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Abstract
Modern advancements in large-scale machine
learning would be impossible without the
paradigm of data-parallel distributed computing.
Since distributed computing with large-scale mod-
els imparts excessive pressure on communication
channels, significant recent research has been di-
rected toward co-designing communication com-
pression strategies and training algorithms with
the goal of reducing communication costs. While
pure data parallelism allows better data scaling,
it suffers from poor model scaling properties. In-
deed, compute nodes are severely limited by mem-
ory constraints, preventing further increases in
model size. For this reason, the latest achieve-
ments in training giant neural network models
also rely on some form of model parallelism. In
this work, we take a closer theoretical look at
Independent Subnetwork Training (IST), which
is a recently proposed and highly effective tech-
nique for solving the aforementioned problems.
We identify fundamental differences between IST
and alternative approaches, such as distributed
methods with compressed communication, and
provide a precise analysis of its optimization per-
formance on a quadratic model.

1. Introduction
A huge part of today’s machine learning success is driven by
the possibility of building more and more complex models
and training them on increasingly larger datasets. This rapid
progress has become feasible due to advancements in dis-
tributed optimization, which is necessary for proper scaling
when the size of the training data grows (Zinkevich et al.,
2010). In a typical scenario, data parallelism is used for effi-
ciency and implies sharding the dataset across computing
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devices. This allowed very efficient scaling and acceleration
of training moderately sized models by using additional
hardware (Goyal et al., 2018). However, this data parallel
approach can suffer from communication bottleneck, which
has sparked extensive research on distributed optimization
with compressed communication of the parameters between
nodes (Alistarh et al., 2017; Konečný et al., 2016; Seide
et al., 2014).

1.1. The need for model parallelism

Despite its efficiency, data parallelism has some fundamen-
tal limitations when it comes to scaling up the model size.
As the dimensions of a model increase, the amount of mem-
ory required to store and update the parameters also in-
creases, which becomes problematic due to resource con-
straints on individual devices. This has led to the devel-
opment of model parallelism (Dean et al., 2012; Richtárik
& Takáč, 2016), which splits a large model across multi-
ple nodes, with each node responsible for computations of
parts of the model (Farber & Asanovic, 1997; Zhang et al.,
1989). However, naive model parallelism also poses chal-
lenges because each node can only update its portion of the
model based on the data it has access to. This creates a need
for very careful management of communication between
devices. Thus, a combination of both data and model par-
allelism is often necessary to achieve efficient and scalable
training of huge models.

Independent Subnetwork Training (IST) is a technique
that suggests dividing a neural network into smaller subparts,
training them in a distributed parallel fashion, and then ag-
gregating the results to update the weights of the whole
model. In IST, every subnetwork can operate independently
and has fewer parameters than the full model, which not
only reduces the load on computing nodes but also results
in faster synchronization. This paradigm was pioneered by
Yuan et al. (2022) for networks with fully connected layers
and was later extended to ResNets (Dun et al., 2022) and
Graph architectures (Wolfe et al., 2021). Previous exper-
imental studies have shown that IST is a very promising
approach for various applications as it allows to effectively
combine data and model parallelism and train larger models
with limited compute. In addition, Liao & Kyrillidis (2022)
performed theoretical analysis of IST for overparameterized
single hidden layer neural networks with ReLU activations.
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The idea of IST was also recently extended to the federated
setting via an asynchronous distributed dropout technique
(Dun et al., 2023).

Federated Learning. Another important setting when the
data is distributed (due to privacy reasons) is Federated
Learning (Kairouz et al., 2021; Konečný et al., 2016; McMa-
han et al., 2017). In this scenario, computing devices are
often heterogeneous and more resource-constrained (Caldas
et al., 2018) (e.g. mobile phones) in comparison to data-
center settings. Such challenges have prompted extensive
research efforts into selecting smaller and more efficient
submodels for local on-device training (Alam et al., 2022;
Charles et al., 2022; Chen et al., 2022; Diao et al., 2021;
Horvath et al., 2021; Jiang et al., 2022; Lin et al., 2022; Qiu
et al., 2022; Wen et al., 2022; Yang et al., 2022). Many of
these works propose approaches to adapt submodels, often
tailored to specific neural network architectures, based on
the capabilities of individual clients for various machine
learning tasks. However, there is a lack of comprehension
regarding the theoretical properties of these methods.

1.2. Summary of contributions

After reviewing the literature, we found that a rigorous un-
derstanding of IST convergence is virtually non-existent,
which motivated this work. The main contributions of this
paper include: • A novel approach to analyzing distributed
methods that combine data and model parallelism by op-
erating with sparse submodels for a quadratic model. •
The first analysis of independent subnetwork training in
homogeneous and heterogeneous scenarios without restric-
tive assumptions on gradient estimators. • Identification of
the settings when IST can optimize very efficiently or not
converge to the optimal solution but only to an irreducible
neighborhood that is also tightly characterized. • Experi-
mental validation of the proposed theory through carefully
designed illustrative experiments. The results, together with
all the proofs, are given in the Appendix.

2. Formalism and setup
We consider the standard optimization formulation of a
distributed/federated learning problem (Wang et al., 2021)

min
x∈Rd

[
f(x) := 1

n

n∑
i=1

fi(x)

]
, (1)

where n is the number of clients/workers, and each fi :
Rd → Rd represents the loss of the model parameterized by
vector x ∈ Rd on the data of client i.

A typical Stochastic Gradient Descent (SGD)-type method
for solving this problem has the form

xk+1 = xk − γgk, gk = 1
n

n∑
i=1

gki , (2)

where γ > 0 is the stepsize and gki is a suitably con-
structed estimator of ∇fi(x

k). In the distributed setting,
computation of gradient estimators gki is typically per-
formed by clients, and the results are sent to the server,
which subsequently performs aggregation via averaging
gk = 1

n

∑n
i=1 g

k
i . The average is then used to update the

model xk+1 via a gradient-type method (2), and at the next
iteration, the model is broadcasted back to the clients. The
process is repeated iteratively until a suitable model is found.

One of the main techniques used to accelerate distributed
training is lossy communication compression (Alistarh et al.,
2017; Konečný et al., 2016; Seide et al., 2014), which sug-
gests applying a (possibly randomized) lossy compression
mapping C to a vector/matrix/tensor x before broadcast-
ing. This reduces the bits sent per communication round
at the cost of transmitting a less accurate estimate C(x) of
x. Described technique can be formalized in the following
definition.
Definition 2.1 (Unbiased compressor). A randomized map-
ping C : Rd → Rd is an unbiased compression operator
(C ∈ U(ω) for brevity) if for some ω ≥ 0 and ∀x ∈ Rd

E [C(x)] = x, E
[
∥C(x)− x∥2

]
≤ ω∥x∥2. (3)

A notable example of a mapping from this class is the ran-
dom sparsification (Rand-q for q ∈ {1, . . . , d}) operator
defined by

CRand-q(x) := Cqx = d
q

∑
i∈S

eie
⊤
i x, (4)

where e1, . . . , ed ∈ Rd are standard unit basis vectors in Rd,
and S is a random subset of [d] := {1, . . . , d} sampled from
the uniform distribution on the all subsets of [d] with car-
dinality q. Rand-q belongs to U (d/q − 1), which means
that the more elements are “dropped” (lower q), the higher
the variance ω of the compressor.

In this work, we are mainly interested in a somewhat more
general class of operators than mere sparsifiers. In particu-
lar, we are interested in compressing via the application of
random matrices, i.e., via sketching. A sketch Ck

i ∈ Rd×d

can be used to represent submodel computations in the fol-
lowing way:

gki := Ck
i∇fi(C

k
i x

k), (5)

where we require Ck
i to be a symmetric positive semi-

definite matrix. Such gradient estimates correspond to com-
puting the local gradient with respect to a sparse submodel
Ck

i x
k, and additionally sketching the resulting gradient with

the same matrix Ck
i to guarantee that the resulting update

lies in the lower-dimensional subspace.

Using this notion, IST algorithm (with one local gradient
step) can be represented in the following form:

xk+1 = 1
n

n∑
i=1

[
Ck

i x
k − γCk

i∇fi(C
k
i x

k)
]
, (6)



which is equivalent to the SGD-type update (2) when the
perfect reconstruction property holds (with probability one)

Ck := 1
n

n∑
i=1

Ck
i = I,

where I is the identity matrix. This property is inherent for
a specific class of compressors that are particularly useful
for capturing the concept of an independent subnetwork
partition.

Definition 2.2 (Permutation sketch). Assume that model
size is greater than the number of clients d ≥ n and d = qn,
where q ≥ 1 is an integer*. Let π = (π1, . . . , πd) be a
random permutation of [d]. Then for all x ∈ Rd and each
i ∈ [n], we define Perm-q operator

Ci := n ·
qi∑

j=q(i−1)+1

eπj
e⊤πj

. (7)

Perm-q is unbiased and can be conveniently used for rep-
resenting a structured decomposition of the model, such
that every client i is responsible for computations over a
submodel Cix

k.

Our convergence analysis relies on the assumption that was
previously used for coordinate descent-type methods.

Assumption 2.3 (Matrix smoothness). A differentiable
function f : Rd → R is L-smooth, if there exists a pos-
itive semi-definite matrix L ∈ Rd×d such that ∀x, h ∈ Rd

f(x+ h) ≤ f(x) + ⟨∇f(x), h⟩+ 1
2 ⟨Lh, h⟩ . (8)

A standard L-smoothness condition is obtained as a special
case of (8) for L = L · I. Matrix smoothness was previously
used for designing data-dependent gradient sparsification
to accelerate optimization in communication-constrained
settings (Safaryan et al., 2021; Wang et al., 2022).

2.1. Simplifications taken

To conduct a thorough theoretical analysis of methods that
combine data with model parallelism, we simplify the algo-
rithm and problem setting to isolate the unique effects of
this approach. The following considerations are made:

(1) We assume that every node i computes the true gradient
at the submodel Ci∇fi(Cix

k).

(2) A notable difference compared to the original IST is
that workers perform a single gradient descent step (or just
gradient computation).

*While this condition may look restrictive, it naturally holds for
distributed learning in a data-center setting. Permutation sparsifiers
were introduced by (Szlendak et al., 2022) and generalized to other
scenarios (like n ≥ d).

(3) Finally, we consider a special case of a quadratic model
(9) as a loss function (1).

Condition (1) is mainly for the sake of simplicity and clarity
of exposition and can be potentially generalized to stochas-
tic gradient computations. Condition (2) is imposed be-
cause local steps did not bring any theoretical efficiency
improvements for heterogeneous settings until very recently
(Mishchenko et al., 2022), and even then, only with the intro-
duction of additional control variables, which goes against
the requirements of resource-constrained device settings.
The reason behind (3) is that despite its apparent simplicity,
the quadratic problem has been used extensively to study
properties of neural networks (Zhang et al., 2019; Zhu et al.,
2022). Moreover, it is a non-trivial model, which makes
it possible to understand complex optimization algorithms
(Arjevani et al., 2020; Cunha et al., 2022; Goujaud et al.,
2022). The quadratic problem is suitable for observing com-
plex phenomena and providing theoretical insights, which
can also be observed in practical scenarios.

Having said that, we consider a special case of problem (1)
for symmetric matrices Li

f(x) = 1
n

n∑
i=1

fi(x), fi(x) ≡ 1
2x

⊤Lix− x⊤ bi . (9)

In this case, f(x) is L-smooth, and ∇f(x) = Lx − b,
where L = 1

n

∑n
i=1 Li and b := 1

n

∑n
i=1 bi.

3. Results in the interpolation case
First, let us examine the case of bi ≡ 0, which we call
interpolation for quadratics, and perform the analysis for
general sketches Ck

i . In this case, the gradient estimator (2)
takes the form

gk = 1
n

n∑
i=1

Ck
i∇fi(C

k
i x

k) = 1
n

n∑
i=1

Ck
i LiC

k
i x

k = B
k
xk

(10)
where B

k
:= 1

n

∑n
i=1 C

k
i LiC

k
i . We prove the following

result for a method with such an estimator.

Theorem 3.1. Consider the method (2) with estimator (10)
for a quadratic problem (9) with L ≻ 0 and bi ≡ 0. Then if
W := 1

2E
[
LB

k
+B

k
L
]
⪰ 0 and there exists a constant

θ > 0:
E
[
B

k
LB

k
]
⪯ θW, (11)

and the step size is chosen as 0 < γ ≤ 1
θ , the iterates satisfy

1

K

K−1∑
k=0

E
[∥∥∇f(xk)

∥∥2
L

−1
WL

−1

]
≤

2
(
f(x0)− E

[
f(xK)

])
γK

.

(12)



This theorem establishes an O(1/K) convergence rate with
a constant step size up to a stationary point. Note that we
employ weighted norms in our analysis, as the considered
class of loss functions satisfies the matrix L-smoothness
Assumption 2.3. The use of standard Euclidean distance
may result in loose bounds that do not recover correct rates
for special cases like gradient descent.

It is important to highlight that the inequality (11) may not
hold (for any θ > 0) in the general case as the matrix W
is not guaranteed to be positive (semi-)definite in the case
of general sampling. The intuition behind this issue is that
arbitrary sketches Ck

i can result in the gradient estimator gk,
which is misaligned with the true gradient ∇f(xk). Specifi-
cally, the inner product

〈
∇f(xk), gk

〉
can be negative, and

there is no expected descent after one step.

Next, we give examples of samplings for which the inequal-
ity (11) can be satisfied.

1. Identity. Consider Ci ≡ I. Then B
k
= L, B

k
LB

k
=

L
3
,W = L

2 ≻ 0 and hence (11) is satisfied for θ =
λmax(L). So, (12) says that if we choose γ = 1/θ, then

1
K

K−1∑
k=0

∥∥∇f(xk)
∥∥2
I
≤ 2λmax(L)(f(x0)−f(xK))

K ,

which exactly matches the rate of gradient descent in the
non-convex setting.

2. Permutation. Assume† n = d and the use of Perm-1
sketch Ck

i = neπk
i
e⊤
πk
i

, where πk = (πk
1 , . . . , π

k
n) is a ran-

dom permutation of [n]. Then

E
[
B

k
]
= 1

n

n∑
i=1

n2E
[
Ck

i LiC
k
i

]
=

∑n
i=1 Di = nD,

where D := 1
n

∑n
i=1 Di,Di := Diag(Li). Then inequality

(11) leads to

nDLD ⪯ θ
2

(
LD+DL

)
, (13)

which may not always hold as LD+DL is not guaranteed
to be positive-definite—even in the case of L ≻ 0. However,
such a condition can be enforced via a slight modification
of the permutation sketches, which is done in Section 3.2.
The limitation of such an approach is that the resulting
compressors are no longer unbiased.

Next, we focus on the particular case of permutation
sketches, which are the most suitable for model partitioning
according to Independent Subnetwork Training (IST). In the
rest of this section, we discuss how the condition (11) can
be enforced via a specially designed preconditioning of the
problem (9) or modification of the sketch mechanism (7).

†This is mainly done to simplify the presentation. Results can
be generalized to the case of n ̸= d in a similar manner as in
(Szlendak et al., 2022), which can be found in the Appendix.

3.1. Homogeneous problem preconditioning

To start, consider a homogeneous setting fi(x) =
1
2x

⊤Lx,
so Li ≡ L. Now define D = Diag(L) – a diagonal matrix
with elements equal to the diagonal of L. Then, the problem
can be converted to

fi(D
− 1

2x) = 1
2

(
D− 1

2x
)⊤

L
(
D− 1

2x
)
= 1

2x
⊤ L̃x,

where L̃ := D− 1
2LD− 1

2 . It is equivalent to the original
problem after changing the variables x̃ := D− 1

2x. Note that
D = Diag(L) is positive-definite as L ≻ 0, and therefore
L̃ ≻ 0. Moreover, the preconditioned matrix L̃ has all ones
on the diagonal: Diag(L̃) = I. If we now combine (14)
with Perm-1 sketches

E
[
B

k
]
= E

[
1
n

∑n
i=1 Ci L̃Ci

]
= nDiag(L̃) = nI.

Therefore, inequality (11) takes the form W̃ = n L̃ ⪰
1
θn

2 L̃, which holds for θ ≥ n, and the left-hand side of (12)
can be transformed (for an accurate comparison to standard
methods) in the following way:∥∥∇f(xk)

∥∥2
L̃

−1
W̃ L̃

−1 ≥ nλmin

(
L̃
−1

)∥∥∇f(xk)
∥∥2
I
.

The resulting convergence guarantee

1
K

K−1∑
k=0

E
[∥∥∇f(xk)

∥∥2
I

]
≤ 2λmax(L̃)(f(x0)−E[f(xK)])

K ,

which matches classical gradient descent.

3.2. Heterogeneous sketch preconditioning

In contrast to the homogeneous case, the heterogeneous
problem fi(x) = 1

2x
⊤Lix cannot be so easily precondi-

tioned by a simple change of variables x̃ := D− 1
2x, as

every client i has its own matrix Li. However, this prob-
lem can be fixed via the following modification of Perm-1,
which scales the output according to the diagonal elements
of the local smoothness matrix Li:

C̃i :=
√

n/ [Li]πi,πi
eπie

⊤
πi
. (14)

In this case, E
[
C̃iLiC̃i

]
= I, E

[
B

k
]
= I, and W = L.

Then inequality (11) is satisfied for θ ≥ 1.

If one inputs these results into (12), such convergence guar-
antee can be obtained

1
K

K−1∑
k=0

E
[∥∥∇f(xk)

∥∥2
I

]
≤ 2λmax(L)(f(x0)−E[f(xK)])

K ,

which matches the gradient descent result as well. Thus, we
can conclude that heterogeneity does not bring such a fun-
damental challenge in this scenario. In addition, the method
with Perm-1 is significantly better in terms of computa-
tional and communication complexity, as it requires calcu-
lation of the local gradients with respect to much smaller
submodels and transmits only sparse updates.



4. Irreducible bias in the general case
Now we look at the most general heterogeneous case with
different matrices and linear terms fi(x) ≡ 1

2x
⊤Lix −

x⊤ bi . In this instance, the gradient estimator (2) takes the
form

gk = 1
n

n∑
i=1

Ck
i

(
LiC

k
i x

k − bi
)
= B

k
xk −Cb, (15)

where Cb = 1
n

∑n
i=1 C

k
i bi. Herewith let us use a het-

erogeneous permutation sketch preconditioner (14), as in
Section 3.2. Then E

[
B

k
]
= I and E

[
Cb

]
= 1√

n
D̃ b,

where D̃b := 1
n

∑n
i=1 D

− 1
2

i bi. Furthermore, the expected
gradient estimator (15) results in E

[
gk

]
= xk − 1√

n
D̃b

and can be transformed in the following manner:

E
[
gk

]
= L

−1
Lxk ± L

−1
b− 1√

n
D̃ b

= L
−1 ∇f(xk) + h,

where h := L
−1

b− 1√
n
D̃ b. Obtained formula reflects the

decomposition of the estimator into the optimally precondi-
tioned true gradient and a bias, depending on terms bi.

Estimator (16) can be directly plugged (with proper condi-
tioning) into the general SGD update (2)

E
[
xk+1

]
= (1− γ)

k+1
x0 + γ√

n
D̃ b

k∑
j=0

(1− γ)j . (16)

The resulting recursion (16) is exact, and its asymptotic
limit can be analyzed. Thus, for constant γ < 1, by using
the formula for the sum of the first k terms of a geometric
series, one gets

E
[
xk

]
= (1− γ)

k
x0 + 1−(1−γ)k√

n
D̃ b −→

k→∞
1√
n
D̃ b,

which shows that in the limit, the first initialization term
(with x0) vanishes while the second converges to 1√

n
D̃b.

This reasoning shows that the method does not converge to
the exact solution

E
[
xk

]
→ x∞ ̸= x⋆ ∈ argmin

x∈Rd

{
1

2
x⊤ Lx− x⊤ b

}
,

which for the positive-definite L can be defined as x⋆ =

L
−1

b, while x∞ = 1
n
√
n

∑n
i=1 D

− 1
2

i bi. So, in general,
there is an unavoidable bias. However, in the limit case:
n = d → ∞, the bias diminishes.

Theorem 4.1. Consider the method (2) with the estimator
(15) for the quadratic problem (9) with the positive-definite
matrix L ≻ 0. Assume that for every Di := Diag(Li) ma-

trices D− 1
2

i exist, scaled permutation sketches (14) are used,

and heterogeneity is bounded as E
[∥∥gk − E

[
gk

]∥∥2
L

]
≤ σ2.

Then, for the step size chosen as follows:

0 < γ ≤ γc,β := 1/2−β
β+1/2 , (17)

where γc,β ∈ (0, 1] for β ∈ (0, 1/2), the iterates satisfy

1
K

K−1∑
k=0

E
[∥∥∇f(xk)

∥∥2
L

−1

]
≤

2
(
f(x0)− E

[
f(xK)

])
γK

(18)

+

(
1− γ

0.5β
+ γ

)
∥h∥2

L
+ γσ2,

where h = L
−1

b− 1
n3/2

∑n
i=1 D

− 1
2

i bi.

Note that the derived convergence upper bound has a neigh-
borhood proportional to the bias of the gradient estimator
h and level of heterogeneity σ2. Some of these terms with
factor γ can be eliminated by decreasing the learning rate
(e.g., ∼ 1/

√
k). However, such a strategy does not diminish

the term with a multiplier 2β−1 (1− γ), making the neigh-
borhood irreducible. Moreover, this term can be eliminated
for γ = 1, which also minimizes the first term that decreases
as 1/K. However, this step size choice maximizes the terms
with factor γ. Thus, there exists an inherent trade-off be-
tween convergence speed and the size of the neighborhood.

In addition, convergence to the stationary point is measured
by the weighted L

−1
squared norm of the gradient. At the

same time, the neighborhood term depends on the weighted
by L norm of h. This fine-grained decoupling is achieved
by carefully applying the Fenchel-Young inequality and pro-
vides a tighter characterization of the convergence compared
to using standard Euclidean distances.

Homogeneous case. In this scenario, every worker has
access to all data fi(x) ≡ 1

2x
⊤Lx− x⊤ b. Then diagonal

preconditioning of the problem can be used, as in the previ-
ous Section 3.1. This results in a gradient ∇f(x) = L̃x− b̃

for L̃ = D− 1
2LD− 1

2 and b̃ = D− 1
2 b. If this expression

is further combined with a permutation sketch scaled by
1/
√
n C′

i :=
√
neπie

⊤
πi

, the resulting gradient estimator is:

gk = xk − 1√
n
b̃ = L̃

−1 ∇f(xk) + h̃, (19)

for h̃ = L̃
−1

b̃− 1√
n
b̃. In this case, the heterogene-

ity term σ2 from the upper bound (18) disappears as
E
[∥∥gk − E

[
gk

]∥∥2
L

]
= 0, which can decrease the neigh-

borhood size. However, the bias term depending on h̃ still
remains, as the method does not converge to the exact so-
lution xk → x∞ ̸= x⋆ = L̃

−1
b̃ for positive-definite L̃.

Nevertheless the method’s fixed point x∞ = b̃ /
√
n and so-

lution x⋆ can coincide when L̃
−1

b̃ = 1√
n
b̃, which means

that b̃ is the right eigenvector of matrix L̃
−1

with eigenvalue
1√
n

.
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A. Basic and auxiliary facts
L-matrix smoothness:

f(x+ h) ≤ f(x) + ⟨∇f(x), h⟩+ 1

2
⟨Lh, h⟩ , ∀x, h ∈ Rd. (20)

Basic Inequalities. For all vectors a, b ∈ Rd and random vector X ∈ Rd:

2⟨a, b⟩ = ∥a∥2 + ∥b∥2 − ∥a− b∥2, (21)

E ∥X − a∥2 = E ∥X −EX∥2 + ∥EX − a∥2. (22)

Lemma A.1 (Fenchel–Young inequality). For any function f and its convex conjugate f∗, Fenchel’s inequality (also known
as the Fenchel–Young inequality) holds for every x, y ∈ Rd

⟨x, y⟩ ≤ f(x) + f∗(y).

The proof follows from the definition of conjugate: f∗(y) := supx′ {⟨y, x′⟩ − f(x′)} ≥ ⟨y, x⟩ − f(x).

In the case of a quadratic function f(x) = β∥x∥2L, we can compute f∗(y) = 1
4β

−1∥y∥2L−1 . Thus

⟨x, y⟩ ≤ β∥x∥2L +
1

4
β−1∥y∥2L−1 . (23)

B. Proofs
B.1. Permutation sketch computations

All derivations in this section are performed for the n = d case.

Classical Permutation Sketching. Perm-1: Ci = neπi
e⊤πi

, where π = (π1, . . . , πn) is a random permutation of [n].
For the homogeneous problem Li ≡ L:

E
[
B

k
]
= E

[
1

n

n∑
i=1

Ci LCi

]
= nDiag(L) (24)

Then
2W = E

[
LB

k
+B

k
L
]
= n (LDiag(L) + Diag(L)L) (25)

and
E
[
B

k
LB

k
]
= n2Diag(L)LDiag(L). (26)

By repeating basically the same calculations for C′
i =

√
neπi

e⊤πi
we have that

E
[
B

k
]
= E

[
1

n

n∑
i=1

C′
iLC

′
i

]
= Diag(L), (27)

and E
[
B

k
LB

k
]
= Diag(L)LDiag(L), 2W = E

[
LB

k
+B

k
L
]
= LDiag(L) + Diag(L)L.

B.1.1. HETEROGENEOUS SKETCH PRECONDITIONING.

We recall the following modification of Perm-1:

C̃i :=
√

n/ [Li]πi,πi
eπie

⊤
πi
. (28)

Then

E
[
C̃iLiC̃i

]
= E

[
n[Li]

−1
πi,πi

eπi
e⊤πi

Lieπi
e⊤πi

]
=

1

n

n∑
j=1

nejIj,je
⊤
j = I. (29)



and

E
[
B

k
]

= E

[
1

n

n∑
i=1

C̃iLiC̃i

]

=
1

n

n∑
i=1

E
[
n[Li]

−1
πi,πi

eπie
⊤
πi
Lieπie

⊤
πi

]
=

1

n

n∑
i=1

1

n

n∑
j=1

n[Li]
−1
j,j ej [Li]j,je

⊤
j

=
1

n

n∑
i=1

n∑
j=1

eje
⊤
j

= I.

Thus W = 1
2E

[
LB

k
+B

k
L
]
= L. On the left hand side of inequality (11), we have

E
[
B

k
LB

k
]

= E

 1

n

n∑
i=1

C̃iLiC̃i L
1

n

n∑
i=j

C̃jLjC̃j


=

1

n2

n∑
i,j=1

E
[
C̃iLiC̃i L C̃jLjC̃j

]
=

n∑
i,j=1

eie
⊤
i L eje

⊤
j

= IL I

= L .

B.2. Interpolation case: proof of Theorem 3.1

In the quadratic interpolation regime, the linear term is zero fi(x) =
1
2x

⊤Lix, and the gradient estimator has the form

gk =
1

n

n∑
i=1

Ck
i∇fi(C

k
i x

k) =
1

n

n∑
i=1

Ck
i LiC

k
i x

k = B
k
xk. (30)

Proof. First, we prove the stationary point convergence result (12).

Using the L-smoothness of function f , we get

f(xk+1)
(2)
= f(xk − γgk)

(8)
≤ f(xk)−

〈
∇f(xk), γgk

〉
+

γ2

2

∥∥gk∥∥2
L

(10)
= f(xk)− γ

〈
Lxk,B

k
xk

〉
+

γ2

2

∥∥∥Bk
xk

∥∥∥2
L

= f(xk)− γ(xk)⊤ LB
k
xk +

γ2

2
(xk)⊤ B

k
LB

k
xk.

After applying conditional expectation, using its linearity, and the fact that

x⊤Ax =
1

2
x⊤ (

A+A⊤)x



we get

E
[
f(xk+1) | xk

]
≤ f(xk)− γ(xk)⊤E

[
LB

k
]
xk +

γ2

2
(xk)⊤E

[
B

k
LB

k
]
xk

= f(xk)− γ(xk)⊤ W xk +
γ2

2
(xk)⊤E

[
B

k
LB

k
]
xk

= f(xk)− γ(∇f(xk))⊤ L
−1

WL
−1 ∇f(xk)

+
γ2

2
(∇f(xk))⊤ L

−1 E
[
B

k
LB

k
]
L
−1 ∇f(xk)

(11)
≤ f(xk)− γ∥∇f(xk)∥2

L
−1

WL
−1 +

θγ2

2
∥∇f(xk)∥2

L
−1

WL
−1

= f(xk)− γ (1− θγ/2) ∥∇f(xk)∥2
L

−1
WL

−1

≤ f(xk)− γ

2
∥∇f(xk)∥2

L
−1

WL
−1 ,

where the last inequality holds for the stepsize γ ≤ 1
θ .

Rearranging gives ∥∥∇f(xk)
∥∥2
L

−1
WL

−1 ≤ 2

γ

(
f(xk)− E

[
f(xk+1) | xk

])
,

which after averaging gives the desired result

1

K

K−1∑
k=0

E
[∥∥∇f(xk)

∥∥2
L

−1
WL

−1

]
≤ 2

γK

K−1∑
k=0

(f(xk)− E
[
f(xk+1)

]
) =

2
(
f(x0)− E

[
f(xK)

])
γK

. (31)

B.3. Non-zero solution

As a reminder, in the most general case, the problem has the form

f(x) =
1

n

n∑
i=1

fi(x), fi(x) ≡
1

2
x⊤Lix− x⊤ bi .

with the gradient estimator

gk =
1

n

n∑
i=1

Ck
i∇fi(C

k
i x

k) =
1

n

n∑
i=1

Ck
i

(
LiC

k
i x

k − bi
)
= B

k
xk − 1

n

n∑
i=1

Ck
i bi . (32)

General calculations for estimator (15). In the heterogeneous case, the following sketch preconditioner is used

C̃i :=
√

n/ [Li]πi,πi
eπi

e⊤πi
.

Then E
[
B

k
]
= I (calculation was done as in Section B.1.1) and

E
[
Cb

]
=

1

n

n∑
i=1

E
[
C̃k

i bi

]
=

1

n

n∑
i=1

E
[√

n[Li]
− 1

2
πi,πieπi

e⊤πi
bi

]
=

1

n

n∑
i=1

1

n

n∑
j=1

√
n[Li]

− 1
2

j,j ej [bi]j



=
1

n

n∑
i=1

1

n

√
nD

− 1
2

i bi

=
1√
n

1

n

n∑
i=1

D
− 1

2
i bi

=
1√
n
D- 12 b︸ ︷︷ ︸
D̃ b

B.3.1. GENERIC CONVERGENCE ANALYSIS FOR HETEROGENEOUS CASE: PROOF OF THEOREM 4.1.

Here we formulate and further prove a more general version of Theorem 4.1, which is obtained as a special case of the next
result for c = 1/2.
Theorem B.1. Consider the method (2) with estimator (15) for a quadratic problem (9) with positive-definite matrix L ≻ 0.
Then, if for every Di := Diag(Li) matrices D− 1

2
i exist, scaled permutation sketches Ci :=

√
n[L

− 1
2

i ]πi,πi
eπi

e⊤πi
are used

and heterogeneity is bounded as E
[∥∥gk − E

[
gk

]∥∥2
L

]
≤ σ2. Then, the step size is chosen as

0 < γ ≤ γc,β :=
1− c− β

β + 1/2
, (33)

where γc,β ∈ (0, 1] for β + c < 1, the iterates satisfy

1

K

K−1∑
k=0

E
[∥∥∇f(xk)

∥∥2
L

−1

]
≤

f(x0)− E
[
f(xK)

]
cγK

+

(
1− γ

cβ
+

γ

2c

)
∥h∥2

L
+

γ

2c
σ2. (34)

where L = 1
n

∑n
i=1 Li, h = L

−1
b− 1√

n
1
n

∑n
i=1 D

− 1
2

i bi and b = 1
n

∑n
i=1 bi.

Proof. By using L-smoothness

E
[
f(xk+1) | xk

] (8)
≤ f(xk)− γ

〈
∇f(xk),E

[
gk

]〉
+

γ2

2
E
[
∥gk∥2

L

]
(16),(22)
= f(xk)− γ

〈
∇f(xk),L

−1 ∇f(xk) + h
〉

+
γ2

2

(∥∥E [
gk

]∥∥2
L
+ E

[∥∥gk − E
[
gk

]∥∥2
L

])
(16)
= f(xk)− γ

(〈
∇f(xk),L

−1 ∇f(xk)
〉
+
〈
∇f(xk), h

〉)
+
γ2

2

(∥∥∥L−1 ∇f(xk) + h
∥∥∥2
L
+ E

[∥∥gk − E
[
gk

]∥∥2
L

])
(21)
= f(xk)− γ

(∥∥∇f(xk)
∥∥2
L

−1 +
〈
∇f(xk), h

〉)
+

γ2

2
E
[∥∥gk − E

[
gk

]∥∥2
L

]
+
γ2

2

(∥∥∇f(xk)
∥∥2
L

−1 + 2
〈
∇f(xk), h

〉
+ ∥h∥2

L

)
≤ f(xk)− γ (1− γ/2)

∥∥∇f(xk)
∥∥2
L

−1 +
γ2

2
σ2

−γ (1− γ)
〈
∇f(xk), h

〉
+

γ2

2
∥h∥2

L
,

where the last inequality follows from the grouping of similar terms and bounded heterogeneity

E
[∥∥gk − E

[
gk

]∥∥2
L

]
= E

[∥∥∥gk −
(
L
−1 ∇f(xk) + h

)∥∥∥2
L

]
(35)

= E

[∥∥∥∥Bk
xk −Cb−

(
xk − 1√

n
D̃b

)∥∥∥∥2
L

]
≤ σ2. (36)



Next, using a Fenchel-Young inequality (23) for
〈
∇f(xk),−h

〉
and 1− γ ≥ 0

E
[
f(xk+1) | xk

]
≤ f(xk)− γ (1− γ/2)

∥∥∇f(xk)
∥∥2
L

−1 +
γ2

2

(
∥h∥2

L
+ σ2

)
+γ (1− γ)

[
β∥∇f(xk)∥2

L̃
−1 + 0.25β−1∥h∥2

L̃

]
≤ f(xk)− γ (1− γ/2 − β (1− γ))

∥∥∇f(xk)
∥∥2
L

−1

+γ
{(

β−1 (1− γ) +
γ

2

)
∥h∥2

L
+

γ

2
σ2

}
, (37)

where in the last inequality we grouped similar terms and used the fact that 0.25 < 1.

Now to guarantee that 1− γ/2 − β(1− γ) ≥ c > 0, we choose the step size using

0 < γ ≤ γc,β :=
1− c− β

β + 1/2
, (38)

where γc,β > 0 for β + c < 1. This means that β can not arbitrarily grow to diminish β−1.
Then, after standard manipulations and unrolling the recursion

γc
∥∥∇f(xk)

∥∥2
L

−1 ≤ f(xk)− E
[
f(xk+1) | xk

]
+ γ

(
β−1 (1− γ) + γ/2

)
∥h∥2

L
+

γ2

2
σ2 (39)

we obtain
c

K

K−1∑
k=0

E
[∥∥∇f(xk)

∥∥2
L

−1

]
≤

f(x0)− E
[
f(xK)

]
γK

+
(
β−1 (1− γ) + γ/2

)
∥h∥2

L
+

γ

2
σ2. (40)

B.3.2. HOMOGENEOUS CASE

The main difference compared to the result in the previous subsection is that the gradient estimator expression (19) holds
deterministically (without expectation E). That is why gk = E

[
gk

]
and heterogeneity term σ2 equals to 0.

We provide the full statement and proof for the homogeneous result discussed in Section 4.
Theorem B.2. Consider the method (2) with estimator (19) for a homogeneous quadratic problem (9) with positive-definite
matrix Li ≡ L ≻ 0. Then if exists D− 1

2 for D := Diag(L), scaled permutation sketch C′
i =

√
neπie

⊤
πi

is used and the step
size is chosen as

0 < γ ≤ γc,β :=
1− c− β

β + 1/2
, (41)

where γc,β > 0 for β + c < 1. Then the iterates satisfy

1

K

K−1∑
k=0

E
[∥∥∇f(xk)

∥∥2
L̃

−1

]
≤

f(x0)− E
[
f(xK)

]
cγK

+

(
1− γ

cβ
+

γ

2c

)
∥h∥2

L̃
, (42)

where L̃ = D− 1
2LD− 1

2 , h = L̃
−1

b̃− 1√
n
b̃ and b̃ = D− 1

2 b.

Proof. By using L-smoothness

E
[
f(xk − γgk) | xk

] (8)
≤ f(xk)−

〈
∇f(xk), γE

[
gk

]〉
+

γ2

2
E
[∥∥gk∥∥2

L̃

]
≤ f(xk)− γ

〈
∇f(xk), L̃

−1 ∇f(xk) + h
〉
+

γ2

2

∥∥∥L̃−1 ∇f(xk) + h
∥∥∥2
L̃

(21)
= f(xk)− γ

(〈
∇f(xk), L̃

−1 ∇f(xk)
〉
+

〈
∇f(xk), h

〉)
+
γ2

2

(∥∥∇f(xk)
∥∥2
L̃

−1 + 2
〈
∇f(xk), h

〉
+ ∥h∥2

L̃

)
= f(xk)− γ (1− γ/2)

∥∥∇f(xk)
∥∥2
L̃

−1 +
γ2

2
∥h∥2

L̃
− γ (1− γ)

〈
∇f(xk), h

〉



Next by using a Fenchel-Young inequality (23) for
〈
∇f(xk),−h

〉
and 1− γ ≥ 0

E
[
f(xk+1) | xk

]
≤ f(xk)− γ (1− γ/2)

∥∥∇f(xk)
∥∥2
L̃

−1 +
γ2

2
∥h∥2

L̃

+γ (1− γ)
[
β∥∇f(xk)∥2

L̃
−1 + 0.25β−1∥h∥2

L̃

]
= f(xk)− γ (1− γ/2 − β(1− γ))

∥∥∇f(xk)
∥∥2
L̃

−1

+γ
(
β−1 (1− γ) + γ/2

)
∥h∥2

L̃
.

Now to guarantee that 1− γ/2 − β(1− γ) ≥ c > 0 we choose the step size as

0 < γ ≤ γc,β :=
1− c− β

β + 1/2
, (43)

where γc,β ≥ 0 for β + c < 1.
Then after standard manipulations and unrolling the recursion

γc
∥∥∇f(xk)

∥∥2
L̃

−1 ≤ f(xk)− E
[
f(xk+1) | xk

]
+ γ

(
β−1 (1− γ) + γ/2

)
∥h∥2

L̃
(44)

we obtain the formulated result

c

K

K−1∑
k=0

E
[∥∥∇f(xk)

∥∥2
L̃

−1

]
≤

f(x0)− E
[
f(xK)

]
γK

+
(
β−1 (1− γ) + γ/2

)
∥h∥2

L̃
. (45)

Remark B.3. 1) The first term in the convergence upper bound (42) is minimized by maximizing product c · γ, which
motivates to choose c > 0 and γ ≤ 1 as large as possible. Although due to the constraint on the step size (and β > 0)

0 < γ ≤ γc,β :=
1− c− β

β + 1/2
, (46)

constant c ∈ (0, 1). So, by maximizing c the value γc,β becomes smaller, thus there is a trade-off.

2) The second term or the neighborhood size (multiplier in front of ∥h∥2
L̃

)

Ψ(β, γ) :=
β−1 (1− γ) + γ/2

c
=

β−1 (1− γ) + γ/2

1− γ/2− β(1− γ)
(47)

can be numerically minimized (e.g. by using WolframAlpha) with constraints γ ∈ (0, 1] and β > 0. The solution of such
optimization problem is γ⋆ ≈ 1 and β⋆ ≈ ξ ∈ {3.992, 2.606, 2.613}. In fact, Ψ(β⋆, γ⋆) ≈ 0.5.

Functional gap convergence. Note that for the quadratic optimization problem (9)∥∥∇f(xk)
∥∥2
L̃

−1 =
〈
L̃xk − b̃, L̃

−1
(
L̃xk − b̃

)〉
= 2

(
f(xk)− f(x⋆)

)
. (48)

Then by rearranging and subtracting f⋆ := f(x⋆) from both sides of inequality (44) we obtain

E
[
f(xk+1) | xk

]
− f⋆ ≤ f(xk)− f⋆ − γc

∥∥∇f(xk)
∥∥2
L̃

−1 + γ
(
β−1 (1− γ) + γ/2

)
∥h∥2

L̃

(48)
=

(
f(xk)− f⋆

)
− γc · 2

(
f(xk)− f⋆

)
+ γ

(
β−1 (1− γ) + γ/2

)
∥h∥2

L̃

= (1− 2γc)
(
f(xk)− f⋆

)
+ γ

(
β−1 (1− γ) + γ/2

)
∥h∥2

L̃
.

After unrolling the recursion

E
[
f(xk+1) | xk

]
− f⋆ ≤ (1− 2γc)

k (
f(x0)− f⋆

)
+ γ

(
β−1 (1− γ) + γ/2

)
∥h∥2

L̃

k∑
i=0

(1− 2γc)
i

≤ (1− 2γc)
k (

f(x0)− f⋆
)
+

1

2c

(
β−1 (1− γ) + γ/2

)
∥h∥2

L̃
.

This result is formalized in the following Theorem.



Theorem B.4. Consider the method (2) with estimator (19) for a homogeneous quadratic problem (9) with positive-definite
matrix Li ≡ L ≻ 0. Then if exists D− 1

2 for D := Diag(L), scaled permutation sketch C′
i =

√
neπie

⊤
πi

is used and the step
size is chosen as

0 < γ ≤ γc,β :=
1− c− β

β + 1/2
, (49)

where γc,β > 0 for β + c < 1. Then the iterates satisfy

E
[
f(xk)

]
− f⋆ ≤ (1− 2γc)

k (
f(x0)− f⋆

)
+

1

2c

(
β−1 (1− γ) + γ/2

)
∥h∥2

L̃
, (50)

where h = L̃
−1

b̃− 1√
n
b̃ and L̃ = D− 1

2LD− 1
2 , b̃ = D− 1

2 b.

This result shows that for a proper choice of the step size γ = 1 and constant c = 1/2, the functional gap can converge in
basically one iteration to the neighborhood of size

∥h∥2
L̃
=

〈
L̃

(
L̃
−1

b̃− 1√
n
b̃

)
, L̃

−1
b̃− 1√

n
b̃

〉
,

which equals zero if L̃
−1

b̃ = 1√
n
b̃. This condition is the same as the condition we obtained in Section 4 with asymptotic

analysis of the iterates in the homogeneous case.

Discussion of the trace. Consider a positive-definite L ≻ 0 such that ∃D− 1
2 . Thus L̃ = D− 1

2LD− 1
2 has only ones on

the diagonal and tr(L̃) = n. Then

n · tr(L̃−1
) = tr(L̃)tr(L̃

−1
) = (λ1 + · · ·+ λn)

(
1

λ1
+ · · ·+ 1

λn

)
≥ n2,

where the last inequality is due to the relation between harmonic and arithmetic means. Therefore tr(L̃
−1

) = λ−1
1 + · · ·+

λ−1
n ≥ n and sum of L̃

−1
eigenvalues has to be greater than n.

B.4. Generalization to n ̸= d case.

Our results can be generalized in a similar way as in (Szlendak et al., 2022).

1) d = qn, for integer q ≥ 1. Let π = (π1, . . . , πd) be a random permutation of {1, . . . , d}. Then for each i ∈ {1, . . . , n}
define

C′
i :=

√
n ·

qi∑
j=q(i−1)+1

eπj
e⊤πj

. (51)

Matrix E
[
B

k
]

for the homogeneous preconditioned case can be computed as follows:

E
[
B

k
]

= E

[
1

n

n∑
i=1

C′
i L̃C′

i

]

=
1

n

n∑
i=1

E

 qi∑
j=q(i−1)+1

neπj
e⊤πj

L̃ eπj
e⊤πj


=

n∑
i=1

qi∑
j=q(i−1)+1

E
[
eπj

e⊤πj
L̃ eπj

e⊤πj

]

=

n∑
i=1

qi∑
j=q(i−1)+1

1

d

d∑
l=1

ele
⊤
l L̃ ele

⊤
l

=

n∑
i=1

qi∑
j=q(i−1)+1

1

d
Diag(L̃)



= n
q

d
Diag(L̃)

= Diag(L̃)

= I.

As for the linear term

E [C′ b] = E

[
1

n

n∑
i=1

C′
i b̃

]
=

1

n

n∑
i=1

E

 qi∑
j=q(i−1)+1

√
neπj

e⊤πj
b̃


=

1√
n

n∑
i=1

qi∑
j=q(i−1)+1

1

d
I b̃ =

√
nq

d
I b̃ =

1√
n
b̃ .

2) n = qd, for integer q ≥ 1. Define the multiset S := {1, . . . , 1, 2, . . . , 2, . . . , d, . . . , d}, where each number occurs
precisely q times. Let π = (π1, . . . , πn) be a random permutation of S. Then for each i ∈ {1, . . . , n} define

C′
i :=

√
d · eπi

e⊤πi
. (52)

E
[
B

k
]

= E

[
1

n

n∑
i=1

C′
i L̃C′

i

]
=

1

n

n∑
i=1

E
[
deπi

e⊤πi
L̃ eπi

e⊤πi

]
=

1

n

n∑
i=1

1

d

d∑
j=1

deje
⊤
j L̃ eje

⊤
j =

1

n

n∑
i=1

Diag(L̃) = I.

The linear term

E [C′ b] = E

[
1

n

n∑
i=1

C′
i b̃

]
=

1

n

n∑
i=1

E
[√

deπie
⊤
πi

b̃
]
=

√
d

n

n∑
i=1

1

d
I b̃ =

1√
d
b̃ .

To sum up both cases, in a homogeneous preconditioned setting E
[
B

k
]
= I and

E [C′ b] = E

[
1

n

n∑
i=1

C′
i b

]
= b̃ /

√
min(n, d).

Similar modifications and calculations can be performed for heterogeneous scenarios. The case when n does not divide d
and vice versa is generalized using constructions from (Szlendak et al., 2022).

C. Discussion
A generalized analog of IST is formalized as an iterative procedure in Algorithm 1.
Remark C.1. Matrix W in case of permutation sketches may not be positive-definite. Consider the following homogeneous
(Li ≡ L) two-dimensional problem example

L =

[
a c
c b

]
. (53)

Then

W = 1
2

[
LD+DL

]
=

[
a2 c(a+ b)/2

c(a+ b)/2 b2

]
, (54)

which for c > 2ab
a+b has det(W) < 0, and thus W ⊁ 0 according to Sylvester’s criterion.



Algorithm 1 Distributed Submodel (Stochastic) Gradient Descent

1: Parameters: learning rate γ > 0; sketches C1, . . . ,Cn; initial model x0 ∈ Rd

2: for k = 0, 1, 2 . . . do
3: Select submodels wk

i = Ck
i x

k for i ∈ [n] and broadcast to all computing nodes
4: for i = 1, . . . , n in parallel do
5: Compute local (stochastic) gradient w.r.t. submodel: Ck

i∇fi(w
k
i )

6: Take (maybe multiple) gradient descent step z+i = wk
i − γCk

i∇fi(w
k
i )

7: Send z+i to the server
8: end for
9: Aggregate/merge received submodels: xk+1 = 1

n

∑n
i=1 z

+
i

10: end for

C.1. Issues with existing approaches

Consider the simplest gradient type method with compressed model in the single node setting

xk+1 = xk − γ∇f(C(xk)). (55)

Algorithms belonging to this family require a different analysis in comparison to SGD (Gorbunov et al., 2020; Gower et al.,
2019), Distributed Compressed Gradient Descent (Alistarh et al., 2017; Khirirat et al., 2018) and Randomized Coordinate
Descent (Nesterov, 2012; Richtárik & Takáč, 2014) type methods because the gradient estimator is no longer unbiased

E [∇f(C(x))] ̸= ∇f(x) = E [C(∇f(x))] . (56)

That is why such kind of algorithms are harder to analyze. So, prior results for unbiased SGD (Khaled & Richtárik, 2023)
can not be directly reused. Furthermore, the nature of the bias in this type of gradient estimator does not exhibit additive
(zero-mean) noise, thereby preventing the application of previous analyses for biased SGD (Ajalloeian & Stich, 2020).

An assumption like bounded stochastic gradient norm extensively used in previous works (Lin et al., 2019; Zhou et al.,
2022) hinders an accurate understanding of such methods. This assumption hides the fundamental difficulty of analyzing
biased gradient estimator:

E
[
∥∇f(C(x))∥2

]
≤ G (57)

and may not hold even for quadratic functions f(x) = x⊤Ax. In addition, in the distributed setting such condition can
result in vacuous bounds (Khaled et al., 2020) as it does not allow to accurately capture heterogeneity.

C.2. Comparison to SGD-type methods

Let us contrast obtained result (18) with non-convex rate of SGD (Khaled & Richtárik, 2023) with constant step size γ for
L-smooth and lower-bounded f

min
k∈{0,...,K−1}

∥∥∇f(xk)
∥∥2 ≤ 6(f(x0)−inf f)

γK + γLC, (58)

where constant C depends, for example, on the variance of stochastic gradient estimates. Observe that the first term in the
compared upper bounds (58) and (18) is almost identical and decreases with speed 1/K. But unlike (18) the neighborhood
for SGD can be completely eliminated by reducing the step size γ. This highlights a fundamental difference of our results to
unbiased methods.

The intuition behind this issue is that for SGD-type methods like Compressed Gradient Descent

xk+1 = xk − C(∇f(xk)) (59)

the gradient estimate is unbiased and enjoys the property that variance

E
[
∥C(∇f(xk))−∇f(xk)∥2

]
≤ ω∥∇f(xk)∥2 (60)



goes down to zero as the method progresses because ∇f(xk) → ∇f(x⋆) = 0 in the unconstrained case. In addition, any
stationary point x⋆ ceases to be a fixed point of the iterative procedure as

x⋆ ̸= x⋆ −∇f(C(x⋆)), (61)

in the general case, unlike for Compressed Gradient Descent with both biased and unbiased compressors C. So, even if the
method (computing gradient at sparse model) is initialized from the solution after one gradient step, it may get away from
there.

C.3. Improvements over previous analysis

Independent Subnetwork Training (Yuan et al., 2022). There are several improvements over the previous works that
tried to theoretically analyze the convergence of Distributed IST.

The first difference is that our results allow for an almost arbitrary level of model sparsification, i.e., work for any ω ≥ 0 as
permutation sketches can be viewed as a special case of compression operators (2.1). This improves significantly over the
work of (Yuan et al., 2022), which demands‡ ω ≲ µ2

/L2. Such a requirement is very restrictive as the condition number L/µ
of the loss function f is typically very large for any non-trivial optimization problem. Thus, the sparsifier’s (4) variance
ω = d/q − 1 has to be very close to 0 and q ≈ d. So, the previous theory allows almost no compression (sparsification)
because it is based on the analysis of Gradient Descent with Compressed Iterates (Khaled & Richtárik, 2019).

The second distinction is that the original IST work (Yuan et al., 2022) considered a single node setting and thus their
convergence bounds did not capture the effect of heterogeneity, which we believe is of crucial importance for distributed
setting (Chraibi et al., 2019; Shulgin & Richtárik, 2022). Besides, they consider Lipschitz continuity of the loss function f ,
which is not satisfied for a simple quadratic model. A more detailed comparison including additional assumptions on the
gradient estimator made in (Yuan et al., 2022) is presented in the Appendix.

FL with Model Pruning. In a recent work (Zhou et al., 2022) made an attempt to analyze a variant of the FedAvg
algorithm with sparse local initialization and compressed gradient training (pruned local models). They considered a case
of L-smooth loss and sparsification operator satisfying a similar condition to (2.1). However, they also assumed that the
squared norm of stochastic gradient is uniformly bounded (57), which is “pathological” (Khaled et al., 2020) especially in
the case of local methods as it does not allow to capture the very important effect of heterogeneity and can result in vacuous
bounds.

In the next section we show some limitations of other relevant previous approaches to training with compressed models: too
restrictive assumptions on the algorithm (Mohtashami et al., 2022) or not applicability in our problem setting (Chayti &
Karimireddy, 2022).

D. Comparison to previous related works
Overview of theory provided in the original IST work (Yuan et al., 2022). The authors consider the following method

xk+1 = C(xk)− γ∇fik(C(xk)), (62)

where [C(x)]i = xi · Be(p)§ is a Bernoulli sparsifier and ik is sampled uniformly at random from [n].

The analysis in (Yuan et al., 2022) relies on the assumptions

1. Li-smoothness of individual losses fi;

2. Q-Lipschitz continuity of f : |f(x)− f(y)| ≤ Q∥x− y∥;

3. Error bound (or PŁ-condition): ∥∇f(x)∥ ≥ µ∥x⋆ − x∥, where x⋆ is the global optimum;

‡µ refers to constant from Polyak-Łojasiewicz (or strong convexity) condition. In case of a quadratic problem with positive-definite
matrix A: µ = λmin(A)

§Bp(x) :=

{
x/p with probability p
0 with probability 1− p



4. Stochastic gradient variance: E
[
∥∇fik(x)∥

2
]
≤ M +Mf ∥∇f(x)∥2;

5. E
[
∇fik(C(xk)) |xk

]
= ∇f(xk) + ε, ∥ε∥ ≤ B.

Convergence result from Theorem 1 (Yuan et al., 2022) for step size γ = 1/(2Lmax):

min
k∈{1,...,K}

E
[∥∥∇f(xk)

∥∥2] ≤ f(x0)− f(x⋆)

α(K + 1)
+

1

α
·
(

BQ

2Lmax
+

5Lmaxω

2
∥x⋆∥2 + M

4Lmax

)
, (63)

where α := 1
2Lmax

(
1− Mf

2

)
− 5ωLmax

2µ2 , ω := 1
p − 1 < µ2

10L2
max

, and Lmax := maxi Li.

If Lipschitzness and Assumption 5 are replaced with norm condition:

∥E
[
∇fik(C(xk)) |xk

]
−∇f(xk)∥ ≤ θ∥∇f(xk)∥ (64)

they obtain the following (for step size γ = 1/2Lmax)

min
k∈{1,...,K}

E
[∥∥∇f(xk)

∥∥2] ≤ f(x0)− f(x⋆)

α(K + 1)
+

1

α
·
(
5Lmaxω

2
∥x⋆∥2 + M

4Lmax

)
, (65)

where α = 1
2Lmax

(
1
2 − θ − Mf

2

)
− 5ωLmax

2µ2 and ω = 1
p − 1 < µ2

5L2
max

(
1
2−θ−

Mf
2

) .

Remark D.1. The original method (62) does not incorporate gradient sparsification, which can create a significant disparity
between theory and practice. This is because the gradient computed at the compressed model, denoted as ∇f(C(x)), is not
guaranteed to be sparse and representative of the submodel computations. Such modification of the method also significantly
simplifies theoretical analysis, as using a single sketch (instead of CLC) allows for an unbiased gradient estimator.

Through our analysis of the IST gradient estimator in Equation (19), we discover that conditions—such as Assumption 5
and Inequality (64)—are not satisfied, even in the homogeneous setting for a simple quadratic problem. Furthermore, it is
evident that such conditions are also not met for logistic loss. At the same time, in general, it is expected that insightful
theory for general (non-)convex functions should yield appropriate results for quadratic problems. Additionally, it remains
unclear whether the norm condition (64) is satisfied in practical scenarios. The situation is not straightforward—even for
quadratic problems—as we show in the expression for σ2 in Equation (35).

Masked training (Mohtashami et al., 2022). The authors consider the following “Partial SGD” method

x̂k = xk + δxk = xk − (1− p)⊙ xk

xk+1 = xk − γp⊙∇f(x̂k, ξk),
(66)

where ∇f(x, ξ) is an unbiased stochastic gradient estimator of a L-smooth loss function f , ⊙ is an element-wise product,
and p is a binary sparsification mask.

Mohtashami et al. (Mohtashami et al., 2022) make the following “bounded perturbation” assumption

max
k

∥δxk∥
max {∥pk ⊙∇f(xk)∥, ∥pk ⊙∇f(x̂k)∥}

≤ 1

2L
. (67)

This inequality may not hold for a simple convex case. Consider a function f(x) = 1
2x

⊤Ax, for

A =

(
a 0
0 c

)
, x0 =

(
x1

x2

)
, p0 =

(
0
1

)
. (68)

Then condition (67) (at iteration k = 0) will be equivalent to

x1

cx2
≤ 1

2a
⇔ 2 ≤ 2a

c
≤ x2

x1
,



which clearly does not hold for an arbitrary initialization x0.

In addition, convergence bound in Theorem 1 of (Mohtashami et al., 2022) suggests choosing the step size as γ0αk, where

αk = min

{
1,

〈
pk ⊙∇f(xk), pk ⊙∇f(x̂k)

〉
∥pk ⊙∇f(x̂k)∥2

}
(69)

is not guaranteed to be positive to the inner product
〈
pk ⊙∇f(xk), pk ⊙∇f(x̂k)

〉
, which may lead to non-convergence of

the method.

Optimization with access to auxiliary information framework (Chayti & Karimireddy, 2022) suggests modeling
training with compressed models via performing gradient steps with respect to function h(x) := EM [f(1M ⊙ x)]. This
function allows access to a sparse/low-rank version of the original model f(x). They impose the following bounded Hessian
dissimilarity assumption on h and f

∥∥∇2f(x)− EM
[
DM∇2f(1M ⊙ x)DM

]∥∥
2
≤ δ, (70)

where 1M and DM = Diag(1M) refer to a binary vector and matrix sparsification masks.

This approach relies on variance-reduction and requires gradient computations on the full model x, and thus it is not suitable
for our problem setting.

E. Experiments
To empirically validate our theoretical framework and its implications, we focus on carefully controlled settings that satisfy
the assumptions of our work. Specifically, we consider a quadratic problem defined in (9). As a reminder, the local loss
function is defined as

fi(x) =
1

2
x⊤Lix− x⊤ bi,

where Li = B⊤
i Bi. Entries of the matrices Bi ∈ Rd×d, vectors bi ∈ Rd, and initialization x0 ∈ Rd are generated from a

standard Gaussian distribution N (0, 1).

Heterogeneous setting. In Figure 1(a), we present the performance of the simplified Independent Subnetwork Training
(IST) algorithm (update (2) with estimator (15)) for a heterogeneous problem. We fix the dimension d to 1000 and the number
of computing nodes n to 10. We evaluate the logarithm of a relative functional error log(f(xk)− f(x⋆))/(f(x0)− f(x⋆)),
while the horizontal axis denotes the number of communication rounds required to achieve a certain error tolerance.
According to our theory (50), the method converges to a neighborhood of the solution, which depends on the chosen step
size. Specifically, a larger step size allows for faster convergence but results in a larger neighborhood.

Homogeneous setting. In Figure 1(b), we demonstrate the convergence of the iterates xk for a homogeneous problem with
d = n = 50. The results are in close agreement with our theoretical predictions for the estimator (19). We observe that the
distance to the method’s expected fixed point x∞ = b̃ /

√
n decreases linearly for different step size values. This confirms

that IST may not converge to the optimal solution x⋆ = L̃
−1

b̃ of the original problem (9) in general (no interpolation) cases.
In addition, there are no visible oscillations in comparison to the heterogeneous case.
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(a) Function convergence for heterogeneous case.
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(b) Iterates convergence for homogeneous case.

Figure 1. Performance of simplified IST on quadratic problem for varying step size values.

Simulations were performed on a machine with 24 Intel(R)Xeon(R) Gold 6246 CPU @ 3.30 GHz.

F. Conclusions and Future Work
In this study, we introduced a novel approach to understanding training with combined model and data parallelism for
a quadratic model. Our framework sheds light on distributed submodel optimization, which reveals the advantages and
limitations of Independent Subnetwork Training (IST). Moreover, we accurately characterized the behavior of the considered
method in both homogeneous and heterogeneous scenarios without imposing restrictive assumptions on the gradient
estimators.

In future research, it would be valuable to explore extensions of our findings to settings that are closer to scenarios, such
as cross-device federated learning. This could involve investigating partial participation support, leveraging local training
benefits, and ensuring robustness against stragglers. Additionally, it would be interesting to generalize our results to
non-quadratic scenarios without relying on pathological assumptions. Another potential promising research direction is
algorithmic modifications of the original IST to solve the fundamental problems highlighted in this work and acceleration of
training.
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