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Abstract

As a key component in boosting online user growth, uplift modeling aims to measure in-
dividual user responses (e.g., whether to play the game) to various treatments, such as
gaming bonuses, thereby enhancing business outcomes. However, previous research typi-
cally considers a single-task, single-treatment setting, where only one treatment exists and
the overall treatment effect is measured by a single type of user response. In this paper,
we propose a Multi-Treatment Multi-Task (MTMT) uplift network to estimate treatment
effects in a multi-task scenario. We identify the multi-treatment problem as a causal infer-
ence problem with a tiered response, comprising a base effect (from offering a treatment)
and an incremental effect (from offering a specific type of treatment), where the base effect
can be numerically much larger than the incremental effect. Specifically, MTMT separately
encodes user features and treatments. The user feature encoder uses a multi-gate mixture
of experts (MMOE) network to encode relevant user features, explicitly learning inter-task
relations. The resultant embeddings are used to measure natural responses per task. Fur-
thermore, we introduce a user-treatment feature interaction module to model correlations
between each treatment and user feature. Consequently, we separately measure the base and
incremental treatment effect for each task based on the produced treatment-aware represen-
tations. Experimental results based on an offline public dataset and an online proprietary
dataset demonstrate the effectiveness of MTMT in single/multi-treatment and single/multi-
task settings. Additionally, MTMT has been deployed in our gaming platform to improve
user experience.

1 Introduction

To offer a better personalized experience and increase user engagement, online marketing platforms usually
provide incentives such as advertisements Lo (2002), discounts Gubela et al. (2017), and bonuses Ai et al.
(2022). Although these incentives are crucial for generating additional revenue and activity, they are often
costly, and individual users can have varied responses to different incentives. For example, some users will not
play the next game without a bonus, while others will continue to play regardless. Consequently, accurately
modeling individual users’ responses and identifying the target user groups that are likely to be positively
affected by incentives is essential for enhancing marketing benefits Xu et al. (2022).

One of the fundamental challenges to measuring the response is the existence of the counterfactual problem,
where an individual is either treated (treatment group) or not treated (control group). Therefore, in the
same context, we can not simultaneously observe a user’s response to a certain incentive or no incentive.
Such a problem can be referred to as causal inference Yao et al. (2021). To resolve this, uplift modeling
Gutierrez & Gérardy (2017) has been proposed to estimate the individual treatment effect (ITE) (a.k.a.
uplift) that describes how individual user responds to an incentive Zhang et al. (2021).

The current uplift modeling frameworks predominantly concentrate on directly modeling the response func-
tions of both treatment and control groups to infer counterfactual predictions. Among them, meta-learner-
based methods leverage existing models to estimate the Individual Treatment Effect (ITE) of personal-
ized treatments. For example, S-learner Künzel et al. (2019) estimates the conditional average outcome of
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treatment and control group, then calculates ITE through subtraction. Building on this, other two-step
meta-learners were proposed with other additional operations, including X-Learner Künzel et al. (2019),
DR-Learner Kennedy (2023), R-Learner Nie & Wager (2021), etc. Nevertheless, these methods are prone
to be influenced by the sample imbalance between the treatment and control groups. Another line of work
involves tree-based models, which divide the user population into sub-groups according to specific splitting
criteria (e.g., sensitivity to the treatment) and predict the uplift on each leaf node. A notable example is the
causal forest Athey & Imbens (2016), which integrates multiple trees to estimate heterogeneous treatment
effects. With advances in deep learning, numerous neural network-based models have been developed that
learn embeddings from related features, thereby predicting the uplift more flexibly. Based on representation
learning, such models either predict the treatment effects of treatment and control groups separately Shi
et al. (2019); Shalit et al. (2017); Curth & Van der Schaar (2021a;b); Schwab et al. (2020); Zhong et al.
(2022), or directly models uplifts from user, context, and treatment features Ke et al. (2021); Liu et al.
(2023); Huang et al. (2024). In this work, we focus on neural network-based models and propose to directly
model uplifts.

While prevailing uplift models perform adequately on synthetic and product datasets, they exhibit two
notable limitations. First, in real-world scenarios, multiple treatments often impact the target response,
and multiple responses contribute to overall outcomes (multi-treatment multi-task). However, most mod-
els focus on a single treatment and a single target response (single-treatment single-task), overlooking the
complex interactions between treatments and responses. This simplification can result in incomplete rep-
resentations and biased ITE estimates. Several representation-based approaches address uplift modeling in
multi-treatment or multi-task settings. Addressing the multi-task problem, Huang et al. (2024) studied two
chained tasks (click-through rate and click-conversion rate) by designing a two-branch encoder with shared
parameters between branches to encode features, subsequently outputting uplift scores for each task. For
the multi-treatment setting, Sun & Chen (2024); Velasco-Regulez & Cerquides (2023) designed multi-head
networks that predict the natural response (control group) and responses from multiple treatments, then
calculate uplifts through subtraction. Additionally, Liu et al. (2023) considered applied separate encoders to
encode treatment and user features, combining them to learn a unified representation, and then calculating
the uplifts for each treatment. However, they assume the equivalence of different treatments and learn a
shared representation across multiple groups. Nevertheless, in online applications, the response difference
among treatments can be much less notable than the response difference between treatment and control
groups. We illustrate this point in Fig. 1. Therefore, simply combining the treatments and estimating the
uplift can lead to suboptimal estimation.

Secondly, existing models commonly focus on utilizing user and contextual features while neglecting the
treatments. However, the correlation between treatments and user profiles is crucial for uplift modeling,
especially in a multi-treatment setting. For instance, we observe that low-active users are more likely to
play the next game when given a higher-valued bonus, whereas high-active users may continue to play the
game regardless of receiving a bonus. While several works have incorporated treatment features as input
to enhance the accuracy of estimation, they fall short in modeling the interaction among treatments and
user features in a task-oriented way. For example, Liu et al. (2023); Huang et al. (2024); Ke et al. (2021);
Xu et al. (2022) separately encoded the treatment features and non-treatment features, then generated a
unified embedding either by concatenating or by weighted addition. This operation indirectly combines the
treatments with other features but overlooks the implicit relationship between treatments and various tasks.

To address the aforementioned limitations, we propose a Multi-Treatment Multi-Task (MTMT) uplift model-
ing framework that directly models the user-treatment interactions. We follow a divide-and-conquer method
by decomposing multi-treatment into two tiers, where the base treatment defines whether a user receives
treatments, and the secondary treatments define the specific types and amounts. For instance, one must
first decide whether to give a user a game bonus (which we refer to as Treatment Decision) and then decide
which bonus to give (which we refer to as Treatment Selection). Following this, we separately estimate
the base uplift for the treatment group and the incremental uplifts on top of the base uplift for the spe-
cific treatments. MTMT encodes the user features through a representation network based on a multi-gate
mixture-of-experts. The generated embeddings are projected to compute the natural response for each task.
Meanwhile, treatment encoders are employed to independently encode the base treatment and its subsequent
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Figure 1: Activity growth rates by base treatment and multi-treatment deployment on our online gaming
server. Growth rates are shown separately based on users’ historical activity, as past activity significantly
impacts future activity.

secondary treatment information. Next, a user-treatment interaction module explicitly models how treat-
ments attend to each user feature. The combined information is further enhanced and projected to predict
the response of different treatment groups. This approach ensures a more accurate and nuanced estimation
of treatment effects, addressing the complexities of multi-treatment and multi-task scenarios. In summary,
our contributions are as follows:

• Background: We aim to accurately model the uplifts with multiple potential treatments and multiple
target responses. To the best of our knowledge, this is the first effort in multi-treatment multi-task
uplift modeling without underlying assumptions about the treatments or tasks.

• Method: We introduce a novel uplift model that explicitly captures user-treatment feature inter-
action through the self-attention mechanism. By separately estimating the base uplifts and the
uplift differences between treatments, the model accounts for the minimal uplift variance among
treatments, thereby accurately estimating uplifts of different treatments and tasks in an end-to-end
manner.

• Evaluation: We demonstrate the effectiveness of the proposed model using a public dataset and a
large-scale product dataset with multiple tasks and treatments. Our results indicate that MTMT
significantly outperforms its competitors. The MTMT model has been deployed on our online gaming
platform, serving millions of users.

2 Related Works

2.1 Uplift Modeling

Uplift modeling aims to establish a difference in the users’ behaviors when applying or not applying certain
treatments by measuring the corresponding ITE. Existing uplift research mainly focuses on three settings: 1)
single-treatment single-task setting. For example, meta-learner-based methods Künzel et al. (2019); Kennedy
(2023); Nie & Wager (2021) integrate existing models to predict ITE. Besides this, tree-based methods Wager
& Athey (2018); Athey & Imbens (2016) gradually divide subpopulations by different metrics and estimate
the ITE at the leaf node. Due to their superior feature extraction abilities, deep neural networks have gained
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much popularity in uplift modeling. They either directly model the uplift from learned representations Ke
et al. (2021), or separately estimate the natural response and treated response, then calculate the uplift by
subtracting Shalit et al. (2017); Shi et al. (2019); Curth & Van der Schaar (2021a); Gutierrez & Gérardy
(2017); Schwab et al. (2020); Zhong et al. (2022). 2) single-treatment multi-task setting. Huang et al. Huang
et al. (2024) interpret the user behaviors as a sequential chain, and include two chained tasks to estimate
their uplifts. They first extract user and treatment features with an encoder, then design a network with two
branches that have shared parameters to predict the uplifts of the two tasks. 3) multi-treatment single-tasks
setting. Zhao et al. Zhao & Harinen (2019); Zhou et al. (2022) extend several meta-learners to the multi-
treatment setting. Other works adapt tree-based methods to estimate multiple treatments’ uplifts Zhao
et al. (2017b;a). For the neural network-based approach, Sun & Chen (2024); Velasco-Regulez & Cerquides
(2023); Mondal et al. (2022) design independent heads to estimate each treatment group’s response and the
control group’s response. Liu et al. Liu et al. (2023) employ the treatments as the input and explicitly
extract its features, then predict the uplifts of each treatment through a single head. This paper considers
the multi-treatment multi-task uplift modeling and explores its application in our online gaming server.

2.2 Multi-task Learning

Multi-task learning has been widely applied in computer vision, recommendation systems, and other fields.
To boost the online business, multiple targets often influence marketing strategies. While focusing on a
single task, existing models tend to ignore useful information from the training signals of related tasks Ruder
(2017). The introduction of multiple tasks mitigates the sample bias, where tasks with more training samples
and be informative to tasks with fewer samples Zhang et al. (2023). In addition, training a multi-task model
can reduce the cost of maintaining several models for each task. In the era of deep learning, a popular
research line of multi-task learning is parameter sharing, where parameters are shared between different
tasks. This includes hard parameter sharing Guo et al. (2020), which encodes representations of tasks into
a shared embedding, and then applies task-specific heads to predict the outcome of each task. Extended
from this, soft parameter sharing Duong et al. (2015) applies separate branches to model tasks and share
information between branches by weighted addition or attention. Additionally, there is expert sharing Ma
et al. (2018), which utilizes several expert models to embed features and weigh the influence of each sub-task,
and subsequently apply weights to calibrate the output of each expert.

While proven effective in other domains, research on multi-task uplift modeling is still limited. We adopt
the multi-gate mixture-of-expert in our framework to handle multiple tasks and individually estimate uplifts
on each task.

3 Problem Definition

Assume the observed data to be D = {[xi, (t̂i, ti), yi]}N
i=1, where xi ∈ Rd is the d-dimensional user features,

t̂i ∈ {0, 1} is the base treatment that denotes whether offering incentives to users, ti ∈ Nm is the secondary
treatment features with m discrete treatments, yi ∈ Rk is the k tasks, and N is the number of samples.
Treatments are exclusive and each individual can receive only one treatment at a time.

The basic assumptions of causal inference are satisfied to ensure the identifiability of base ITE and incremen-
tal ITE estimation Wang et al. (2024); Shalit et al. (2017). Following the Neyman-Rubin causal inference
framework Rubin (2005), we define the potential outcomes. To properly decompose the overall treatment
effect, we conceptualize it in two stages. First, we model the effect of receiving any treatment versus no
treatment (control). Second, we model the additional effect of one specific treatment over another.

let yk
i (0) denotes the potential outcome of the i-th user in the control group on task k, and yk

i (m) denotes the
outcome of receiving treatment m. To bridge these two stages, we introduce yk

i (1) as the potential outcome
under a general treatment condition, which serves as a common reference point for the incremental effects
of all specific treatments m. Due to the counterfactual problem, we can only observe one of these potential
outcomes for each user. Instead of training on ground truth, we estimate the expected response differences.
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Let τ̂k(xi) be i-th user’s uplift when receiving a treatment, τk
m(xi) be the incremental uplift under the m-th

treatment and k-th task. Then the overall treatment effect can be computed as:

Γk
m(xi) = τ̂k(xi) + τk

m(xi) · I(t̂ = 1)
= E(yk

i (1) − yk
i (0)|xi) + E(yk

i (m) − yk
i (1)|xi, t̂ = 1)

(1)

where I is the indicator function, Γk
m(xi) is the i-th user’s overall uplift score on the k-th task, t̂ signifies if

an individual is in the treatment group. The base uplift E(yk
i (1)−yk

i (0)) captures the effect of moving a user
from the control group to the general treatment group. The incremental uplift E(yk

i (m) − yk
i (1)) captures

the marginal effect of the specific treatment m relative to the common base treatment effect.

4 Methodology
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Figure 2: Illustration of the proposed Multi-treatment Multi-task (MTMT) framework. Note that for clarity
we only show the network structure of two tasks.

4.1 Architecture

The illustration of the proposed multi-treatment multi-task (MTMT) uplift modeling network is shown in Fig.
2. Given a sample {xi, (t̂i, ti), yi}, the user features xi are first encoded by the user feature encoder to generate
the representations for each task {ϕ0, ϕ1, · · · , ϕk}. Meanwhile, the base treatment feature t̂i (indicates control
or treatment) and the secondary treatment features ti (indicates specific types of treatments) are encoded
separately to generate the corresponding representations ϵ̂ and ϵ. The feature representations of each task
are projected by the corresponding classifier head to compute its natural response ȳk

i (0) of task k when
not treated. Additionally, the embeddings of base and secondary treatments are fed separately into the
corresponding user-treatment interaction module, in which the cross-correlations between treatment and
user features are computed. The resultant treatment-aware features are further enhanced and used to
estimate the response difference for receiving treatment and the incremental uplift for receiving treatment
m.

4.2 Task-Oriented Feature Encoder

To explicitly model inter-task relationships and learn task-specific representations, we adopt the multi-gate
mixture-of-experts (MMOE) Ma et al. (2018) as the user feature encoder. Mixture-of-experts is a form of
ensemble learning that integrates numerous expert models (e.g., vanilla CNN) to learn a shared representation
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and use the combined predictions to improve accuracy Eigen et al. (2013). Extended from this, MMOE
introduces an additional gating network to filter useful information from the shared representation of each
task. To obtain the encoded representation ϕk

i for task k:

ϕk
i = Gk(xi) · {E1(xi), E2(xi), · · · , EE(xi)} (2)

where Ej is the j-th expert network and there are E experts and Gk is the gating network for k-th task. We
empirically choose ResNet18 He et al. (2016) as the backbone for each expert. Note that the embeddings
from the experts are stacked and then filtered by the corresponding gate to produce a task’s representation.
The gating network can be a simple linear projection from the input with additional activation:

Gk = softmax(W k
g xi) (3)

where W k
g ∈ Rn×d is the trainable weights, n is the number of experts, and d is the feature dimension.

The representations ϕk
i for each task only contain non-treatment information and are therefore used to

estimate the natural response of the control groups by a linear projection head:

ȳk
i (0) = W proj

i ϕk
i (4)

Since most treatments are binary or discrete, we first one-hot encode the base and secondary treat-
ment separately and multiply the resultant sparse vector with a corresponding learnable dense matrix
Âi ∈ Rv×1, Ai ∈ Rv×m to produce embeddings:

ϵ̂i = Âit̂i, ϵi = Aiti (5)

where v is the embedding dimension and m is the number of possible treatments.

It should be noted that both user and treatment feature encoders can be substituted with other feature
representation learning networks, provided they have the appropriate dimensions. For instance, a single
ResNet18 can be used for user feature extraction, adapting the Multi-Task Multi-Treatment (MTMT) model
to a single-task setting. The flexibility of the proposed design allows for seamless online implementation
across various problem settings.

4.3 User-Treatment Feature Interaction

To explicitly utilize treatment features and model their relationships with user features, we propose the
user-treatment feature interaction module based on co-attention Rombach et al. (2022). The structure is
shown in Fig. 3. The decision to use the treatment embedding ϵi as the query and the user feature ϕk

i

as the key and value is a deliberate design choice to enhance model interpretability. In this configuration,
the attention mechanism aims to answer the question: "Given this specific treatment, which of the user’s
characteristics are most important for determining its effect?"

We treat the treatment embeddings ϵi as the query and the user feature embeddings ϕk
i as the key and value.

Subsequently, we compute how each treatment attends to each user feature, then use the resultant attention
scores to generate treatment-aware embeddings:

ψk
i,m = softmax(W

T
i ϵi × (WU

i ϕ
k
i )T

√
dU

)WU ′

i ϕk
i (6)

where W T
i linearly projects the treatment embedding and WU

i , WU ′

i linearly projects the user feature
embeddings.

√
dU is a scaling factor. The output ψk

i,m is a new representation of the user, re-weighted
according to the specific treatment being considered. This highlights the user characteristics most relevant
for that treatment.

We then process treatment-aware features ψk
i through two separate enhancement and projection paths to

isolate the base and incremental effects. Specifically, two distinct Multi-Layer Perceptrons (MLPs) act as
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feature enhancers, one for the base uplift and one for the incremental uplift. The resulting refined embeddings
are projected to estimate the base uplift score ˆ̄τk(xi) and the incremental uplift score τ̄k

m(xi) for treatment
m:

ˆ̄τk(xi) = Ŵ τ
i MLPbase(ψ̄k

i,m), τ̄k
m(xi) = W τ

i MLPincr(ψk
i,m) (7)

where W τ
i and Ŵ τ

i are the projection matrix.

MatMul

Scale

Softmax

MatMul

Figure 3: The proposed user-treatment feature interaction module

4.4 Multi-Treatment Multi-Task Uplift Estimation

Given the natural response ȳk
i (0), the base uplift score ˆ̄τk(xi), and the incremental uplift score τ̄k

m(xi), we
can estimate the user’s response by:

ȳk
i (m) = ȳk

i (0) + (ˆ̄τk(xi) + τ̄k
m(xi)) · I(t̂ = 1) (8)

Here ˆ̄τk(xi) indicates how the user acts to a treatment, and τ̄k
m(xi) indicates the incremental effect of the

specific treatment m, on top of the base uplift. Intuitively, τ̄k
m(xi) is only effective when the user is in

the treatment group. For online deployment when the treatment information is unknown, we permute all
possible combinations of treatments and rank the resultant base and incremental uplifts.

Compared to previous methods for multi-treatment uplift modeling, the proposed approach separately esti-
mates the effects of "whether to treat" and “what to treat" using the base and secondary treatment features,
thereby bridging the numerical gap between the base uplift and the uplift variations among treatments.
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4.5 Training and Inference

We use the natural response and treated response for each task to compute the overall loss across the entire
sample space:

N∑
k=1

[
∑
i∈C

L(yi, ȳ
k
i (0)) +

∑
i∈T

L(yi, ȳ
k
i (m))]

=
N∑

k=1
[
∑
i∈C

L(yi, ȳ
k
i (0)) +

∑
i∈T

L(yi, ȳ
k
i (0) + ˆ̄τk(xi) + τ̄k

m(xi))]

(9)

where L is the mean-squared error loss function, C denotes the control group, and T denotes the treatment
group. By optimizing this objective, the network learns to decompose the observed outcome into the base
non-treated response, the effect of the base treatment, and the incremental effect of the secondary treatment,
thereby learning to estimate the causal quantities of interest. At inference, we only use Eq.7 to directly
compute the base and incremental uplifts, which are subsequently ranked and used to determine whether to
offer treatment and which treatment to offer.

5 Experiments

We conduct extensive experiments to verify the effectiveness of the proposed MTMT in single-treatment
single-task, single-treatment multi-task, multi-treatment single-task, and multi-treatment multi-task set-
tings. We mainly focus on the following questions:

• RQ1: Can the proposed MTMT outperform other baseline methods on public and product datasets?

• RQ2: How does each design contribute to the overall performance of MTMT?

• RQ3: Whether the model produces interpretable results that are consistent with our online obser-
vations?

5.1 Experimental Setup

5.1.1 Datasets

• CRITEO Diemert et al. (2021): CRITEO is an open-sourced uplift modeling dataset for online
advertising. The data is created by compiling data from various incremental tests, with a specific
type of randomized trial in which a portion of the population is randomly excluded from advertising
targeting. We include about 14 million samples, each has 12 continuous features, and use visit as
the target.

• Product: We include a product dataset containing over 10 million samples randomly collected from
the our online gaming platform. There are about 700 discrete and continuous features that describe
users’ static profiles and their recent gaming histories. To minimize the influence of confounding
factors in uplift modeling, we gather data from randomized controlled trials (RCTs). In these
trials, treatments are assigned randomly and each user has the non-zero probability to receive each
treatment. For the multi-task scenario, we employ two binary labels: whether the user logs in the
next day (short-term activity) after receiving or not receiving the treatment and whether the user
plays more games in the next 7 days (long-term activity). For the multi-treatment scenario, we
identify the base treatment as "whether to give a bonus" and the secondary treatment as "the type
of bonus" (bonus type A and bonus type B), both of which are binary-valued. Note that in the
practical application, certain bonus types are only available for a subset of users. Therefore, we
collect an additional multi-treatment dataset by selecting users who are accessible by all types of
bonuses.
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Table 1: Overall performances of the single-treatment single-task version of MTMT and its comparatives
on the public and product datasets. We use two targets of the product dataset, with a single treatment
(whether to offer a bonus). Note that the last row is the multi-task version of MTMT. The best baselines
are tilted and the best methods are marked as bold for each metric.

Dataset CRITEO Product - short-term activity Product - long-term activity
Metrics QINI AUUC LIFT@30 QINI AUUC LIFT@30 QINI AUUC LIFT@30

S-Learner 0.0703 0.0283 0.0258 0.0420 0.0880 0.00575 0.131 0.0101 0.0873
T-Learner 0.0706 0.0286 0.0271 0.0421 0.0890 0.00763 0.111 0.00837 0.0831

CFR 0.0715 0.0295 0.0278 0.0100 0.0182 0.0037 0.108 0.0211 0.0915
DragonNet 0.0183 0.00735 0.0121 0.00743 0.0156 0.00393 0.0812 0.0164 0.0792

EUEN 0.0730 0.0297 0.0279 0.00827 0.0262 0.00313 0.106 0.0113 0.0778
DESCN 0.0718 0.0289 0.0264 0.0351 0.0771 0.00438 0.0073 0.0110 0.0177

FlexTENet 0.0779 0.0322 0.0290 0.0321 0.0684 0.00268 0.111 0.0106 0.0796
EFIN 0.0725 0.0293 0.0215 0.0725 0.0293 0.0415 0.0340 0.0281 0.0554
M3TN 0.0395 0.0176 0.0205 0.0295 0.0416 0.00260 0.108 0.0204 0.0908

MTMT (single treatment) 0.164 0.0593 0.0338 0.0886 0.155 0.0638 0.360 0.0579 0.110
MTMT (multi-task) – – – 0.0586 0.118 0.0326 0.154 0.0218 0.111

5.1.2 Baselines

To demonstrate the performance of MTMT, we include a set of popular methods proposed for uplift mod-
eling, including: S-Learner Künzel et al. (2019), T-Learner Künzel et al. (2019), CFR Shalit et al. (2017),
DragonNet Shi et al. (2019), EUEN Ke et al. (2021), DESCN Zhong et al. (2022), FlexTENet Curth &
Van der Schaar (2021a), EFIN Liu et al. (2023), and M3TN Sun & Chen (2024).

For the multi-treatment problem, we employ EFIN, M3TN, and HydraNet Velasco-Regulez & Cerquides
(2023). Furthermore, we extend S-Learner and T-Learner to handle multiple treatments. For S-Learner, we
directly apply the multi-treatment features as the input and iterate all possible treatment assignments to
compute the corresponding uplift score. For T-Learner, we use multiple branches to process each treatment
individually.

5.1.3 Evaluation Metrics

Following the previous works, we adopt Area Under the QINI Curve (QINI), Area Under the Uplift Curve
(AUUC), and the uplift score at first 30% (LIFT@30) to evaluate the uplift ranking capability of different
models. Note that for easier and fairer comparison, we employ the normalized QINI and AUUC.

5.1.4 Implementation Details

We train all models on NVIDIA A100, with Pytorch 2.1.2 and Python 3.11. We use the AdamW optimizer
Kingma & Ba (2014) with a learning rate of 0.001 and cosine annealing learning rate scheduler Loshchilov
& Hutter (2016). Additionally, we use a batch size of 15360 and set the maximum epochs as 50. For the
detailed parameter setting of MTMT, we employ the standard ResNet without the classifier head as the
expert in the user feature encoder and set the number of experts to 4.

5.2 RQ1: Performance Comparison

We evaluate the single-treatment single-task variation of the proposed methods and the baselines for single-
treatment and multi-treatment uplift estimation. The results are presented in Table 1 and Table 2. Note
that for MTMT in the single-treatment case, we only use base uplift ˆ̄τk(xi) from Eq.7 to decide whether a
treatment should be offered.

In Table 1, we test all models based on two tasks on the product dataset: short-term activity and long-
term activity. We further show how the multi-task version of MTMT performs on the two tasks. From the
table, MTMT has 0.164 QINI on the CRITEO dataset. Meanwhile, the best-performing baseline on the
CRITEO dataset is FlexTENet, which reaches 0.0779 QINI. On the product dataset, MTMT still maintains
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Table 2: Overall performances of MTMT and its comparatives on the multi-treatment product datasets.
The best baselines are tilted and the best methods are marked as bold for each metric.

Treatment Bonus A Bonus B
Metrics QINI AUUC UPLIFT@30 QINI AUUC UPLIFT@30

S-Learner 0.0126 0.0236 0.00211 0.00771 0.0152 0.00105
T-Learner 0.00505 0.00878 0.00716 0.00374 0.00942 0.00141
HydraNet 0.00456 0.00844 0.0182 0.00616 0.012 0.00895

EFIN 0.0142 0.0256 0.00766 0.0294 0.0513 0.0334
M3TN 0.0162 0.0281 0.00259 0.00107 0.00640 0.0175

MTMT (multi-treatment) 0.0324 0.0653 0.0344 0.0291 0.0782 0.0491

its advantage over other baselines on both tasks. For the multi-task setting, MTMT’s performance slightly
degrades, while its overall performance is still much better than the baselines.

To further validate MTMT’s performance in the multi-treatment setting, we present the results in Table 2.
We separately calculate the metrics on the two types of treatments, bonus A and bonus B. From the table,
among the baselines, M3TN performs the best on bonus A and EFIN performs the best on bonus B, while
MTMT outperforms all its comparatives on the two types of treatments.

5.3 RQ2: Ablation Study

We conduct ablation studies to validate the effectiveness of the key design of MTMT. Specifically, for
the architecture, we remove the user-treatment feature enhancer and substitute the user-treatment feature
interaction module with matrix multiplication. We also test using MLP (which is more widely used in prior
research Liu et al. (2023)) as the feature encoder. For the multi-treatment case, we remove the "secondary
treatment features" branch as in Fig.2 and estimate uplifts of multiple treatments with a single output. For
the multi-task case, instead of estimating ITE for each task, we jointly estimate the ITE for all tasks. The
results are presented in Table3. From the table, changing the network architecture or modifying the ITE
estimation process can result in performance degradation.

Table 3: Ablation study of MTMT on the product dataset. For the multi-treatment setting, we show the
model’s performance on different treatments as "bonus A/bonus B". For the multi-task setting, we show the
model’s performance on different tasks as "short-term activity/long-term activity". The proposed designs
are marked in bold.

Product
QINI AUUC LIFT@30

architecture w/o user-treatment feature interaction 0.0426 0.0881 0.00849
w/o user-treatment feature enhancer 0.0759 0.145 0.0474

MLP as feature encoder 0.0819 0.152 0.0627
MTMT 0.0886 0.155 0.0638

multi-treatment w/o tiered treatment effect estimation 0.0249/0.0233 0.0464/0.0514 0.0164/0.0186
MTMT (multi-treatment) 0.0324/0.0291 0.0653/0.0782 0.0344/0.0491

multi-task w/o task-wise treatment effect estimation 0.0552/0.108 0.113/0.0118 0.035/0.0922
MTMT (multi-task) 0.0586/0.154 0.118/0.0218 0.0326/0.111

5.4 RQ3: Interpretable Analysis

To demonstrate the model produces interpretable results that are consistent with our online observations,
we visualize the density distributions of the base treatment effect (ˆ̄τk(xi)) and the incremental treatment
effect (τ̄k

m(xi)) using our product dataset. As shown in Fig. 4, the average of ˆ̄τk(xi) (0.055) is much larger
than the average of τ̄k

m(xi), which corresponds to our observations in the online gaming server (Fig. 1).

To validate the intended behavior of the user-treatment feature interaction module, we conduct an inter-
pretability analysis by visualizing the attention scores from Eq. 6. This analysis examines which user
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characteristics the model deems most salient when estimating the effects of different treatments for various
tasks. As illustrated in Fig. 5, the module learns to assign non-uniform attention weights across the user
feature space. We observe distinct attention patterns that vary according to both the specific treatment
and the prediction task. For instance, the subset of user features receiving high attention for ’Bonus A’
differs from that for ’Bonus B’. This suggests that the module effectively identifies and leverages different
user characteristics to model the impact of each unique treatment.

Furthermore, the attention distributions are task-dependent. When considering the same treatment, the
model prioritizes different user features for each of the two tasks. This confirms that the module is generating
representations that are not only treatment-aware but also tailored to the specific objective of each task.
These findings support the conclusion that the user-treatment interaction mechanism is successfully creating
contextualized user representations (ψk

i,m), which is a critical step for accurately decomposing the base and
incremental uplift effects within the proposed MTMT framework.

Base Treatment Secondary Treatment

mean=0.055

std=0.0196
mean=-0.00146

std=0.00252
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o
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t

c
o

u
n

t

Figure 4: Distributions of base and incremental treatment effects. The base treatment effects are numerically
much larger than the incremental treatment effects.
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Short-Term Activity Long-Term Activity

Figure 5: Attention score of user-treatment feature interaction module under the multi-treatment multi-task
setting.
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5.5 Online Deployment

The primary objective of our online deployment is to leverage uplift modeling to personalize bonus allocation,
thereby enhancing the user’s flow experience. To achieve this, we offer various bonuses designed to improve
the overall gaming experience. The process for this online deployment is depicted in Figure 6 . Initially,
the Multi-Task Multi-Treatment (MTMT) model is trained offline using historical data on user features
and treatment effects. Following this training, the model segments users into distinct buckets based on their
estimated baseline behavior and predicted response to different treatments. For each user bucket, the gaming
server then determines the optimal strategy, which includes deciding whether to issue a bonus and, if so,
which specific bonus to provide, all while adhering to predefined operational constraints.

To validate our approach in a live environment, we conducted an online A/B experiment. We established four
independent sets of user buckets within our production environment. Each bucket contained millions of users
and maintained a consistent distribution of user features. In this experiment, we compared the performance
of four distinct policies: a random policy (control group), an EFIN policy, an MTMT single-task policy, and
our proposed MTMT multi-task policy.

The experiment involved two different bonuses. We evaluated the effectiveness of each policy based on two
key metrics: short-term user activity, measured by the percentage of users who logged in the following day,
and long-term user activity, measured by the number of monthly active users. The results, presented in the
table below, demonstrate statistically significant improvements for our proposed models (p < 0.01).

ranking Gaming

sever
Uplift model

MTMT

Uplift model

MTMT

Bonuses
treatments

User behavior database

features

give bonus?

what bonus to give?

Yes

No

player behaviors
(play the next game, spend 

money, login the next day, etc)

Figure 6: Overview of our online bonus deployment platform

Table 4: Results of MTMT in an online deployment
Policy Avg. Short-Term Activity Long-Term Activity

Random 0.0% 0.0%
EFIN +8.7% +6.4%

MTMT (single-task) +15.5% +10.5%
MTMT (multi-task) +16.1% +11.9%

6 Conclusion and Future Work

In this paper, we explored uplift modeling within a multi-treatment, multi-task framework. To effectively
extract features for different tasks and accurately estimate the effects of various treatments, we proposed
the Multi-Treatment Multi-Task (MTMT) uplift modeling framework that explicitly utilizes user-treatment
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features. Additionally, to precisely capture the uplift differences between various treatments, we proposed
separately estimating the base treatment effect and the incremental treatment effect. Extensive experiments
and ablation studies validated the effectiveness of our methods. In future work, we plan to extend our
models to accommodate non-binary treatments and non-binary tasks, thereby increasing their applicability
to a broader range of scenarios.
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