Planning with Generative Cognitive Maps

Jeffrey Qin; Albert Yang* & Cole Wyeth Ziheng Xu
Computer Science Dyson School of Applied Economics & Mgmt
University of Waterloo Cornell University
{jzqin,aj5yang, cwyeth}@uwaterloo.ca zx3420cornell.edu
Kevin Ellis Marta Kryven
Department of Computer Science, Computer Science, Dalhousie University
Cornell University and Brain and Cognitive Sciences, MIT
kellis@cornell.edu marta.kryven@dal.ca
Abstract

Planning relies on cognitive maps — models that encode world structure given cog-
nitive resource constraints. The problem of learning functional cognitive maps is
shared by humans, animals and machines. However, we still lack a clear un-
derstanding of how people represent maps for planning, particularly when the
goal is to support cost-efficient plans. We take inspiration from theory of com-
positional mental representations in cognitive science to propose GenPlan: a
cognitively-grounded computational framework that models redundant structure
in maps and saves planning cost through policy reuse. Our framework integrates
(1) a Generative Map Module that infers generative compositional structure and
(2) a Structure-Based Planner that exploits structural redundancies to reduce plan-
ning costs. We show that our framework closely aligns with human behavior,
suggesting that people approximate planning by piecewise policies conditioned
on world structure. We also show that our approach reduces the computational
cost of planning while producing good-enough plans, and contribute a proof-of-
concept implementation demonstrating how to build these principles into a work-
ing system.

1 Introduction

People are highly proficient in solving real-world planning problems. For example, we can navigate
cities without precisely knowing every link in the street network (Fig. [Th.)[Bongiorno et al.l 2021]
and accomplish complex construction projects (Fig. [Tp.) with many actions and sub-goals [Mugan
et al.| [2024]. Solving these problems optimally is theoretically intractable [Kaelbling et al., |1998],
and therefore approximate algorithms for planning in natural domains remain an active area of re-
search in Al [Silver and Veness|, | 2010], robotics [Curtis et al.,[2025]], and cognitive science [Kryven
et al., 2024} lvan Opheusden et al., [2023]]. Here, we seek to uncover cognitive computations that
enable humans to plan efficiently in natural domains. To do this, we focus on the key intuition that
the human world is structured (Fig[Ik,d) and propose that people reason about redundancies in this
structure to efficiently encode cognitive maps, and reduce planning costs. We formalize this hypoth-
esis in GenPlan, a computational model that gives an algorithmic account of how structure-based
planning can be implemented in practice.

Formally, a planning problem constitutes a search within a decision tree that describes possible
states and actions [Kuperwajs et al., |2025] [Russell and Norvig, [2016]. This tree can be encoded

*Equal contribution.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

San-Francisco layout, (Bongiorno et al. 2021) Building a tower from 14,000 blocks Structure in natural environments Casa di Pansa, Pompei (50 BC - 79AD)

Figure 1: Structured human environments: city street networks, construction projects, natural land-
scapes, and an interior floor-plan with repeating structural elements highlighted. People learn mental
world-models that exploit this structure to make resource-efficient plans.

as a learned neural policy [Liu et al., 2020], an explicit tree structure [Russell and Norvigl 2016
Silver and Veness| [2010]], or a model describing states and actions in a symbolic form [Tang et al.

2024]. The size of the underlying state-space determines the computational cost of the problem,
or how difficult it should be. Since optimal planning beyond non-trivial state-spaces is intractable,
approximate planning frameworks have focused on building partial state-spaces [Silver and Veness,
[2010], learning generalizable policies [Curtis et al., 2022 [Singh et al., 2012]], and grouping actions
frequently performed together into options [Sutton et al.,[1999]]. However, the difficulty predicted by
these approximate planning algorithms rarely aligns with human experience, as people often solve
formally complex real-world problems with relative ease.

We take inspiration from the theory of compositional concepts in cognitive science, which states
that humans learn complex concepts by combining simpler ones [Fodor,[1975] [Lake and Piantadosi,
2020|, [Pitt et al.,[2021]], and adapt the principle of compositionality to model human cognitive maps
and plans as generative structures. Compositionality has been successful in explaining concept
representation in visual [Lake and Piantadosil, 2020, [Tian et al.,[2020], auditory [Verhoef et al.,[2014
Rohrmeier| 2020} [Hofer et al., 2021]] and spatial domains [Sharma et al., 2022, McCarthy et al.
2021]]. Further, compositional reasoning is culturally universal 2021]], suggesting that
it may be an evolved adaptation to natural structure people encounter in daily life
[2022]). Neural and behavioral studies provide ample evidence that cognitive maps are represented
using similar compositional generative structures. Neural evidence from human studies includes
mirror-invariant encoding of natural scenes and reuse of neural reference frames
across similar environments 2014]. Behavioral evidence includes hierarchical
spatial representations [Kosslyn et al., [1974], [Stevens and Coupel, [1978], [Hirtle and Jonides), [T985]]
reflected in first planning routes between, and then within semantic regions [Bailenson et al., 2000
Newcombe et al.}[1999] Wiener and Mallot, 2003} [Wang and Brockmolel 2003} [Balaguer et al.,[2016
Tomov et al.| [2020], and ability to predict unseen environment layout in structured environments
[Sharma et al.} 2022]].

In formal terms, combinatorial concept representations can be modeled by mental programs — sym-
bolic instructions specifying how to produce new instances of a given concept class
2013| [Lake and Piantadosi, [2020]]. Computational accounts of concept learning as program induc-
tion (inferring a program from a given a set of examples) provide powerful explanations of human
learning efficiency — only a few examples can suffice to deduce an underlying program, in contrast to
vast amounts of data required by purely neural models [Tenenbaum et al, 2011}, [Lake et al., 2013].
Building on this research, we model cognitive maps as generative programs that capture structures
such as symmetries and repeated parts, and propose an algorithmic framework that models cost-
efficient planning in such maps by reusing local policy conditioned on structure, instead of solving
a global optimization problem.

In this work we adopt a scientific and an engineering goal: (1) to understand computational cognitive
principles by which humans plan in structured spatial domains, and (2) to engineer a cost-efficient
computational framework that formalizes human-like planning in structured environments. We con-
tribute:

* Generative Map Module (GMM), which discovers programmatic map representations us-
ing tractable inference;

a. b.

Walls block
movement and —> |Eus
visibility

Your character

You can move
using arrow keys
on your keyboard

White cells are
open and visible

The exit is
hidden in one of
the black cells

C.

eooe.
oo
oo
oo
eooe:
eooe
oo
eooe

ooee.
eoee!

eooe.
eoce!
eoce:
eooe:
eoce.
eoce.
oo
eoee

Figure 2: The Maze Search Task with structured layouts. (a.) Task Setup illustrated in a simple
example. Participants can use keyboard keys to navigate over any non-wall cells. The exit is initially
hidden in one of the black (unobserved) cells. (b) The exit is shown as a red tile when it comes into
view. (c) A subset of structures environment layouts used to evaluate GenPlan and compare its
performance to that of a Naive POMCP. The dots denote floor cells through which participants can
move. Red dots denote structural unit boundaries.

* Structure-Based Planner (SBP) that implements hierarchical planning both within and be-
tween the structural units

» Empirical validation of our framework on human behavior, showing that human planning
is consistent with generative cognitive maps and policy reuse.

The GMM models observations of the environment by inferring a small distribution over program-
matic maps. To do this, we use a Large Language Model (LLM) as an embedding of human priors
learned through training on human data. The SBP extends a Partially Observable Markov Decision
Process (POMDP) to use the GMM representation. It constructs end-to-end policies for within-
unit planning and between-unit transitions using adaptations of a Partially Observable Monte Carlo
Planner (POMCP). In the next section, we introduce the experimental environment, followed by a
detailed description of computational models. In Section [3} we compare our models’ predictions
with human empirical results.

2 Methods

2.1 Structured Spatial Domain

We examine people’s planning strategies by adapting a version of Maze Search Task (MST) pre-
viously used to study human behavior in spatial navigation domains [Kryven et al} 2024} 2021},
Geva-Sagiv et al., [2025]. The objective of MST is to navigate a series of partially observable, two-
dimensional grid-worlds, finding exits hidden in each. Each environment has only one exit. The
environments are partially observable, with the exits initially placed at a random unobserved loca-
tion (black cells). Fig[2] shows a simple MST environment seen by participants during one of the
practice trails El People navigate by using their keyboard keys to move to any unoccupied grid cells
adjacent to their character (a round avatar). The black hidden cells are revealed when they come
into the avatar’s line of sight. When revealed, the exit becomes visible as a red tile. As soon as
the character moves over the exit, the trial ends. In our adaptation of MST all mazes are structured,
and contained between 2 and 20 repeating structural units. The units may have occurred as reflected
or rotated instances, where the structured area comprised between 80 - 100% of the environment
layout.

3A demo is available here: http://18.25.132.241/fragments/int_exp.php

http://18.25.132.241/fragments/int_exp.php

2.2 Computational Models

Decision making under partial observability can be modeled by a partially observable Markov deci-
sion process (POMDP). Equivalently, it can be viewed as a fully observable search through a space
of beliefs, where each belief is a probability distribution over possible states. Solving POMDPs is
notoriously hard [Madani et al., [2003|], hence understanding how people approach these problems
holds deep importance for cognitive science and Al

Formally, a POMDP is a tuple (A(S), A, 7,7, by, y), where A(S) is the space of probability distri-
butions over a state space .S, A is the set of actions, T is the belief update function, r is the reward
function, by is the initial belief, and -y is the discount factor. The belief state evolves deterministically
via 7, reflecting both the agent’s actions and observations.

In this work, each state s € S is represented as an N x M grid whose cells are labeled
{wall, empty, exit, agent}. The overall state space S consists of all such grids containing exactly
one agent and one exit. A belief b € A(S) is thus a probability distribution over these grids, en-
coding the agent’s uncertainty about the true state. Initially, by assumes that the agent and the walls
are known, while the exit is uniformly distributed over all valid, unseen cells. The action space A
contains four possible movements (up, down, left, right). Observations o € O reveal the visible
subset of the grid around the agent, with each visible cell labeled {wall, empty, exit}, and any cell
outside the agent’s visibility range r labeled as unseen. Observations are consistent with the grid
structure of the true state s € S.

The belief update function 7 is given by

b(s') o« Z(o|s') Y T(s',a,5)b(s),
seS

where T'(s',a,s) is the transition function, and Z(o | s’) is the observation likelihood. The
transition function T'(s’,a,s) specifies the probability of transitioning to state s’ from s after
executing action a. Here, actions that would move the agent into a wall result in the agent remaining
in its current position, and transitions to an exit state terminate the process. The observation
function Z(o | s) encodes the likelihood of observing o given s’, where observations reflect the
visible subset of the grid within range r of the agent’s position. Visibility is blocked by walls, such
that cells beyond a wall are labeled as unseen. Finally, the reward function (b, a) is the expected
reward under the belief b. Since the agent can always see an exit before reaching it, r(b,a) = 1 if
action ¢ leads the agent to a known exit and 0 otherwise.

Expected Utility The optimal policy for this POMDP can be found through a belief space tree
search [Kaelbling et al, [1998]]. The search is conducted over a tree where each node represents
a belief b € A(S), and edges correspond to action-observation pairs (a,0). Starting from the
root node by, the tree expands by simulating actions ¢ € A and updating beliefs using the belief
update function 7. For each action a, the agent considers all possible observations o € O, with the
likelihood of each observation determined by the observation function Z (o | s’). At each node, the
value of a belief is computed recursively using the Bellman equation:

V(b) = Igleaj(r(b,a) + ’y(;P(o | b,a)V(7(b,a,0))], (D

where P(o | b,a) is the probability of receiving observation o after taking action a under belief
b. The optimal policy 7* is derived by selecting the action at each belief node that maximizes the
expected value. See [Kryven et al.| 2024 for further details on this implementation, which was used
as a model of human planning in MST in prior work.

Although this is the optimal strategy, human behavior has previously been shown to diverge at
times from its predictions [Kryven et al., [2024]], where the extent of this divergence varies between
individuals in a way that can be explained by the amount of cognitive resources people allocate
to planning [Kryven et al.l [2021]]. Previous work with MST, as well as with related non-spatial
planning tasks [Huys et al [2015], has found that people’s divergence from the optimal trajectories
is most readily explained by a limited planning horizon (discount factor v < 1 in Equation [I). In
the the remainder of this section we describe alternative computational hypotheses for how humans
could make decisions in this environment by reasoning about structural patterns.

b Human solution and
Score, refine Reconstructed .
generative map

- Input:
observed environment

Completion 1
GMM

Program
induction of
generative
structure

_—

Completion 2

DepthPlan and Naive-POMCP
(globaly optimal solution)

|

sampled fragments

i R

-Based planner
integrates within and
between unit policy

[0

Completion n

Figure 3: Model Architecture and predictions. (a) The GenPlan Framework. GMM recovers a small
distribution over generative maps based on input (a partial observation of the ground truth map).
Each generative map constitutes a set of candidate units coupled with a program for reconstructing
the input from them. We assign a likelihood to each generative map, and pass the most likely
reconstruction to SBP. SBP plans a policy once for each structural unit. (b) A human solution to
the given example agrees with prediction of GenPlan (top panel). Arrows indicate the participant’s
path. The path predicted by alternative models DepthPlan and Naive-POMCP (bottom panel) instead
optimizes the global policy. Green highlighting shows discriminating decisions.

Generative Structure-Based Framework (GenPlan) Next, we describe a modeling framework
that formalizes planning strategies conditioned on automatically discovered latent structure of the
state-space. Our model consists of two modules: a Generative Map Module (GMM) and Structure-
Based Planner (SBP). See Fig[3|for a high-level overview of this architecture. The GMM recovers
a programmatic representation of the observed state-space as a composition of structural units. The
SBP then uses a planner to plan a piece-wise policy once per-unit, in contrast to a global policy, sav-
ing computing costs. Importantly, this reconstructed programmatic representation is a cognitively-
inspired state-space compression. While such a reconstruction may match the ground-truth planning
state-space, it does not need to be exact as long as it is sufficient to serve the agent’s goals [Ho et al.,
2022]. In theory, the cognitive principle of combining automatic structure discovery with structure-
aware planners can apply to any domain, as a proof of concept here we focus on spatial tasks.

Generative Map Module (GMM) Let I be the global partially observed input grid map of cells
S;1. Here, we assume that I specifies all wall locations, however, in the general case, it can be any
initial partial observation.

The GMM implements approximate inference of a posterior distribution p(M|I) over cognitive
maps M that partition I into structural units M = {U; }™ . We use LLM-based program synthesis
with GPT4 to search for programs that generate M based on I (Fig. [3). To do this, we prompt LLM
to identify redundant units in the input map, and synthesize a Python program that approximately
reconstructs the input from them. The prompt includes Python code with functions describing ad-
missible transformations, as well as a likelihood function for a given M. In our implementation the
input map I is a grid-world, specified by an numerical array, where each grid cell is associated with
a number (e.g. wall=1, floor=0). The reconstructions M do not allow overlapping units, and allow
any units that repeat in I at least twice.

To develop a space of possible map representations, we estimate the likelihood of each candidate
M by a weighted combination of grid-level similarity, a function of total information in a candidate
unit, and the Minimum Description Length (MDL) principle [Rissanen,|1978]. MDL penalizes each
unit occurrence by the bits necessary to specify the map reconstruction: their locations (effectively,
the number of copies), rotations and reflections. This means that reconstructions made up of many
smaller pieces are less likely than reconstructions made up of bigger ones. The function of total
information in a unit ensures that the selected units are neither trivial (e.g., uniform blocks of cells
made up of either walls or open space) nor noise, by defining an inverted-U relationship between
likelihood and informativeness [Kidd et all 2012]]. This treats large units where perception is
subject to information bottleneck constraints as less likely [Cheyette and Piantadosi, 2020]]. Overall,
this likelihood function can express a weighted preference for (1) more accurate reconstructions,
(2) simple generative programs (where the programs use primitives transformations and symmetries

relevant to planning), and (3) simpler units. To form the posterior p(M|I), we use the likelihood:

WAy (How = 3)?
1) 5 72 303 a) = O =l M+ (- 0)

where d, d, are input dimensions, O is the output (reconstructed map), and w; are weights asso-
ciated with reconstruction accuracy, map complexity, and unit complexity — free parameters of the
model. We define the total entropy in the unit as Hya = dzdy - (—plogy p — (1 — p) logy (1 — p)),
where p is the fraction of 1’s in the array, and free parameter J reflects the processing bottleneck, in
line with perceptual models explored in prior work [[Cheyette and Piantadosi, 2020, Kryven et al.,
2024]). This definition ensures that the information term next to ws reaches a maximum of 1 when
Ho1 = B, but decays to 0 on both sides of this maximum. In the general case, input I and output
O are real-valued 2D image arrays. In our current implementation input I takes values 0 and 1,
and the output 0 < O(x,y) < 1. Instead of using the raw Python program for A to measure its
complexity, we use a compressed encoding of the units and their transformations used to reconstruct
the map. Here, compressing LLM-generated output and transformations is analogous to refactoring
the synthesized programs. As the length of LLM-synthesized code may be noisy, due to injected
comments and code redundancies, refactoring the output obtains a denoised metric of complexity.

The posterior p(M|I) defines how the environment structure is encoded into memory. The free
parameters w;, 3 balance reconstruction accuracy against the complexity of the generative structure
and planning costs. In the general case, the framework can maintain a distribution over generative
maps, and switch between them at execution time to resolve local observations. In our proof-of-
concept implementation we make a simplifying assumption to use the most likely generative map
in the SBP module for generating a policy. Fig[3| shows a simple example with structural units
highlighted in red. Bigger examples designed in our simulation experiment are shown in Fig[2}

Structure-Based Planner (SBP) Implementing SBP integrates planning within and between
structural units. Since finding an exact solution is intractable due to the size of the problem [Kael-
bling et al., [1998]], we solve planning within a unit by searching through the belief space using
an approximate online Partially Observable Monte Carlo Planner (POMCP) [Silver and Veness)
2010]. A plan in-between units consists of leaving the current unit and transitioning to the next one.
We solve the former by adapting Monte Carlo Tree Search (MCTS), and introducing an optimistic
heuristic valuation for open cells around the boundary of a unit (i.e. cells through which we can exit
the unit). Upon completing a plan for the current unit, this heuristic should encourage us to leave
the unit in the direction that minimizes the expected global cost of reaching the exit. In the general
case, this can be any heuristic that does not overestimate the true cost. Here, we compute the values
of boundary cells as inversely proportional to the average of manhattan distances to the remaining
external unobserved cells, hence assigning a higher value to cells that are on average closer to the
remaining unseen parts of the map. We solve the transition to the next unit using a POMCP on the
global map, but implement the option to switch to within-unit planning upon reaching the new unit.
Here, we evaluate the option by estimating the average per-step cost to plan within the unit. This
value scales with the complexity of the unit, and is optimal when a reusable policy can be applied.

2.3 Computational Hypotheses

We compare human performance to the hypotheses (planing algorithms) to evaluate whether and
how human planning implements the two computational steps outlined by GenPlan.

1. Structure-Naive Planner (Naive-POMCP): The model doesn’t use generative maps, and
plans by optimizing a global policy for the environment.

2. Structure-Naive Planner With Cognitive Constraints (DepthPlan) The model doesn’t
use generative maps, and plans by optimizing a global policy that discounts future states
to model limited planning depth. This model was previously used to describe how people
plan in MST [Kryven et al.l 2024].

3. A Generative Planner (Gen-POMCP): The model uses generative maps, and plans a
reusable policy based on the most likely map from the distribution of induced maps p(M|I)
(see Fig. [3h and b).

Naive-POMCP uses an approximate POMCP planner designed for large partially-observable state-
spaces. It was previously used to model human planning in large domains, although this work did
not examine the effect of environment structure on human plans [Sharma et al.| 2022]]. DepthPlan
is consistent with prior work that models human deviations from optimal cost minimization by
limited planning horizon, without modeling environment structure [Kryven et al., 2024, Huys et al.,
2015]. Since DepthPlan internally computes an optimal policy, it can only be applied to smaller
environments (generally 6 or fewer structural units, see Experiment 1). Only the third hypothesis is
consistent with the two computational steps proposed by the GenPlan framework: it represents maps
as generative programs, and uses this structure to plan a reusable policy, reducing planning costs.

3 Experiments

We first test whether people use structure to reduce computational costs of planning, as implemented
by Gen-POMCEP, in contrast to DepthPlan — the state-of-the-art model of planning in MST |Kryven
et al.| [2024]] (Experiment 1). For this experiment, we use a set of 20 structured environments at
a scale that can be solved by DepthPlan, in order to compare DepthPlan and Gen-POMCP. A pre-
liminary pilot study revealed a strong effect of structure on planning, leading us to conclude that a
sample of N=30 participants is sufficient to confirm this effect. We then run a simulation experiment
with 10 large environments containing 20-25 units (Experiment 2) to compare the computational
costs of Gen-POMCP and Naive-POMCP, demonstrating that Gen-POMCP requires significantly
fewer computational resources.

3.1 Experiment 1: Behavioral Validation

Procedure The experiment was conducted in a web browser, using the web-interface of MST
[Kryven et al.,|2024]. Before beginning the experiment participant gave informed consent and com-
pleted a series of practice trials, followed by an instruction quiz. Following this, they completed a
variant of MST with structured mazes, with exit locations randomly chosen at the time of design.
After completing the experiment, we administered a post-experiment questionnaire collecting de-
mographic information. As our goal was to observe ecologically-valid planning, we did not offer
performance-based incentives, and simply informed participants that the exit could be in any of the
hidden tiles, and instructed them to find it in each environment.

We recruited 30 (13 female, 17 male, M (age) = 36.7, SD(age) = 13.5) english-speaking partici-
pants on Prolific, who were paid 9£ per hour. None were excluded. On average the experiment took
10 minutes to complete. The experiment was approved by our institution’s IRB.

Behavioral metrics We introduce the following behavioral definitions to quantify people’s align-
ment with the GenPlan framework.

* A set of discriminating decisions D(I) in a given environment I is the subset of all states
in I where Gen-POMCP and Depth Plan predict a different most likely action. That is,
D(I) includes only actions diagnostic of structure-based planning. Fig. |3b illustrates dis-
criminating decisions in a simple example. Unlike the global solution (bottom panel),
Gen-POMCP and most humans search by entering inside the structural units. The cells
highlighted in green are discriminating decisions.

* Modular fraction o(D) defines the fraction of decisions in a given set of discriminating
decisions D that are more likely under Gen-POMCP, compared to DepthPlan. Notably, as
weights w; in equation [2] can tradeoff accuracy against representation and planning costs,
Gen-POMCP can capture flexible strategies that integrate global and local search. For
simplicity, here we assume stable population-level weights that strongly favor structure
over accuracy, meaning that (D) is a conservative estimate of how well Gen-POMCP
explain human behavior.

Results Our results reveal that Gen-POMCP predicts human behavior significantly better than
DepthPlan (Fig. [{). Examination of modular fractions for individuals and environments shows
that people are highly consistent with our model, demonstrating structure-based planning across
all environments and individuals. Across all environments, human behavior is better explained by
Gen-POMCP, suggesting that people approximate planning by piecewise policies conditioned on

2% 1% 1% 194 19

05 o5 o1 08 09 10
P L OLD IO

Modular fraction (individuals) Se7 les 1.5e8 FOLRLOEL IO
Rollouts performed &S S S S S S

Gen-POMCP vs DepthPlan (behavioural experiment) Gen-POMCP vs Naive-POMCP (simulation experiment)

Figure 4: Experiment result shows that Gen-POMCP explains people better than DepthPlan. (a.)
Modular fraction for each environment (b.) The histogram of individual modular fractions per
participant, over all discriminating decisions. (c) The fraction of each environment explored by
Gen-POMCEP across environments (solid line) and Naive-POMCP (dashed lines) as a function of
compute budget (number of MCTS rollouts). (d) The fraction of each environment explored by
Naive-POMCP, if given the amount of MCTS rollouts at which Gen-POMCP fully explores the
given environment. Each bar shows a different environment.

structure, rather than by planning a global policy with a limited depth. Fig. [Bp illustrates the dif-
ference between the models in a simple example. Like Gen-POMCP, the majority of people search
the environment by a trajectory shown in the top panel. However, both the optimal policy predicted
by the Naive-POMCP, and the depth-limited planning as implemented by DepthPlan, predict the
trajectory shown at the bottom — because it allows to quickly reveal a large portion of the global
map.

3.2 Experiment 2: Simulation

Next, we compare the computing resources needed by Gen-POMCP and Naive-POMCP to explore
10 large structured environments (e.g., see Fig. k). As the objective of MST is to find a hidden
exit, each simulation is set up to run until the environment is fully explored (i.e., the exit is not
revealed until the end of the simulation). We compare two quantitative comparisons. For each
environment we compute the fraction of the environment that each model is able to explore given a
certain compute budget (Fig. @), finding that the Gen-POMCP required a much smaller budget to
search the entire environment. FigHk separately shows the fraction of each environment that Naive-
POMCP is able to explore, if given the rollout budget at which Gen-POMCP has searched the entire
environment. In AppendixB| we give a proof that the length of the search trajectories produced by
Gen-POMCP exceeds trajectories produced by Naive-POMCP by a bounded amount, demonstrating
that Gen-POMCEP also produces good enough plans. All environments used in Experiments 1 and 2
are shown in AppendixC]

4 Related Work

Models of Human Planning People make near-optimal plans in natural domains, such as city
navigation [Bongiorno et al.}[2021]], yet often perform sub-optimally in laboratory-based behavioral
paradigms such as multi-arm bandits [Keramati et al.| 2016} [Huys et al., 2015], strategic games [Fer-
reiral [2013]], and sequential decision-making [Unterrainer et al., 2004, Kryven et al.| 2024, |Callaway
et al., 2022]]. Such deviations from optimality are often explained by approximate planning with a
limited planning horizon [Ferreiral, 2013 [Kryven et al,[2024] [van Opheusden et al.} 2023]]. Recent
work [Correa et all,[2025]] examines how people represent policies in programmatic forms that min-
imize description lengths, finding sensitivity to both effort minimization (similar to seeking shorter
search paths) and MDL (shorter programs). Similar to our work, their study found that human plans
heavily favor reuse. Unlike our work, experimental paradigms used in these studies lack the regular
problem-domain structure ubiquitous in the real-world.

Cognitive Maps A recent study found that people form cognitive maps that facilitate planning
2022],, by selectively representing only the goal-relevant parts of the map. Like our work, this
study assumes that human cognitive maps are learned by compressing observations. Unlike our

work, this study uses unstructured maps. A recent study of exploration in structured environments
found that people anticipate environment structure, even when not informed about them in advance
[Sharma et al.}|2022]], and can predict unseen parts of the map. Unlike our work, this study focuses
solely on map prediction, and does not examine the role of cognitive maps in planning. It also relies
on exhaustive enumerative search to discover the underlying map representations, unlike our work
that implements tractable inference using LLM-based program synthesis.

Learning Compressed Policies to Plan. Reinforcement Learning (RL) models express actions
performed together as options [Sutton et al.,|1999], learn families of similar Markov Decision Pro-
cess (MDP) with shared rewards [Wilson et al.,2012], and build efficient state-spaces by recognizing
actions that lead to identical observations [Singh et al.,|2012]]. Generalized planning frameworks can
find algorithm-like policies for solving multiple instances of a task [Curtis et al., 2022], although
studies have not yet considered their alignment with human behavior. A principle of grouping game-
board states based on rotation and reflection symmetries was used to optimize representations in the
game of Go [Silver et al.,2017]]. Unlike our work, these works do not directly consider policy reuse
by conditioning on approximate structured state-space representations.

Natural priors. Adaptive real-world planning draws on complex prior knowledge of the
world [[Acquaviva et al.| 2022| Spelke and Kinzler, 2007, [Dehaene et al., |2006]. Learning natu-
ral priors that make people so efficient in real-world remains an important problem in cognitive Al
[Kumar et al., 2022, [Li et al., 2024, [Binz et al., [2024]]. [Feldmanl 2013]. Similar to our work, an
emerging line of research leverages LLMs as a back-end to planning frameworks as a way of inform-
ing planning by the implicit natural priors embedded in LLM though training on vast amounts of
human data [Tang et al.| 2024, [Correa et al., 2025, [Towers et al.| 2024, |Xie et al., 2023} [Piriyakulkij
et al.| 2025} |Curtis et al.,[2025]. Our computational framework builds on this approach, focusing on
modeling how cognitive maps and planning policies may be learned together.

5 Discussion

We propose a computational framework that (1) represents maps by approximate generative pro-
grams and (2) plans in these representations through policy reuse. We adapt an experimental Maze
Search task previously used to study human planning, to show that in structured environments hu-
man planning is consistent with these two computational principles, in contrast to the state-of-the
art model of depth-limited planning proposed in previous work. This result makes a scientific con-
tribution by showing that human deviations from optimal policies are, at least in part, due to ap-
proximating planning by piecewise policies conditioned on structure for policy reuse. Our GenPlan
framework makes an engineering contribution by showing how to actually build these principles
into a working system. GenPlan is compute-efficient, because it achieves tractable inference over
the underlying map structure by leveraging LLM-driven program generation (in contrast to enumer-
ative search e.g. [Veness et al., [2011]]) and because it reduces the amount of planning compute
through policy reuse.

We note that in our experiments planning varies between individuals, in line with variability ob-
served in previous work (Callaway et al.|[2022]. Our model proposes a computational account ex-
plaining this variability as arising from how individuals may represent the same map in different
ways. For example, depending on available cognitive resources, someone may form representations
made up of coarser or finer patterns. In the limit, GenPlan can prioritize reconstruction accuracy
and treat the entire environment as a single structural unit, solved by a globally optimal policy. Our
implementation makes a simplifying assumption that that reconstruction and description weights are
fixed and stable at population level, which works well to explain behavior in our experiment. Future
work can further consider the stability and generalization of these parameters within and between
individuals. General case solutions can be built to account for flexible cognitive resources, allowing
the model to switch between map representations in response to changing cognitive demands. Future
work can also examine how the weights should be chosen to optimally balance the computational
costs of planning and memory, against utility.

Limitations and future work. Natural environment structure is often probabilistic, where the
underlying building blocks of a given class differ superficially (e.g. square or rectangular city blocks;
dunes of varied shapes and sizes). Future work can examine ways of capturing such representations,

as well as modeling how different goals shape cognitive map structure. For instance, people tend
to perceive San Francisco as having a grid layout, even though its map reveals a complex structure
that is merely grid-like. Such intuitions could arise from goal-dependent cognitive maps [Ho et al.,
2022|] — where a local grid model is actually good enough to plan a pedestrian shortcut across a
neighborhood.

Implications. While planning cognition has been studied extensively, the domain of real-world
planning remains underexplored. Reverse-engineering human planning can inform models that not
only empower Al to better understand and assist humans, but also decrease environmental impact
of Al algorithms, by enabling them to achieve effective policies with less compute. In contributing
a proof of concept implementation, GenPlan brings new insights into human spatial planning, and
takes a step toward building cost-efficient planning in Al.

10

Acknowledgements

We are grateful to Dr. Ming Li (University of Waterloo) for funding Jeffrey Qin and Albert Yang’s
research assistanship, and providing Cole Wyeth with guidance and the freedom to pursue this cross-
disciplinary project during PhD. Marta Kryven was supported by NSERC Discovery grant to Marta
Kryven RGPIN-04045-25. We are grateful to Akshit Singh (Electrical Engineerin, IIT Jodhpur) for
valuable discussion.

References

Christian Bongiorno, Yulun Zhou, Marta Kryven, David Theurel, Alessandro Rizzo, Paolo Santi,
Joshua Tenenbaum, and Carlo Ratti. Vector-based pedestrian navigation in cities, 2021.

Ugurcan Mugan, Seiichiro Amemiya, Paul S Regier, and A David Redish. Navigation through the
complex world: The neurophysiology of decision-making processes. In Habits: Their Definition,
Neurobiology, and Role in Addiction, pages 109-139. Springer, 2024.

Leslie Pack Kaelbling, Michael L Littman, and Anthony R Cassandra. Planning and acting in
partially observable stochastic domains. Artificial intelligence, 101(1-2):99—-134, 1998.

David Silver and Joel Veness. Monte-carlo planning in large pomdps. In Advances in Neural
Information Processing Systems, 2010. Neural Information Processing Systems, 2010.

Aidan Curtis, Hao Tang, Thiago Veloso, Kevin Ellis, Joshua Tenenbaum, Tomas Lozano-Pérez, and
Leslie Pack Kaelbling. Llm-guided probabilistic program induction for pomdp model estimation.
arXiv preprint arXiv:2505.02216, 2025.

Marta Kryven, Suhyoun Yu, Max Kleiman-Weiner, Tomer Ullman, and Joshua Tenenbaum. Ap-
proximate planning in spatial search. PLOS Computational Biology, 20(11):e1012582, 2024.

Bas van Opheusden, Ionatan Kuperwajs, Gianni Galbiati, Zahy Bnaya, Yunqi Li, and Wei Ji Ma.
Expertise increases planning depth in human gameplay. Nature, pages 1000—-1005, 2023.

Tonatan Kuperwajs, Evan M Russek, Marcelo G Mattar, Wei Ji Ma, and Thomas L Griffiths. Looking
deeper into the algorithms underlying human planning. Trends in Cognitive Sciences, 2025.

Stuart J Russell and Peter Norvig. Artificial intelligence: a modern approach. Pearson, 2016.

Yunzhe Liu, Marcelo G Mattar, Timothy EJ Behrens, Nathaniel D Daw, and Raymond J Dolan.
Experience replay supports non-local learning. BioRxiv, pages 2020-10, 2020.

Hao Tang, Darren Key, and Kevin Ellis. Worldcoder, a model-based llm agent: Building world
models by writing code and interacting with the environment. arXiv preprint arXiv:2402.12275,
2024.

Aidan Curtis, Tom Silver, Joshua B Tenenbaum, Tomds Lozano-Pérez, and Leslie Kaelbling. Dis-
covering state and action abstractions for generalized task and motion planning. In Proceedings
of the AAAI conference on artificial intelligence, volume 36, pages 5377-5384, 2022.

Satinder Singh, Michael James, and Matthew Rudary. Predictive state representations: A new theory
for modeling dynamical systems. arXiv preprint arXiv:1207.4167, 2012.

Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A frame-
work for temporal abstraction in reinforcement learning. Artificial intelligence, 112(1-2):181—
211, 1999.

Jerry A Fodor. The language of thought, volume 5. Harvard university press, 1975.

Brenden M Lake and Steven T Piantadosi. People infer recursive visual concepts from just a few
examples. Computational Brain & Behavior, 3(1):54-65, 2020.

Benjamin Pitt, Stephen Ferrigno, Jessica F Cantlon, Daniel Casasanto, Edward Gibson, and Steven T
Piantadosi. Spatial concepts of number, size, and time in an indigenous culture. Science Advances,
7(33):eabg4141, 2021.

11

Lucas Tian, Kevin Ellis, Marta Kryven, and Josh Tenenbaum. Learning abstract structure for draw-
ing by efficient motor program induction. Advances in Neural Information Processing Systems,
33, 2020.

Tessa Verhoef, Simon Kirby, and Bart De Boer. Emergence of combinatorial structure and economy
through iterated learning with continuous acoustic signals. Journal of Phonetics, 43:57-68, 2014.

Martin Rohrmeier. Towards a formalization of musical rhythm. In ISMIR, pages 621-629, 2020.

Matthias Hofer, Tuan Anh Le, Roger Levy, and Josh Tenenbaum. Learning evolved combinatorial
symbols with a neuro-symbolic generative model. arXiv preprint arXiv:2104.08274, 2021.

Sugandha Sharma, Aidan Curtis, Marta Kryven, Josh Tenenbaum, and Ila Fiete. Map induction:
Compositional spatial submap learning for efficient exploration in novel environments. Interna-
tional Conference of Learning Representations, 2022.

William P McCarthy, Robert D Hawkins, Haoliang Wang, Cameron Holdaway, and Judith E Fan.
Learning to communicate about shared procedural abstractions. arXiv preprint arXiv:2107.00077,
2021.

lain G Johnston, Kamaludin Dingle, Sam F Greenbury, Chico Q Camargo, Jonathan PK Doye,
Sebastian E Ahnert, and Ard A Louis. Symmetry and simplicity spontaneously emerge from
the algorithmic nature of evolution. Proceedings of the National Academy of Sciences, 119(11):
€2113883119, 2022.

Daniel D Dilks, Joshua B Julian, Jonas Kubilius, Elizabeth S Spelke, and Nancy Kanwisher. Mirror-
image sensitivity and invariance in object and scene processing pathways. Journal of Neuro-
science, 31(31):11305-11312, 2011.

Steven A Marchette, Lindsay K Vass, Jack Ryan, and Russell A Epstein. Anchoring the neural com-
pass: coding of local spatial reference frames in human medial parietal lobe. Nature neuroscience,
17(11):1598, 2014.

Stephen M Kosslyn, Herbert L Pick Jr, and Griffin R Fariello. Cognitive maps in children and men.
Child development, pages 707-716, 1974.

Albert Stevens and Patty Coupe. Distortions in judged spatial relations. Cognitive psychology, 10
(4):422-437, 1978.

Stephen C Hirtle and John Jonides. Evidence of hierarchies in cognitive maps. Memory & cognition,
13(3):208-217, 1985.

Jeremy N Bailenson, Michael S Shum, and David H Uttal. The initial segment strategy: A heuristic
for route selection. Memory & Cognition, 28(2):306-318, 2000.

Nora Newcombe, Janellen Huttenlocher, Elisabeth Sandberg, Eunhui Lie, and Sarah Johnson. What
do misestimations and asymmetries in spatial judgement indicate about spatial representation?
Journal of Experimental Psychology: Learning, Memory, and Cognition, 25(4):986, 1999.

Jan M Wiener and Hanspeter A Mallot. ’fine-to-coarse’route planning and navigation in regionalized
environments. Spatial cognition and computation, 3(4):331-358, 2003.

Ranxiao Frances Wang and James R Brockmole. Human navigation in nested environments. Journal
of Experimental Psychology: Learning, Memory, and Cognition, 29(3):398, 2003.

Jan Balaguer, Hugo Spiers, Demis Hassabis, and Christopher Summerfield. Neural mechanisms of
hierarchical planning in a virtual subway network. Neuron, 90(4):893-903, 2016.

Momchil S Tomov, Samyukta Yagati, Agni Kumar, Wanqgian Yang, and Samuel J Gershman. Dis-
covery of hierarchical representations for efficient planning. PLoS computational biology, 16(4):
€1007594, 2020.

Brenden M Lake, Ruslan Salakhutdinov, and Joshua B Tenenbaum. Human-level concept learning
through probabilistic program induction. Science, 350(6266):1332-1338, 2015.

12

Joshua B Tenenbaum, Charles Kemp, Thomas L Griffiths, and Noah D Goodman. How to grow a
mind: Statistics, structure, and abstraction. science, 331(6022):1279-1285, 2011.

Marta Kryven, Tomer D Ullman, William Cowan, and Joshua B Tenenbaum. Plans or outcomes:
How do we attribute intelligence to others? Cognitive Science, 45(9):13—41, 2021.

Maya Geva-Sagiv, Soyeon Jun, Marta Kryven, Josh Tenenbaum, Erie D. Boorman, Randy O’Reilly,
Jack J. Lin, Ignacio Saez, and Charan Ranganath. Fronto-hippocampal synchronization in rapid
spatial learning in humans. Current Biology, 2025. Under review.

Omid Madani, Steve Hanks, and Anne Condon. On the undecidability of probabilistic planning and
related stochastic optimization problems. Artificial Intelligence, 147(1-2):5-34, 2003.

Quentin JM Huys, Niall Lally, Paul Faulkner, Neir Eshel, Erich Seifritz, Samuel J Gershman, Peter
Dayan, and Jonathan P Roiser. Interplay of approximate planning strategies. Proceedings of the
National Academy of Sciences, 112(10):3098-3103, 2015.

Mark K Ho, David Abel, Carlos G Correa, Michael L Littman, Jonathan D Cohen, and Thomas L
Griffiths. People construct simplified mental representations to plan. Nature, 606(7912):129-136,
2022.

J. Rissanen. Modeling by shortest data description. Automatica, 14(5):465-471, 1978.
ISSN 0005-1098. doi: https://doi.org/10.1016/0005-1098(78)90005-5. URL https://www.
sciencedirect.com/science/article/pii/0005109878900055,

Celeste Kidd, Steven T Piantadosi, and Richard N Aslin. The goldilocks effect: Human infants
allocate attention to visual sequences that are neither too simple nor too complex. PloS one, 7(5):
€36399, 2012.

Samuel J Cheyette and Steven T Piantadosi. A unified account of numerosity perception. Nature
human behaviour, 4(12):1265-1272, 2020.

Mehdi Keramati, Peter Smittenaar, Raymond J Dolan, and Peter Dayan. Adaptive integration of
habits into depth-limited planning defines a habitual-goal-directed spectrum. Proceedings of the
National Academy of Sciences, 113(45):12868-12873, 2016.

Diogo R Ferreira. The impact of the search depth on chess playing strength. ICGA journal, 36(2):
67-80, 2013.

Josef M Unterrainer, Benjamin Rahm, Christoph P Kaller, Rainer Leonhart, K Quiske, K Hoppe-
Seyler, C Meier, C Miiller, and Ulrike Halsband. Planning abilities and the tower of london: is
this task measuring a discrete cognitive function? Journal of clinical and experimental neuropsy-
chology, 26(6):846-856, 2004.

Frederick Callaway, Bas van Opheusden, Sayan Gul, Priyam Das, Paul M Krueger, Thomas L Grif-
fiths, and Falk Lieder. Rational use of cognitive resources in human planning. Nature Human
Behaviour, 6(8):1112-1125, 2022.

Carlos G Correa, Sophia Sanborn, Mark K Ho, Frederick Callaway, Nathaniel D Daw, and Thomas L
Griffiths. Exploring the hierarchical structure of human plans via program generation. Cognition,
255:105990, 2025.

Aaron Wilson, Alan Fern, and Prasad Tadepalli. Transfer learning in sequential decision prob-
lems: A hierarchical bayesian approach. In Proceedings of ICML Workshop on Unsupervised and
Transfer Learning, pages 217-227. JMLR Workshop and Conference Proceedings, 2012.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go
without human knowledge. nature, 550(7676):354-359, 2017.

Sam Acquaviva, Yewen Pu, Marta Kryven, Theodoros Sechopoulos, Catherine Wong, Gabrielle
Ecanow, Maxwell Nye, Michael Tessler, and Josh Tenenbaum. Communicating natural programs
to humans and machines. Advances in Neural Information Processing Systems, 35:3731-3743,
2022.

13

https://www.sciencedirect.com/science/article/pii/0005109878900055
https://www.sciencedirect.com/science/article/pii/0005109878900055

Elizabeth S. Spelke and Katherine D. Kinzler. Core knowledge. Developmental Science, 10(1):
89-96, 2007.

Stanislas Dehaene, Véronique Izard, Pierre Pica, and Elizabeth Spelke. Core knowledge of geometry
in an amazonian indigene group. Science, 311(5759):381-384, 2006.

Sreejan Kumar, Carlos G Correa, Ishita Dasgupta, Raja Marjieh, Michael Hu, Robert D. Hawkins,
Jonathan Cohen, Nathaniel Daw, Karthik R Narasimhan, and Thomas L. Griffiths. Using natural
language and program abstractions to instill human inductive biases in machines. In Alice H. Oh,
Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho, editors, Advances in Neural Information
Processing Systems, 2022. URL https://openreview.net/forum?id=buXZ7nIqiwE.

Wen-Ding Li, Keya Hu, Carter Larsen, Yuging Wu, Simon Alford, Caleb Woo, Spencer M Dunn,
Hao Tang, Michelangelo Naim, Dat Nguyen, et al. Combining induction and transduction for
abstract reasoning. arXiv preprint arXiv:2411.02272, 2024.

Marcel Binz, Elif Akata, Matthias Bethge, Franziska Brindle, Fred Callaway, Julian Coda-Forno,
Peter Dayan, Can Demircan, Maria K. Eckstein, Noémi Eltet6, Thomas L. Griffiths, Susanne
Haridi, Akshay K. Jagadish, Li Ji-An, Alexander Kipnis, Sreejan Kumar, Tobias Ludwig, Marvin
Mathony, Marcelo Mattar, Alireza Modirshanechi, Surabhi S. Nath, Joshua C. Peterson, Milena
Rmus, Evan M. Russek, Tankred Saanum, Natalia Scharfenberg, Johannes A. Schubert, Luca
M. Schulze Buschoff, Nishad Singhi, Xin Sui, Mirko Thalmann, Fabian Theis, Vuong Truong,
Vishaal Udandarao, Konstantinos Voudouris, Robert Wilson, Kristin Witte, Shuchen Wu, Dirk
Waulff, Huadong Xiong, and Eric Schulz. Centaur: a foundation model of human cognition, 2024.
URL https://arxiv.org/abs/2410.20268,

Jacob Feldman. Tuning your priors to the world. Topics in cognitive science, 5(1):13-34, 2013.

Mark Towers, Ariel Kwiatkowski, Jordan Terry, John U Balis, Gianluca De Cola, Tristan Deleu,
Manuel Goulao, Andreas Kallinteris, Markus Krimmel, Arjun KG, et al. Gymnasium: A standard
interface for reinforcement learning environments. arXiv preprint arXiv:2407.17032, 2024.

Yaqi Xie, Chen Yu, Tongyao Zhu, Jinbin Bai, Ze Gong, and Harold Soh. Translating natural lan-
guage to planning goals with large-language models. arXiv preprint arXiv:2302.05128, 2023.

Wasu Top Piriyakulkij, Yichao Liang, Hao Tang, Adrian Weller, Marta Kryven, and Kevin Ellis.
Poe-world: Compositional world modeling with products of programmatic experts. arXiv preprint
arXiv:2505.10819, 2025.

Joel Veness, Kee Siong Ng, Marcus Hutter, William Uther, and David Silver. A monte-carlo aixi
approximation. Journal of Artificial Intelligence Research, 40:95-142, 2011.

14

https://openreview.net/forum?id=buXZ7nIqiwE
https://arxiv.org/abs/2410.20268

A Code availability

The Gen-POMCP implementation is available here: https://anonymous.4open.science/r/
GenPlan-FBCD/README.md

B Performance Bounds for Structure-Based Planning

In structured environments Gen-POMCP can explore the environment faster than Naive-POMCP
(using fewer rollouts and in less time) by taking advantage of limited resources. However, it simpli-
fies the planning problem by entirely exploring each fragment it enters before moving to the next.
This heuristic can result in longer overall paths taken to search the environments. It is reasonable
to ask by how much the global Naive-POMCP can actually improve on the path length taken by
Gen-POMCP (and specifically the Structure-Based Planner).

Below give a sense of this answer by sketching a proof that considers the limit in which each plan-
ner fully optimizes its respective objective: Naive-POMCP follows the Bayes-optimal plan in each
fragment and Gen-POMCP follows the Bayes-optimal global policy for the maze. We bound the
cost difference according to expected and worst-case cost in steps (the latter is more analytically
tractable).

Expected and worst-case The expected number of steps it takes for a policy to explore a maze is
the average over the length of path this policy takes to reach uniformly sampled exit locations. The
worst-case number of steps is the largest number of steps that the policy could take for some exit
position. This is bounded below by the number of steps required to fully explore the maze.

Lemma 1. There exists a fragment of size n. X n which takes O(n?) steps to search in expectation,
and to explore fully.

7x7 Spiral Maze O O O
Path Length vs Maze Size

200 7

-

7

o
L

O

Path Length (Number of 0s)

-

=}

=
4

w
=3
L

04

T T T T

2.5 5.0 7.5 10.0 125 15.0 17.5 20.0
Maze Size (n)

O O O

Figure 5: Consider a maze with a spiral wall - the white cells indicate traversable floor, and black
indicate intraversable wall. Simulating these environments shows that the maximal length of path
(white cells) in the environment grows as ~ %nQ

Proof. Consider a fragment with the maximum spiral path (e.g. Figure[5). The length of this path
scales quadratically with n. In particular, following a spiral path takes a series of four legs at each
depth, and the length of every other leg reduces by two (one for the wall and one for the path itself).

15

https://anonymous.4open.science/r/GenPlan-FBCD/README.md
https://anonymous.4open.science/r/GenPlan-FBCD/README.md

This yields

ln/2]—1
: (n/2)(n/2+1)
n+ 2(n72171):ﬁ2n—4—+0(n)
; 2 2 3)
_ L o
=5n + O(n)
O

Theorem 2. In the an n X n maze, the expected number of steps taken by SBP may exceed the
expected number of steps of an optimal policy by (n?).

Proof. Build a fragment by adjoining an empty room and a spiral by a single door at a corner. Now
connect the two fragments by adding a door between the empty rooms in the opposite corner. As-
sume the size of the empty rooms is such that the optimal algorithm can find the exit with probability
1/2 by checking each empty room, but the SBP algorithm must explore entirely the first fragment
that it enters. With probability 3/4, the exit is not in the first empty room, so it must explore the
spiral, which takes time 2(n?) to fully explore by Lemma [1 The spiral also must be exited, so
around n? steps are spent when the exit is in the other empty room (in this case the optimal planner
finds immediately by checking each room). Since the optimal planner takes only a constant number
of steps to check each empty room, and then behaves identically to the SBP, the expected cost when
the exit is in any other location is asymptotically the same, so the expected cost difference is roughly
in? =Q(n?). O

Theorem 3. The number of steps to fully explore a maze is O(n?).

Proof. Consider a v-vertex connected graph. The maximum width (roughly achievable by the spiral)
is v, leading to a naive bound of O(v?) = O(n). This can be improved to O(v) by running a
depth-first search. Since there are 4 movement directions the degree of this graph is 4 meaning
the maximum number of backtracks fo a vertex is 3, which immediately gives 4v. However, in a
depth first search there is only one backtrack from each vertex is 1, which leads to an easy inductive
proof that the bound is O(2v — 1) regardless of degree, yielding 2n? — 1 = O(n?). Note that
further improvements should be possible by considering the number of walls required to induce the
worst-case topology. [

This implies that the Bayes-optimal policy has O(n?) expected cost (since its expected cost must
be at least as good as the expected cost of exhaustive search), regardless of the maze. Together,
Lemma (1| and Theorem |3| demonstrate that the SBP heuristic does not damage the (asymptotic)
expected cost in the worst maze.

Theorem 4. Assume that an n X n maze is fragmented in such a way that any time a fragment
is entered, it can be fully explored before exiting, into ¢ square (n/c) x (n/2) fragments. The
asymptotic expected cost is ©(n?) in the worst such maze for the modular optimal and globally
optimal policies.

Proof. First, consider the global optimal policy. The additional requirements placed on the maze
cannot make the O(n?) bound in Theorem [3| worse, and we can get a matching lower bound by
simply adjoining multiple spiral examples as in Lemma [I]and adding doors between them.

Now consider the modular optimal policy. It is clear that the globally optimal policy has an ex-
pected cost as least as low as the modular optimal policy (even in their respective worst mazes), by
definition, so the ©(n?) lower bound automatically carries over to the modular optimal policy. We
assumed that the modular optimal policy takes the Bayes-optimal paths between fragments. This
must be at least as good as the following strategy: mimic the global optimal policy, but any time a
new fragment is entered, first explore it completely and return to the entrance. By Theorem [3] each

such “extra” exploration detour takes at most 2(2)? — 1 steps, and the return takes at most (2)?
steps. The total is 3(%)? — 1. There are exactly ¢ such detours, for 4n* — ¢* = ©(n?) extra steps.

The global optimal policy also takes ©(n?) steps.
O

16

Therefore, in the worst case the modular algorithm is inferior by at least a constant factor of the total
search time in expectation. Examining the proof of Theorem] yields a factor of 2.5 over our upper
bound in Theorem 3] but presumably this can be improved substantially since a lot of exploration is
being redone after the detours.

Improving expected cost upper bounds Substantial improvements to the worst-case cost bound
in Theorem [3] are easy to obtain when the proof is applied to expected cost by e.g. noting that the
depth-first search visits at least one new cell every two steps, meaning that there is clearly at least
a 1/4 chance of finding the exit after n? steps, or by noting that the true number of “vertices” is
reduced by walls. These improvements seem to apply equally to the modular and global optimal
policies, and probably do not affect our constants much.

For worst-case cost, the situation is similar. However, the worst-case cost analysis simplifies signif-
icantly with the additional assumption that transitions between fragments are negligible (say, if they
all branch off from a central room). This observation is trivial but worth stating explicitly:

Theorem 5. When the cost to transition between fragments is negligible, each has one entrance,
and there is no line-of-sight across fragments, the modular algorithm has the same worst-case step
count as the optimal algorithm.

Proof. In the worst case, the optimal algorithm must explore each fragment, and since there is only
one entrance to each fragment it is not possible to gain any advantage by exiting a fragment before
it has been fully explored. O

17

C Experimental Environments

Figure 6: Environments used in Behavioral Experiment 1.

18

:
oy g

env3

gooeseees

i

fecsssetioasonctioacsenct
grresmenggesnernagzioceiony

e
8 2
;e o
] B 2}

m
i

i

H

i

H

eeceoce
eecocce

i

eecseseliosssesetiosnsens

frssssssdussssasiisssasasitonsases
7

envi

8000008 *3eveeel® *Tocesel’
8000008 *Soveeel® *Toserel’
3000008 *S000003® *Soveel’
3000008 “Socecel® *Seeceel’

env8

env7

envé

env5s

eeee.

o

eooe:

eooe.

eeoe.

eooe:

oo

eooe

eooe

eooe

eooe

esoe

envi0

env9

Figure 7: Environments used in Simulation Experiment 2.

19

D Additional results - simulation experiment

Exploration by Gen-POMCP (Solid) v.s. Naive-POMCP (Dashed)

1.0

o
[

o
o

©
»

Fraction explored

0.2

0 4e7 8e7 1.2e8 1.6e8
Rollouts performed

Figure 8: The fractions of each environment searched by Gen-POMCP and Naive-POMCP given
identical computational budget. Gen-POMCP requires fewer rollouts and saves computing costs.
Each environment is shown in a different color (see also Figure 4.)

2

. POMCP (Solid) vs. Naive-POMCP (Dashed) - Eny 1 enPOMCP (Solic) . Naive-POMCP (Dashed) - Eny 2 1 PONCP (S01) v, e FOMCP (Dashed) - Env 3 Gen POMCP (Solid) v Naive-POMCP (Dashed) - Eny 4 Gen POMCP (Sold) v Naive-POMCP (Dashed) - Eny 5
10 10 10
08 08
08 08 08
Zos T] H 3
4 o6 206 206 2
3 H] 3 3 3
S04 H § § §
g go4 504 504 go4
02 02 02 02 02
0.0] = mmmm e P SO S FR 00 m=r= 00| mem 00) mmmmmmmmmmmmm
26 46 6e6 66) se7 18 1508 25¢7 5e7 757 1e8 12e8 15ed 6 2e1 aer 867 o 17 21 3er aer
Rollouts performed Rollouts performed Rollouts performed Rollouts performed Rollouts performed
r-POMCP (S0l) - Malve-POMCP (Dashed) - Env 6 n-POMCP (Solid)vs. Naive-POMCP (Dashed) - Env 7 Gen-POMCP (Solid) vs. Naive-POMCP (Dashed) -Enys CEPOMCP (Sold) vs. Naive-POMCP (Dashed) -ENv 9 Gen.POMCP (Solid) vs. Naive-POMCP (Dashed) - Eny 10
10 1o 10
10 :
08
08 08 08 08
B bl P] <
5 g 3 4 3
306 5 4 2
bl I3 08 306 206 s 0.6
204 5 g H c
H go4 £ 04 204 2oa
02 =
02 02 02 02
ooppe=s—=—1— 1 +F— | Lo e
0 17 27 3e71 4e7 se7 oop=r- 0] e L e e e s S B S 0.0] i mmm o mm o m o
Rollouts performed 266 46 6e6 6 1e7 167 267 367 47 57 6el
Rollouts performed Rollouts performed 16 2¢6 3e6 4e6 Seb GeG 0 27 4e7 6e7 8e7 1e8 l.zes

Rollouts performed Rollouts performed

Figure 9: The fractions of each environment searched by Gen-POMCP and Naive-POMCP given
identical computational budget. In each individual environment Gen-POMCP requires fewer rollouts
and saves computing costs.)

20

	Introduction
	Methods
	Structured Spatial Domain
	Computational Models
	Computational Hypotheses

	Experiments
	Experiment 1: Behavioral Validation
	Experiment 2: Simulation

	Related Work
	Discussion
	Code availability
	Performance Bounds for Structure-Based Planning
	Experimental Environments
	Additional results - simulation experiment

