoothing for message-passing embeddings and SVD for proximity embeddings.
However, other reduction methods, such as structural embeddings, remain unexplored in our analysis. In-
vestigating how local sinks and multi-directional embeddings affect alternative reduction techniques is an
important avenue for future research, especially since much of the existing work on structural embeddings
is limited to undirected graphs (Donnat et al., 2018; Zhu et al., 2021a; Jin et al., 2021).

Finally, while our benchmark evaluation demonstrates DirSwitch’s effectiveness, its real-world utility in
unsupervised tasks such as node clustering or anomaly detection remains underexplored. These tasks of-
ten lack well-defined ground-truth labels, making evaluation challenging and necessitating further research.
Expanding DirSwitch to these domains presents exciting opportunities for future work.

8 Conclusion

In this paper, we analysed unsupervised node embedding learning on digraphs through our reachability-based
random walk filter framework, ReachNEs. Our analysis identified two key challenges: local sinks obstruct
information propagation, while embeddings must also represent directed neighbourhoods to be expressive.

To address these issues, we introduced DirSwitch. By decoupling local and global smoothing, DirSwitch
preserves fine-grained directed structure through multi-directional embedding concatenation, while treating
the graph as undirected for long-range interactions to mitigate the impact of local sinks.

We demonstrated that DirSwitch significantly enhances embedding quality, achieving higher accuracy on
standard node classification benchmarks. Additionally, we showcased its practical effectiveness by outper-
forming state-of-the-art unsupervised proximity embedding models. Finally, we highlighted DirSwitch’s
broad applicability by using it to generalize self-supervised graph neural networks to digraphs, illustrating
its flexibility across different embedding paradigms.
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A Additional details on ReachNEs and DirSwitch

A.1 Verification of column stochasticity of the random walk normalized adjacency matrices

In Section 2.1, we defined the random walk normalized adjacency matrices as follows:

AOi,j =
{

1 if i = j and degO(j) = 0,
Ai,j

degO(j) otherwise,
AIi,j =

{
1 if i = j and degI(j) = 0,

Aj,i

degI(j) otherwise,

AUi,j =
{

1 if i = j and deg(j) = 0,
Aundiri,j

deg(j) otherwise.

These definitions ensure that each matrix is column stochastic, meaning that each column sums to one. We
verify this property below:

n∑
k=1

AOk,j =
{

1 if degO(j) = 0
1

degO(j)
∑n

k=1 Ak,j if degO(j) > 0
=
{

1 if degO(j) = 0
degO(j)
degO(j) if degO(j) > 0

= 1,

n∑
k=1

AIk,j =
{

1 if degI(j) = 0
1

degI(j)
∑n

k=1 Aj,k if degI(j) > 0
=
{

1 if degI(j) = 0
degI(j)
degI(j) if degI(j) > 0

= 1,

n∑
k=1

AUk,j =
{

1 if deg(j) = 0
1

deg(j)
∑n

k=1 Aundirk,j if deg(j) > 0
=
{

1 if deg(j) = 0
deg(j)
deg(j) if deg(j) > 0

= 1.

A.2 Message-passing embeddings for directed edges

In Section 2.3.2, we highlighted the connection between the reachability message-passing reduction using
R(AU) and the undirected message-passing graph neural network GraphSAGE (Hamilton et al., 2017) in
Equation 7. Here, we present the corresponding formulas for directed cases:

A⊺
O H = D−1

O A⊺H, [A⊺
O H]i,: =

n∑
j=1

AOj,iHj,: = 1
degO(i)

∑
j:(i,j)∈M

Hj,:, (11)

A⊺
I H = D−1

I AH, [A⊺
I H]i,: =

n∑
j=1

AIj,iHj,: = 1
degI(i)

∑
j:(j,i)∈M

Hj,:. (12)

Note that in Equation 11, messages are aggregated over outgoing edges of node i, meaning that they flow op-
posite to edge directions. Conversely, in Equation 12, messages are aggregated along the incoming, following
the edge directions.

A.3 Proximity embeddings and structural equivalence

We extend Section 2.3.1 by deriving Equation 4, which relates the distances between reachability vectors in
R to distances between embedding vectors in Z =

[
ZU ZV

]
. For convenience, we restate the equation:

∥Ri,: − Rj,:∥2
2 + ∥R:,i − R:,j∥2

2 =
∥∥∥(Zi,: − Zj,:)

√
Σ̂
∥∥∥2

2
, Σ̂ =

[
Σ:q,:q 0

0 Σ:q,:q

]
. (13)

Assuming rank(R) = q, the n − q smallest singular values vanish, leading to:

R = U:,:qΣ:q,:q(V:,:q)⊺ = U:,:q
√

Σ:q,:q

(
V:,:q

√
Σ:q,:q

)⊺
= ZU Z⊺

V .
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We can then express each row of R as the inner product between the corresponding row in ZU and ZV , and
similarly, each column of R can be expressed as the inner product between a row in ZV and ZU :

Ri,: = ZU i,:Z
⊺
V , R:,i = ZU (ZV i,:)⊺.

We now derive Equation 13, using the simplified notation U = U:,:q, Σ = Σ:q,:q, and V = V:,:q:

∥Ri,: − Rj,:∥2
2 + ∥R:,i − R:,j∥2

2 =
∥∥ZU i,:Z

⊺
V − ZU j,:Z

⊺
V

∥∥2
2 +

∥∥ZU (ZV i,:)⊺ − ZU (ZV j,:)⊺
∥∥2

2 (14)

=
∥∥(ZU i,: − ZU j,:

)
Z⊺

V

∥∥2
2 +

∥∥ZU

(
ZV i,: − ZV j,:

)⊺∥∥2
2 (15)

=
∥∥∥(ZU i,: − ZU j,:

)√
ΣV ⊺

∥∥∥2

2
+
∥∥∥U

√
Σ
(
ZV i,: − ZV j,:

)⊺∥∥∥2

2
(16)

=
∥∥∥(ZU i,: − ZU j,:

)√
Σ
∥∥∥2

2
+
∥∥∥√

Σ
(
ZV i,: − ZV j,:

)⊺∥∥∥2

2
(17)

=
q∑

k=1

√
Σk,k

(
ZU i,k − ZU j,k

)2 +
q∑

k=1

√
Σk,k

(
ZV i,k − ZV j,k

)2 (18)

=
2q∑

k=1

√
Σ̂k,k (Zi,k − Zj,k)2 (19)

=
∥∥∥(Zi,: − Zj,:)

√
Σ̂
∥∥∥2

2
(20)

The transition from Equation 16 to Equation 17 follows from the orthogonality of U and V , i.e., U⊺U = Iq

and V ⊺V = Iq.

A.4 Computational complexity of ReachNEs

In this section, we discuss the time and memory complexity of ReachNEs and how to efficiently implement
it for embedding learning on large graphs. The primary computational bottleneck is the n × n reachability
matrix R, which is generally dense. Storing R explicitly is infeasible for even moderately large graphs—for
instance, a graph with one million nodes would require over 3TB of memory.

For message-passing embeddings, the iterative algorithm described in Equation 6 offers a practical way to
bypass the need to store R explicitly. For convenience, we restate it below:

For k ∈ {1, 2, . . . },

{
H(k) = A⊺

∗H(k−1),

Z(k) = Z(k−1) + Pw(k)H(k),
H(0) = X, Z(0) = Pw(0)X. (21)

Rather than computing R in full and multiplying it with the node feature matrix X ∈ Rn×d, this iterative
formulation directly constructs the embedding matrix Z(K) = R⊺X through sequential summation. This re-
duces the memory complexity from quadratic to linear, specifically O(nd+m), where nd accounts for the em-
bedding matrices H(k) and Z(k), and m is the number of non-zero entries in the sparse adjacency matrix A∗.

The time complexity of the iterative message-passing algorithm in Equation 21 is O(Kmd+Knd), where md
arises from the sparse-dense matrix multiplication A⊺

∗H(k−1), and nd comes from the embedding summation
update. Both operations are efficiently supported by existing GPU libraries (Paszke et al., 2019; Fey &
Lenssen, 2019), making the method highly practical in large-scale settings.

By contrast, proximity ReachNEs presents greater memory challenges. Both standard and randomized SVD
methods (Halko et al., 2011) require multiple passes over all elements of the input matrix, which is problem-
atic since storing R in memory is intractable, and recomputing it on-the-fly is computationally prohibitive.

To address this, we adopt the single-pass randomized SVD (SP-rSVD) algorithm proposed by Yu et al. (2017).
SP-rSVD follows the general structure of randomized SVD (rSVD) (Halko et al., 2011), but avoids multiple
passes over the input. First, the reachability matrix R is projected into a lower-dimensional subspace via a
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random matrix Ω ∈ Rn×p to compute G = RΩ. Then, G is used as a proxy to approximate the left singular
subspace of R.

Unlike standard rSVD, SP-rSVD also computes a second projection F = R⊺G ∈ Rn×p in the same pass,
enabling accurate SVD approximation without re-accessing R. Once G and F are computed, the remaining
SVD steps proceed efficiently on these compressed matrices. We refer the reader to the original paper by Yu
et al. (2017) for implementation details and theoretical guarantees.

To compute G and F efficiently in a single pass over R, we combine the SP-rSVD algorithm with the
sequential summation strategy described in Equation 21. In particular, a single row of R can be obtained
by setting X = In:,i, yielding Ri,:

⊺ = R⊺In:,i, where In:,i is the ith column on In.

Using this approach, the matrices G and F can be constructed incrementally, as shown in Equation 22,
starting with initializations G = 0n×p and F = 0n×p:

For i ∈ {1, 2, . . . , n} :
Compute Ri,: via Equation 21 with X = In:,i

g = Ri,:Ω
Gi,: = g

F = F + Ri,:
⊺g.

(22)

In practice, it is advantageous to process multiple rows of R in parallel batches to maximize GPU throughput.
Letting b denote the batch size, the memory complexity of the algorithm becomes O(np + nb + m), where
m is the number of non-zero entries in the adjacency matrix.

The total time complexity of proximity ReachNEs is O(nm + n2p + np2). The first term, nm, accounts for
computing all n rows of R using sparse matrix multiplications. The n2p term arises from evaluating the
remaining steps in Equation 22, and np2 corresponds to the final SVD step in SP-rSVD after computing G
and F (Yu et al., 2017).

To accelerate this process, our implementation leverages the PyTorch framework, with built-in support for
both single- and multi-GPU environments. A further advantage over the original MATLAB implementation
of SP-rSVD is PyTorch’s support for automatic differentiation, which opens up new research directions for
self-supervised proximity embedding methods based on differentiable reachability matrices.

A.5 Computational complexity of DirSwitch and run time results

A.5.1 Computational complexity

We begin by analysing the time and space complexity of DirSwitch-r, followed by empirical run time mea-
surements of our GPU-accelerated implementation.

The computational complexity of DirSwitch depends on the following variables:

• n: number of nodes.

• m: number of edges.

• p: embedding dimensionality.

• r: number of multi-directional steps.

• s: number of walk length distributions.

• K: number of walk steps (i.e., reachability terms).

• b: batch size used in SP-rSVD (proximity version only; see Section A.4).

• d: number of node features (message-passing version only).
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We separately analyse the complexity of proximity and message-passing variants. We begin with the message-
passing version, which is simpler due to the absence of batching.

Message-passing DirSwitch. Message-passing DirSwitch-r is implemented using the algorithm in Equa-
tion 6, which performs K sparse-dense matrix multiplications, each with time complexity O(md). This
results in an overall cost of O(Kmd) per walk.

Each resulting n × d matrix is then reduced to p
s2r dimensions using PCA via SVD, with time complexity

O(nd2) (Golub & Van Loan, 2013, Ch. 5.5.6). This reduction is performed for all s · 2r combinations of walk
length distributions and directed neighbourhoods, resulting in a total time complexity of O(s2r(Kmd+nd2)).

In terms of space complexity, we must store the m nonzero entries of the normalized adjacency matrix, the
intermediate s reachability representations of shape n × d, and the final embedding matrix Z ∈ Rn×p. Our
implementation computes the s multi-scale walks in parallel using tensors of shape s × n × d, while the 2r

directed neighbourhoods are processed sequentially. The resulting space complexity is O(m + snd + np).

Proximity DirSwitch. Proximity DirSwitch-r is implemented using the algorithm in Equation 22. As-
suming a batch size b, the algorithm runs in n

b iterations. Each iteration computes a slice of the reachability
matrix via K sparse-dense matrix multiplications with cost O(Kmb), followed by projection onto Ω ∈ Rn×p

and the computation of F , both requiring O(bnp). Repeating for all n
b batches yields a total cost of

O(Kmn + n2p).

After constructing the sketch matrices, SP-rSVD computes the final embeddings in time O(np2) (Yu et al.,
2017), which is negligible when p ≪ n. As with message-passing DirSwitch, this process is repeated for all
s·2r combinations of walk length distributions and edge direction patterns, resulting in total time complexity
O(s2r(Kmn + n2p)).

In terms of space, the algorithm requires storage of the m edges, one n × b slice of the reachability matrix
at a time, and the n × p matrices Ω, G, and F used by SP-rSVD. Our implementation stores s copies of Ω,
one per walk length distribution, computed in parallel. The total space complexity is O(snp + snb + m).

Discussion. The use of SP-rSVD assumes p ≪ n, and its numerical accuracy may degrade as p approaches
n. For small graphs, we recommend computing the full reachability matrix directly and applying SVD
without batching. This yields a time complexity of O(s2r(Kmn + n3)) and space complexity of O(sn2 + m).

While SP-rSVD helps improve the scalability of proximity DirSwitch-r by mitigating memory usage (see
Section A.4), the method still incurs a quadratic time cost in n. In contrast, message-passing DirSwitch-r
has linear time complexity in n, making it more scalable for large graphs.

A potential alternative to improve proximity scalability is a hybrid approach: apply SVD to the sparse
adjacency matrix to generate initial proximity embeddings, then use these as node attributes in a message-
passing DirSwitch-r model. Investigating the effectiveness and scalability of this hybrid method is a promising
direction for future work.

A.5.2 Run time results

To evaluate practical run times, we conducted a small-scale scalability experiment. We generated synthetic
undirected graphs using the Barabási–Albert model (Barabási & Albert, 1999), with an average degree of 2.
We then measured the run time of DirSwitch while varying one parameter at a time—n, r, s, p, or d—while
keeping the others fixed. For proximity DirSwitch, we fixed n = 216 = 65,536, r = 2, s = 3, and p = 256.
For message-passing DirSwitch, we used n = 220 = 1,048,576, r = 2, s = 3, p = 512, and d = 128. Each
experiment was repeated three times.

We tested proximity DirSwitch on three computational environments in Google Cloud: (i) 2 Nvidia L4
(24GB) GPUs, 24 vCPUs @ 2.20GHz, and 96GB RAM; (ii) 1 Nvidia L4 (24GB) GPU, 16 vCPUs @ 2.20GHz,
and 64GB RAM; and (iii) CPU-only with 16 vCPUs @ 2.20GHz and 64GB RAM. These are denoted as
GPU-2, GPU-1, and CPU-0, respectively. As our current implementation of message-passing DirSwitch does
not support multi-GPU computation, we only evaluated it in the GPU-1 and CPU-0 environments.
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Figure 8: Scalability results for proximity DirSwitch-r. Each subfigure plots run time (in seconds) against
a key parameter in the DirSwitch time complexity. Markers indicate the mean over three runs, with shaded
areas showing standard deviation. Line colour and style correspond to the number of GPUs used: 0, 1, or 2.
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Figure 9: Scalability results for message-passing DirSwitch-r. Each subfigure plots run time (in seconds)
against a key parameter in the DirSwitch time complexity. Markers show the mean over three runs; shaded
areas indicate standard deviation. Line colour and style correspond to the number of GPUs used: 0 or 1.

Figures 8 and 9 show the average run times for proximity and message-passing DirSwitch, respectively, with
line colours indicating the compute environment. These results clearly demonstrate the advantage of GPU
acceleration, as both models run significantly faster on GPU than on CPU. For proximity DirSwitch, CPU
runtimes were prohibitively slow at n = 216, and we therefore aborted those runs—hence the missing data
points. Although multi-GPU setups introduce some overhead, they become advantageous for larger graphs.

Most trends align with theoretical expectations. Figure 8a confirms the quadratic time complexity in n for
proximity DirSwitch, while Figure 9a shows linear scaling for the message-passing variant. The exponential
growth in the number of directed neighbourhoods, 2r, is reflected in the roughly exponential growth in run
times shown in Figures 8b and 9b. In Figures 8c and 9c, we observe sublinear growth in run time with
respect to s, due to parallelization across the multi-scale computations.

One unexpected result appears in Figure 8d: the run time of proximity DirSwitch remains largely unaffected
by the embedding dimensionality p. This is counterintuitive, as the theoretical time complexity includes
an n2p term. However, this term is dominated in practice by the Kmn cost of computing reachability.
A similar pattern is observed in Figure 9d, where run time increases linearly with d for message-passing
DirSwitch—indicating that the Kmd term outweighs the nd2 term. These findings suggest that optimizing
the reachability computation is the most promising avenue for improving the overall efficiency of DirSwitch.

Tables 10 and 11 report measured run times for the experiments in Section 6.3. These were run on varying
computational environments, so runtimes may differ slightly across datasets. We only report results for the
slowest datasets. On the others, runtime typically falls between 1–3 seconds.

The results confirm the trends observed in the scalability experiments. Since the implementation paral-
lelizes over the number of scales (s) while computing different direction sequences (r) sequentially, r has a
significantly greater impact on runtime than s.

The Cora datasets yield the longest runtimes, primarily because they contain the largest number of node
features (d = 8710; see Table 2).
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Table 10: Embedding computation duration for message-passing ReachNEs with p = 1024 embedding di-
mensions. Columns correspond to different datasets and multi-scale walk length distributions, while rows
represent various edge direction specifiers.

Edge directions Cora-ML Cora
Geom Pois Geom-U Binom-3 Geom-4 Geom Pois Geom-U Binom-3 Geom-4

Default 2s 2s 4s 6s 8s 1m 24s 1m 25s 2m 49s 5m 33s 6m 2s

Undirected 2s 4s 4s 7s 8s 1m 23s 1m 24s 2m 49s 4m 26s 5m 40s

MultiDir-1 3s 4s 8s 13s 17s 2m 47s 2m 49s 5m 36s 9m 43s 11m 36s
MultiDir-2 7s 7s 16s 27s 35s 5m 33s 5m 37s 11m 10s 19m 13s 22m 56s
MultiDir-3 19s 19s 43s 1m 9s 1m 30s 10m 54s 11m 2s 21m 57s 37m 11s 44m 48s

DirSwitch-1 3s 3s 8s 14s 18s 2m 47s 2m 47s 5m 35s 8m 52s 11m 18s
DirSwitch-2 7s 7s 17s 29s 38s 5m 35s 5m 37s 11m 10s 17m 58s 22m 40s
DirSwitch-3 14s 15s 33s 59s 1m 15s 11m 6s 11m 13s 22m 16s 36m 14s 45m 21s

Edge directions Pokec Snap-Patents
Geom Pois Geom-U Binom-3 Geom-4 Geom Pois Geom-U Binom-3 Geom-4

Default 18s 22s 23s 21s 21s 26s 26s 45s 57s 56s

Undirected 22s 18s 19s 21s 21s 31s 37s 42s 53s 1m 39s

MultiDir-1 44s 44s 47s 57s 1m 3s 59s 1m 24s 2m 8s 2m 45s 2m 2s
MultiDir-2 1m 48s 1m 30s 1m 54s 1m 41s 1m 46s 1m 58s 1m 59s 4m 57s 6m 27s 7m 34s
MultiDir-3 4m 10s 4m 11s 4m 21s 4m 37s 4m 48s 4m 56s 4m 56s 6m 39s 8m 23s 9m 52s

DirSwitch-1 34s 43s 46s 48s 42s 1m 54s 1m 1s 1m 23s 2m 53s 3m 34s
DirSwitch-2 1m 26s 1m 22s 1m 28s 1m 17s 1m 22s 2m 4s 2m 2s 5m 7s 3m 59s 7m 53s
DirSwitch-3 2m 54s 2m 54s 3m 0s 3m 8s 3m 26s 6m 32s 7m 18s 5m 29s 11m 40s 8m 15s

Table 11: Embedding computation duration for proximity ReachNEs with p = 1024 embedding dimensions.
Columns correspond to different datasets and multi-scale walk length distributions, while rows represent
various edge direction specifiers.

Edge directions CoCite Pubmed Cora (subelj)
Geom Pois Geom-U Binom-3 Geom-4 Geom Pois Geom-U Binom-3 Geom-4 Geom Pois Geom-U Binom-3 Geom-4

Default 3s 3s 4s 5s 6s 1s 1s 1s 1s 1s 1s 1s 1s 1s 2s

Undirected 4s 5s 6s 7s 8s 1s 1s 2s 3s 3s 1s 1s 1s 2s 2s

MultiDir-1 6s 6s 8s 9s 11s 1s 1s 2s 2s 3s 1s 1s 2s 2s 3s
MultiDir-2 12s 12s 15s 19s 22s 3s 3s 4s 4s 5s 3s 3s 4s 5s 6s
MultiDir-3 37s 37s 57s 1m 17s 1m 37s 7s 7s 10s 14s 18s 10s 10s 15s 21s 26s

DirSwitch-1 8s 8s 10s 13s 15s 2s 2s 3s 4s 4s 2s 2s 2s 3s 3s
DirSwitch-2 14s 15s 19s 25s 28s 3s 3s 4s 6s 7s 3s 3s 4s 6s 7s
DirSwitch-3 28s 28s 36s 47s 53s 6s 6s 8s 11s 13s 6s 6s 9s 11s 13s

Finally, Table 12 shows the run times of the models used in the node classification benchmark in Sec-
tion 6.4. DirSwitch ranks among the fastest methods, alongside BLADE and NERD. Note that graph size
and hyperparameter settings vary across these results.

A.6 Guide to hyperparameter selection for DirSwitch

DirSwitch-r embeddings are governed by four key hyperparameters: the embedding dimensionality p, the
multi-directional neighbourhood radius r, the number of embedding scales s, and the choice of walk length
distributions Pw(k; τ). Each of these influences both embedding quality and computational cost. This
section offers practical guidelines for selecting these hyperparameters, based on our experimental findings
and experience with DirSwitch.

Walk length distribution. We begin with the walk length distribution Pw(k − lo; τ), where lo denotes
an offset. For a single-scale setup (s = 1), we recommend using Pois(k − lo; τ = 2), with lo = 0 for message-
passing and lo = 1 for proximity embeddings, as explained in Section 2.3.1. This setting emphasizes the
k = 1 and k = 2 neighbourhoods, which typically offer the most structural diversity, while still incorporating
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Table 12: Embedding computation duration for proximity node embedding models. Average and
standard deviations are computed using 5 random seeds.

Model Fly Larva EU-Email Polblogs CoCite Pubmed Cora (subelj)

HOPE1 58s 9s 7s 41m 47s 10m 46s 4m 45s
APP2 15s 3s 1s 8m 41s 1m 54s 2m 14s
NERD3 9s 28s 4s 12s 18s 11s
DGGAN4 29m 10s 6m 19s 2m 24s 1h 33m 7m 25s 51m 47s
BLADE5 5s 1s 1s 23s 11s 21s

DirSwitch 7s 677ms 287ms 2m 31s 36s 34s
1 Ou et al. (2016) 2 Zhou et al. (2017) 3 Khosla et al. (2020) 4 Zhu et al. (2021b)
5 Virinchi & Saladi (2023)

information from k = 0, 3, and 4 (see Figure 11a). Moreover, our graph alignment results suggest that τ ≈ 2
tends to correspond to peak expressivity (see Figures 7 and 15). Lower values of τ risk overly localized
embeddings, while higher values may lead to over-smoothing.

When using multiple distributions (s > 1), it is important to avoid excessive overlap between them, as this
leads to redundant embedding dimensions. We find that Geometric distributions with small τ and varying
offsets are particularly effective, as they place their modes at distinct distances from the source node. This
configuration performed especially well on the Pokec dataset (Section G).

As a general rule for s ≥ 3, we recommend the following family of walk distributions:

{Geom(k − si; τ = 1 + 0.5si) | si ∈ {0, 1, . . . , s − 1}} . (23)

For s = 2, it is preferable to combine one short-range and one long-range distribution, such as Geom(k; τ = 2)
and Pois(k − 2; τ = 3).

Expressivity and computation trade-offs. We now discuss the parameters p, r, and s, which govern the
trade-off between model expressivity and computational cost. Increasing any of these parameters typically
enhances embedding expressivity and improves downstream task performance, as demonstrated in Section 6.
However, this comes at the cost of increased computation, as analysed in Section A.5.

Notably, increasing r and s leads to diminishing returns for two key reasons. First, larger values result
in embeddings that capture increasingly broader neighbourhoods. Since most real-world graphs exhibit
the small-world property (Watts & Strogatz, 1998)—i.e., short diameters and small average path lengths
(see Table 2)—larger neighbourhoods quickly converge to covering the full graph, reducing the embeddings’
ability to distinguish local structure.

Our graph alignment experiments support this: using the Poisson distribution, the most discriminative and
noise-robust embeddings arise from walks of 1 to 5 steps (see Figures 7 and 15). We therefore recommend
keeping r and the support of the walk length distribution within 5–6 steps, unless the graph’s structure
specifically warrants longer ranges. Nonetheless, further research is needed to quantify these diminishing
returns and understand how they vary across graph types and downstream tasks.

A second source of diminishing returns arises from the constraint of fixed embedding dimensionality p. Since
DirSwitch-r concatenates embeddings across s scales and 2r directed neighbourhoods, each (σ, Pw) pair
contributes only p

s2r dimensions. If s or r are set too high relative to p, each component becomes overly
compressed, degrading the overall embedding quality.

Increasing p generally improves expressivity, but it also raises computational demands. In particular, ex-
cessive values may exceed GPU memory limits, forcing computations to fall back to CPUs—significantly
increasing run time, as shown in Section A.5.

Based on our experimental findings with p = 512 in Section G, where we observed diminishing returns, we
recommend ensuring p ≥ 32s2r as a practical guideline. For instance, with p = 1024, we suggest r = 3
and s = 3 or s = 4, which matches the best-performing models in Section 6.3. If hardware permits, p,
r, and s can be increased proportionally while respecting the p ≥ 32s2r rule. For resource-constrained
settings, we recommend r = 1, s = 2, and p = 256 as an efficient configuration that still benefits from both
multi-directionality and multi-scale expressivity.
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Figure 10: Illustration of structural and automorphic node equivalence. Nodes with the same colour (e.g.,
nodes 1 and 3) are structurally equivalent, meaning they share identical connections to the same set of nodes.
Nodes with the same shape (e.g., nodes 2, 4, 7, and 9) are automorphically equivalent, meaning they are
indistinguishable based solely on graph structure without node labels.

B Message-passing embeddings and automorphic node equivalence

This section provides additional detail on automorphic node equivalence and proves that message-passing
ReachNEs embeddings assign identical representations to automorphic nodes.

Figure 10 illustrates both structural and automorphic node equivalence. Nodes with the same colour are
structurally equivalent, while nodes with the same shape are automorphically equivalent. As shown, struc-
tural equivalence always implies automorphic equivalence, but not vice versa. Figure 10 also highlights how
structural equivalence implies node proximity, whereas automorphically equivalent nodes can be far apart,
such as nodes 1 and 10. In fact, automorphic nodes can even exist in separate weakly connected components.

To prove that message-passing ReachNEs embeddings preserve automorphic equivalence, we begin by for-
malizing the definition. Let π : N → N be a permutation of the node set in a graph G = (N,M), and let
Pπ ∈ {0, 1}n×n denote the corresponding permutation matrix, where Pπ(π(i), i) = 1 for all i, and all other
entries are zero. An automorphism is any such permutation π that preserves the edge structure of the graph,
i.e., (i, j) ∈ M ⇐⇒ (π(i), π(j)) ∈ M. Equivalently, this condition holds if the adjacency matrix satisfies
A = PπAP ⊺

π . Two nodes i and j are automorphically equivalent if there exists an automorphism π such
that π(i) = j, i.e., Pπ(j, i) = 1.

Next, we prove that message-passing ReachNEs produces identical embeddings for automorphic nodes, i.e.,
PπZ = Z, under the node attribute equivalence assumption, X = PπX, which is guaranteed if X consists
of graph-derived features.

We start by showing R = PπRP ⊺
π . To see this, note that by the definition of automorphism, we have

A = PπAP ⊺
π . The same holds for the normalized adjacency matrices, Aσ = PπAσP ⊺

π , and their powers,
Ak

σ = PπAk
σP ⊺

π . This follows from:

↶
k∏

l=1
Aσl

=

↶
k∏

l=1
PπAσl

P ⊺
π = PπAσk

. . . Aσ2 P ⊺
π Pπ︸ ︷︷ ︸
In

Aσ1P ⊺
π = Pπ

↶
k∏

l=1
Aσl

P ⊺
π .

Since the reachability matrix R is a sum of power matrices, see Equation 8, it follows that R is also invariant
under automorphism R = PπRP ⊺

π .

To complete the proof, recall that Z = R⊺X represents message-passing embeddings (see Section 2.3.2).
We then simply insert R = PπRP ⊺

π and X = PπX:

PπZ = PπR⊺X = PπR⊺ In︸︷︷︸
P ⊺

π Pπ

X = PπR⊺P ⊺
π︸ ︷︷ ︸

R⊺

PπX︸ ︷︷ ︸
X

= R⊺X = Z.

Unlike message-passing ReachNEs, proximity embeddings are obtained via SVD reduction, a global operation
that does not necessarily preserve automorphism invariance. Thus, it is generally the case for proximity
embeddings that PπZ ̸= Z. A formal proof for undirected graphs is provided by Zhu et al. (2021a).
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C Asymptotic behaviour of random walk length distributions

This section expands on the analysis in Section 2.2, focusing on the asymptotic behaviour of different random
walk length distributions and their implications for the reachability matrix R as τ → ∞.

We begin with the Poisson distribution, deriving its associated diffusion differential equation and estab-
lishing its well-known connection to the normalized Laplacian. Next, we derive a similar equation for the
geometric distribution, demonstrating that, unlike the Poisson case, it does not necessarily converge to a
non-informative stationary distribution as τ → ∞.

We then examine the relationships between distributions in the K-truncated setting, proving that:

R(K)(A∗; Geom(τ)) → R(K)(A∗; U(τ)), as τ → ∞,

R(K)(A∗; Binom(τ)) → R(K)(A∗; Pois(τ)), as K → ∞.

Finally, we highlight the relation between the binomial distribution and random walks on graphs with self-
loops added at each node.

C.1 The Poisson Distribution

We now establish the identity:
R(A∗; Pois(τ)) = e−τL∗ , (24)

where L∗ = In − A∗ is the normalized graph Laplacian.

Starting from the definition in Equation 2, we rewrite the reachability matrix as:

R(A∗; Pois(τ)) =
∞∑

k=0
e−τ τk

k! Ak
∗ = e−τ eτA∗ = e−τL∗ ,

using properties of the matrix exponential (Hall, 2015).

Next, we show that for an initial probability distribution p(0) ∈ [0, 1]n, the solution:

p(τ) = R(A∗, Pois(τ))p(0) (25)

satisfies the differential equation:
dp

dτ
= −L∗p(τ). (26)

Proof. From Equation 24, we recall that:

R(A∗, Pois(τ)) = e−τL∗ .

Setting τ = 0 gives R(A∗, Pois(0)) = In, ensuring that the initial condition is satisfied:

p(0) = p(0).

Differentiating Equation 25 with respect to τ :

dp(τ)
dτ

= d
dτ

e−τL∗p(0) = −L∗e−τL∗p(0) = −L∗p(τ).

Thus, p(τ) satisfies the differential equation as required.

The differential relation in Equation 26 is useful for analysing the dynamics of R(A∗, Pois(τ)) with respect
to τ , allowing us to establish its asymptotic behavior.
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Focusing first on the undirected case, the eigenvalue multiplicity of 0 in the normalized Laplacian LU equals
the number of weakly connected components in the graph (Chung, 1997; von Luxburg, 2007). The corre-
sponding eigenvectors u take values:

ui = deg(i)∑
k∈C(j) deg(k)

for each node i within a weakly connected component C(j). These eigenvectors are the only stationary
solutions to Equation 26, as all other eigenvalues of LU are strictly positive.

Thus, as τ → ∞, the reachability matrix converges to:

R(AU, Pois(τ))i,j → deg(i)∑
k∈C(j) deg(k) . (27)

Importantly, all nodes within the same weakly connected component have identical asymptotic reachability
values, making them indistinguishable under the Poisson walk length distribution for undirected graphs.
Consequently, downstream tasks relying on embedding distinguishability, such as graph alignment, are ex-
pected to degrade as τ increases. This effect was also observed in Figures 7d and 7b.

The above analysis provides a good first-order approximation of the Poisson distribution’s behaviour on
digraphs. However, a precise theoretical analysis using LO and LI is more involved and beyond the scope of
this paper. Instead, we refer to Veerman & Lyons (2020) for valuable insights. Specifically, the multiplicity
of the eigenvalue 0 corresponds to the number of reaches in the graph (Veerman & Lyons, 2020, Theorem
4.6). Unlike weakly connected components, multiple reaches can overlap. Consequently, the eigenvectors
exhibit a more complex structure (Veerman & Lyons, 2020, Theorem 5.1), and nodes within a reach do not
necessarily converge to the same reachability vector as τ → ∞.

C.2 The geometric distribution

We now analyse the asymptotic behavior of walk lengths following the geometric distribution. We start with
the parameterization α ∈ [0, 1), related to τ by α = τ

1+τ , so that as τ → ∞, we have α → 1.

As before, we express the reachability matrix as a matrix function:

R(A∗; Geom(α)) = (1 − α)
∞∑

k=0
αkAk

∗ = (1 − α) (In − αA∗)−1
. (28)

Substituting α = τ
1+τ and simplifying, we obtain:

R(A∗; Geom(τ)) = 1
1 + τ

(
In − τ

1 + τ
A∗

)−1

= (In + τ(In − A∗))−1

= (In + τL∗)−1
.

Using this identity, we show that p(τ) = R(A∗; Geom(τ))p(0) satisfies the differential equation:

dp(τ)
dτ

= − (In + τL∗)−1
L∗p(τ), p(0) = p(0). (29)

Proof. The initial condition is satisfied since R(A∗; Geom(0)) = In, so p(0) = p(0). To compute the deriva-
tive dp(τ)

dτ , we apply the matrix inversion derivative rule (Petersen & Pedersen, 2012, Sec. 2.2):

dp(τ)
dτ

= d
dτ

(
(In + τL∗)−1

)
p(0)

= − (In + τL∗)−1
L∗ (In + τL∗)−1

p(0)

= − (In + τL∗)−1
L∗p(τ).
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Thus, the differential equation is verified.

The differential equation in Equation 29 offers insight into the similarities and differences between the
dynamics of the geometric and Poisson distributions. Both equations contain the term L∗p(τ), implying
that any stationary distribution under Poisson dynamics is also stationary for the geometric case. However,
the presence of the prefactor (In + τL∗)−1 in Equation 29 suggests that this stationary distribution may
not be reached under geometric dynamics.

To understand this, let λ be an eigenvalue of L∗. Then 1
1+τλ is an eigenvalue of (In + τL∗)−1. For any

λ > 0, we see that 1
1+τλ → 0 as τ → ∞. Consequently, many eigenvectors will yield near-zero gradients as

τ increases, effectively stalling the dynamics.

As a result, p(τ) is likely to become “stuck” before converging to the non-informative stationary distribution
that characterizes Poisson dynamics. This phenomenon is also observed empirically in Figures 5 and 7,
where both dispersal entropy and graph alignment accuracy exhibit this same saturation effect.

C.3 Relation between the geometric and the uniform distribution

An interesting asymptotic behavior of the geometric distribution is that its K-truncation approaches the
uniform distribution as τ → ∞, or equivalently, as α → 1.

To demonstrate this, we begin with the expression for the K-truncated reachability of the geometric distri-
bution using the α parameterization:

R(K)(A∗; Geom(α)) = (1 − α)
Z(α, K)

∞∑
k=0

αkAk
∗, (30)

where Z(α, K) is the normalization factor required due to the truncation.

Next, we reparameterize using ε = 1 − α, yielding:

R(K)(A∗; ε) = ε

Z(ε, K)

K∑
k=0

(1 − ε)kAk
∗. (31)

We can compute the normalization factor Z(ε, K) as:

Z(ε, K) =
K∑

k=0
ε(1 − ε)k = ε

1 − (1 − ε)K+1

1 − (1 − ε) = 1 − (1 − ε)K+1.

As ε → 0, we can use the approximation (1 − ε)k = 1 − kε + O(ε2) for both Z(ε, K) and the summands in
Equation 31 to show that R(K)(A∗; ε) approaches the reachability matrix under the uniform distribution:

lim
ε→0

R(K)(A∗; ε) = lim
ε→0

ε

(K + 1)ε

K∑
k=0

(1 − kε)Ak
∗

= lim
ε→0

1
K + 1

K∑
k=0

Ak
∗ − ε

K + 1

K∑
k=0

kAk
∗

= 1
K + 1

K∑
k=0

Ak
∗.

C.4 Relation between the binomial and the Poisson distribution

The final asymptotic behavior we highlight is that the reachability under the binomial walk length distribu-
tion, R(K)(A∗; Binom(τ)), approaches that of the Poisson distribution R(A∗; Pois(τ)) as K → ∞.
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We begin by expressing R(K)(A∗; Binom(τ)) as a matrix function using the Binomial Theorem:

R(K)(A∗; Binom(τ)) =
K∑

k=0

(
K

k

)(
1 − τ

K

)K−k ( τ

K

)k

Ak
∗

=
((

1 − τ

K

)
In + τ

K
A∗

)K

=
(

In − τ

K
L∗

)K

.

Next, we perform the substitution Kτ = K
τ , and as we take the limit Kτ → ∞, we obtain:

lim
Kτ →∞

(
In − 1

Kτ
L∗

)τKτ

= e−τL∗ = R(A∗; Pois(τ)). (32)

Here, we recover the matrix exponential using its limit definition (Hall, 2015), which, together with Equa-
tion 24, proves the asymptotic equality to the Poisson-based reachability.

C.5 Relation between the binomial distribution and self-loops

Graph Convolutional Networks (GCNs) (Kipf & Welling, 2017) popularized the common pre-processing step
of adding self-loops to each node, a practice that has since been widely adopted in self-supervised GNN
methods (Wu et al., 2019; Zhang et al., 2021a; Thakoor et al., 2022). As discussed in Section 2.2, there is a
close connection between the binomial walk length distribution and graphs with added self-loops, which we
explore in this section.

This connection becomes evident when we consider the random surfer interpretation of the binomial dis-
tribution. In this view, a random walker makes a total of K decisions. At each step, the walker moves
to a neighbouring node with probability α, or remains at its current node (i.e., performs a self-loop) with
probability 1 − α. The probability of taking exactly k steps to neighbouring nodes (and K − k self-loops)
then follows the binomial distribution:

Pw(k; α) =
(

K

k

)
(1 − α)K−kαk.

The corresponding reachability matrix is given by:

R(K)(A∗; Binom(α)) =
K∑

k=0

(
K

k

)
(1 − α)K−kαkAk

∗. (33)

We can rewrite this expression using the Binomial Theorem and the fact that the diagonal matrix (1 − α)In

commutes with any matrix under multiplication:

R(K)(A∗; Binom(α)) =
K∑

k=0

(
K

k

)
(1 − α)K−kαkAk

∗

=
K∑

k=0

(
K

k

)
(1 − α)K−kIK−k

n αkAk
∗

=
K∑

k=0

(
K

k

)
((1 − α)In)K−k (αA∗)k

= ((1 − α)In + αA∗)K

= AK
∗+.
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Here, we define A∗+ = (1 − α)In + αA∗ as a self-loop enhanced normalized adjacency matrix. We see that
the binomial reachability matrix is simply the Kth power of A∗+.

This matrix consists of two parts: a diagonal component (1 − α)In, representing the probability of staying
at the current node (i.e., self-loops), and a weighted adjacency component αA∗, representing the transition
probabilities to neighbouring nodes.

A very similar construction arises in message-passing models that explicitly add self-loops. In what follows,
we formalize this for random walks using the outgoing edge transition matrix AO. The analysis extends
directly to the incoming edge matrix AI and the undirected matrix AU.

First, let S = A + In be the adjacency matrix with added self-loops, and let DO+ = DO + In denote the
corresponding out-degree matrix. Then, the normalized transition matrix for the self-loop-enhanced graph
is given by SO = SD−1

O+ .

We decompose SO into two components: SO = P⟲ + P→, where P⟲ = diag(SO) contains the self-loop (stay-
in-place) probabilities, and P→ contains the off-diagonal transition probabilities to neighbouring nodes.

This structure closely mirrors that of A∗+ = (1 − α)In + αA∗. In both cases, the stay-in-place behavior
is captured by a diagonal matrix—P⟲ for SO and (1 − α)In for A∗+—while the remaining transitions are
modelled via P→ and αA∗, respectively.

Consequently, the Kth power of SO produces a matrix polynomial with binomial coefficients, analogous to
the binomial reachability matrix in Equation 33. This observation aligns with practice: in a K-step linear
GCN, node embeddings are computed as Z = (SK

O )⊺X (Wu et al., 2019), which matches the message-passing
form of the binomial reachability matrix R(K)(A∗; Binom(α)) = AK

∗+ described in Section 2.3.2.

Thus, both approaches share the same underlying random surfer interpretation and exhibit similar mathe-
matical structures. However, there is one key difference: in the binomial reachability model, the stay-in-place
probability is uniform across all nodes, controlled by the scalar (1 − α). In contrast, for GCNs with added
self-loops, the stay-in-place probability varies by node and is given by P⟲, where P⟲i,i = 1

1+degO(i) . This
means that nodes with lower out-degree have higher probability of remaining in place.

Whether this degree-dependent behavior improves embedding quality is ultimately an empirical question
and may depend on the characteristics of the graph and the downstream task.

D Additional experiment setup information

D.1 Single- and multi-scale ReachNEs embedding distributions

This section provides further details related to the experimental setup described in Section 6. Figure 11
shows the random walk length distributions used in the ReachNEs experiments, as listed in Table 3.

The first plot, Figure 11a, displays the two single-scale distributions, referred to as Geom and Pois. The
Geom distribution corresponds to Geom(k; τ = 1), emphasizing the node itself (k = 0) and short-range
walks (1–2 steps). In contrast, Pois uses Pois(k; τ = 2), which down-weights self-loops and focuses on
medium-range neighbourhoods (2–4 steps).

The Geom-U setting creates two-scale embeddings by combining two distributions designed to capture both
short- and medium-range structure. The first is Geom(k; τ = 1) (same as in Geom), while the second is the
shifted uniform distribution U(k − 1; τ = 2), which excludes the k = 0 term and concentrates probability
mass over k ∈ [1, 5].

The Binom-3 and Geom-4 settings are multi-scale distributions designed to capture short-, medium-, and
long-range reachability. Binom-3 is inspired by Gaussian mixture models (Murphy, 2012, Ch. 11.2.1) and
combines three binomial components: Binom(k; τ = 1) centred at k = 0, Binom(k − 2; τ = 1) centred at
k = 2, and Binom(k − 5; τ = 1) centred at k = 5. To account for the increasing range, we increase the
parameter τ for longer walks, thereby widening the support of the distribution.
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Figure 11: Plots of the walk length distributions Pw listed in Table 3. (a) show the two distributions used to
create single-scale ReachNEs embeddings, while (b), (c) and (d) show the distributions used for multi-scale
embeddings, with 2, 3 and 4 components respectively.

In contrast, Geom-4 uses four geometric components with progressively increasing mode and tail width:
Geom(k; τ = 1), Geom(k − 1; τ = 2), Geom(k − 2; τ = 3), and Geom(k − 3; τ = 4). Unlike Binom-3, these
distributions are not centred on long-range steps but exhibit heavy tails, meaning they still provide smoothing
over distant nodes. The advantage of Geom-4 is that it places distinct modes over steps k ∈ {0, 1, 2, 3}, a
range where most node-distinguishing information typically resides. This focus on short- and mid-range
steps aligns with the goal of preserving local structure while retaining some long-range awareness.

D.2 Hyperparameters for proximity embedding comparison

Table 13 shows the hyperparameter search grids for each digraph proximity method compared in Section 6.4.
For all models, we tune the number of embedding dimensions using p ∈ [64, 1024]. Note that for HOPE, we
report halved values, as the implementation internally doubles the embedding size.

For DirSwitch-r, we tune both the number of directed steps r and the choice of walk length distributions
Pw. For the other baselines, we tune their respective hyperparameters that influence proximity scale. These
include:

• the β parameter for HOPE,

• the number of walk steps and jump factor for APP,

• the number of walk steps for NERD,

• the number of layers for BLADE.

We also tune selected learning-related hyperparameters: the number of sampled walks for NERD, the loss
trade-off parameter λ for DGGAN, and the learning rate and number of epochs for BLADE.

With this setup, the total grid sizes are approximately comparable across methods. DirSwitch uses 75
different hyperparameter combinations. Among the baselines, APP and BLADE have the largest grids, with
120 and 300 combinations respectively. DGGAN has the smallest grid (45 combinations), as it is significantly
more computationally expensive to train, making extensive tuning infeasible.

The best-performing hyperparameter settings for each model and dataset, based on cross-validation accuracy,
are listed in Table 14. For DirSwitch-r, we observe that multi-scale embeddings with three or four components
consistently yield the best results, aligning with prior findings on the benefits of multi-scale embedding
strategies (Rozemberczki et al., 2021).
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Table 13: Hyperparameter grids used for the comparison of proximity embedding models in Section 6.4.

Model Hyperparameter Values

DirSwitch-r
Emb. dim. p 64, 128, 256, 512, 1024

r 1, 2, 3
Pw Geom, Pois, Geom-U , Binom-3, Geom-4

HOPE β 0.001, 0.01, 0.1, 0.2, 0.35, 0.5, 0.65, 0.8, 0.9, 1.0
Emb. dim. p 32, 64, 128, 256, 512

APP
Emb. dim. p 64, 128, 256, 512, 1024

Jump factor 0.1, 0.25, 0.5, 0.75
Walk steps 2, 3, 4, 5, 6, 7

NERD
Emb. dim. p 64, 128, 256, 512, 1024

Num. samples 1, 2, 3
Walk steps 2, 3, 4, 5, 6

DGGAN
Emb. dim. p 64, 128, 256, 512, 1024

λ 5e-06, 1e-05, 5e-05
Learning rate 5e-05, 0.0001, 0.0005

BLADE

Emb. dim. p 64, 128, 256, 512, 1024
Learning rate 0.0001, 0.001, 0.01

Num. epochs 10, 30, 50, 100
Num. layers 2, 3, 4, 5, 6

Table 14: The best hyperparameter values for each proximity embedding model and dataset.

Model Fly Larva EU-Email Polblogs CoCite Pubmed Cora (subelj)

DirSwitch
Emb. dim. p 256 Emb. dim. p 1024 Emb. dim. p 128 Emb. dim. p 1024 Emb. dim. p 1024 Emb. dim. p 1024

r 3 r 2 r 1 r 1 r 1 r 1
Pw Geom-4 Pw Binom-3 Pw Binom-3 Pw Binom-3 Pw Binom-3 Pw Binom-3

HOPE β 1 β 1 β 0.9 β 0.9 β 0.9 β 1
Emb. dim. p 512 Emb. dim. p 128 Emb. dim. p 32 Emb. dim. p 512 Emb. dim. p 512 Emb. dim. p 512

APP
Emb. dim. p 1024 Emb. dim. p 512 Emb. dim. p 64 Emb. dim. p 512 Emb. dim. p 1024 Emb. dim. p 1024

Jump factor 0.75 Jump factor 0.75 Jump factor 0.5 Jump factor 0.25 Jump factor 0.75 Jump factor 0.75
Walk steps 5 Walk steps 4 Walk steps 5 Walk steps 5 Walk steps 5 Walk steps 7

NERD
Emb. dim. p 256 Emb. dim. p 1024 Emb. dim. p 128 Emb. dim. p 256 Emb. dim. p 512 Emb. dim. p 256

Num. samples 3 Num. samples 3 Num. samples 2 Num. samples 3 Num. samples 3 Num. samples 3
Walk steps 5 Walk steps 5 Walk steps 5 Walk steps 6 Walk steps 6 Walk steps 6

DGGAN
Emb. dim. p 256 Emb. dim. p 512 Emb. dim. p 128 Emb. dim. p 128 Emb. dim. p 128 Emb. dim. p 256

λ 5e-06 λ 1e-05 λ 5e-05 λ 1e-05 λ 5e-05 λ 5e-06
Learning rate 0.0005 Learning rate 0.0005 Learning rate 5e-05 Learning rate 5e-05 Learning rate 0.0001 Learning rate 5e-05

BLADE

Emb. dim. p 1024 Emb. dim. p 1024 Emb. dim. p 512 Emb. dim. p 1024 Emb. dim. p 1024 Emb. dim. p 1024
Learning rate 0.0001 Learning rate 0.0001 Learning rate 0.001 Learning rate 0.0001 Learning rate 0.0001 Learning rate 0.0001

Num. epochs 10 Num. epochs 10 Num. epochs 10 Num. epochs 10 Num. epochs 10 Num. epochs 30
Num. layers 3 Num. layers 2 Num. layers 6 Num. layers 4 Num. layers 6 Num. layers 2
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Figure 12: Reachability under Pw = Pois(τ), using AO and AU. The x-axes correspond to nodes sorted
by their entropy value. The colours represent various values of τ . The black dashed line indicates the
entropy of a reachability distribution proportional to the node degrees, which corresponds to the limiting
and uninformative distribution as τ → ∞. See Appendix C.1 for further details.

E Additional analysis of local sinks and dispersal

This section provides additional analysis of local sinks and reachability dispersal for graph datasets not
included in the main paper due to space constraints. As before, we use reachability entropy to quantify
dispersal. Recall that the reachability entropy of node j is defined as:

H(j; R) = −
n∑

i=1
Ri,j log2 Ri,j , (34)

where Ri,j is the (i, j)-th element of the reachability matrix R(Pw, σ), computed under a walk length distri-
bution Pw and edge direction specifier σ.

Figure 12 complements Figure 5 by presenting results for six additional datasets, using the Poisson walk
length distribution Pw = Pois(τ). Each coloured curve corresponds to a different value of τ . The figure
focuses on comparing the dispersal effects of default directed edges (σ = O) versus undirected edges (σ = U).

Consistent with the examples in Section 3.1, we observe substantial entropy gains when using undirected
edges on sparse and moderately dense graphs. For example, the sparse CiteSeer graph shows a pronounced
increase in entropy, while medium-density graphs such as Enron, Polblogs, and Wikivotes also exhibit clear
improvements. These gains become more pronounced at larger τ values, as reachability under directed edges
increasingly concentrates in local sinks.

In contrast, the dense EU-Email graph, with an average node degree of 25, shows only minor differences be-
tween the directed and undirected cases. While small increases in entropy are still visible (cf. Figure 12e and
12f), the graph’s high density mitigates sink formation and enables more uniform information propagation.
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Figure 13 extends Figure 6 by presenting results for eleven additional datasets. We again use Pw = Pois(τ =
2) to model short-range walks and Pw = U(τ = 5) for longer-range behaviour.

The figure compares DirSwitch edge direction specifiers with those of MultiDir. The results closely follow the
trends observed in Figure 5, with DirSwitch consistently achieving higher entropy than MultiDir—especially
under the long-range distribution Pw = U(τ). As before, the differences are most pronounced on sparse
graphs, including Arxiv, CoCite, Pubmed, and Snap Patents.

The Roman Empire graph constitutes a counterexample to the trends described above. As shown in Fig-
ure 12i and 12j, there is virtually no difference in entropy between σ = O and σ = U, despite the graph’s
sparsity. In fact, close inspection reveals that entropy is slightly lower for the undirected case, particularly for
large values of τ . This effect is even more pronounced in Figure 13j, where σ = O yields the highest entropy
under the uniform walk length distribution. This is the only dataset where such behaviour is observed.

To understand this counterintuitive result, we must examine the specific structural properties of the Ro-
man Empire graph. As shown in Table 2, this graph stands out with an unusually long average path
length—around 2400 steps. The underlying reason is its chain-like topology: the graph primarily consists
of a long linear sequence of nodes, where each node typically has an in-degree and out-degree of one. Occa-
sionally, nodes branch off from the main chain and later reconnect.

Figure 14 visualizes a subgraph of the Roman Empire graph, clearly illustrating this structure. It also
highlights why entropy may decrease in the undirected case. The node colours represent reachability values
from the same starting node under σ = O on the left, and σ = U on the right, both using the uniform
walk length distribution. As shown in Figure 14a, reachability in the directed case is spread more uniformly
along the chain. In contrast, Figure 14b shows that the undirected case concentrates reachability around
the starting node.

This is a consequence of the chain structure: in the directed case, random walks proceed almost exclusively
forward along the chain. In the undirected case, however, each step introduces a 33–50% chance of stepping
backward. This backward drift increases the likelihood of returning to or remaining near the starting node,
reducing entropy.

F Additional graph alignment results

Figure 15 presents graph alignment results for three additional datasets, complementing the four datasets
shown in Figure 7. As in the main paper, the y-axes indicate graph alignment accuracy, while the x-axes
show values of τ . The top row corresponds to Pw = Geom(τ), and the bottom row to Pw = Pois(τ).

The results in Figure 15 are consistent with the findings from the main paper. For both DirSwitch-r and
MultiDir-r, alignment accuracy increases with r, reflecting the benefit of representing a larger number of di-
rected neighbourhoods. In contrast, models using σ = O and σ = U consistently achieve the lowest accuracies,
as they lack the capacity to capture multiple directed neighbourhoods. DirSwitch-r generally outperforms
MultiDir-r, highlighting that mitigating the effects of local sinks contributes to improved alignment accuracy.

We again observe the distinct behaviours of the Poisson and geometric walk length distributions: increasing τ
tends to degrade accuracy under Pois(τ), whereas accuracy plateaus under Geom(τ), as previously discussed.

A notable exception is the Pubmed dataset, where DirSwitch-r with Pw = Pois(τ) reaches peak accuracy
around τ ≈ 9, indicating that a relatively large receptive field is required for optimal performance. This
contrasts with the other datasets, which generally attain their highest accuracy for τ < 5.

This behaviour can be attributed to the structure of the Pubmed graph. As shown in Table 2, Pubmed has
a very sparse local structure-its median out-degree is 0, and its median in-degree is 1—meaning that the
short-range neighbourhoods of many nodes are nearly indistinguishable. Additionally, Pubmed exhibits the
longest average path length among the alignment datasets. These factors necessitate a broader receptive
field to generate more expressive and distinguishable embeddings.
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(e) Cora (Subelj)
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(h) Pokec
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(i) Pubmed
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(j) Roman Empire
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(k) Snap Patents

Figure 13: Neighbourhood dispersal evaluation for 11 graphs, measured via reachability entropy,
−
∑n

i=1 Ri,j log2 Ri,j , computed for each node and sorted. Each curve corresponds to a different edge direc-
tion specifier σ, with the top row showing results for Pw(k; τ) = Pois(τ = 2) (local dispersal) and the bottom
row for U(τ = 5) (long-range dispersal). DirSwitch variants (e.g., OU, OIU, OIOU) demonstrate high dispersal,
comparable to U, while purely directed specifiers (O, OI, OIO) exhibit lower entropy due to sink effects.
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(a) Roman Empire, O (b) Roman Empire, U

Figure 14: Both figures show the same subgraph of the Roman Empire graph. The node colours reflect the
reachability vector for the same node under the uniform walk length distribution. (a) uses default directed
edges (σ = O) while (b) uses undirected edge (σ = U).
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(f) Pubmed, Pois(τ)

Figure 15: Evaluation of edge direction expressivity for four graphs using the geometric, Geom(τ), and
Poisson, Pois(τ), walk length distributions. The y-axes represent graph alignment accuracy under 15% edge
removal, while the x-axes correspond to τ , the average walk length. The curve colours and styles denote
different sets of edge direction specifiers, σ.
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G Additional DirSwitch embedding quality evaluation

This section provides further analysis and discussion of the results presented in Section 6.3, focusing on the
benefits of multi-scale embeddings, the limitations introduced by fixed embedding dimensionality and the
presence of 2-step homophiliy in the Pokec dataset.

Multi-scale embeddings and diminishing returns. The results in Tables 4 and 6 offer clear evidence of
the benefits of multi-scale embeddings. Across all datasets, we observe at least moderate improvements when
transitioning from single-scale to multi-scale walk length distributions, with several datasets exhibiting sub-
stantial accuracy gains. For instance, on Cora-ML, the classification accuracy for undirected embeddings in-
creases from 31% to 76%; on Citeseer, from 76% to 89%; and on Cora, from 59% to 69% when switching from
Geom to Geom-4. These results highlight the importance of embedding expressivity in unsupervised learning.

Similar trends are observed for proximity embeddings in Table 6. For example, EU-Email improves from
30% to 72%, and Polblogs from 64% to 85% under the same change in walk length distributions.

However, the benefits of multi-scale embeddings diminish as the number of multi-directional neighbourhoods
increases, particularly for MultiDir-r and DirSwitch-r. In Cora-ML, for example, DirSwitch-1 improves from
57% to 82% when switching from Geom to Geom-4, whereas DirSwitch-3 shows a more modest improvement
from 79% to 86%.

This trend is even more pronounced in the results for p = 512 embedding dimensions (Tables 16 and 18). In
these cases, increasing both the number of multi-directional neighbourhoods and the number of scales can
lead to accuracy degradation. For example, in Table 16, the accuracy for Cora declines as r increases and
when using Binom-3 or Geom-4. A similar pattern is observed for EU-Email in Table 18.

This behaviour arises from the diminishing returns of combining multi-directional and multi-scale embeddings
via concatenation under fixed dimensionality constraints. As described in Section 4, the total embedding
dimension p must be divided among all combinations of direction specifiers and walk length distributions.
When p is fixed, increasing the number of concatenated components reduces the dimensionality available for
each, limiting their expressivity. As a result, performance gains plateau at p = 1024 and begin to decline at
p = 512.

While increasing p can help alleviate this issue by allowing more capacity for embedding components, this
approach has practical limitations. Larger embeddings require more memory and computational resources,
and may introduce challenges such as overfitting or the curse of dimensionality in downstream tasks. Future
work is needed to explore more efficient ways to compress and integrate multi-directional and multi-scale
information into compact embeddings without sacrificing expressivity.

Homophily in the Pokec dataset. As noted in the main paper, the classification results for the Pokec
dataset in Table 4 exhibit behaviour that diverges from other heterophilic datasets. In particular, we observe
a notable accuracy increase when using Geom-4, especially for undirected edges: accuracy rises from 62%
with Binom-3 to 72% with Geom-4. While Pokec typically follows the heterophilic trend—where undirected
embeddings underperform compared to DirSwitch-r and MultiDir-r—this pattern is reversed for Geom-4.

To understand this, we need to examine the structural properties of the Pokec dataset. Pokec is an online
Slovak social network, with nodes representing users and labels corresponding to reported gender. As
reported by Lim et al. (2021), who curated this benchmark, the graph is heterophilic at the 1-step level due
to the predominance of heterosexual connections. This is reflected in a low 1-step homophily score of 0.43.

However, the homophily increases significantly at the 2-step level, rising to 0.61. This indicates that while
direct connections tend to be between users of different genders, the extended 2-step neighbourhoods are
more gender-homogeneous. In such cases, undirected smoothing becomes more effective, especially when the
embedding method emphasizes these mid-range neighbourhoods.

This is precisely what the Geom-4 distribution achieves. As seen in Figure 11d, one of its components is
Geom(k − 2; τ = 3), which emphasizes 2-step neighbourhoods more than the other multi-scale distributions.
This focus on 2-step structure explains the performance gain observed with Geom-4 and undirected edges.
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Table 15: Further investigation into the Pokec dataset. The walk length distributions are single-scale indi-
cator distributions that place the entire probability mass on a single k-value.

(a) p = 512

Edge directions 1k=0 1k=1 1k=2 1k=3

Default 61.4±0.1 63.0±0.1 63.2±0.1 62.5±0.1

Undirected 61.4±0.1 63.0±0.1 69.9±0.1 66.2±0.1

MultiDir-1 61.4±0.1 63.4±0.1 65.3±0.1 63.3±0.1
MultiDir-2 61.4±0.1 63.4±0.1 68.0±0.1 63.9±0.1

DirSwitch-1 61.4±0.1 63.4±0.1 68.0±0.1 66.3±0.1
DirSwitch-2 61.4±0.1 63.4±0.1 68.0±0.1 66.1±0.1
DirSwitch-3 61.4±0.1 60.7±0.1 67.1±0.1 63.5±0.1

(b) p = 1024

Edge directions 1k=0 1k=1 1k=2 1k=3

Default 61.4±0.1 63.0±0.1 63.1±0.1 62.5±0.1

Undirected 61.4±0.1 63.0±0.1 69.9±0.0 66.2±0.1

MultiDir-1 61.4±0.1 63.4±0.1 65.3±0.1 63.3±0.1
MultiDir-2 61.4±0.1 63.4±0.1 68.0±0.1 63.9±0.1

DirSwitch-1 61.4±0.1 63.4±0.1 68.0±0.1 66.3±0.1
DirSwitch-2 61.4±0.1 63.4±0.1 68.0±0.1 66.1±0.1
DirSwitch-3 61.4±0.1 63.4±0.1 68.0±0.1 65.9±0.1

To further validate this interpretation, we conduct an additional experiment using indicator walk length
distributions that place all probability mass on a single step length:

Pw = 1k=τ =
{

1 if k = τ

0 otherwise
. (35)

This isolates the effect of each specific neighbourhood scale. The results, shown in Table 15, confirm that
2-step neighbourhoods (1k=2) yield the highest accuracy for undirected edges. In contrast, no similar perfor-
mance gain is observed for directed edges (Default), reinforcing the notion that the combination of undirected
smoothing and mid-range reachability is key to improved performance on Pokec.

Beyond explaining this anomaly, the analysis highlights a broader point: homophily and heterophily are
not binary properties but exist on a spectrum. The optimal embedding strategy may vary across this
spectrum, and models tailored exclusively for one end may perform poorly on datasets lying in the middle.
This underscores the utility of DirSwitch, which we have shown to perform consistently well across both
homophilic and heterophilic settings.

Unsupervised community detection. Our evaluation of DirSwitch in Section 6.3 focused on node
classification, which offers a convenient and objective metric: classification accuracy.

In contrast, evaluating unsupervised downstream tasks is more challenging, as these tasks often lack a single
"correct" solution. For example, many valid groupings of nodes can exist in a graph, yet only one such
grouping is typically labelled for evaluation. Similar issues arise in other unsupervised tasks such as anomaly
detection. As a result, these evaluations often require more nuanced analysis.

Nevertheless, since DirSwitch is intended for unsupervised embedding learning, it is important to assess its
performance on unsupervised tasks as well. We therefore include a community detection benchmark. For
this, we use the same proximity node classification datasets from Section 6.3, treating the node labels as
ground-truth communities. We apply k-means clustering (Arthur & Vassilvitskii, 2007) to the embeddings,
setting the number of clusters equal to the number of labelled communities. Performance is reported using
normalized mutual information (NMI), averaged over 10 runs with different random seeds to compute mean
and standard deviation.

Tables 20 and 21 present the community detection results for DirSwitch-r with p = 512 and p = 1024,
respectively. The findings mirror those from the node classification experiments: DirSwitch-r generally
performs well across datasets, while the sparse citation graphs (CoCite, Pubmed, and Cora (subelj)) tend
to benefit from fully undirected edge orientation.

Results on the Polblogs dataset are particularly noteworthy due to their large standard deviations. This
reflects the challenge of evaluating unsupervised tasks: we interpret these fluctuations as evidence that
multiple valid community structures exist, with k-means sometimes recovering the one aligned with the
labels, and sometimes converging to an alternative.
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Table 16: Node classification accuracy for message-passing ReachNEs with p = 512 embedding dimensions.
Columns correspond to different datasets and multi-scale walk length distributions, while rows represent
various edge direction specifiers. Each entry reports the mean accuracy and standard deviation. Bold
blue highlights the highest accuracy in each column, with light blue indicating results within one standard
deviation of the best. Similarly, bold orange denotes the lowest accuracy, and light orange represents values
within one standard deviation of the worst.

Edge directions Arxiv Arxiv Year
Geom Pois Geom-U Binom-3 Geom-4 Geom Pois Geom-U Binom-3 Geom-4

Default 55.0±0.2 42.4±0.4 55.4±0.2 54.2±0.2 55.4±0.2 36.5±0.3 35.2±0.5 36.7±0.2 37.8±0.3 38.2±0.3

Undirected 61.6±0.2 64.9±0.2 67.0±0.2 69.8±0.2 69.1±0.2 36.5±0.2 36.5±0.2 37.1±0.2 37.6±0.3 38.3±0.2

MultiDir-1 59.8±0.3 59.4±0.3 60.1±0.3 60.2±0.3 60.0±0.3 37.0±0.3 35.1±0.7 38.1±0.2 39.1±0.2 39.4±0.3
MultiDir-2 61.2±0.3 65.3±0.3 65.1±0.3 64.4±0.3 64.6±0.3 38.6±0.3 38.0±0.3 40.5±0.3 41.1±0.2 41.0±0.3
MultiDir-3 60.9±0.3 65.5±0.3 65.3±0.3 64.7±0.3 64.1±0.2 39.7±0.3 40.2±0.3 41.4±0.3 42.1±0.3 41.3±0.2

DirSwitch-1 61.5±0.3 65.9±0.2 67.3±0.3 69.5±0.2 68.6±0.3 38.2±0.2 37.8±0.2 39.9±0.3 39.8±0.3 41.2±0.3
DirSwitch-2 61.5±0.3 65.7±0.2 66.7±0.3 68.9±0.3 67.8±0.3 39.6±0.3 39.5±0.3 40.9±0.3 41.1±0.3 41.5±0.3
DirSwitch-3 60.8±0.3 65.6±0.3 65.9±0.3 67.7±0.3 66.3±0.3 39.6±0.3 40.5±0.3 41.4±0.2 42.1±0.2 42.2±0.3

Edge directions Cora-ML Citeseer Cora
Geom Pois Geom-U Binom-3 Geom-4 Geom Pois Geom-U Binom-3 Geom-4 Geom Pois Geom-U Binom-3 Geom-4

Default 50.5±3.1 51.9±2.1 64.2±2.6 70.5±1.3 73.5±1.7 70.7±1.8 58.4±2.2 74.1±2.6 75.8±1.9 78.2±1.6 57.4±0.7 54.1±0.8 60.7±0.8 60.9±0.8 61.1±0.9

Undirected 60.4±2.5 68.1±2.2 73.8±1.8 82.2±1.3 83.7±1.4 80.6±1.4 86.6±1.5 87.0±1.5 93.9±0.9 92.8±1.1 64.9±0.7 68.1±0.7 69.2±0.6 70.1±0.9 70.0±0.8

MultiDir-1 68.5±2.4 67.5±2.4 75.2±2.6 77.2±2.2 79.4±2.3 76.1±1.9 75.4±2.1 80.7±1.9 81.9±1.5 82.8±1.5 65.5±0.7 64.8±0.8 65.3±1.1 63.5±1.0 62.7±0.9
MultiDir-2 79.1±1.7 78.8±1.6 82.7±1.6 83.1±1.4 84.3±1.2 83.9±1.7 85.1±1.7 86.0±1.4 85.8±1.6 86.6±1.2 66.7±1.1 68.1±0.9 66.2±0.9 64.5±1.0 63.6±1.1
MultiDir-3 83.1±1.5 83.6±1.7 85.2±1.5 84.8±1.5 84.7±1.6 85.2±1.5 88.0±1.4 87.0±1.3 87.1±1.2 87.2±0.9 65.0±0.8 67.2±1.0 64.4±1.0 62.0±1.1 61.1±0.9

DirSwitch-1 72.9±1.9 73.7±2.1 81.3±1.9 85.0±1.5 85.2±1.2 82.8±1.0 88.4±1.2 89.2±1.3 91.5±0.9 90.7±1.2 67.5±0.9 69.3±0.7 69.1±0.9 69.2±1.0 68.4±0.7
DirSwitch-2 79.5±2.0 80.8±1.9 84.1±1.6 85.7±1.9 85.7±1.5 85.3±1.1 88.8±0.9 88.4±1.1 90.0±1.2 88.8±1.3 66.7±0.9 68.6±0.8 67.4±0.8 67.4±0.6 65.8±0.7
DirSwitch-3 82.8±1.3 83.5±1.4 85.3±1.0 86.1±1.3 85.7±1.4 85.4±1.3 88.2±1.1 87.1±0.9 88.4±0.8 87.5±1.1 64.9±0.9 67.1±0.9 64.5±0.9 64.7±0.5 62.2±0.6

Edge directions Roman Empire Pokec Snap-Patents
Geom Pois Geom-U Binom-3 Geom-4 Geom Pois Geom-U Binom-3 Geom-4 Geom Pois Geom-U Binom-3 Geom-4

Default 69.3±0.9 32.2±0.6 67.0±0.5 49.9±0.6 69.6±0.6 60.3±0.1 59.0±0.8 61.6±0.1 60.7±0.2 65.5±0.1 35.6±0.1 41.7±0.1 39.1±0.0 40.8±0.1 40.9±0.1

Undirected 67.4±0.9 47.0±0.9 69.3±0.7 63.7±0.6 70.0±0.7 60.3±0.1 59.4±0.4 62.0±0.1 62.3±0.1 71.7±0.1 30.8±0.1 29.9±0.0 31.7±0.1 32.7±0.1 33.9±0.4

MultiDir-1 70.1±0.8 40.7±0.8 68.8±0.5 59.6±0.8 71.5±0.6 61.2±0.1 60.2±0.0 62.3±0.1 61.7±0.1 67.3±0.1 40.9±0.0 43.4±0.3 43.9±0.2 46.7±0.1 45.2±0.1
MultiDir-2 71.6±0.6 63.2±0.7 72.0±0.8 66.7±0.5 75.5±0.7 61.6±0.1 61.2±0.2 63.2±0.1 62.7±0.1 67.9±0.1 42.9±0.0 44.0±0.1 45.3±0.2 47.4±0.2 45.0±0.1
MultiDir-3 72.0±0.5 69.1±0.5 73.0±0.8 67.4±0.7 72.5±0.4 61.8±0.1 63.5±0.1 63.1±0.1 62.3±0.1 62.4±0.2 44.2±0.1 47.2±0.1 45.2±0.0 46.4±0.1 44.8±0.1

DirSwitch-1 71.6±0.5 57.1±0.9 73.8±0.5 69.2±0.7 75.3±0.7 61.2±0.1 60.4±0.3 62.8±0.1 62.8±0.1 69.9±0.0 40.7±0.0 40.8±0.1 40.4±0.1 41.6±0.1 42.7±0.4
DirSwitch-2 71.9±0.5 65.5±0.7 74.7±0.4 70.6±0.7 76.1±0.6 61.5±0.1 60.9±0.2 63.5±0.1 63.6±0.1 69.9±0.1 44.2±0.2 46.0±0.1 44.7±0.1 44.9±0.2 45.2±0.3
DirSwitch-3 71.8±0.5 69.1±0.5 74.3±0.5 70.1±0.4 72.7±0.5 61.6±0.1 62.7±0.1 62.9±0.1 62.1±0.1 62.0±0.1 44.4±0.1 48.8±0.1 46.3±0.1 46.9±0.2 46.9±0.2

Lastly, we compare DirSwitch-r against the state-of-the-art proximity embedding methods from Section 6.4.
We reuse the same hyperparameters as in the node classification setting, without performing additional
tuning (see Section D.2).

The results are shown in Table 22. DirSwitch and APP (Zhou et al., 2017) achieve the best overall perfor-
mance. APP obtains higher NMI scores on EU-Email, CoCite, and Pubmed, while DirSwitch performs best
on Fly Larva. The methods are tied on Cora (subelj). As before, we do not consider Polblogs due to its high
variance.

As discussed in Section 5, APP is a sampled random walk method that asymptotically performs the same
matrix decomposition as proximity DirSwitch with σ = O and Pw = Geom(τ). It is therefore noteworthy
that APP outperforms DirSwitch in some cases.

One possible explanation is that the hyperparameters—tuned for node classification—may happen to favour
APP in the community detection setting. Another plausible explanation is that APP benefits from random
walk sampling itself. Similar effects have been observed in recommendation systems, where sampling-based
matrix factorization often outperforms direct SVD due to reduced overfitting (Koren et al., 2009). Further
research is needed to better understand the relationship between the sampled factorization in APP and the
explicit decomposition used in proximity ReachNEs.
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Table 17: Relative improvements in node classification accuracy for message-passing ReachNEs with p = 512.
The values reflect the maximum accuracy for per row and dataset in Table 16. The top row displays absolute
accuracies for the default edge directions, with standard deviations expressed as percentages. The subsequent
rows present the relative improvements compared to the top row. The table is structured with the four
homophilic datasets on the left and the four heterophilic datasets on the right.

Edge directions Cora-ML Citeseer Cora Arxiv Roman Empire Arxiv Year Pokec Snap-Patents

Default 73.5±2.9% 78.2±2.6% 61.1±1.3% 55.4±0.5% 69.6±0.9% 38.2±0.8% 65.5±0.4% 41.7±0.2%

Undirected +13.9% +20.1% +14.6% +25.9% +0.7% +0.3% +9.5% -18.8%

MultiDir-1 +8.1% +6.0% +7.1% +8.7% +2.8% +3.1% +2.8% +12.0%
MultiDir-2 +14.8% +10.8% +11.4% +17.8% +8.5% +7.8% +3.8% +13.7%
MultiDir-3 +16.0% +12.6% +9.9% +18.2% +5.0% +10.4% -3.1% +13.1%

DirSwitch-1 +16.0% +17.0% +13.3% +25.4% +8.3% +7.9% +6.8% +2.4%
DirSwitch-2 +16.7% +15.2% +12.2% +24.3% +9.4% +8.7% +6.8% +10.4%
DirSwitch-3 +17.3% +13.1% +9.8% +22.1% +6.8% +10.5% -3.9% +17.1%

Table 18: Node classification accuracy for proximity ReachNEs with p = 512 embedding dimensions.
Columns correspond to different datasets and multi-scale walk length distributions, while rows represent
various edge direction specifiers. The values denote average accuracies with standard deviations. Bold blue
highlights the best results in each column, with light blue indicating results within one standard deviation.
Similarly, bold orange marks the worst results, with light orange showing values within one standard devia-
tion of the lowest performance.

Edge directions Flylarva EU-Email Polblogs
Geom Pois Geom-U Binom-3 Geom-4 Geom Pois Geom-U Binom-3 Geom-4 Geom Pois Geom-U Binom-3 Geom-4

Default 45.3±1.8 46.1±2.4 48.8±1.9 49.2±2.0 49.8±2.0 46.1±3.1 56.6±3.5 64.2±3.5 68.8±3.4 70.4±3.6 71.7±2.7 74.7±2.2 82.6±2.2 85.0±2.1 85.6±1.9

Undirected 47.8±2.0 50.4±1.9 53.6±2.0 55.1±1.7 54.9±2.0 50.3±3.8 58.6±3.3 70.1±3.2 75.3±2.7 75.8±2.6 77.0±2.6 79.2±2.7 85.6±1.8 87.4±2.1 87.0±1.9

MultiDir-1 48.5±1.9 48.5±2.1 51.4±2.3 52.5±1.9 52.0±1.8 65.4±3.0 67.5±3.1 73.7±3.1 73.8±3.0 73.7±2.7 81.7±1.9 83.1±2.1 86.4±2.0 87.7±1.7 88.4±1.7
MultiDir-2 51.8±2.3 51.4±1.7 53.2±1.9 52.7±2.3 52.7±2.1 74.0±2.7 74.5±2.7 75.2±3.3 72.5±2.9 70.4±2.7 87.9±1.8 87.6±1.7 89.1±1.7 89.2±1.6 89.6±1.6
MultiDir-3 53.4±1.9 53.5±2.1 53.7±1.9 54.0±1.6 54.7±1.5 73.9±2.3 75.3±3.0 70.0±2.5 66.4±3.4 63.6±2.7 89.0±1.4 89.5±1.3 89.8±1.8 89.5±2.0 89.2±1.4

DirSwitch-1 50.0±2.3 51.5±1.7 54.2±1.7 56.1±2.1 55.4±1.5 66.4±3.3 69.5±3.4 74.9±2.9 75.7±2.3 75.4±2.6 83.7±2.2 84.1±1.8 88.3±2.1 87.5±2.0 89.7±1.5
DirSwitch-2 52.4±2.1 52.8±2.0 55.2±2.0 55.9±2.1 55.5±1.9 73.6±2.8 74.0±3.1 74.9±2.7 72.6±2.5 70.1±2.7 87.6±2.1 88.3±2.0 89.5±1.8 87.8±1.8 90.0±1.6
DirSwitch-3 54.2±1.9 54.6±1.6 54.9±1.9 56.2±1.7 56.0±2.2 74.8±3.0 74.6±2.7 70.5±3.0 66.2±3.0 63.9±3.3 88.8±1.7 89.4±1.6 89.7±1.6 89.7±1.4 90.0±1.9

Edge directions CoCite Pubmed Cora (subelj)
Geom Pois Geom-U Binom-3 Geom-4 Geom Pois Geom-U Binom-3 Geom-4 Geom Pois Geom-U Binom-3 Geom-4

Default 37.6±0.5 38.2±0.6 38.9±0.6 38.9±0.5 38.9±0.5 71.2±0.7 71.0±0.7 71.3±0.6 70.7±0.7 69.9±0.7 55.8±0.9 55.8±0.8 56.4±0.8 56.5±0.8 56.3±0.6

Undirected 44.7±0.5 45.7±0.4 46.4±0.5 47.7±0.6 47.3±0.5 81.5±0.6 81.8±0.6 81.6±0.6 82.1±0.6 81.5±0.7 65.1±0.7 65.7±0.8 66.1±0.8 66.4±0.8 66.3±0.7

MultiDir-1 38.8±0.6 39.3±0.6 40.0±0.5 40.1±0.5 40.3±0.5 71.5±0.6 71.0±0.6 70.2±0.7 68.9±0.7 68.4±0.8 55.5±0.7 55.6±0.9 55.5±0.7 55.3±0.7 55.3±0.9
MultiDir-2 41.5±0.6 42.3±0.5 42.9±0.7 44.0±0.5 44.0±0.5 76.2±0.6 76.0±0.7 75.1±0.7 74.4±0.8 74.1±0.6 58.1±0.7 58.6±0.6 58.6±0.8 58.7±0.7 58.9±0.7
MultiDir-3 42.3±0.5 43.2±0.5 44.3±0.5 45.9±0.4 45.6±0.3 78.3±0.6 78.0±0.7 77.0±0.7 76.7±0.8 75.9±0.7 58.8±0.9 59.3±0.9 59.0±0.7 58.8±1.0 59.7±0.8

DirSwitch-1 44.3±0.5 45.4±0.4 46.2±0.5 47.8±0.5 47.3±0.6 81.1±0.7 81.3±0.6 81.2±0.6 81.5±0.6 80.6±0.7 63.4±0.8 64.2±0.7 64.6±0.8 65.3±0.7 65.0±0.7
DirSwitch-2 43.1±0.6 44.5±0.5 45.4±0.4 48.0±0.4 46.8±0.5 80.8±0.6 81.0±0.7 80.5±0.6 80.9±0.7 80.0±0.6 61.1±0.8 62.4±0.7 62.6±0.8 64.0±0.8 63.4±0.8
DirSwitch-3 41.8±0.5 43.5±0.5 44.5±0.5 47.1±0.5 46.3±0.5 80.1±0.7 80.4±0.7 80.0±0.7 79.8±0.6 78.6±0.7 58.0±0.7 59.6±0.7 60.1±0.8 61.0±0.9 61.2±0.8
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Table 19: Relative improvements in node classification accuracy for proximity ReachNEs with p = 512. The
values reflect the maximum accuracy for per row and dataset in Table 18. The top row displays absolute
accuracies for the default edge directions, with standard deviations expressed as percentages. The subsequent
rows present the relative improvements compared to the top row. The table is structured with the three
denser graphs on the left and the three sparser graphs on the right.

Edge directions Flylarva EU-Email Polblogs CoCite Pubmed Cora (subelj)

Default 49.8±4.1% 70.4±4.8% 85.6±2.6% 38.9±1.4% 71.3±0.9% 56.5±1.4%

Undirected +10.7% +7.8% +2.0% +22.4% +15.1% +17.7%

MultiDir-1 +5.4% +4.9% +3.2% +3.5% +0.3% -1.5%
MultiDir-2 +6.8% +6.8% +4.6% +13.1% +6.9% +4.4%
MultiDir-3 +9.8% +7.1% +4.8% +17.8% +9.8% +5.8%

DirSwitch-1 +12.8% +7.6% +4.8% +22.9% +14.3% +15.6%
DirSwitch-2 +12.4% +6.5% +5.1% +23.2% +13.5% +13.4%
DirSwitch-3 +12.8% +6.4% +5.1% +20.9% +12.7% +8.3%

Table 20: Community detection normalized mutual information (NMI) scores for proximity ReachNEs with
p = 512 embedding dimensions. Columns correspond to different datasets and multi-scale walk length
distributions, while rows represent various edge direction specifiers. The values denote average NMI with
standard deviations. Bold blue highlights the best results in each column, with light blue indicating results
within one standard deviation. Similarly, bold orange marks the worst results, with light orange showing
values within one standard deviation of the lowest performance.
Edge directions Fly Larva EU-Email Polblogs

Geom Pois Geom-U Binom-3 Geom-4 Geom Pois Geom-U Binom-3 Geom-4 Geom Pois Geom-U Binom-3 Geom-4

Default 54.2±0.5 55.0±0.4 55.7±0.4 56.1±0.4 56.2±0.3 51.6±3.0 60.7±1.1 59.7±1.1 61.2±1.0 61.3±0.9 5.8±11.0 11.3±15.3 15.1±17.9 13.3±18.4 18.1±18.7

Undirected 54.9±0.4 56.1±0.3 56.5±0.3 57.7±0.3 57.7±0.4 56.4±4.9 64.4±1.5 65.8±1.2 64.5±1.0 65.3±0.8 16.9±17.6 21.3±12.7 25.7±15.8 28.2±16.6 30.1±17.9

MultiDir-1 55.3±0.5 56.0±0.4 56.6±0.5 56.7±0.5 57.2±0.3 57.9±2.0 60.4±1.9 61.9±1.0 63.0±1.1 63.1±0.8 25.8±14.9 35.0±13.3 36.8±10.5 34.6±12.2 38.7±12.4
MultiDir-2 56.4±0.4 57.1±0.3 57.6±0.4 57.3±0.4 58.0±0.3 61.8±1.2 65.0±1.4 65.1±0.8 65.1±0.6 64.2±0.4 40.2±17.5 47.1±10.8 44.7±15.3 41.8±14.5 45.8±10.3
MultiDir-3 57.0±0.5 57.7±0.4 58.4±0.4 57.6±0.3 58.3±0.2 64.0±0.8 66.5±0.8 64.7±0.5 60.0±0.6 58.6±0.6 27.0±16.6 41.9±17.1 43.3±16.2 46.7±10.4 45.1±14.5

DirSwitch-1 55.5±0.3 56.6±0.5 57.2±0.3 58.2±0.4 58.2±0.4 59.8±2.3 64.0±1.4 65.0±1.1 64.9±0.9 65.6±0.6 17.5±13.3 23.8±15.5 31.2±17.9 25.7±16.1 26.8±16.8
DirSwitch-2 56.4±0.4 57.2±0.4 58.0±0.3 58.9±0.4 59.0±0.3 62.8±1.3 66.0±1.0 65.8±0.8 65.3±0.8 64.7±0.5 23.0±15.6 30.2±16.3 32.8±18.1 29.5±17.8 29.8±17.3
DirSwitch-3 57.1±0.4 57.8±0.4 58.9±0.3 59.2±0.3 59.8±0.4 64.0±0.9 66.7±0.6 65.0±0.5 60.4±0.5 59.3±0.8 27.3±17.3 45.4±16.7 32.9±16.6 29.3±16.3 30.5±15.5

Edge directions CoCite Pubmed Cora (subelj)
Geom Pois Geom-U Binom-3 Geom-4 Geom Pois Geom-U Binom-3 Geom-4 Geom Pois Geom-U Binom-3 Geom-4

Default 14.9±2.3 16.7±1.7 17.0±1.5 17.1±1.8 17.2±2.2 2.7±0.9 2.7±1.0 2.7±1.0 2.4±0.6 2.6±1.3 31.4±1.1 31.8±0.8 32.2±0.7 33.7±0.7 33.3±0.6

Undirected 20.4±1.1 22.4±1.0 23.9±1.0 28.0±0.5 26.7±0.9 11.9±4.1 15.4±2.9 17.7±2.4 21.6±4.0 20.6±3.0 43.2±0.4 45.9±0.4 46.8±0.4 49.8±0.2 48.6±0.3

MultiDir-1 16.7±0.6 17.3±0.5 17.9±0.7 19.3±0.6 18.7±0.6 4.5±1.2 4.6±1.4 4.9±1.4 5.1±1.5 5.8±0.8 31.5±0.8 31.7±0.9 31.9±0.6 33.0±0.7 32.4±0.5
MultiDir-2 18.1±0.7 19.2±0.6 20.1±0.7 22.6±0.6 22.4±0.4 5.7±1.4 6.2±1.3 6.6±1.1 7.7±1.4 7.5±1.0 35.8±0.8 36.4±0.8 35.6±0.7 36.2±0.5 35.7±0.7
MultiDir-3 18.9±0.9 20.2±0.9 21.6±0.6 23.9±0.7 23.5±0.4 6.9±2.1 8.0±2.1 8.2±1.5 9.6±1.7 8.1±0.6 36.8±0.7 38.5±0.5 37.7±0.5 37.8±0.5 38.1±0.6

DirSwitch-1 19.8±1.2 21.8±1.0 23.4±1.2 28.8±0.9 27.8±1.0 12.0±3.9 14.4±2.8 15.1±2.0 21.3±3.8 18.7±3.0 43.0±0.4 45.3±0.5 46.0±0.4 49.6±0.3 48.1±0.3
DirSwitch-2 19.7±1.2 21.3±1.0 24.0±1.3 29.6±0.7 27.7±0.8 8.8±3.2 12.1±2.3 11.8±2.4 19.0±4.1 15.3±3.3 41.9±0.6 44.1±0.4 44.7±0.6 47.9±0.3 46.5±0.3
DirSwitch-3 18.5±0.9 21.1±1.0 23.9±1.1 29.3±0.7 28.0±0.5 8.9±3.1 11.0±2.5 10.5±3.1 17.3±2.9 13.6±3.3 38.5±0.5 41.7±0.5 41.7±0.4 44.6±0.3 43.6±0.3
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Table 21: Community detection normalized mutual information (NMI) scores for proximity ReachNEs with
p = 1024 embedding dimensions. Columns correspond to different datasets and multi-scale walk length
distributions, while rows represent various edge direction specifiers. The values denote average NMI with
standard deviations. Bold blue highlights the best results in each column, with light blue indicating results
within one standard deviation. Similarly, bold orange marks the worst results, with light orange showing
values within one standard deviation of the lowest performance.
Edge directions Fly Larva EU-Email Polblogs

Geom Pois Geom-U Binom-3 Geom-4 Geom Pois Geom-U Binom-3 Geom-4 Geom Pois Geom-U Binom-3 Geom-4

Default 52.9±0.5 54.3±0.5 55.0±0.4 55.6±0.4 55.7±0.4 54.0±1.8 59.1±1.6 60.0±1.3 62.1±1.3 60.5±1.0 11.1±15.3 13.8±17.9 16.4±18.4 12.4±18.3 13.3±18.0

Undirected 54.0±0.6 55.7±0.4 55.9±0.3 57.5±0.4 57.5±0.3 55.2±2.6 63.5±1.1 63.8±1.3 63.8±0.9 64.6±0.9 11.8±15.9 25.5±19.7 24.0±16.0 22.3±17.7 28.4±18.2

MultiDir-1 54.4±0.5 55.4±0.5 55.9±0.4 56.5±0.4 56.8±0.4 51.9±4.1 61.5±1.7 62.1±1.1 62.5±1.0 63.0±1.0 20.3±18.5 29.6±13.7 28.0±15.1 36.1±15.6 38.2±14.3
MultiDir-2 55.7±0.4 56.6±0.3 57.0±0.4 57.1±0.4 57.6±0.4 59.3±1.7 63.1±1.5 64.3±1.2 65.8±0.9 65.9±0.8 33.8±21.7 41.8±17.2 36.0±19.3 43.6±15.3 45.9±13.5
MultiDir-3 56.3±0.5 57.1±0.3 57.6±0.3 57.7±0.4 58.3±0.4 61.9±1.5 65.8±1.0 65.7±0.9 65.5±0.5 64.3±0.6 28.3±17.9 43.6±17.8 41.7±19.4 48.5±11.1 45.0±15.4

DirSwitch-1 54.7±0.4 56.2±0.4 56.7±0.3 57.8±0.3 57.9±0.3 53.6±5.3 64.5±1.3 65.0±1.3 64.7±1.1 65.0±1.3 11.2±14.1 22.0±13.7 23.9±15.2 29.5±18.0 25.6±15.9
DirSwitch-2 55.6±0.4 56.6±0.5 57.3±0.4 58.5±0.4 58.5±0.3 59.5±1.8 63.3±1.3 64.7±1.1 65.0±0.8 65.7±0.7 16.2±14.5 23.2±13.3 31.7±17.8 27.9±16.9 28.8±17.2
DirSwitch-3 56.5±0.3 57.2±0.3 58.0±0.3 58.9±0.3 59.2±0.3 62.4±1.7 65.7±1.1 65.8±0.8 65.2±0.5 64.6±0.7 23.3±15.4 35.5±18.0 31.9±18.7 38.4±17.4 27.7±17.6

Edge directions CoCite Pubmed Cora (subelj)
Geom Pois Geom-U Binom-3 Geom-4 Geom Pois Geom-U Binom-3 Geom-4 Geom Pois Geom-U Binom-3 Geom-4

Default 14.7±3.0 17.1±1.5 15.7±2.7 17.4±1.5 16.7±2.7 2.7±0.9 2.5±1.0 2.8±1.1 2.4±0.9 2.3±0.9 30.5±1.6 30.9±1.4 31.7±0.8 33.8±0.7 33.3±0.9

Undirected 20.0±1.3 22.7±0.8 23.4±1.1 27.6±0.8 26.2±1.0 10.8±2.9 15.0±3.2 16.5±3.8 21.1±4.1 20.6±2.7 42.9±0.6 45.6±0.5 46.4±0.4 49.8±0.3 49.0±0.4

MultiDir-1 17.0±0.6 17.2±0.7 17.7±0.6 19.6±0.5 19.2±0.5 3.8±1.9 4.3±1.6 5.1±1.5 5.6±1.8 5.4±1.8 31.6±0.9 31.5±1.1 31.6±0.9 33.0±0.8 32.6±0.7
MultiDir-2 18.2±0.5 19.3±0.6 20.1±0.7 22.8±0.5 22.1±0.7 5.1±1.7 6.8±1.2 6.4±1.1 7.2±2.3 7.1±1.6 36.7±0.8 37.0±0.8 36.2±0.7 37.1±0.7 36.4±0.6
MultiDir-3 19.2±0.9 20.0±0.8 21.0±0.6 24.1±0.6 23.4±0.4 6.6±1.6 7.2±1.4 8.1±1.8 10.7±1.7 8.8±1.5 38.8±0.6 39.8±0.5 39.3±0.5 39.4±0.5 38.9±0.4

DirSwitch-1 19.3±1.3 21.6±0.9 22.8±1.0 27.6±1.0 26.8±1.1 11.1±4.0 14.3±3.0 15.5±3.6 21.7±3.2 19.6±3.3 42.7±0.5 45.1±0.4 46.4±0.4 49.7±0.3 48.4±0.3
DirSwitch-2 19.3±1.0 21.1±1.0 23.6±0.8 28.6±1.2 27.5±1.2 10.3±3.8 13.2±3.2 13.9±2.5 21.2±4.1 17.5±3.9 42.4±0.4 44.6±0.4 45.5±0.3 49.3±0.2 47.8±0.2
DirSwitch-3 19.3±1.2 21.0±1.0 23.6±1.3 29.4±0.6 27.5±0.6 8.7±3.3 10.8±2.8 11.3±2.6 19.2±3.5 14.3±3.3 40.9±0.5 43.3±0.4 44.1±0.5 47.8±0.3 46.2±0.3

Table 22: Community detection normalized mutual information (NMI) scores for proximity node em-
bedding models. Bold indicate the top NMI scores, and results within one standard deviation, for each
dataset. Average and standard deviations are calculated over 10 different k-means initialisaions, and 5
different random seeds for the embedding models.

Model Fly Larva EU-Email Polblogs CoCite Pubmed Cora (subelj)

HOPE1 46.3 ± 0.8 19.9 ± 0.5 9.4 ± 1.3 2.3 ± 0.4 0.4 ± 0.2 12.4 ± 1.1
APP2 54.9 ± 0.4 68.7 ± 1.0 41.0 ± 12.9 31.7 ± 0.6 23.9 ± 0.2 50.0 ± 0.3
NERD3 50.8 ± 0.4 50.0 ± 1.5 15.1 ± 16.4 3.3 ± 0.0 4.9 ± 4.6 22.0 ± 0.6
DGGAN4 35.2 ± 0.7 21.1 ± 0.4 1.4 ± 0.0 3.6 ± 0.0 0.2 ± 0.1 4.2 ± 0.0
BLADE5 54.3 ± 0.8 42.5 ± 1.2 19.6 ± 9.6 4.1 ± 0.6 0.6 ± 0.4 9.3 ± 0.6

DirSwitch 59.6 ± 0.7 65.0 ± 0.7 26.8 ± 16.4 27.8 ± 0.9 21.6 ± 3.8 49.7 ± 0.3
1 Ou et al. (2016) 2 Zhou et al. (2017) 3 Khosla et al. (2020) 4 Zhu et al. (2021b) 5 Virinchi & Saladi (2023)
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