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Abstract

Multimodal variational autoencoders (VAEs) have shown promise as efficient gen-
erative models for weakly-supervised data. Yet, despite their advantage of weak
supervision, they exhibit a gap in generative quality compared to unimodal VAEs,
which are completely unsupervised. In an attempt to explain this gap, we un-
cover a fundamental limitation that applies to a large family of mixture-based
multimodal VAEs. We prove that the sub-sampling of modalities enforces an unde-
sirable upper bound on the multimodal ELBO and thereby limits the generative
quality of the respective models. Empirically, we showcase the generative quality
gap on both synthetic and real data and present the tradeoffs between different vari-
ants of multimodal VAEs. We find that none of the existing approaches fulfills all
desired criteria of an effective multimodal generative model when applied on more
complex datasets than those used in previous benchmarks. In summary, we identify,
formalize, and validate fundamental limitations of VAE-based approaches for mod-
eling weakly-supervised data and discuss implications for real-world applications.

1 Introduction

In recent years, multimodal VAEs have shown great potential as efficient generative models for
weakly-supervised data, such as pairs of images or paired images and captions. Previous works (Wu
and Goodman, 2018; Shi et al., 2019; Sutter et al., 2020) demonstrate that multimodal VAEs leverage
weak supervision to learn generalizable representations, useful for downstream tasks (Dorent et al.,
2019; Minoura et al., 2021) and for the conditional generation of missing modalities (Lee and van der
Schaar, 2021). However, despite the advantage of weak supervision, state-of-the-art multimodal
VAEs consistently underperform when compared to simple unimodal VAEs in terms of generative
quality.1 This paradox serves as a starting point for our work, which aims to explain the observed lack
of generative quality in terms of a fundamental limitation that underlies existing multimodal VAEs.

What is limiting the generative quality of multimodal VAEs? We find that the sub-sampling of
modalities during training leads to a problem that affects all mixture-based multimodal VAEs—a
family of models that subsumes the MMVAE (Shi et al., 2019), MoPoE-VAE (Sutter et al., 2021), and
a special case of the MVAE (Wu and Goodman, 2018). We prove that modality sub-sampling enforces
an undesirable upper bound on the multimodal ELBO and thus prevents a tight approximation of the
joint distribution when there is modality-specific variation in the data. Our experiments demonstrate
that modality sub-sampling can explain the gap in generative quality compared to unimodal VAEs
and that the gap typically increases with each additional modality. Through extensive ablations on
three different datasets, we validate the generative quality gap between unimodal and multimodal
VAEs and present the tradeoffs between different approaches.

1The lack of generative quality can even be recognized by visual inspection of the qualitative results from
previous works; for instance, see the supplementaries of Sutter et al. (2021) or Shi et al. (2021).
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Table 1: Overview of multimodal VAEs. Entries for generative quality and generative coherence
denote properties that were observed empirically in previous works. The lightning symbol ( ) denotes
properties for which our work presents contrary evidence. This overview abstracts technical details,
such as importance sampling and ELBO sub-sampling, which we address in Appendix C.

Model Definition of pθ(z | x) Modality sub-sampling Generative quality Generative coherence

MVAE (Wu and Goodman, 2018)
∏M
i=1 pθ(z | xi) 7 good poor

MMVAE (Shi et al., 2019) 1
M

∑M
i=1 pθ(z | xi) 3 limited good  

MoPoE-VAE (Sutter et al., 2021) 1
|P(M)|

∑
A∈P(M)

∏
i∈A pθ(z|xi) 3 limited good  

Our results raise serious concerns about the utility of multimodal VAEs for real-world applications.
We show that none of the existing approaches fulfills all desired criteria (Shi et al., 2019; Sutter et al.,
2020) of an effective multimodal generative model when applied to slightly more complex datasets
than used in previous benchmarks. In particular, we demonstrate that generative coherence (Shi et al.,
2019) cannot be guaranteed for any of the existing approaches, if the information shared between
modalities cannot be predicted in expectation across modalities. Our findings are particularly relevant
for applications on datasets with a relatively high degree of modality-specific variation, which is a
typical characteristic of many real-world datasets (Baltrušaitis et al., 2019).

2 Related work

Multimodal VAEs are an extension of VAEs (Kingma and Welling, 2014) and they belong to the class
of multimodal generative models with encoder-decoder architectures (Baltrušaitis et al., 2019). The
first multimodal extensions of VAEs (Suzuki et al., 2016; Hsu and Glass, 2018; Vedantam et al., 2018)
use separate inference networks for every subset of modalities, which quickly becomes intractable
as the number of inference networks required grows exponentially with the number of modalities.
Starting with the seminal work of Wu and Goodman (2018), multimodal VAEs were developed as an
efficient method for multimodal learning. In particular, multimodal VAEs enable the inference of
latent representations, as well as the conditional generation of missing modalities, given any subset
of input modalities. Different types of multimodal VAEs were devised by decomposing the joint
encoder as a product (Wu and Goodman, 2018), mixture (Shi et al., 2019), or mixture of products
(Sutter et al., 2021) of unimodal encoders respectively. A commonality between these approaches
is the sub-sampling of modalities during training—a property we will use to define the family of
mixture-based multimodal VAEs. For the MMVAE and MoPoE-VAE, the sub-sampling is a direct
consequence of defining the joint encoder as a mixture distribution over different subsets of modalities.
Further, our analysis includes a special case of the MVAE without ELBO sub-sampling, which is the
only member of the family of mixture-based multimodal VAEs that forgoes sub-sampling, because it
defines a trivial mixture over a single subset, the complete set of modalities (Sutter et al., 2021). The
MVAE was originally proposed with “ELBO sub-sampling”, an additional training paradigm that
was later found to result in an incorrect bound on the joint distribution (Wu and Goodman, 2019).
While this training paradigm is also based on the sub-sampling of modalities, the objective differs
from mixture-based multimodal VAEs in that the MVAE does not reconstruct the missing modalities
from the set of sub-sampled modalities.2

Table 1 provides an overview of the different variants of mixture-based multimodal VAEs and
the properties that one can infer from empirical results in previous works (Shi et al., 2019, 2021;
Sutter et al., 2021). Most importantly, there appears to be a tradeoff between generative quality and
generative coherence (i.e., the ability to generate semantically related samples across modalities). Our
work explains why the generative quality is worse for models that sub-sample modalities (Section 4)
and shows that a tighter approximation of the joint distribution can be achieved without sub-sampling
(Corollary 1). Through systematic ablations (Section 5), we validate the proposed theoretical
limitations and showcase the tradeoff between generative quality and generative coherence. Our
experiments also reveal that generative coherence cannot be guaranteed for more complex datasets
than those used in previous benchmarks.

2For completeness, in Appendix C, we also analyse the effect of ELBO sub-sampling.
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3 Multimodal VAEs, in different flavors

Let X := {X1, . . . , XM} be a set of random vectors describing M modalities and let
x := {x1, . . . ,xM} be a sample from the joint distribution p(x1, . . . ,xM ). For conciseness, denote
subsets of modalities by subscripts; for example, X{1,3} or x{1,3} respectively for modalities 1 and 3.

The multimodal ELBO (Definition 1), first introduced by Wu and Goodman (2018), is the objective
maximized by all multimodal VAEs. We take an information-theoretic perspective using the varia-
tional information bottleneck (VIB) from Alemi et al. (2017) and employ the standard notation used
in multiple previous works (for details, please see Appendix B.1).
Definition 1. Let pθ(z |x) be a stochastic encoder, parameterized by θ, that takes multiple modalities
as input. Let qφ(x | z) be a variational decoder (for all modalities), parameterized by φ, and let q(z)
be a prior. The multimodal evidence lower bound (ELBO) on Ep(x)[log p(x)] is defined as

L(x; θ, φ) := Ep(x)pθ(z | x)[log qφ(x | z)]− Ep(x)[DKL(pθ(z | x) || q(z))] . (1)

3.1 The family of mixture-based multimodal VAEs

Now we introduce the family of mixture-based multimodal VAEs, which subsumes the MMVAE,
MoPoE-VAE, and a special case of the MVAE without ELBO sub-sampling. We first define an
encoder that generalizes the decompositions used by existing models:
Definition 2. Let S = {(A,ωA) |A ⊆ {1, . . . ,M}, A 6= ∅, ωA ∈ [0, 1]} be an arbitrary set of non-
empty subsets A of modalities and corresponding mixture coefficients ωA, such that

∑
A∈S ωA = 1.

Define the stochastic encoder to be a mixture distribution: pSθ (z | x) :=
∑
A∈S ωA pθ(z | xA).

In the above definition and throughout this work, we write A ∈ S to abbreviate (A,ωA) ∈ S. To
define the family of mixture-based multimodal VAEs, we restrict the family of models optimizing the
multimodal ELBO to the subfamily of models that use a mixture-based stochastic encoder.
Definition 3. The family of mixture-based multimodal VAEs is comprised of all models that maximize
the multimodal ELBO using a stochastic encoder pSθ (z | x) that is consistent with Definition 2. In
particular, we define the family in terms of all models that maximize the following objective:

LS(x; θ, φ) =
∑
A∈S

ωA
{
Ep(x)pθ(z | xA)[log qφ(x | z)]− Ep(x) [DKL (pθ(z | xA) || q(z))]

}
. (2)

In Appendix B.2, we show that the objectiveLS(x; θ, φ) is a lower bound onL(x; θ, φ) (which makes
it an ELBO) and explain how, for different choices of the set of subsets S , the objective LS(x; θ, φ)
relates to the objectives of the MMVAE, MoPoE-VAE, and MVAE without ELBO sub-sampling.

4 Modality sub-sampling limits the multimodal ELBO

Theorem 1 states our main theoretical result, which describes a non-trivial limitation of mixture-based
multimodal VAEs. Our result shows that the sub-sampling of modalities enforces an undesirable
upper bound on the approximation of the joint distribution when there is modality-specific variation
in the data. This limitation conflicts with the goal of modeling real-world multimodal data, which
typically exhibits a considerable degree of modality-specific variation. For all of the theoretical
results in this section, we provide proofs in Appendix B and empirical support in Section 5.
Theorem 1. Each mixture-based multimodal VAE (Definition 3) approximates the expected log-
evidence up to an irreducible discrepancy ∆(X,S) that depends on the model-specific mixture
distribution S, as well as on the amount of modality-specific information in X .

For the maximization of LS(x; θ, φ) and every value of θ and φ, the following inequality holds:

Ep(x)[log p(x)] ≥ LS(x; θ, φ) + ∆(X,S) (3)

where
∆(X,S) =

∑
A∈S

ωAH(X{1,...,M}\A |XA) . (4)

In particular, the generative discrepancy is always greater than or equal to zero and it is independent
of θ and φ and thus remains constant during the optimization.
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From Theorem 1, we can derive two corollaries, which apply to relevant special cases. First, we
consider the case of no modality sub-sampling, for which the generative discrepancy vanishes:
Corollary 1. Without modality sub-sampling, ∆(X,S) = 0 .

Corollary 1 applies to the MVAE without ELBO sub-sampling and suggests that this model should
yield a tighter approximation of the joint distribution and hence a better generative quality compared
to mixture-based multimodal VAEs that sub-sample modalities.

Second, we consider how additional modalities might affect the generative discrepancy. Corollary 2
predicts an increased generative discrepancy (and hence, a decline of generative quality) when we
increase the number of modalities for the MMVAE and MoPoE-VAE:
Corollary 2 (informal). For the MMVAE and MoPoE-VAE, the generative discrepancy increases
with each additional modality, if the new modality is sufficiently diverse.

The notion of diversity requires a more formal treatment of the underlying information-theoretic
quantities, which we defer to Appendix B.7. Notably, only if there is very little modality-specific
information in all modalities, we have ∆(X,S) → 0 for the MMVAE and MoPoE-VAE. This
condition requires modalities to be extremely similar, which does not apply to most multimodal
datasets, where ∆(X,S) typically represents a large part of the total variation.

5 Experiments

Figure 1 presents the three considered datasets. PolyMNIST (Sutter et al., 2021) is a simple, synthetic
dataset that allows us to conduct systematic ablations. Translated-PolyMNIST is a new dataset
that introduces a small tweak—the downscaling and random translation of digits—to demonstrate
the limitations of existing methods when shared information cannot be predicted in expectation
across modalities. Caltech Birds (CUB; Wah et al., 2011; Shi et al., 2019) allows us to validate the
limitations on a more realistic dataset. Please note that we use CUB with real images and not the
simplified version based on ResNet-features that was used in Shi et al. (2019) and Shi et al. (2021).

The generative quality gap Figure 2 compares the generative quality, measured by FID (Heusel
et al., 2017), of unimodal VAEs and mixture-based multimodal VAEs. As predicted by Theorem 1,
for multimodal VAEs that sub-sample modalities (i.e., MMVAE and MoPoE-VAE) we observe a
pronounced generative quality gap when we compare the best models. In contrast, the MVAE (without
ELBO sub-sampling) reaches the generative quality of unimodal VAEs, which is consistent with
our theoretical result from Corollary 1. Further, Figure 5 in Appendix C supports our results from
Corollary 2, showing that the generative quality of the MMVAE and MoPoE-VAE deteriorates when
we increase the number of modalities.

Lack of generative coherence on more complex data In terms of generative coherence (see
Appendix C.2), Figure 3 reveals that the positive results from previous work (Shi et al., 2019; Sutter
et al., 2021) do not apply to more complex datasets. On PolyMNIST, we successfully replicate
the coherence results from Sutter et al. (2021) for a range of β values. However, on Translated-
PolyMNIST, the stark decline of all models makes it evident that coherence cannot be guaranteed

(a) PolyMNIST
(5 modalities)

(b) Translated-PolyMNIST
(5 modalities)

(c) Caltech Birds (CUB)
(2 modalities)

Figure 1: The three considered datasets. Each subplot shows samples from the respective dataset.
The two PolyMNIST datasets are conceptually similar in that the digit label is shared between five
synthetic modalities. The Caltech Birds (CUB) dataset provides a more realistic application for which
there is no annotation on what is shared between paired images and captions.
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(a) PolyMNIST (b) Translated-PolyMNIST (c) Caltech Birds (CUB)

Figure 2: Generative quality for one modality over a range of β values. Points denote FID averaged
over three seeds and bands show one standard deviation respectively. Due to numerical instabilities,
MVAE could not be trained with larger β values. Figure 8 shows similar results for other modalities.

(a) PolyMNIST

(b) Translated-PolyMNIST

MVAE, β = 9

MMVAE, β = 9

MoPoE-VAE, β = 9

(c) Caltech Birds (CUB)

Figure 3: Generative coherence for the conditional generation across modalities. For PolyMNIST
(Figures 3a and 3b), we plot the average leave-one-out coherence. Due to numerical instabilities, the
MVAE could not be trained with larger β values. For CUB (Figure 3c), we show qualitative results
for the conditional generation of images given captions. Best viewed zoomed and in color.

when shared information cannot be predicted in expectation across modalities. On CUB, we resort to a
qualitative evaluation of coherence, because there is no ground truth annotation of shared factors (like
for many real-world datasets). The qualitative results confirm that none of the existing approaches
generates images that are both of sufficiently high quality and coherent with respect to the given
caption. Overall, the negative results on Translated-PolyMNIST and CUB showcase the limitations of
existing approaches when applied to more complex datasets than those used in previous benchmarks.

6 Conclusion

In this work, we have identified, formalized, and demonstrated several limitations of multimodal VAEs.
Across different datasets, we revealed a significant gap in generative quality between unimodal and
mixture-based multimodal VAEs that sub-sample modalities. We proved that modality sub-sampling
can enforce an undesirable upper bound on the multimodal ELBO and can therefore limit the
generative quality of the respective models. Finally, we studied two failure cases—Translated-
PolyMNIST and CUB—that demonstrate the serious limitations of multimodal VAEs when applied
to more complex datasets than those used in previous benchmarks.
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A Definitions

Let X , Y , and Z denote the support sets of three discrete random vectors X , Y , and Z respectively.
Let pX(x), pY (y), and pZ(z) denote the respective marginal distributions and note that we will
leave out the subscripts (e.g., p(x) instead of pX (x)) when it is clear from context which distribution
we are referring to. Analogously, we write shorthand p(y | x) for the conditional distribution of Y
given X and p(x,y) for the joint distribution of X and Y .

The entropy of X is defined as

H(X) = −
∑
x∈X

p(x) log p(x) . (5)

The conditional entropy of X given Y is defined as

H(X | Y ) = −
∑

x∈X ,y∈Y
p(x,y) log p(x | y) . (6)

The joint entropy of X and Y is defined as

H(X,Y ) = −
∑

x∈X ,y∈Y
p(x,y) log p(x,y) . (7)

The Kullback-Leibler divergence of the discrete probability distribution P from the discrete probabil-
ity distribution Q is defined as

DKL(P ||Q) =
∑
x∈X

P (x) log
P (x)

Q(x)
(8)

assuming that P and Q are defined on the same support set X .

The cross-entropy of the discrete probability distribution Q from the discrete probability distribution
P is defined as

CE(P,Q) = −
∑
x∈X

P (x) logQ(x) (9)

assuming that P and Q are defined on the same support set X .

The mutual information of X and Y is defined as

I(X;Y ) = DKL(p(x,y) || p(x)p(y)) . (10)

The conditional mutual information of X and Y given Z is defined as

I(X;Y |Z) =
∑
z∈Z

p(z)DKL(p(x,y | z) || p(x | z)p(y | z)) . (11)

Recall that we assume discrete random vectors (e.g., pixel values) and therefore can assume non-
negative entropy, conditional entropy and conditional mutual information terms (Cover and Thomas,
2012). For continuous random variables all of the above sums can be replaced with integrals. The
only information-theoretic quantities for which in this work we use continuous random vectors are
the KL-divergence and mutual information, both of which are always non-negative.
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B Proofs

B.1 Information-theoretic derivation of the multimodal ELBO

Proposition 1 relates the multimodal ELBO (Definition 1) to the expected log-evidence, the quantity
that is being approximated by all likelihood-based generative models including VAEs. The derivation
is based on a straightforward extension of the variational information bottleneck (VIB; Alemi et al.,
2017). We include the result mainly for the purpose of illustration—to clarify the notation, as well as
the relation between the multimodal ELBO and the underlying information-theoretic quantities of
interest: the entropy, conditional entropy, and mutual information.

Notation For readers who are familiar with latent variable models, but may be less familiar with the
information-theoretic perspective on VAEs, please keep in mind the following notational differences.
In contrast to the latent variable model perspective, which defines a variational posterior (typically
denoted by the letter q) and a stochastic decoder (typically denoted by the letter p), the VIB defines
a stochastic encoder pθ(z | x) and variational decoder qφ(x | z). Moreover, the VIB makes no
assumptions about the true posterior. Also note that latent variable models tend to write the ELBO
with respect to the log-evidence log p(x), but information-theoretic approaches write the ELBO with
respect to the expected log-evidence Ep(x)[log p(x)]; though, it is still assumed that the estimation of
the ELBO is based on a finite sample from p(x).
Proposition 1. The multimodal ELBO forms a variational lower bound on the expected log-evidence:

Ep(x)[log p(x)] ≥ L(x; θ, φ) . (12)

Proof. First, notice that the expected log-evidence is equal to the negative entropy
−H(X) = Ep(x)[log p(x)]. Given any random variable Z, the entropy can be decomposed into
conditional entropy and mutual information terms: H(X) = H(X | Z) + I(X;Z).

The expected log-evidence relates to the multimodal ELBO as follows:
Ep(x)[log p(x)] = −H(X | Z)− I(X;Z) (13)

≥ Ep(x)pθ(z | x)[log qφ(x | z)]− Ep(x)[DKL(pθ(z | x) || q(z))] (14)

= L(x; θ, φ) (15)
where the inequality follows from the variational approximations of the respective terms. As in Alemi
et al. (2017), we can use the following variational bounds.

For the conditional entropy, we have
−H(X | Z) = Ep(x)pθ(z | x) [log p(x | z)] (16)

= Ep(x)pθ(z | x) [log qφ(x | z)] + Ep(z) [DKL(p(x | z) || qφ(x | z))] (17)

≥ Ep(x)pθ(z | x) [log qφ(x | z)] (18)

where qφ(x | z) is a variational decoder that is parameterized by φ.

For the mutual information, we have
−I(X;Z) = −Ep(x) [DKL(pθ(z | x) || p(z))] (19)

= −Ep(x) [DKL(pθ(z | x) || q(z))] +DKL(p(z) || q(z)) (20)

≥ −Ep(x) [DKL(pθ(z | x) || q(z))] (21)

where q(z) is a prior.

Hence, the multimodal ELBO forms a variational lower bound on the expected log-evidence:
Ep(x)[log p(x)] = L(x; θ, φ) + ∆VA(x, φ) (22)

≥ L(x; θ, φ) (23)
where

∆VA(x, φ) = Ep(z) [DKL(p(x | z) || qφ(x | z))] +DKL(p(z) || q(z)) (24)

denotes the (non-negative) variational approximation gap.
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B.2 Relation between the different objectives

Proposition 2 relates the multimodal ELBO L from Definition 1 to the objective LS , which is a
general formulation of the objective maximized by all mixture-based multimodal VAEs. Compared
to previous mixture-based formulations (Shi et al., 2019; Sutter et al., 2020), our formulation is more
general in that it allows for arbitrary subsets with non-uniform mixture coefficients. Further, the
derivation quantifies the approximation gap between L and LS , where the latter corresponds to the
objectives that are actually being optimized in the implementations of the MMVAE, MoPoE-VAE,
and MVAE without sub-sampling.
Proposition 2. For every stochastic encoder pSθ (z | x) that is consistent with Definition 2, the
following inequality holds:

L(x; θ, φ) ≥ LS(x; θ, φ) . (25)

Proof. Recall the multimodal ELBO from Definition 1:

L(x; θ, φ) = Ep(x)pθ(z | x)[log qφ(x | z)]− Ep(x)[DKL(pθ(z | x) || q(z))] . (26)

For the encoder pθ(z | x), plug in the mixture-based encoder pSθ (z | x) =
∑
A∈S ωA pθ(z | xA)

from Definition 2 and re-write as follows:

Ep(x)pSθ (z | x)[log qφ(x | z)]− Ep(x)[DKL(pSθ (z | x) || q(z))] (27)

= Ep(x)
∑
A∈S ωA pθ(z | xA)[log qφ(x | z)]− (28)

Ep(x)
∑
A∈S ωA pθ(z | xA)[log pSθ (z | x)− log q(z)]

=
∑
A∈S

ωA
{
Ep(x)pθ(z | xA)[log qφ(x | z)]− Ep(x)pθ(z | xA)[log pSθ (z | x)] + (29)

Ep(x)pθ(z | xA)[log q(z)]
}

=
∑
A∈S

ωA
{
Ep(x)pθ(z | xA)[log qφ(x | z)] + Ep(x)[CE(pθ(z | xA), pSθ (z | x))]− (30)

Ep(x)[CE(pθ(z | xA), q(z))]
}

=
∑
A∈S

ωA
{
Ep(x)pθ(z | xA)[log qφ(x | z)] + Ep(x)[DKL(pθ(z | xA) || pSθ (z | x))]− (31)

Ep(x)[DKL(pθ(z | xA) || q(z))]
}

≥
∑
A∈S

ωA
{
Ep(x)pθ(z | xA)[log qφ(x | z)]− Ep(x)[DKL(pθ(z | xA) || q(z))]

}
(32)

= LS(x; θ, φ) (33)

In Equation (30),CE(p, q) denotes the cross-entropy between distributions p and q. For Equation (31),
decompose both cross-entropy terms using CE(p, q) = H(p) + DKL(p || q) and notice that the
respective entropy terms cancel out. The inequality (Equation (32)) follows from the non-negativity
of the KL-divergence. This concludes the proof that LS(x; θ, φ) forms a lower bound on L(x; θ, φ).

Objectives of individual models Sutter et al. (2021) already showed that Equation (27) subsumes
the objectives of the MMVAE, MoPoE-VAE, and MVAE without ELBO sub-sampling. However,
in their actual implementation, all of these methods take the sum out of the KL-divergence term
(e.g., see Shi et al., 2019, Equation 3), which corresponds to the objective LS . To see how LS
recovers the objectives of the individual models, simply plug in the model-specific definition of S
into Equation (32) and use uniform mixture coefficients ωA = 1/|S| for all subsets. For the MVAE
without ELBO sub-sampling, S is comprised of only one subset, the complete set of modalities
{x1, . . . ,xM}. For the MMVAE, S is comprised of the set of unimodal subsets {{x1}, . . . , {xM}}.
For the MoPoE-VAE, S is comprised of the powerset P(M) \ {∅}. Further implementation details,
such as importance sampling and ELBO sub-sampling, are discussed in Appendix C.3.
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B.3 Objective LS is a special case of the VIB

Lemma 1. LS(x; θ, φ) is a special case of the variational information bottleneck (VIB) objective

min
ψ

∑
A∈S

ωA {Hψ(X | ZA) + Iψ(XA;ZA)} , (34)

where the encoding ZA = fψ(XA) is a function of a subset XA, the terms Hψ(X | ZA) and
Iψ(XA;ZA) denote variational upper bounds of H(X | ZA) and I(XA;ZA) respectively, and ψ
summarizes the parameters of these variational estimators.

Proof. We start from LS , the objective optimized by all mixture-based multimodal VAEs. Recall
from Definition 3:

LS(x; θ, φ) =
∑
A∈S

ωA

{
Ep(x)pθ(z | xA)[log qφ(x | z)]︸ ︷︷ ︸

(i)

−Ep(x) [DKL (pθ(z | xA) || q(z))]︸ ︷︷ ︸
(ii)

}
. (35)

Each term within the sum is comprised of two terms: (i) the log-likelihood estimation based on a
variational decoder qφ(x |z); (ii) the regularization of the stochastic encoder pθ(z |xA) with respect
to a variational prior q(z). The sampled encoding z ∼ pθ(z | xA) can be viewed as the output of a
function ZA = fθ(XA) of a subset of modalities.

To see the relation to the underlying information terms H(X | ZA) and I(XA;ZA), we undo the
variational approximation for (i) and (ii) by re-introducing the unobserved ground truth decoder
p(x | z) and the ground truth prior p(z).

For (i), we have

Ep(x)pθ(z | xA) [log qφ(x | z)] ≤ Ep(x)pθ(z | xA) [log qφ(x | z)] + (36)

Ep(z) [DKL(p(x | z) || qφ(x | z))]

= Ep(x)pθ(z | xA) [log p(x | z)] (37)

= −H(X | ZA) (38)

For (ii), we have

Ep(x) [DKL(pθ(z | xA) || q(z))] ≥ Ep(x) [DKL(pθ(z | xA) || q(z))]−DKL(p(z) || q(z)) (39)

= Ep(x) [DKL(pθ(z | xA) || p(z))] (40)

= I(XA;ZA) (41)

Since LS(x; θ, φ) is being maximized, (i) is being maximized, while (ii) is being minimized. The
maximization of (i) is equal to the minimization of a variational upper bound on H(X | ZA).
Similarly, the minimization of (ii) is equal to the minimization of a variational upper bound on
I(XA;ZA). Hence, we have established that LS(x; θ, φ) is a special case of the more general VIB
objective (Equation (34)) where the information terms are estimated with a mixture-based multimodal
VAE that is parameterized by ψ = {θ, φ}.

B.4 Decomposition of the conditional entropy for subsets of modalities

Lemma 2. Let XA ⊆X be some subset of modalites. If ZA = f(XA), where f is some function of
the subset XA, then the following equality holds:

H(X | ZA) = H(X{1,...,M}\A |XA) +H(XA | ZA) . (42)

Proof. When ZA is a function of a subset XA ⊆ X , we have the Markov chain
ZA ←XA −−X{1,...,M}\A, since ZA is a function of the (observed) subset of modalities and
depends on the remaining (unobserved) modalities only through XA.

10



We can re-write H(X | ZA) as follows:
H(X | ZA) = H(X | ZA,XA) + I(X;XA | ZA) (43)

= H(X |XA) + I(X;XA | ZA) (44)
= H(X{1,...,M}\A |XA) + I(X;XA | ZA) (45)

= H(X{1,...,M}\A |XA) +H(XA | ZA) (46)
Equation (43) applies the definition of the conditional mutual information. Equation (44) is based on
the conditional independence X |= ZA |XA implied by the Markov chain. Equation (45) removes
the “known” information that we condition on. Finally, Equation (46) follows from XA ⊆X , which
implies that I(X;XA) = H(XA) and I(X;XA | ZA) = H(XA | ZA).

B.5 Proof of Theorem 1

Theorem 1. Each mixture-based multimodal VAE (Definition 3) approximates the expected log-
evidence up to an irreducible discrepancy ∆(X,S) that depends on the model-specific mixture
distribution S, as well as on the amount of modality-specific information in X .

For the maximization of LS(x; θ, φ) and every value of θ and φ, the following inequality holds:
Ep(x)[log p(x)] ≥ LS(x; θ, φ) + ∆(X,S) (3)

where
∆(X,S) =

∑
A∈S

ωAH(X{1,...,M}\A |XA) . (4)

In particular, the generative discrepancy is always greater than or equal to zero and it is independent
of θ and φ and thus remains constant during the optimization.

Proof. Lemma 1 shows that all mixture-based multimodal VAEs approximate the expected log-
evidence via the more general VIB objective

min
ψ

∑
A∈S

ωA {Hψ(X | ZA) + Iψ(XA;ZA)} (47)

where the encoding ZA = fψ(XA) is a function of a subset XA ⊆X .

The fact that ZA is a function of a subset, permits the following decomposition of the conditional
entropy (see Lemma 2):

H(X | ZA) = H(X{1,...,M}\A |XA) +H(XA | ZA) . (48)

In particular, Equation (48) holds for every ZA = fψ(XA) and thus for every value ψ. Further, notice
that H(X{1,...,M}\A |XA) is independent of the learned encoding ZA and thus remains constant
during the optimization with respect to ψ.

Hence, for every value ψ, the following inequality holds:
Hψ(X | ZA) ≥ H(X | ZA) (49)

≥ H(X{1,...,M}\A |XA) (50)

which means that the minimization of Hψ(X | ZA) is lower-bound by H(X{1,...,M}\A |XA), even
if Hψ(X | ZA) is a tight estimator of H(X | ZA).

Analogously, for the optimization of the VIB objective (Equation (47)), for every value ψ, the
following inequality holds:∑

A∈S
ωA {Hψ(X | ZA) + Iψ(XA;ZA)} (51)

≥
∑
A∈S

ωA {H(X | ZA) + Iψ(XA;ZA)} (52)

=
∑
A∈S

ωA {H(XA | ZA) + Iψ(XA;ZA)}+
∑
A∈S

ωAH(X{1,...,M}\A |XA)︸ ︷︷ ︸
∆(X,S)

(53)
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where ∆(X,S) is independent of ψ and thus remains constant during the optimization. Consequently,
∆(X,S) represents an irreducible error for the optimization of the VIB objective.

For mixture-based multimodal VAEs, Lemma 1 shows that LS(x; θ, φ) is a special case of the VIB
objective with ψ = (θ, φ). Hence, for every value of θ and φ, the following inequality holds:

Ep(x)[log p(x)] ≥ LS(x; θ, φ) + ∆(X,S) . (54)
The exact value of ∆(X,S) depends on the definition of the mixture distribution S , as well as on the
amount of modality-specific variation in the data. In particular, ∆(X,S) > 0, if there is any subset
A ∈ S with ωA > 0 for which H(X{1,...,M}\A |XA) > 0.

B.6 Proof of Corollary 1

Corollary 1. Without modality sub-sampling, ∆(X,S) = 0 .

Proof. Without modality sub-sampling, S is comprised of only one subset, the complete set of
modalities {1, . . . ,M}, and therefore XA = X and X{1,...,M}\A = ∅. It follows that ∆(X,S) =
H(X{1,...,M}\A |XA) = H(∅ |X) = 0, since the conditional entropy of the empty set is zero.

B.7 Proof of Corollary 2

Corollary 2. For the MMVAE and MoPoE-VAE, the generative discrepancy increases given an
additional modality XM+1, if the new modality is sufficiently diverse in the following sense:(

1

|S+|
− 1

|S|

)∑
A∈S

I(X{1,...,M}\A;XM+1 |XA) <
1

|S+||S|
∑
A∈S

H(XA |XM+1) + (55)

1

|S+|
∑
A∈S

H(XM+1 |X) (56)

where S denotes the model-specific mixture distribution over the set of subsets of modalities given
modalities X1, . . . , XM and S+ is the respective mixture distribution over the extended set of subsets
of modalities given X1, . . . , XM+1.

Proof. Let XM+1 be the new modality, let X+ := {X1, . . . , XM+1} denote the extended set of
modalities, and let S+ denote the new mixture distribution over subsets given X+. Note that all
subsets from S are still contained in S+, but that S+ contains new subsets in addition to those in S.
Further, due to the re-weighting of mixture coefficients, S+ can have different mixture coefficients for
the subsets it shares with S. We denote by S− := {(A,ω+

A) ∈ S+ : A 6∈ S} the set of new subsets
and let ω+

A denote the new mixture coefficients, where typically ωA 6= ω+
A due to the re-weighting.

We are interested in the change of the generative discrepancy, when we add modality XM+1:
∆(X+,S+)−∆(X,S) (57)

=
∑
B∈S+

ω+
B H(X{1,...,M+1}\B |XB)−

∑
A∈S

ωAH(X{1,...,M}\A |XA) . (58)

Re-write the right hand side in terms of subsets that are contained in both S and S+ and subsets that
are only contained in S+. For this, we decompose the first term as follows∑

B∈S+

ω+
B H(X{1,...,M+1}\B |XB) (59)

=
∑
A∈S

ω+
A H(X{1,...,M+1}\A |XA) +

∑
B∈S−

ω+
B H(X{1,...,M+1}\B |XB) (60)

=
∑
A∈S

ω+
A H(X{1,...,M}\A |XA) +

∑
A∈S

ω+
A H(XM+1 |X) + (61)∑

B∈S−
ω+
B H(X{1,...,M+1}\B |XB) (62)
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where the last equation follows from

H(X{1,...,M+1}\A |XA) = H(X{1,...,M}\A |XA) +H(XM+1 |XA,X{1,...,M}\A) (63)

= H(X{1,...,M}\A |XA) +H(XM+1 |X) . (64)

We can use the decomposition from Equation (62) to re-write the right hand side of Equation (58) by
collecting the corresponding terms for H(X{1,...,M}\A |XA):∑

A∈S
(ω+
A − ωA)H(X{1,...,M}\A |XA) +

∑
A∈S

ω+
A H(XM+1 |X) +∑

B∈S−
ω+
B H(X{1,...,M+1}\B |XB) .

(65)

Notice that in Equation (65) only the first term can be negative, due to the re-weighting of mixture
coefficients for terms that do not containXM+1. Hence, in the general case, the generative discrepancy
can only decrease, if the mixture coefficients change in such a way that the first term in Equation (65)
dominates the other two terms.

For the relevant special case of uniform mixture weights, which applies to both the MMVAE and
MoPoE-VAE, we can further decompose Equation (65) into (i) information shared between X and
XM+1, and (ii) information that is specific to X or XM+1.

Using uniform mixture coefficients ωA = 1
|S| and ω+

A = 1
|S+| for all subsets, we can factor out the

coefficients and re-write Equation (65) as follows:(
1

|S+|
− 1

|S|

)∑
A∈S

H(X{1,...,M}\A |XA) +
1

|S+|
∑
A∈S

H(XM+1 |X) +

1

|S+|
∑
B∈S−

H(X{1,...,M+1}\B |XB)

(66)

where the second term already denotes information that is specific to XM+1. Hence, we decompose
the first and last terms corresponding to (i) and (ii).

For the first term from Equation (66), we have(
1

|S+|
− 1

|S|

)∑
A∈S

H(X{1,...,M}\A |XA) (67)

=

(
1

|S+|
− 1

|S|

)∑
A∈S

{
H(X{1,...,M}\A |XA, XM+1) + I(X{1,...,M}\A;XM+1 |XA)

}
. (68)

For the last term from Equation (66), we have

1

|S+|
∑
B∈S−

H(X{1,...,M+1}\B |XB) (69)

=
1

|S+|

{
H(X |XM+1) +

∑
A∈S

1{(A∪{M+1})∈S−}H(X{1,...,M}\A |XA, XM+1)
}

(70)

where we can further decompose

1

|S+|
H(X |XM+1) =

1

|S+|

{
H(X |XA, XM+1) + I(X;XA |XM+1)

}
(71)

=
1

|S+|

{
H(X |XA, XM+1) +H(XA |XM+1)

}
(72)

=
1

|S+||S|
∑
A∈S

{
H(X{1,...,M}\A |XA, XM+1) +H(XA |XM+1)

}
. (73)
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Collecting all corresponding terms from Equations (68), (70) and (73), we can re-write Equation (66)
as follows: (

1

|S+|
− 1

|S|
+

1

|S+||S|

)∑
A∈S

H(X{1,...,M}\A |XA, XM+1) + (74)(
1

|S+|
− 1

|S|

)∑
A∈S

I(X{1,...,M}\A;XM+1 |XA) + (75)

1

|S+|
∑
A∈S

1{(A∪{M+1})∈S−}H(X{1,...,M}\A |XA, XM+1) + (76)

1

|S+||S|
∑
A∈S

H(XA |XM+1) + (77)

1

|S+|
∑
A∈S

H(XM+1 |X). (78)

For both the MMVAE and MoPoE, the first and last terms cancel out, which can see by plugging in
the respective definitions of S into the above equation. Recall that for the MMVAE, S is comprised of
the set of unimodal subsets {{x1}, . . . , {xM}} and thus S+ is comprised of {{x1}, . . . , {xM+1}}.
For the MoPoE-VAE, S is comprised of the powerset P(M) \ {∅} and thus S+ is comprised of
the powerset P(M + 1) \ {∅}. Hence, for the MMVAE and MoPoE-VAE, we have shown that
∆(X+,S+)−∆(X+,S) is equal to the following expression:(

1

|S+|
− 1

|S|

)∑
A∈S

I(X{1,...,M}\A;XM+1 |XA) + (79)

1

|S+||S|
∑
A∈S

H(XA |XM+1) +
1

|S+|
∑
A∈S

H(XM+1 |X) (80)

where the information is decomposed into:

[(i)]information shared between X and XM+1 (term (79)), and information that is specific
to X or XM+1 (the first and second terms in (80) respectively),

and where only (i) can be negative since |S+| > |S|. This concludes the proof of Corollary 2, showing
that ∆(X+,S+)−∆(X,S) > 0, if XM+1 is sufficiently diverse in the sense that (ii) > (i).
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C Experiments

C.1 Description of the datasets

PolyMNIST The PolyMNIST dataset, introduced in Sutter et al. (2021), combines the MNIST
dataset (LeCun et al., 1998) with crops from five different background images to create five synthetic
image modalities. Each sample from the data is a set of five MNIST images (with digits of the
same class) overlayed on 28× 28 crops from five different background images. Figure 1a shows 10
samples from the PolyMNIST dataset; each column represents one sample and each row represents
one modality. The dataset provides a convenient testbed for the evaluation of generative coherence,
because by design only the digit information is shared between modalities.

Translated-PolyMNIST This new dataset is conceptually similar to PolyMNIST in that a digit
label is shared between five synthetic image modalities. The difference is that in the creation of the
dataset, we change the size and position of the digit, as shown in Figure 1b. Technically, instead of
overlaying a full-sized 28× 28 MNIST digit on a patch from the respective background image, we
downsample the MNIST digit by a factor of two and place it at a random (x, y)-coordinate within
the 28 × 28 background patch. Conceptually, these transformations leave the shared information
between modalities (i.e., the digit label) unaffected and only serve to make it more difficult to predict
the shared information across modalities on expectation.

Caltech Birds (CUB) The extended CUB dataset from Shi et al. (2019) is comprised of two
modalities, images and captions. Each image from Caltech-Birds (CUB-200-2011 Wah et al., 2011)
is coupled with 10 crowdsourced descriptions of the respective bird. Figure 1c shows five samples
from the dataset. It is important to note that we use the CUB dataset with real images, instead of the
simplified version based on precomputed ResNet-features that was used in Shi et al. (2019, 2021).

C.2 Implementation details

Our experiments are based on the publicly available code from Sutter et al. (2021), which already
provides an implementation of PolyMNIST. A notable difference in our implementation is that
we employ ResNet architectures, because we found that the previously used convolutional neural
networks did not have sufficient capacity for the more complex datasets we use. For internal
consistency, we use ResNets for PolyMNIST as well. We have verified that there is no significant
difference compared to the results from Sutter et al. (2021) when we change to ResNets.

Hyperparameters All models were trained using the Adam optimizer (Kingma and Ba, 2015) with
learning rate 5e-4 and a batch size of 256. For image modalities we estimate likelihoods using Laplace
distributions and for captions we employ one-hot categorical distributions. Models were trained for
500, 1000, and 150 epochs on PolyMNIST, Translated-PolyMNIST, and CUB respectively. Similar
to previous work, we use Gaussian priors and a latent space with 512 dimensions for PolyMNIST
and 64 dimensions for CUB. For a fair comparison, we reduce the latent dimensionality of unimodal
VAEs proportionally (wrt. the number of modalities) to control for capacity. For the β-ablations, we
use β ∈ {3e-4, 3e-3, 3e-1, 1, 3, 9} and, in addition, 32 for CUB.

Evaluation metrics For the evaluation of generative quality, we use the Fréchet inception distance
(FID; Heusel et al., 2017), a standard metric for evaluating the quality of generated images. In
Appendix C.3, we also provide log-likelihoods and qualitative results for both images and captions.
To compute generative coherence, we adopt the definitions from previous works (Shi et al., 2019;
Sutter et al., 2021). Generative coherence requires annotation on what is shared between modalities;
for example, in both PolyMNIST and Translated-PolyMNIST the digit label is shared by design.
For a single generated example x̂m ∼ qφ(xm | z) from modality m, the generative coherence is
computed as the following indicator:

Coherence(x̂m, y, gm) = 1{gm(x̂m) = y} (81)

where y is a ground-truth class label and gm is a pretrained classifier (learned on the training data from
modality m) that outputs a predicted class label. To compute the conditional coherence accuracy,
we average the coherence values over a set of N conditionally generated examples, where N is
typically the size of the test set. In particular, when x̂m ∼ qφ(xm | z) is conditionally generated
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from z ∼ pθ(z | xA) such that A = {1, . . . ,M} \m, the metric is specified as the leave-one-out
conditional coherence accuracy, because the input consists of all modalities except the one that is
being generated. When it is clear from context which metric is used, we refer to the (leave-one-
out) conditional coherence accuracy simply as generative coherence. For PolyMNIST, we use the
pretrained digit classifiers that are provided in the publicly available code from Sutter et al. (2021) and
for Translated-PolyMNIST we train the classifiers from scratch with the same architectures that are
used for the VAE encoders. Notably, the new pretrained digit classifiers have a classification accuracy
between 93.5–96.9% on the test set of the respective modality, which means that it is possible to
predict the digits fairly well with the given architectures.

C.3 Additional experimental results

Increasing the number of modalities Figure 5 examines how generative quality is affected, if we
vary the number of modalities. Notably, for mixture-based approaches that sub-sample modalities
(MMVAE and MoPoE-VAE), the generative quality gap increases almost continuously with the num-
ber of modalities, which is consistent with our theoretical prediction from Corollary 2. Interestingly,
for the MVAE, the generative gap on Translated-PolyMNIST also increases slightly, but the change
is comparatively small.

Linear classification Shi et al. (2019) propose linear classification as a measure of latent fac-
torization, to judge the quality of learned representations and to assess how well the information
decomposes into shared and modality-specific features. Figure 6 shows the linear classification accu-
racy on the learned representations. The results suggest that not only does the generative coherence
decline when we switch from PolyMNIST to Translated-PolyMNIST, but also the quality of the
learned representations. While a low classification accuracy does not imply that there is no digit
information encoded in the latent representation (after all, digits show up in most self-reconstructions),
the result demonstrates that a linear classifier cannot extract the digit information.

Log-likelihoods and qualitative results Figure 7 shows the generative quality in terms of joint
log-likelihoods. We observe a similar ranking of models as with FID, but we notice that the gap
between MVAE and MoPoE-VAE appears less pronounced. The reason for this discrepancy is that,
to be consistent with Sutter et al. (2021), we estimate joint log-likelihoods given all modalities—a
procedure that resembles reconstruction more than it does unconditional generation. It can be of
independent interest that log-likelihoods might overestimate the generative quality for unconditional
generation for certain types of models. Qualitative results for unconditional generation (Figure 9)
support the hypothesis that the presented log-likelihoods do not reflect the visible lack of generative
quality for the MoPoE-VAE. Further, qualitative results for conditional generation (Figure 10)
indicate a lack of diversity for both the MMVAE and MoPoE-VAE: even though we draw different
samples from the posterior, the respective conditionally generated samples (i.e., the ten samples along
each column) show little diversity in terms of backgrounds or writing styles.

1.2.
Figure 4: PolyMNIST with
five “repeated” modalities.

Repeated modalities To check if the generative quality gap is also
present when modalities have similar modality-specific variation, we
use PolyMNIST with “repeated” modalities generated from the same
background image (illustrated in Figure 4). We vary the number of
modalities from 2 to 5, but in contrast to the results from Figure 5, we
now use repeated modalities. Figure 11 confirms that the generative
quality of both the MVAE and MoPoE-VAE deteriorates with each addi-
tional modality, even in this simplified setting with repeated modalities.
In comparison, the generative quality of the MVAE is much closer to
the unimodal VAE for any number of modalities. These results lend
further support to the theoretical statements from Corollaries 1 and 2.

MMVAE with the official implementation The empirical results of the MMVAE in Section 5 are
based on a simplified version of the model that was proposed by Shi et al. (2019). In particular, we
use the re-implementation from Sutter et al. (2021), which optimizes the standard ELBO and not the
doubly reparameterized ELBO gradient estimator (DReG, Tucker et al., 2018) with importance sam-
pling that is used in the official implementation from Shi et al. (2019). Further, the re-implementation
does not parameterize the prior, but uses a fixed, standard normal prior instead.
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To verify that these implementation differences do not affect the core results—the generative quality
gap and the lack of coherence—we conducted experiments using the MMVAE with the official
implementation from Shi et al. (2019). Figure 12 shows the β-ablation for PolyMNIST and it
confirms that there is still a clear gap in generative quality between the unimodal VAE and the
MMVAE when we use the official implementation. For Translated-PolyMNIST (not shown) the
results are similar; in particular, we have verified that generative coherence for cross generation is
random, even if we limit the dataset to two modalities.

MVAE with ELBO sub-sampling For the MVAE, Wu and Goodman (2018) introduce ELBO
sub-sampling as an additional training strategy to learn the inference networks for different subsets of
modalities. In our notation, ELBO sub-sampling can be described by the following objective:

L(x; θ, φ) +
∑
A∈S
L(xA; θ, φ) (82)

where S denotes some set of subsets of modalities. Wu and Goodman (2018) experiment with
different choices for S, but throughout all of their experiments they use at least the set of unimodal
subsets {{x1}, . . . , {xM}}, which yields the following objective:

L(x; θ, φ) +

M∑
i=1

L(xi; θ, φ) . (83)

It is important to note that the above objective differs from the objective optimized by all mixture-
based multimodal VAEs (Definition 3) in that there are no cross-modal reconstructions in Equa-
tion (83). As a consequence, ELBO sub-sampling puts more weight on the approximation of the
marginal distributions compared to the conditionals and therefore does not optimize a proper bound
on the joint distribution (Wu and Goodman, 2019).

Figure 13 shows the PolyMNIST β-ablation comparing MVAE with and without ELBO sub-sampling.
MVAE+ denotes the model with ELBO sub-sampling using objective (83). Notably, MVAE+ achieves
significantly better generative coherence, while both models perform similarly in terms of generative
quality (both in terms of FID and joint log-likelihood). Hence, even though the MVAE+ optimizes
an incorrect bound on the joint distribution (Wu and Goodman, 2019), our results suggest that the
learned models behave quite similar in practice, which can be of independent interest for future work.

(a) PolyMNIST (b) translated-PolyMNIST

Figure 5: Generative quality as a function of the number of modalities. The results show the FID of
the same modality and therefore all values on the same scale. All models are trained with β = 1 on
PolyMNIST and β = 0.3 on Translated-PolyMNIST. The results are averaged over three seeds and
the bands show one standard deviation respectively. For the unimodal VAE, which uses only a single
modality, the average and standard deviation are plotted as a constant.
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(a) PolyMNIST (b) Translated-PolyMNIST

Figure 6: Linear classification of latent representations. For each model, linear classifiers were trained
on the joint embeddings from 500 randomly sampled training examples. Points denotes the average
digit classification accuracy of the respective classifiers. The results are averaged over three seeds
and the bands show one standard deviation respectively. Due to numerical instabilities, the MVAE
could not be trained with larger β values. For CUB, classification performance cannot be computed,
because shared factors are not annotated.

(a) PolyMNIST (b) Translated-PolyMNIST (c) Caltech Birds (CUB)

Figure 7: Joint log-likelihoods over a range of β values. Each point denotes the estimated joint log-
likelihood averaged over three different seeds and the bands show one standard deviation respectively.
Due to numerical instabilities, the MVAE could not be trained with larger β values.

(a) X1 (b) X2 (c) X3 (d) X4 (e) X5

Figure 8: FID for modalities X1, . . . , X5. Top row shows all FIDs for PolyMNIST and bottom row
for Translated-PolyMNIST respectively. Points denote the FID averaged over three seeds and bands
show one standard deviation respectively. Due to numerical instabilities, the MVAE could not be
trained with larger β values.
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(a) unimodal VAE, β = 1 (b) MVAE, β = 1 (c) MMVAE, β = 1 (d) MoPoE-VAE, β = 1

(e) unimodal VAE, β = 0.3 (f) MVAE, β = 0.3 (g) MMVAE, β = 0.3 (h) MoPoE-VAE, β = 0.3

(i) unimodal VAE, β = 9 (j) MVAE, β = 9 (k) MMVAE, β = 9 (l) MoPoE-VAE, β = 9

(m) unimodal VAE, β = 9 (n) MVAE, β = 9 (o) MMVAE, β = 9 (p) MoPoE-VAE, β = 9

Figure 9: Qualitative results for the unconditional generation using prior samples. For PolyMNIST
(Subfigures (a) to (d)) and Translated-PolyMNIST (Subfigures (e) to (h)), we show 20 samples for
each modality. For CUB, we show 100 generated images (Subfigures (i) to (l)) and 100 generated
captions (Subfigures (m) to (p)) respectively. Best viewed zoomed and in color.
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(a) MVAE, β = 1 (b) MMVAE, β = 1 (c) MoPoE-VAE, β = 1

(d) MVAE, β = 0.3 (e) MMVAE, β = 0.3 (f) MoPoE-VAE, β = 0.3

(g) MVAE, β = 9.0 (h) MMVAE, β = 9.0 (i) MoPoE-VAE, β = 9.0

(j) MVAE, β = 9.0 (k) MMVAE, β = 9.0 (l) MoPoE-VAE, β = 9.0

Figure 10: Qualitative results for the conditional generation across modalities. For PolyMNIST
(Subfigures (a) to (c)) and Translated-PolyMNIST (Subfigures (d) to (f)), we show 10 conditionally
generated samples of modality X1 given the sample from modality X2 that is shown in the first row
of the respective subfigure. For CUB, we show the generation of images given captions (Subfigures
(g) to (i)), as well as the generation of captions given images (Subfigures (j) to (l)). Best viewed
zoomed and in color.
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(a) PolyMNIST (b) Translated-PolyMNIST

Figure 11: Generative quality as a function of the number of modalities. In contrast to Figure 5, here
we “repeat” the same modality, to verify that the generative quality also declines when the modality-
specific variation of all modalities is similar. All models are trained with β = 1 on PolyMNIST and
β = 0.3 on Translated-PolyMNIST. The results are averaged over three seeds and all modalities; the
bands show one standard deviation respectively. For the unimodal VAE, which uses only a single
modality, the average and standard deviation are plotted as a constant.

(a) FID (b) Joint log-likelihood

Figure 12: PolyMNIST β-ablation using the official implementation of the MMVAE. In particular,
for both the MMVAE and the unimodal VAE, we use the DReG objective, importance sampling, as
well as a learned prior. Points denote the value of the respective metric averaged over three seeds and
bands show one standard deviation respectively.

(a) FID (b) Joint log-likelihood (c) Generative coherence

Figure 13: PolyMNIST β-ablation, comparing MVAE with and without additional ELBO sub-
sampling. MVAE+ denotes the model with additional ELBO sub-sampling. Points denote the value
of the respective metric averaged over three seeds and bands show one standard deviation respectively.
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