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Abstract

Instance-targeted data poisoning attacks, where an adversary corrupts a training set
to induce errors on specific test points, have raised significant concerns. [Balcan et al.
[2022] proposed an approach to addressing this challenge by defining a notion of
robustly-reliable learners that provide per-instance guarantees of correctness under
well-defined assumptions, even in the presence of data poisoning attacks. They then
give a generic optimal (but computationally inefficient) robustly-reliable learner as
well as a computationally efficient algorithm for the case of linear separators over
log-concave distributions.

In this work, we address two challenges left open by Balcan et al.| [2022]. The
first is that the definition of robustly-reliable learners in Balcan et al. [2022]
becomes vacuous for highly-flexible hypothesis classes: if there are two classifiers
ho, h1 € H both with zero error on the training set such that ho(z) # hi(x), then
a robustly-reliable learner must abstain on . We address this problem by defining
a modified notion of regularized robustly-reliable learners that allows for nontrivial
statements in this case. The second is that the generic algorithm of Balcan et al.
[2022]] requires re-running an ERM oracle (essentially, retraining the classifier) on
each test point =, which is generally impractical even if ERM can be implemented
efficiently. To tackle this problem, we show that at least in certain interesting
cases we can design algorithms that can produce their outputs in time sublinear in
training time, by using techniques from dynamic algorithm design.

1 Introduction

As Machine Learning and Al are increasingly used for critical decision-making, it is becoming more
important than ever that these systems be trustworthy and reliable. This means they should know
(and say) when they are unsure, they should be able to provide real explanations for their answers
and why those answers should be trusted (not just how the prediction was made), and they should be
robust to malicious or unusual training data and to adversarial or unusual examples at test time.

Balcan et al.| [2022] proposed an approach to addressing this problem by defining a notion of robustly-
reliable learners that provide per-instance guarantees of correctness under well-defined assumptions,
even in the presence of data poisoning attacks. This notion builds on the definition of reliable learners
by [Rivest and Sloan| [1988]]. In brief, a robustly-reliable learner £ for some hypothesis class ,
when given a (possibly corrupted) training set S’, produces a classifier Lg+ that on any example
outputs both a prediction y and a confidence level k. The interpretation of the pair (y, k) is that y
is guaranteed to equal the correct label f*(z) if (a) the target function f* indeed belongs to H and
(b) the set S’ contains at most k corrupted points; here, k < 0 corresponds to abstaining. [Balcan
et al.| [2022] then provide a generic pointwise-optimal algorithm for this problem: one that for each z
outputs the largest possible confidence level of any robustly-reliable learner. They also give efficient
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algorithms for the case of homogeneous linear separators over uniform and log-concave distributions,
as well as analysis of the probability mass of points for which it outputs large values of k.

In this work, we address two challenges left open by Balcan et al.|[2022f]. The first is that the
definition of robustly-reliable learners in/Balcan et al.| [2022] becomes vacuous for highly-flexible
hypothesis classes: if there are two classifiers hg, h; € H both with zero error on the training set
such that ho(z) # hi(x), then a robustly-reliable learner must abstain on . We address this problem
by defining a modified notion of regularized robustly-reliable learners that allows for nontrivial
statements in this case. The second is that the generic algorithm of |Balcan et al.|[2022] requires re-
running an ERM oracle (essentially, retraining the classifier) on each test point z, which is generally
impractical even if ERM can be implemented efficiently. To tackle this problem, we show that at
least in certain interesting cases we can design algorithms that can make predictions in time sublinear
in training time, by using techniques from dynamic algorithm design, such as|Bosek et al.[[2014].

1.1 Main contibutions

Our main contributions are three-fold.

1. The first is a definition of a regularized robustly-reliable learner, and of the region of
points it can certify, that is appropriate for highly-flexible hypothesis classes. We then
analyze the largest possible set of points that any regularized robustly-reliable learner could
possibly certify, and provide a generic pointwise-optimal algorithm whose regularized
robustly-reliable region (R*) matches this optimal set (OPTR?).

2. The second is an analysis of the probability mass of this OPTR* set in some interesting
special cases, proving sample complexity bounds on the number of training examples
needed (relative to the data poisoning budget of the adversary and the complexity of the
target function) in order for OPTR? to w.h.p. have a large probability mass.

3. Finally, the third is an analysis of efficient regularized robustly-reliable learning algorithms
for interesting cases, with a special focus on algorithms that are able to output their reliability
guarantees more efficiently than re-training the entire classifier. In one case we do this
through a bi-directional dynamic programming algorithm, and in another case by utilizing
algorithms for maximum matching that are able to quickly re-establish the maximum
matching when a few nodes are added to or deleted from the graph.

In a bit more detail, for a given complexity (or “unnaturalness”) measure C, a regularized robustly-
reliable learner £ is given as input a possibly-corrupted training set S’ and outputs a function (an
“extended classifier") Lg/. The extended classifier Lg takes in two inputs: a test example x and a
poisoning budget b, and outputs a prediction y along with two complexity levels cjoy and cpign. The
meaning of the triple (y, Ciow, chigh) is that y is guaranteed to be the correct label f*(x) if the training
set S’ contains at most b poisoned points and the complexity of the target function f* is less than
Chigh- Moreover, there should exist a classifier f of complexity at most c;,, that makes at most b
mistakes on S” and has f(x) = y. Thus, if we, as a user, believe that a complexity at or above Chigh
is “unnatural” and that the training set should contain at most b corrupted points, then we can be
confident in the predicted label 3. We then analyze the set of points for which ¢;o,, < ¢ < chygn fora
given complexity level ¢, and show there exists an algorithm that is simultaneously optimal in terms
of the size of this set for all values of c.

The above description has been treating the complexity function C as a data-independent quantity.
However, in many cases we may want to consider notions of “unnaturalness” that involve how the
classifier relates to the test point, the training examples, or both. For instance, if x is surrounded by
positive examples, we might view a positive classification as more natural than a negative one even if
we allow arbitrary functions as classifiers; one way to model this would be to define the complexity
of a classifier h with respect to test point x as 1/r(h, z) where r(h, ) is the distance of = to h’s
decision boundary. Or, we might be interested in the margin of the classifier with respect to all the
data observed (the minimum distance to the decision boundary out of all data seen including the
training data and the test point). Our framework will allow for these notions as well, and several of
the concrete settings we discuss will use them.
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1.2 Context and Related Work

Learning from malicious noise. The malicious noise model was introduced and analyzed in |Valiant
[1985]], Kearns and Li| [[1993]], Bshouty et al.| [2002]], Klivans et al.| [2009]], /Awasthi et al.| [2017]].
See also the book chapter Balcan and Haghtalab| [2021]]. However, the focus of this work was on
the overall error rate of the learned classifier, rather than on instance-wise guarantees that could be
provided on individual predictions.

Instance targeted poisoning attacks. Instance-targeted poisoning attacks were first introduced by
Barreno et al.|[2006]. Subsequent work by |Suciu et al.|[2018]] and [Shafahi et al.|[2018|] demonstrated
empirically that such attacks can be highly effective, even when the adversary only adds correctly-
labeled data to the training set (known as “clean-label attacks™). These targeted poisoning attacks
have attracted considerable attention in recent years due to their potential to compromise the trustwor-
thiness of learning systems [Geiping et al., 2021, [Mozaffari-Kermani et al., 2015} |Chen et al., 2017].
Theoretical research on defenses against instance-targeted poisoning attacks has largely focused on
developing stability certificates, which indicate when an adversary with a limited budget cannot alter
the resulting prediction. For instance, |Levine and Feizi|[2021] suggest partitioning the training data
into k segments, training distinct classifiers on each segment, and using the strength of the majority
vote from these classifiers as a stability certificate, as any single poisoned point can affect only one
segment. Additionally,|Gao et al.|[2021]] formalize various types of adversarial poisoning attacks
and explore the problem of providing stability certificates for them in both distribution-independent
and distribution-specific scenarios. [Balcan et al.| [2022] instead propose correctness certificates: in
contrast to the previous results that certify when a budget-limited adversary could not change the
learner’s prediction, their work focuses on certifying the prediction made is correct. This model
was extended in Balcan et al.|[2023]] to address test-time attacks as well. The model of |Balcan et al.
[2022] can be seen as a generalization of the reliable-useful learning framework of Rivest and Sloan
[[1988]] and the perfect selective classification model of |[El-Yaniv and Wiener| [[2010], which focus
on the simpler scenario of learning from noiseless data, extending it to the more complex context of
noisy data and adversarial poisoning attacks.

2 Formal Setup

We consider a learner aiming to learn an unknown target function f* : X — ), where X denotes
the instance space and ) the label space. The learner is given a training set S” = {{(x;,v:)}_ |z €
X,y € Y}, which might have been poisoned by a malicious adversary. Specifically, we assume S’
consists of an original dataset .S labeled according to f*, with possibly additional examples, whose
labels need not match f*, added by an adversary. For original dataset S and non-negative integer b, it
will be helpful to define .4, (S) as the possible training sets that could be produced by an attacker
with corruption budget b. That is, A (.S) consists of all S that could be produced by adding at most
b points to S. Given the training set S’ and test point x, the learner’s goal will be to output a label
y along with a guarantee that y = f*(z) so long as f* is sufficiently “simple” and the adversary’s
corruption budget was sufficiently small. Conceptually, we will imagine that the adversary might
have been using its entire corruption budget specifically to cause us to make an error on x. Our basic
definitions will not require that the original set S be drawn iid (or that the test point « be drawn from
the same distribution) but our guarantees on the probability mass of points for which a given strength
of guarantee can be given will require such assumptions.

Complexity measures To establish a framework where certain classifiers or classifications are
considered more natural than others, we assume access to a complexity measure C that formalizes
this degree of unnaturalness. We consider several distinct types of complexity measures.

1. Data independent: Each classifier h has a well-defined real-valued complexity C(h). For
example, in R!, a natural measure of complexity of a Boolean function is the number of
alternations between positive and negative regions (See Definition {.T).

2. Test data dependent: Here, complexity is a function of the classifier h and the test point
Ztest. FOr example, suppose X = R? and we allow arbitrary classifiers. If 4.4, is inside a
cloud of positive examples, then while there certainly exist classifiers that perform well on
the training data and label z;.,; negative, they would necessarily have a small margin with
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respect to Z4cs. This motivates a complexity measure C(h, Ztest) =
the distance of 2.4 to h’s decision boundary. (See Definition §.7).

3. Training data dependent: This complexity is a function of the classifier i and the training
data. An example of this measure is the Interval Probability Mass complexity, detailed in
the Appendix (See Definition[A.3).

4. Training and test data dependent: Here, complexity is a function of the classifier &, the
training data, and the test point x;.s:. For instance, we might be interested in the margin r
of a classifier with respect to both the training set and the test point, and define complexity
to be + (See Definition .

1 .
= " where r is

In section 4] and Appendix we introduce several complexity measures across all four types, for
assessing the structure and behavior of classifiers. We now define the notion of a regularized-robustly-
reliable learner in the face of instance-targeted attacks. This learner, for any given test example X,
outputs both a prediction y and values cjow and cpigh, such that y is guaranteed to be correct so long as
the target function f* has complexity less than cy;gn and the adversary has at most corrupted b points.
Moreover, there should exist a candidate classifier of complexity at most cjoy.

Definition 2.1 (Regularized Robustly Reliable Learner). A learner L is regularized-robustly-reliable
with respect to complexity measure C if, given training set S’, the learner outputs a function Lg :
X x 729 — Y x R x R with the following properties: Given a test point Ty, and mistake budget b,
L (Zrest, b) outputs a label y along with complexity levels i, Chign Such that

(a) There exists a classifier h of complexity ¢y, (With respect to Xt if test-data-dependent and
with respect to some S consistent with h such that S’ € Ay(S) if training-data-dependent)
with at most b mistakes on S’ such that h(iest) = y, and

(b) There is no classifier h' of complexity less than Chigh (With respect to Ticq if test-data-
dependent and with respect to any S consistent with h' such that S’ € Ay(S) if training-
data-dependent) with at most b mistakes on S’ such that I (24est) # y.

So, if L/ (Trest, b)) = (Y, Clow, Chign), then we are guaranteed that y = f*(xtest) if S € Ap(S) for
some true sample set S € X x Y and f* has complexity less than cpien With respect to Tyesr and S.

Remark 2.2. We define Lg: as taking b as an input, whereas in|Balcan et al.|[2022|], the corruption
budget b is an output. We could also define Lg: as taking only xi.s: as input and producing output
Vectors ¥, Ciow, Chigh, Where ¥[b], Ciou[b] and cpign [b] correspond to the outputs of Lg/(Ziest, b) in
Definition We define Lg to take b as an input primarily for clarity of exposition, and all our
algorithms indeed can be adapted to output a table of values if desired.

Remark 2.3. When the learner outputs a value cpigp, < Ciow, We interpret it as “abstaining.”

Definition [2.T] motivates the following generic algorithm for implementing a regularized robustly
reliable (RRR) learner, for data-independent complexity measures.

Algorithm 1 Generic RRR learner for data-independent complexity measures C

1. Given S’, find the classifier hs: of minimum complexity that makes at most b mistakes on S’.
2. Given test point Z4cs¢, output (Y, Ciow, Chign) Where y = hgr(2), ciow = C(hg), and cpigh =
min{C(h) : h makes at most b mistakes on S” and h(x) # hg:(x)}.

Remark 2.4. Notice that the generic Algorithm|l|can compute hg' and cjo, at training time, but
requires re-solving an optimization problem on each test example to compute cp;qgp. (For complexity
measures that depend on the test point, even cjo., may require re-optimizing).

We now define the notion of a regularized robustly reliable region.

Definition 2.5 (Empirical Regularized Robustly Reliable Region). For RRR learner L, dataset
S’, poisoning budget b, and complexity bound c, the empirical regularized robustly reliable region

R4 (S, b, ¢) is the set of points x for which Lg:(x, b) outputs Cjow, Chigh such that cipy < ¢ < Cpigh.

Similarly to Balcan et al.|[2022], one can characterize the largest possible set R* (5", b, ¢) in terms
of agreement regions. We describe the characterization below, and prove its optimality in Section 3]
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Definition 2.6 (Optimal Empirical Regularized Robustly Reliable Region). Given dataset S’, poi-
soning budget b, and complexity bound c, the optimal empirical regularized robustly reliable region

OPTRA(S, b, ¢) is the agreement region of the set of functions of complexity at most c that make

at most b mistakes on S'. If there are no such functions, then OPTRA(S’, b, ¢) is undefined. (For
data-dependent complexity measures, we define the complexity of a function as its minimum possible
complexity over possible original training sets S, and the point in question if test-data-dependent.)

I R T

Figure 1: The blue regions depict Oﬁ‘l(S ’.0,8) described in Definition [2.6|for the complexity
measure Number of Alternations, mistake budget b = 0, and complexity level ¢ = 8.

In the next section we give a regularized robustly reliable learner £ such that for all S’ and b, £
satisfies R4, (5’,b,¢) = OPTRA(S’, b, ¢) simultaneously for all values of ¢. We then prove that

any other regularized robustly reliable learner £’ must have Riy (8',b,¢) C OPTRA (S’,b,c). This
justifies the use of the term optimal in Definition

3 General Results

Recall that a regularized robustly reliable (RRR) learner £ is given a sample S’ and outputs a function
Ls(x,0) = (Y, Clows Chigh) such that if S" = A(S) for some (unknown) uncorrupted sample S
labeled by some (unknown) target concept f*, and C(f*) € [ciow; Chigh), then y = f*(z).

Theorem 3.1. For any RRR learner L' we have P/{Zg (8',b,¢) C O?’I?{‘l(S'7 b, ¢). Moreover, there
exists an RRR learner L such that R4z (S’,b,¢) = OPTRA(5, b, ¢).

Proof. First, consider any z ¢ OPTR*(5’, b, ¢). This means there exist hy and h; of complexity
at most ¢, each making at most b mistakes on S’, such that ho(z) # hi(z). In particular, this
implies that for any label y, there exists a classifier A’ of complexity at most ¢ with at most b
mistakes on S’ such that ' () # y. (For data-dependent complexity measures, 4’ has complexity
¢ with respect to some possible original training set S.) So, for any RRR learner £’, by part (b) of

Deﬁnition L' cannot output cpig, > ¢, and therefore x & R4,/ (57, b, ¢). This establishes that
R4./(S',b,¢) C OPTRA(S, b, ¢).

For the second part of the theorem, let us first consider complexity measures that are not data
dependent. In that case, consider the learner £ given in Algorithm |I|that given S’ finds the classifier
hg: of minimum complexity that makes at most b mistakes on S’ and then uses it on test point z.
Specifically, it outputs (Y, Ciow, Chigh) Where y = hg/(x), Cjony, = C(hg), and

Chigh = min{C(h) : h makes at most b mistakes on S’ and h(z) # hg: (z)}.

By construction, £ is a RRR learner. Now, if z € Oﬁ‘l(S ', b, ¢) then this learner £ will output
(¥, Clow, Chigh) such that ¢;o,, < ¢ and cpign, > c. That is because x is in the agreement region of
classifiers of complexity at most ¢ that make at most b mistakes on S’, which means that any classifier
making at most b mistakes on S’ that outputs a label different than y on x must have complexity
strictly larger than c. So, x € R*,(5’, b, ¢). This establishes that R*(S’,b,c) 2 OPTR*(5’, b, c),
which together with the first part implies that R4, (5’, b, ¢) = OPTRA(S’, b, ¢).

If the complexity measure is data dependent, the learner £ instead works as follows. Given S’, £
simply stores S” producing Lg:. Then, given z and b, Lg:(x, b) computes

y = hg(x)where hg = argmin, {C(h,S’,b,x) : h makes at most b mistakes on S},
Clow = C(hS/,Sl,b, (L'), and
chigh = min{C(h,S’,b,x) : h makes at most b mistakes on S" and h(z) # hgs (z)},

where here we define C(h, S’, b, ) as the minimum complexity of h over all possible true training
sets S, that is, sets S consistent with i such that S” € A(.5). Again, by design, £ is a RRR learner,

and if z € OPTRA(S’, b, ¢) then it outputs (Y, Cow, Chign) such that ¢jo,, < c and cpign > c. O
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Definition 2.6|and Theorem 3.1]gave guarantees in terms of the observed sample S’. We now consider
guarantees in terms of the original clean dataset S, defining the set of points that the learner will
be able to correctly classify and provide meaningful confidence values no matter how an adversary
corrupts S with up to b poisoned points. For simplicity and to keep the definitions clean, we assume
for the remaining portion of this section that C is non-data-dependent.

Definition 3.2 (Regularized Robustly Reliable Region). Given a complexity measure C, a sample S
labeled by some target function f* with C(f*) = ¢, and a poisoning budget b, the regularized robustly
reliable region R% (S, b, c) for learner L is the set of points x € X such that for all S’ € A,(S) we
have Ls:(x,b) = (Y, Ciow, Chigh) With Ciow < ¢ < Chigh-

Remark 3.3. RA(S.b,¢) = Mg e, s) Ric(S".b.c).

Definition 3.4 (Optimal Regularized Robustly Reliable Region). Given a complexity measure C, a
dataset S labeled by some target function f*, with C(f*) = ¢, and a poisoning budget b, the optimal
regularized robustly reliable region OPTR*(S, b, ¢) is the agreement region of the set of functions
of complexity at most ¢ that make at most b mistakes on S. If there are no such functions, then
OPTR?(S, b, ) is undefined.

Theorem 3.5. For any RRR learner L', we have R%,(S,b,C(f*)) € OPTR*(S,b,C(f*)). Moreover
there exists an RRR learner L such that for any dataset S labeled by (unknown) target function f*,
we have R%(S,b,C(f*)) = OPTRA(S,b,C(f*)).

Proof. For the first direction, consider = ¢ OPTR*(S,b,C(f*)). By definition, there is some h
with C(h) < C(f*) that makes at most b mistakes on S and has h(x) # f*(z). Now, consider
an adversary that adds no poisoned points, so that S’ = S. In this case, such h makes at most
b mistakes on S’, as well. Hence, by definition, cyign < C(f*) and so z ¢ R1(S,b,c). Hence,
R%(S,b,¢) € OPTR*(S,C(f*),b). For the second direction, consider a learner £ training set S’,
finds the classifier Ag: of minimum complexity that makes at most b mistakes on S’ and then uses
it on test point x. Specifically, it outputs (¥, Ciow, Chigh) Where y = hg/(x), clow = C(hsr), and
chigh = min{C(h) : h makes at most b mistakes on S” and h(z) # hg/(x)}. By construction, £
satisfies Definition[2.1]and so is a RRR learner. Now, suppose indeed S’ € A, () for a true set S
labeled by target function f*. Then f* makes at most b mistakes on .S’, so £ will output cjoy, < C(f*).
Moreover, if z € OPTR*(S, f*,b), then any classifier h with h(x) # f*(x) either has complexity
strictly greater than f* or makes more than b mistakes on .S (and therefore more than b mistakes
on S’). Therefore, £ will output cpgn > C(f*) and have y = f*(z). So, z € RE(S,b,C(f*)).
Therefore, OPTR*(S,b,C(f*)) C RL(S,b,C(f*)). O

Remark 3.6. The adversary’s optimal strategy is to add no points, since the learner must consider
all classifiers of a given complexity that make at most b mistakes on the training set, and adding new
points can only shrink this set.

4 Regularized Robustly Reliable Learners with Efficient Algorithms

In this section, we present efficient algorithms for implementing regularized robustly reliable learners
with optimal values of ¢;,, and cj; 4, for a variety of complexity measures. We present additional
examples in the Appendix.

4.1 Number of Alternations

We first consider the Number of Alternations complexity measure for data in R', and also analyze
the sample-complexity for having a large regularized robustly reliable region.

Definition 4.1 (Number of Alterations). The number of alterations of a function f : R — {—1,+1}
is the number of times the function’s output changes between +1 and -1 as the input variable increases
from negative to positive infinity.

Number of Alterations is a data-independent measure. A higher number of alterations implies a more
intricate decision boundary, as the classifier switches between classes more frequently. For instance,
if f is the sign of a degree d polynomial, then it can have at most d alternations.
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Example 4.2 (Number of Alterations). Consider the dataset in Figure 2| Assuming there is no
adversary, it is impossible to classify these points with any function that has less than 7 alterations.
Suppose we now receive the test point shown in Figure[3| Given a corruption budget b, the learner
will output a predicted label and interval (cjow, chigh) as shown in Table

Table 1: Guarantee for the test point in Figure[3]and the complexity measure Number of Alterations.

Mistake Budget Label | (Ciow, Chigh)
b=0 ¥ 7,9)
b=1 ¥ 5,.7)
b =2 ¥ 3,5)
b=3 ¥ 2,4)
b=1 ¥ 1,3)
=5 ¥ 1,2)
b==6 Any {1}
b=7,8 - 0,1)
b=9,10,11,12,13,14,15,16 | Any 5}

- -+ + + H-|H- | #]---- +--4++0++-F-- F----

Figure 2: Number of Alterations Figure 3: Test point arrives

Definition 4.3 (Optimal Regularized Robustly Reliable Learner). We say a regularized robustly-
reliable learner L is optimal if it outputs values cjo., and cpiqp, that are respectively the lowest and
highest possible values satisfying Definition[2.1]

Theorem 4.4. For binary classification, an optimal regularized-robustly-reliable learner can be
implemented efficiently for complexity measure Number of Alterations.

Proof sketch. The high-level idea is to perform bi-directional Dynamic Programming on the training
data. A left-to-right DP computes, for each point ¢ and each j < b, the minimum-complexity solution
that makes 7 mistakes up to that point (that is, on points 0, 1, ..., ) and labels ¢ as positive, as well as
the minimum-complexity solution that makes j mistakes so far and labels 7 as negative. A right-to-left
DP does the same but in right-to-left order. Then, when a test point z arrives, we can use the DP
tables to compute the values y, cjow, Chign in time O(b), without needing to re-train on the training
data. In particular, we just need to consider all ways of partitioning the mistake-budget b into j
mistakes on the left and b — j mistakes on the right, and then using the DP tables to select the best
choice. The full proof is given in Appendix [A.2.T] O

Remark 4.5. If instead of computing v, Ciow, Chigh for a single value of b we wish to compute them
forall b € [0, b4z, the straightforward approach would take time O(b2,,,.). However, we can also
use an algorithm of \Chi et al.|[2022] for computing the (min, +)-convolution of monotone sequences

to compute the entire set in time O((bmaz + cmaz)lﬁ), where Cpqq IS the largest value in the DP
tables (See Theorem[A.8|in the Appendix).

We now analyze the sample complexity for having a large regularlized robustly-reliable region for
this complexity measure when data is iid.

Theorem 4.6. Suppose the Number of Alterations of the target function is c. For any€,§ € (0,1), and

(b+1)c

any mistake budget b, if the size of the (clean) sample S ~ D™ is at least 0 ( ), and as long

as there is at least - probability mass to the left and right of each alternation of the target function,

with probability at least 1 — §, the optimal regularized robustly reliable region, OPTR*(S, ¢, b),
contains at least a 1 — € probability mass of the distribution.

Proof sketch. Consider 2c intervals I1, I, ..., Ia., each of probability mass 5 to the left and right
of each alternation. Without loss of generality, assume [; is positive, I and I3 are negative, I and

I5 are positive, etc., according to the target function f*. A sample size of ON(LCW) is sufficient so
that with high probability, S contains at least b 4- 1 points in each of these intervals ;. Assuming .S
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indeed contains such points, then any classifier that does not label at least one point in each interval
correctly must have error strictly larger than b. This in turn implies that any classifier ~ with b or
fewer mistakes on .S must have an alternation from positive to negative within I; U I, an alternation
from negative to positive within I3 U Iy, etc. Therefore, if h has complexity c, it cannot have any
alternations outside of | J ; 1 and indeed must label all of R — U ; 1; in the same way as f*. The full
proof is given in Appendix [A.2.2] O

4.2 Local Margin

We now study a test-data-dependent measure.

Definition 4.7 (Local Margin). Given a metric space (M, d ), for a classifier with a decision
function h : X — Y, where X is the input space and ) is the output space, the local margin of the
classifier with respect to a point x* € X is the distance between x* and the nearest point v’ € X
such that h(z') # h(z*).

r(h,x*) = d(z*,x")

inf
{z’€X:h(z’)#£h(z*)}
We define the local margin complexity measure C(h, z*) as 1/r(h, z*).

A larger local margin implies that the given point is well separated from the decision boundary. For
this complexity measure, we have the convenient property that for any training set S’, test point x4,
label y, and mistake budget b, the minimum complexity ¢;o., Of a classifier h that makes at most b
mistakes on S’ and gives x5 a label of y is given by 1/r where r is the distance between x;.<; and
the (b + 1)st closest example in S’ of label different from y. In particular, r cannot be larger than
this value since at least one of these b + 1 points must be correctly labeled by h and therefore it is a
legitimate choice for x’ in Definition Moreover, it is realized by the classifier that labels the open
ball around ;. of radius r as y, and then outside of this ball is consistent with the labels of S’. This
allows us to show:

Theorem 4.8. For any multi-class classification task, an optimal regularized robustly reliable learner
can be implemented efficiently for complexity measure Local Margin.

Proof sketch. Given training data S’ and test point z4.s;, we compute the distance of all training
points from z;.:. Then, for each class label y;, we compute the radius r; of the largest open ball
we can draw around the test point that contains at most b training points with label different from
y;. The complexity of the least complex classifier that labels the test point as y; is then ¢,, = L

We repeat this for all classes. We then define the predicted label y = argmin, {c,, }, ciow = ¢y, and

Chigh = Miny, 2, {c,, }. An example and the full proof is given in Appendixh O

4.3 Global Margin

Lastly, we study a fest-and-training-data-dependent measure.

Definition 4.9 (Global Margin). Given a metric space (M, d ), a set S = {(z,y)|z € X, y € Vi,
and a classifier h : X — Y that realizes S, we define the global margin of h with respect to S as

r(h,S) = min inf d(z;, ).

z; €8 {x' €X:h(a’)£h (i)}

We define the global margin complexity measure C(h, S) as 1/r(h, S). Furthermore, given a training
set S', test point Tios: and corruption budget b, we define C(h,S’, b, xscst) as 1/r where r is the
largest value of r(h, S\U{Ztest }) over all S such that S" € Ay(S); that is, it is an “optimistic” value
over possible original training sets S.

Intuitively, Global Margin says that the most natural label for a test point x;.s; is the label such that
the resulting data is separable by the largest margin. Note that in the presence of an adversary with
poisoning budget b, the set S in the above definition corresponds to the test point along with the
training set S’, excluding the b points of .S’ of smallest margin.

Theorem 4.10. On a binary classification task, an optimal regularized robustly reliable learner can
be implemented efficiently for complexity measure Global Margin.
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Proof sketch. For simplicity, suppose that instead of being given a mistake-budget b and needing to
compute ¢jo,, and cpgp, We are given a complexity ¢ with associated margin r = 1/c and need to
compute the minimum number of mistakes to label the test point as positive or negative subject to
this margin. Now, construct a graph on the training data where we connect two examples x;, z; if
their labels are different and d(z;, z;) < 2r. Note that the minimum vertex cover in this graph gives
the smallest number of examples that would need to be removed to make the data consistent with a
classifier of complexity c. In particular, the nearest-neighbor classifier with respect to the examples
remaining (after the vertex cover has been removed) has margin at least r, while if a set of examples
is removed that is not a vertex cover, then the margin of any consistent classifier is strictly less than r
by triangle inequality. While Minimum Vertex Cover is NP-hard in general, it is efficiently solvable
in bipartite graphs via maximum matching, and our graph is bipartite. Now, given our test point e,
we can consider the effect of giving it each possible label. If we label ;. as positive, then we would
want to solve for the minimum vertex-cover subject to that cover containing all negative examples
within distance 27 of x,.4; if we label x5 as negative, then we would solve for the minimum
vertex cover subject to it containing all positive examples within distance 2r of z4.5;. We can do
this by re-solving the maximum matching problem from scratch in the graph in which the associated
neighbors of z;.4; have been removed, or we can do this more efficiently (especially when x.s; does
not have many neighbors) by using dynamic algorithms for maximum matching. Such algorithms are
able to recompute a maximum matching under small changes to a given graph more quickly than
doing so from scratch. Finally, to address the case that we are given the corruption budget b rather
than the complexity level ¢, we pre-compute the graphs for all relevant complexity levels and then
perform binary search on c at test time. Appendix describes some helpful properties of global
margin and[A.4.2] contains the proof. O

The above argument is specific to binary classification. We show below that for three or more classes,
achieving an optimal regularized robustly reliable learner is NP-hard.

Theorem 4.11. For multi-class classification with k > 3 classes, achieving an optimal regularized
robustly reliable learner for Global Margin complexity is NP-hard.

Proof sketch. We reduce from the problem of Vertex Cover in k-regular graphs, which is NP-hard
for k > 3. Given a k-regular graph, we first give it a k-coloring, which can be done in polynomial
time (ignoring the trivial case of the (k + 1)-clique). We then embed the graph in R™ such that any
two vertices vy, vo that were adjacent in the given graph have distance less than 2r, and any two
vertices that were not adjacent have distance greater than 27, for some value r. The points in this
embedding are given labels corresponding to their colors in the k-coloring, ensuring that all pairs
that were connected in the input graph have different labels. This then gives us that determining the
minimum value of b for this radius r is at least as hard as determining the size of the minimum vertex
cover in the original graph. The full proof is given in Appendix [A.4.3] O

Other complexity measures In the appendix, we give regularized robustly reliable learners for
other complexity measures including interval probability mass and polynomial degree. We also define
the notion of an Empirical Complexity Minimization oracle, analogous to ERM, that computes the
general type of optimization needed for achieving an optimal regularized robustly-reliable learner.

5 Discussion and Conclusion

In this work, we define and analyze the notion of a regularized robustly-reliable learner that can
provide meaningful reliability guarantees even for highly-flexible hypothesis classes. We give a
generic pointwise-optimal algorithm, proving that it provides the largest possible reliability region
simultaneously for all possible target complexity levels. We analyze the probability mass of this
region under iid data for the Number of Alternations complexity measure, giving a bound on the
number of samples sufficient for it to have large probability mass with high probability. We then
give efficient optimal such learners for several natural complexity measures. In the Number of
Alternations case, the algorithm uses bidirectional Dynamic Programming to provide its reliability
guarantees quickly on new test points without needing to retrain. For Global Margin, we show a
reduction to computing maximum matchings in a collection of bipartite graphs and utilize dynamic
matching algorithms to produce outputs on test points more quickly than retraining from scratch.
A limitation of our work is that in general these guarantees can be very expensive computationally.
Nonetheless, we believe our formulation provides an interesting approach to giving meaningful
per-instance guarantees for flexible hypothesis families in the face of data-poisoning attacks.
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A Empirical Complexity Minimization

Definition A.1 (Empirical Complexity Minimization). Given a complexity measure C, a hypothesis
class H, a training set 8" = {(z1,y1), (X2,Y2) .-, (Tn, Yn) }, and a mistake budget b, let H;, s/ be
the set of hypotheses that make at most b mistakes on S’ :

Mo = (11310 £ 0 <

For a data-independent complexity measure, we define the ECM learning rule to choose

h =arg min C(h
EcM ghG?—Lb’S/ ( )
For training-data-dependent complexity measures, we replace C(h) with the minimum value of

C(h, S) over all candidates S for the original training set S; that is, min{C(h, S) : 8" € A(S) and
h e Hy, 5} When the complexity measure is test-data-dependent (or training-and-test dependent),

we deﬁne the ECM learning rule to output just the complexity value, rather than a hypothesis.
min C(h, Trest) or min C(h,S’, b, Treq),

he’HbTS/ :h(wlt’s/):ylﬂs/ hEHb,S’ :}L(wlfSI):ylt’s/

where C(h, S’ b, Ttest) is the minimum value of C(h, S, Ztest) over all candidates S for the original
training set S.

Note that for test-data-dependent complexity measures, an ECM oracle only outputs a complexity
value, rather than a classifier, and so would be called for each possible label y;. 4, with the algorithm
choosing the label of lowest complexity. The reason for this is that typically for such measures, the full
classifier itself is quite complicated (e.g., a full Voronoi diagram for nearest-neighbor classification),
whereas all we really need is a prediction on Zes¢.

A.1 Other Examples of Complexity Measures

Definition A.2 (Interval Score). Let {X1,..., X, } be a set of n independent and identically dis-
tributed real-valued random variables drawn from a distribution D with cumulative distribution

function F(t). The empirical distribution function F,(t) associated with this sample is defined as:

o
- n . {X:<t}>

where 1(x, <4 denotes the indicator function that is 1 if X; < t and 0 otherwise. Consider m
disjoint intervals I; = (s;,e;] on the real line, where 1 < i < m. Each interval I; is associated
with a sequence of sample points sharing a common label. The empirical probability mass within an
interval I; is given by:

. . 1
Fn(es) = Fu(s:) = = Y 1{acx, <)

We define the interval score for I; as:
S (1) n n 1
core(l;) = o = - N = = A :
1+ Zj=1 1si<xi<ey  n- (Fn(ei) — Fo(s;) + 1) Fo(ei) — Fu(si) +1

ey

In the definition of the score, we add one to the denominator to make sure that every I; has a non-zero
count. This score reflects the inverse of the empirical probability mass contained within the interval
I;, and is a training-data-dependent measure. A lower mass results in a higher score, indicating
that the interval captures a more “complex" region of the sample space. We then define the Interval
Probability Mass complexity using Definition above.

12
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Definition A.3 (Interval Probability Mass). The Interval Probability Mass complexity of the set of

intervals {1y, ..., I} is then defined as the aggregate of the interval scores:
m m 1
Complexity(S) = Score(I;) = - - . 2)
plexity(S) ; (1) ;Fn(ei)_Fn(&)H

Definition [A.3]is a training data dependent measure that sums the contributions from all intervals,
providing a scalar quantity that quantifies the distribution of the sample points across the intervals. A
higher complexity suggests that the sample is dispersed across many low-mass intervals.

Definition A.4 (Degree of Polynomial). Ler f(x) = sign[p(x)], where f : R® — {—1,41} is

defined by a polynomial function p(x1,x2, . ..,Z,) over the input space X C R™, and the function
value changes between +1 and —1 based on the sign of p(x).
p(z) = Z Cay,az,man 11 T3 - TR,

Q1,02,...,0n

where o, 0, ..., 0 > 0, and ¢, an,....a, € R are the polynomial coefficients. The degree of
the polynomial is defined as the maximum sum of exponents oy + o + - -+ + «y, for which the
corresponding coefficient is non-zero.

Degree of Polynomial is a data independent measure. A higher degree indicates more intricate
changes in the sign of f(x) across the input space, corresponding to a more complex and flexible
boundary. Note that in R, the Number of Alternations is a lower bound on the Degree of Polynomial.
In Sections and we give optimal regularized robustly reliable learners for the Interval
Probability Mass and Degree of Polynomial complexity measures, respectively.

+ + + -, -+, ==

Figure 4: [llustration of a Function’s Behavior on the Left and Right Sides of a Test Point: Leftmost:
The function labels both the leftmost and rightmost neighbors of the test point as positive. Labeling
the test point as positive does not increase complexity, but labeling it as negative increases the
complexity by two. Middle Figures: The function labels the left neighbor as positive (or negative)
and the right neighbor as negative (or positive). The complexity is the sum of the complexities on
each side of the test point plus one, since the function needs to alter in order to connect the left side to
the right side, regardless of the test point’s label. Rightmost: The function labels both neighbors as
negative. Labeling the test point as negative does not increase complexity, but labeling it as positive
increases the complexity by two.

A.2 Number of Alterations

A.2.1 Proof of theorem 4.4

Theorem[d.4, For binary classification, an optimal regularized-robustly-reliable learner (Definition
can be implemented efficiently for complexity measure Number of Alterations (Definition @.1)).

Proof. Algorithm[2]is the solution. We now prove its correctness. First, we define the DPs that store
the scores used, then we use the DP table to compute the complexity level when the test point and
mistake budget arrive. We define DP+, DP—, DP’'+, DP’— each of which are 2D tables of size
n X (n + 1). The rows of the tables denote the position of the current data point, namely for D P+
and D P—, we denote the rightmost point by index 0, and the leftmost point by index n — 1. As for
DP'+ and DP’—, the rows of the tables denote the position of the current data point in the reverse
sequence, i.e., we denote the rightmost point by index n — 1, and the leftmost point by index 0. The
columns of the tables denote the number of mistakes made up to that point which can vary between 0
to the position of the current point+1. We provide the proof of correctness for D P+, and it is similar
for the other three.

Consider ¢ = 0 (the first point in the sequence):
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o Ifal0)] = 7+

— We initialize D P [0][0] = 0 because the complexity is 0 with no mistakes made, and
the rightmost point is positive.

— We set DP, [0][1] = oo since no mistakes can be made yet.
o Ifal0] = 7-:

— We initialize D P, [0][0] = oo because it is impossible to have the rightmost point be
positive without making a mistake.

— We set DP,[0][1] = 0 because removing the negative point gives a valid sequence
with complexity 0.

The base case correctly handles both possible labels of the first point, ensuring the initialization aligns
with the definition of D P, .

Induction Hypothesis: Assume that for all ¢’ < ¢ and all j, the table entries D P, [i'][] correctly
compute the minimum complexity level such that the number of mistakes up to position ¢’ is j and
the rightmost existing point in the sequence is positive.

Inductive Step: We need to show that D P, [i][4] is correctly computed for position i.

* Case 1: afi] = *+°

— We have three possible scenarios:

1. Keep the point a[i] without making a mistake: This scenario corresponds to
DPy[i = 1][j].

2. Remove a[i] and use j — 1 mistakes if the leftmost point is positive: This scenario
corresponds to DP, [i — 1][j — 1].

3. Switch the rightmost point from — to 4, which adds one to the complexity due
to the Alterations: This scenario corresponds to DP_[i — 1][5] + 1.

Thus, the recursive relation is:

DP[i][j] = min(DPy[i = 1)[j], DPy[i = 1][j — 1], DP_[i = 1][j] + 1)

This relation captures all the valid ways to ensure the rightmost point is positive while
maintaining exactly j mistakes.

» Case2: afi] = -’

— To maintain the rightmost point as positive, we must remove a[i], which requires using
one of the allowed mistakes:

DP[i][j] = DPy[i —1][j —1]

This equation reflects the necessity to remove a negative point to maintain a valid
sequence with a positive rightmost point.

Since the recursive relation properly handles both cases for the current point ¢ based on its label, and
the inductive hypothesis ensures correctness for all prior points, the table entry D Py [i][4] is correctly
computed.

Computing the test label efficiently: We now use the DP tables to obtain the test label. Note that
our approach does not require re-training to compute the test label efficiently.

Once we receive the test point’s position along with the adversary’s budget, b, we compute the exact
minimum complexity needed to label it point as positive and negative. We denote the test point’s
position by test_pos, there are four different possibilities for how a function could behave on the left
side and the right side of the test point. See figure 4]

Given b, we iterate over all possible divisions of mistake budget between the left side and the right

side of the test point in each of these four formations. Define the minimum complexity to label

the test point as positive, c, and the minimum complexity to label the test point as negative, c_.

Then, ciow = min{cy,c_}, and chign = max{cy,c_}. We output yey = argmin{c,,c_}, along
+ —

with ¢, Chigh- O
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Remark A.5. It suffices to run the test prediction with the entire mistake budget, b, since with more
deletions the complexity never increases. We use this fact to fill our DP tables as well as do test time
computations more efficiently.

Remark A.6. Theorem{.4|can be generalized to classification tasks with more than two classes.
Definition A.7 ((min, +)-Convolution). Given two sequences a = (a[i]){—; and b = (b[i])7=, the
(min, +)-convolution of a and b is a sequence ¢ = (cli])}'_}, where

clk] = mink{a[i]+b[kfi]}, fork=0,...,n—1.

i=0,...,

Theorem A.8. Let a = (a[i])?=; and b = (b[i])?=;" be two monotonically decreasing sequences of
nonnegative integers, where all entries are bounded by O(n). The (min, +)-convolution of a and b

can be computed in é(n1'5) time by reducing the problem to the case of monotonically increasing
sequences, which can be solved using the algorithm presented in Theorem 1.2 of \Chi et al.|[2022]].

Proof. The reduction that transforms monotonically decreasing sequences into monotonically increas-
ing sequences is standard; we provide it here for completeness. This reduction allows the application
of the efficient algorithm from |Chi et al.| [2022]).

Given the input sequences a = (a[i])}=, and b = (b[i])—;', we first reverse them to obtain:

Greverse = (a[n — 1],aln —2],...,a[0]), breverse = (b[n — 1], b[n —2],...,b[0]).
The reversed sequences are now monotonically increasing. We then append n — 1 infinities to both

sequences, resulting in:

al = [areversea 00, 00, . . ., 00]7 b/ = [bmversea 00, 00, . . ., OO]

These transformation steps take O(n) time. Now, we can apply the algorithm from |Chi et al.| [2022],

which computes the (min, 4)-convolution of the monotonically increasing sequences in O(n'!:%)
time. Let the result be the sequence ¢’:

4 = 1 / 4 . = —_
cp = Orgnilgk(az +b_;), fork=0,...,2n—2.

We claim that removing the first n elements of ¢’ and reversing the remaining sequence yields the
desired convolution of the original sequences. Specifically:

* The first n elements of ¢’ represent cases with an excessive mistake budget and should be
discarded. For example, ¢'[0] corresponds to a budget of 2n, ¢'[1] to 2n — 1, and so on,
down to ¢’[n — 1], which corresponds to n + 1.

* For indices k > n, the infinite values in the padded sequences force convolution contribu-
tions from lower indices to be ignored, ensuring correctness.

Thus, extracting the last n elements from ¢ and reversing their order reconstructs the desired
convolution of the original decreasing sequences, which completes the proof. O

A.2.2  Proof of theorem [4.6]

Theorem 4.6  Suppose the Number of Alterations (Definition of the target function is c.
For any €,0 € (0,1), and any mistake budget b, if the size of the (clean) sample S ~ D™ is at
least O (@), and as long as there is at least 5 probability mass to the left and right of each

alternation of the target function, with probability at least 1 — 6, the optimal regularized robustly
reliable region, OPTR*(S, ¢, b), contains at least a 1 — ¢ probability mass of the distribution.

Proof. We want to make sure with probability at least 1 — 4, the optimal regularized robustly reliable
region, OPTR*(S, ¢, b), contains at least 1 — € probability mass. Define 2c intervals Iy, I, . . ., I5.,
each of probability mass o to the left and right of each alternation of the target function f*. Without
loss of generality, assume [ is positive, I» and I3 are negative, I and I5 are positive, etc., according
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Algorithm 2 DP Score of Number of Alterations (Definition 4. 1)
Input: a: Train set
Output: DP,, DP_, DP}, DP’
Function DpScore(a, b):
n + length(a) a_reversed «+ reverse(a)
for i < 0ton do
for k< Oton —1do
| DPy[il[k], DP_[i][k], DPL[i][k], DP_i][k] = oo

if a[0] ="+’ then
DP_[0][0] <O
DP_[0][1] + 0

DP.[0][1] « 0
| DP_[0][0] + 0

if a_reversed|0] ='+’ then

0]{0] <0
DP'[0][1] <~ 0
DP[0][1] «+ 0
DP’[0][0] «- 0

fori <+ 1ton — 1do
for j <~ Oto?+ 1do

if afi] ="+’ then
DP, [i][j] + min(DPy[i — 1][j], DPy[i — 1][j — 1], DP_[i — 1][j] + 1)
| DP_[i|[j] + DP_[i —1][j — 1]
else if a[i| ='-' then
DP_Ii][j] < min(DPy[i = 1][j], DPy[i = 1][j — 1], DPy[i — 1][j] + 1)
L DPy[il[j] <= DPy[i —1][j — 1]
if a’[i] =+’ then
DP.[i][j] = min(DP, [i — 1][j], DPL[i = 1][j — 1], DP"[i = 1][5] + 1)
| DP'[i][j] + DP"[i — 1][j — 1]
else if o/[i] ='-" then
DP"[i][4] < min(D P} [i — 1][j], DP}[i — 1][j — 1], DP}.[i — 1][§] + 1)
| DP.[i][j] + DP,[i — 1][j — 1]

return DP,, DP_, DP,, DP"

(b+1)c

to f*. We will show that a sample size of O(~——=) is sufficient so that with high probability, S
contains at least b 4 1 points in each of these intervals I;. Assuming S indeed contains such points,
then any classifier that does not label at least one point in each interval correctly must have error
strictly larger than b. This in turn implies that any classifier h with b or fewer mistakes on S must
have an alternation from positive to negative within I; U I, an alternation from negative to positive
within I3 U Iy, etc. Therefore, if h has complexity ¢, it cannot have any alternations outside of | ; I;

and indeed must label all of R — | ; 1; in the same way as f*. So, all that remains is to argue the
sample size bound.

We will use concentration inequalities to derive a bound on the probability that less than b + 1 points
from the sample fall into any of the 2c¢ intervals. Let X; be an indicator random variable such that:

Y. 1, if the i-th sample point falls into interval I},
! 0, otherwise.

Thus, the sum ;" | X; represents the number of sample points in S that fall into interval I;.

The expected number of points in I;, denoted as y, is given by:
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p=E

i €

We are interested in the probability that less than or equal to b + 1 points fall into any of the 2¢
intervals. We use the union bound to ensure that this probability holds across all intervals. That is we

will show
P <3j such that » X, < b) <.

i=1

To do this, we will prove for a single interval I;:

i 5
P(ZE}Q@) <o

Next, we apply Chernoff bounds to control the probability that fewer than b + 1 points fall into any
interval. We are interested in the lower tail of the distribution, and Chernoff’s inequality gives us the

following bound:
P (2& < g) <e k.

To ensure that this probability is smaller than %, it suffices to have

2c
>8In|— ).

We also need to ensure that the expected number of points in any interval is sufficiently large to
account for the threshold b + 1. Specifically, we need:

w>2(b+1).

Combining both conditions, we require:

o mas {20 .5 (%)

€ 2c
—_— > — .
m 202(b+1)+81n<6)

2¢(2(b+1) +81n (%))

m >

Thus, the sample complexity m is bounded by:

m=0 (1),

€

Which ensures with high probability OPTR*(S, ¢, b) contains 1—e of the probability mass. Therefore,
any test point drawn from the same distribution as .S, with probability 1 — e belongs to the optimal
regularized robustly reliable region. O

A.3 Local Margin

Example A.9 (Local Margin). Consider the training set S’ and test point Tyes; shown in Figure
For mistake budget b = 1, the local margin of the (dark blue point in the center) test point
(Ttest, Ytest) is 2 if it is labeled as positive, and 1 if it is labeled as negative. Table @ shows the
optimal intervals (Ciow, Chign) for all values of b.
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Figure 6: Guarantee for Figure[5]

Figure 5: Local Margin example
(xtest at center)

As noted in Section[4.2] the lowest-complexity classifier with respect to (Zest, yrest) that makes at
most b mistakes on S’ has local margin (Definition equal to the distance of the test point to the
(b + 1)%t closest point with a different label. In particular, the margin cannot be larger than this value
since at least one of these b + 1 points must be correctly labeled by the classifier and therefore it is
a legitimate choice for 2’ in Definition Moreover, it is realized by the classifier that labels the
open ball around x;.; of radius this radius as y;.s¢, and then outside of this ball is consistent with
the labels of S’.

For example, Table [6] shows the optimal values for the data in Figure[5} So long as the complexity
of the target function belongs to the given interval and the adversary has corrupted at most b of the
training data points, the given prediction must be correct.

A.3.1 Proof of Theorem[4.§

Theorem[@d.8, For any multi-class classification task, an optimal regularized robustly reliable learner
(Definition4.3)) can be implemented efficiently for complexity measure Local Margin (Definition[d.7).

Proof. Given the training data S’, the test point x4, and the mistake budget b, we are interested in
the complexity of the classifiers with smallest local margin complexity with respect to the test point
and its assigned labels, that make at most b mistakes on S’. First, we compute the distance of all
training points from the yet unlabeled test point. For each class label, y1, ya, ..., y,, create a key in a
dictionary and store the distances of all training points (from the test point) with labels opposite to
the keys’, and sort the values of every key. In a m-class classification, there are m keys and each key
has at most n entries. The learner starts by labeling the test point as y;, and we check the y; key in
our dictionary. The b 4 1’th value is the radius of the largest open ball we can draw around the test
point labeled as y; such that it contains at most b points with labels different from y;. We denote this
radius by r1. The complexity of the least complex classifier that labels the test point as yy is ¢y, = -

We repeat this for all classes. Without loss of generality, assume ¢y, < ¢y, < --- < ¢y, . We define:
Clow = Cy;5  Chigh = Cyy

where cjoy represents the minimum complexity value among the different labelings of X, and chign

represents the second-lowest complexity value.

Finally, the predicted label for x g is determined as:

y= argmin {cy,,Cy,...,Cy,, }
Y1,Y2;5--Ym

That is, the label y corresponding to the smallest complexity value is chosen. The learner then outputs
the triplet (y, Ciow, chigh), where y is the predicted label, cjoy is the lowest complexity value, and chigh
is the second-lowest complexity value, providing a guarantee on the prediction.

O
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A4 Global Margin

Before proving Theorem[4.10] we first describe some useful properties of the global margin.

A.4.1 Understanding the Global Margin

Figure shows the margin on one dimensional data. Let S = {(x,y)|x € X,y € Y} denote the set.
Given a metric space (M, da,), draw the largest open ball, B(z, ;) centered on every x € S, such
that for any (x,y) € S, the ball B(z, r,.) does not contain any point (z’,y) from the set S with label
1y’ # y. Each of these balls denotes the (local) margin of their center point. The global margin of the
set S is the minimum over radius of such balls.

We now prove the “simplest" classifier, f*, that realizes set S has global margin(Definition of
7. Moreover, the decision boundary of this classifier must be equidistant between the closest pairs
of points with different labels. Hence, the decision boundary is placed midway between the closest
points, and the global margin complexity of such function is %

+od + e+t JHO- (HERE= L

Figure 7: Global Margin on 1-dimensional data. Let rg be the radius of the smallest ball, and
correspond to the distance between the closest pair of points with different labels. Then, the function
with minimum global margin complexity with respect to this set is % complex.

Theorem A.10. Ler (M, daq) be a metric space, and S = {(x;,y;) | x; € X, y; € YV} be a finite
set of labeled points, where X is the instance space and ) is the label space.

1. For each x; € X, let r; be the minimum distance from x; to any point with a different label.
ri = inf dy(zg, x4
% 2, eX M( (2] 1)7
Y #Yi

2. Let rg denote the minimum distance between any two differently labeled points in S.

rs = min r; = min A (i, z5),
T €X (®i,yi), (5,y;)€S
Yi Y5

Consider a classifier f* : X — ) that realizes S, and obtains minimum global margin complexity
(Deﬁnition with respect to the set S. Then the global margin complexity of * is % Moreover, its

decision boundary B~ is placed equidistantly between the closest pairs of points in S with different
labels.

Proof. We first show that for any classifier f* that realizes .S, the global margin r cannot exceed =.
Let (2p,Yp), (2q,Yq) € S be a pair of points such that: y, # yg, and dpq(zp, x4) = rs. Since rg is
the minimum distance between any two differently labeled points in .S, such a pair exists. Consider
any classifier f* that correctly classifies .S. The minimum distance from x,, (or x,) to the decision

r . . .
boundary cannot exceed -y Formally, since f* must assign different labels to x;, and x4, there must

exist a point x; € By~ such that:

dp(Tp, 2p) + dpa(wn, ) = dp(Tp, 74) = 75

By the triangle inequality, and because x;, lies between x), and x4, we have:

dpm(Tp, 2p) = dp(wp, 24) > 0.
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Since d (2, ) + daa(2p, 24) = 5, the maximal possible value for d yq (2, 25) is % . Therefore,
the minimum distance from any point in S to the decision boundary B~ satisfies:

rs
r< —.
- 2

Now, we construct the classifier f* (which will just be the nearest-neighbor classifier) that realizes S
with a global margin 7 = %,

Let f*: X — Y forany x € X assign:

F @) = Yi, ifdm(z, ;) < dm(z, z;) forall z; € S with y; # y;,
~ \yiory;, ifdm(z,z;) = dm(x,x;) for some z; € S,y; # ;.

This means, place the decision boundary B+ equidistantly between all pairs (z,,¥p), (¥4, yq) € S
with yp, # yq and daq(zp, z4) = rg. Since f* assigns to each x; € S its correct label y;, it correctly
classifies S. We will now show that: r¢« > %. Assume, for contradiction, that the global margin
ry« < 5. Then there exists ; € S and 2, € By« such that:

rs
dpm(zi,xp) =r—e< >

for some € > 0. Since z;, € By~, there exists x; € S with y; # y; such that:
dm(xi, xp) = dpm(xj, o).
Applying the triangle inequality:
da (i, x5) < dp(@i, we) + dp(we, 25) = 2dp (@i, 2p) <75

Which contradicts the definition of rg as the minimum distance between differently labeled points in
S. Therefore, our assumption is false, and we conclude that:

rs
T’f* Z ? .
Combining both directions we get
rs
Tf* = ?
O
. .-_'..: L. ar ._: i
LI T e ". et
GETLT TR
IIr .-. = - - - I: .‘.-.-.
' --_'==.':'. r --.""_:.".r

Figure 8: Illustration of Global Margin with different labelings of the test point

A.4.2 Proof of Theorem4.10)

Definition A.11 ((k, r)-Classification Graph). Given S = {(z,y)|z € X,y € Y}, where X denotes
the instance space and ) = {1,2, ..., k} the label space, we define the (k,r)-Classification Graph,
G, as the graph produced by connecting every two points in S of different labels with distance less
than r.

Remark A.12. The Minimum Vertex Cover of G, corresponds to the smallest number of points that
can be removed from S to make the data consistent with a classifier of global margin complexity %
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Using the remark above, we now prove Theorem [4.10]

Theorem [@d.10} On a binary classification task, an optimal regularized robustly reliable learner
(Definition 4.3) can be implemented efficiently for Global Margin complexity (Definition4.9).

Proof. Algorithm []is the solution. We first compute the distance between every pair of training
points, S, with opposite labels. Let R = {0, ¢, r1, ..., 7p } denote the set of aforementioned distances
with an added zero. Without loss of generality, suppose 0 < rg < rq,... < r,,. For the case of binary
classification, the (2, r)-classification graph, G, is bipartite. We construct each (2, )-classification
graph of the set {G,.(V*, V™, E,)},er by putting every positive training pointin VT, every negative
training point in V' ~, and connecting every two training points of opposite labels with distances
less than 7 by an edge. Since these graphs are bipartite, their Minimum Vertex Cover can be found
efficiently by computing a Maximum Matching [Kénig, [1950]]. Notice that by increasing the radius,
the Maximum Matching of classification graphs in the set only gets larger. Note that there is no
edge in Gy; hence the Matching is zero. We continue with computing the Maximum Matching of
the classification graph with respect to the smallest radius, G,,, which corresponds to the largest
global margin complexity value. We continue to compute {G,., }.cr in ascending order of 4, and
we stop as soon as we reach p’ € [0, p] such that the Maximum Matching of Gy, is greater than
b, the mistake budget. Next, when the test point x arrives, the learner begins by assigning it a
negative label. We compute the distance of the test point, x5 from every positive training point.
We run a binary search on the possible values of radius, i.e., [0, p’]. At every level r;, we denote the
set of training points labeled as positive with distance less than ;4 ; from xy by Vt;t. We denote
the cardinality of thst by dest, Which is indeed the degree of . at the current complexity level.
If 04¢s¢ exceeds our mistake budget, b, we break and move to a smaller radius (higher complexity).
Otherwise, we add d..+ copies of the test point and connect each of them to a distinct point in
Vt;t. We denote the set of 6.5 newly added edges by E}.s;. We have constructed a new graph
Grest = Gr, (VT V™ U{@test, bic[1,6,001]> Eri U Etest), which ensures all the points adjacent to e
are contained in the Minimum Vertex Cover. We can compute the the Maximum Matching of G in
time O(0test.(0test + | E])) by updating the Maximum Matching of G, via computing at most st
augmenting paths. Alternatively we can compute the Maximum Matching of G,., from scratch in
time O((0sest + | E|)'T°()) using the fast maximum matching algorithm of Chen et al.| [2022]. If
the Maximum Matching at the current complexity level exceeds the poisoning budget, b, we move
to a smaller radius (higher complexity), and if it is less than or equal to our mistake budget, b, we
search to see if the condition still holds for a larger radius. We accordingly use the corresponding
pre-computed representation graphs of the new complexity level. We do the same thing for the test

point labeled as positive. Finally, ¢y = min{-3-, -2}, and chign = max{-3, -2-}. We output
9 9 Tmax ~ Tmax Tmax ~ Tmax
Yiest = argmin{—=—, =}, along with cjow, Chigh. O
— Tmax ~ Tmax

Remark A.13. The running time for training-time pre-processing has two main components. The
first is construction of the classification graphs. This involves computing all pairwise distances
between training points of opposite labels and sorting them, each classification graph G, is just a
prefix in this list. This portion takes time O(n?logn). The second is computing maximum matchings
in each. We can do this from scratch for each graph (Algorithm[3). Alternatively, we can scan the
edge list in increasing order, and for each edge insertion just run a single augmenting path (since
the maximum matching size can increase by at most 1 per edge insertion). This gives a total cost
of at most O(m?), where m is the number of edges in the graph at the time that the budget b is first
exceeded. The running time for test-time prediction is given above, and involves computing at most
Otest augmenting paths per graph in the binary search.

Remark A.14. The proposed approach is especially fast for small values of 0iest, and we can make
it faster for large values of 01est, as well. When 6§t is large, one can instead remove Vt;t vertices
from the original graph, G,., and re-compute the matching by iteratively finding augmenting paths.
We expect the matching of the remaining graph to not exceed b — 0¢5t, and if it does at any step of
finding augmenting paths, we can halt. So, the overall time is at most O((b — 0gest).(0test + |E|)).
Alternatively, |Bosek et al.| [2014] proposed an efficient dynamic algorithm for updating the Maximum
Matching of bipartite graphs that can be coupled with our setting and is particularly useful for denser
classification graphs, running in time O((|V*t| + [V —|)3/2).
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Algorithm 3 Global Margin (Definition Learner Precomputing

Input: S : Train set, metric M, b: Mistake budget
for every (z,y), (¢, y’) € S" withy # 3/ do
| Compute dpq(z, )
end
Store the sorted distances and zero in Ripain = {0, 70,715+ - s Tpyrain
Initialize r < 0, p' < Pirain
while r < pyyqin do
for each G.(V*, V=, E,) where r € Rirain do
Vx| (z,y) €S, y="+"}
Vo {z|(z,y) €8, y=""}
E, + {e(u,v) |lue VT ve V™ dm(u,v) <r}

end
Compute MaxMatch(G,.)
if MaxMatch(G,.) > b then
Ty 1 —1
break

end

r—r+1
end
Rtrain — {07 T0, 7154, Tp/}

return Rypqin, {G-(VT, V7, E) berirain

A.4.3 Proof of Theorem 4.11]
Definition A.15 (K-Regular Graph). A graph is said to be K-regular if its every vertex has degree K.

Theorem@d.11} For multi-class classification with k > 3 classes, achieving an optimal regularized
robustly reliable learner (Definition for Global Margin complexity (Definition is NP-hard,
and can be done efficiently with access to ECM oracle (Definition[A)).

Proof. We aim to show that finding the minimum VERTEX COVER of a (k, r)-representation graph
G(ry, for k > 3 is NP-hard. It is known that finding the VERTEX COVER on cubic graphs is APX-
Hard, |Alimonti and Kann|[[2000]. Moreover, by Brooks’ theorem, |[Bonal[2016], it is known that a
3-regular graph that is neither complete nor an odd cycle has a chromatic number of 3, and moreover
one can find a 3-coloring for such a graph in polynomial time. We now demonstrate that finding the
minimum VERTEX COVER for any k-colored 3-regular graph, where the graph is neither complete
nor an odd cycle, can be reduced in polynomial time to the problem of finding the minimum VERTEX
COVER of a (k, r)-classification graph. This reduction is accomplished by embedding the vertices of
the 3-regular graph into the edge space R™, where m = | E|, the number of edges in the graph. For
each vertex v € V, we construct its embedding as follows: if edge e; is incident to vertex v, then
the 7’th dimension of v’s embedding is set to 1; otherwise, it is set to 0. Since the graph is 3-regular,
each vertex embedding contains exactly three entries of 1, corresponding to the edges incident to
that vertex. Finally, each vertex embedding is given a label corresponding to its color in the given
k-coloring.

The Hamming distance between two vertices in this embedding space encodes adjacency information.
Specifically, if two vertices v; and vy are adjacent in the graph, their Hamming distance in the
embedding space is 4; if they are not adjacent, their distance is 6. This embedding provides a direct
correspondence between the adjacency relations in the original graph and the structure of the (k, r)-
classification graph. Thus, any k-colored 3-regular graph can be reduced to a (k, r)-classification
graph in polynomial time. Given that the VERTEX COVER problem is hard for k-regular graphs,
it follows that finding the minimum VERTEX COVER in a (k, r)-classification graph is also hard.
Therefore, implementing the learner £ is NP-hard, completing the proof.

With ECM Oracle (Deﬁnition Access: Let S’ represent the corrupted training set. To evaluate
the test point ze With label gy, we proceed as follows. First, we augment S’ by adding b+ 1 copies
of s each labeled as ys« = y1. This ensures that the mistake budget of the ECM algorithm is not
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Algorithm 4 Global Margin (Definition Learner

Input: zy: Test point, S: Train set, b: Mistake budget, Rein: {0,70,71,...,7p},
{G,«(VJF, VT, Er)}reRuam
Compute distances from xy to positive training points.
Initialize low < 0, high < |Ruain| — 1, 7 0xs Tmax < None.
while low < high do
Set mid < [ (low + high)/2]
Set rmid < Rirain [mzd]
Deﬁne ‘/l;gl < {p | (p7 y) € Sa Y= ‘+77 dM(pa xtest) < Tmid}
Compute diese ‘V;;:tl
if 9;.;; > b then
| Set high < mid and continue.
end
Create eq cOpies Of Tiet, denoted as {Tiest,i fie 5]
for i € [0;05] do
\ Connect Ty, ; to Vi) in G
end
Update Maximum Matching of G
if MaxMatch(G,,,) > b then
| Set high < mid.
end
else

T'mid

T'mid

Set low < mid + 1
Update 1, <= Ruain[mvid — 1] if mid — 1 > 0, otherwise 7y, <= min,, ¢+ da(p; Tiest)

end
end
Repeat the above for the negative training points (Voy, rit,.)

return (f , =2 )

max ~ T'max

depleted by the test point ., as the additional copies force the algorithm to allocate its mistake
budget elsewhere.

We then run the ECM algorithm on this modified dataset, and denote the complexity returned by
the oracle as c,, . Next, we repeat this procedure for the remaining possible labels ya, . . ., ¥m, each
time augmenting the dataset with b 4 1 copies of g labeled according to y;. Let the corresponding
complexities returned by the ECM oracle be denoted as c,,, ..., ¢y, . Without loss of generality,
assume ¢, < ¢y, < -+ < ¢y, We define:

Clow = Cy;5,  Chigh = Cyy

where ¢y represents the minimum complexity value among the different labelings of Zest, and chign
represents the second-lowest complexity value.

Finally, the predicted label for x g is determined as:

y = argmin {cy,,Cy,,...,Cy,}
Y1,Y2;--,Yk
That is, the label y corresponding to the smallest complexity value is chosen. The learner then outputs
the triplet (y, ciow, Chigh ), Where y is the predicted label, iy is the lowest complexity value, and chigh
is the second-lowest complexity value, providing a guarantee on the prediction.

O

Example A.16. We now aim to demonstrate why such a reduction to the edge space is necessary,
and to clarify that not all 3-regular graphs, which are neither complete nor odd cycles, inherently
belong to the class of (k,r)-Classification Graphs within their original metric space. Consider the
well-known Petersen graph, which is a 3-regular and is neither complete nor an odd cycle; hence is
3-colorable. While it satisfies the structural properties for 3-colorability, the graph does not behave
as a 3-classification graph when embedded in R2. Specifically, the metric space properties are not
satisfied.
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Figure 9: Petersen Graph

For example, the vertices vg and vy are closer to each other than the vertices vg and vy, yet vertices
vg and v1g are not connected in the original graph, violating the requirements of a classification
graph in its natural embedding. This example highlights that the geometric constraints imposed
by the original metric space are too restrictive for certain 3-regular graphs to be used directly as
(k, r)-classification graphs. To resolve this issue, we embed the vertices of the Petersen graph into
the edge space, R™, where m = |E| is the number of edges in the graph.

e v :[1,1,0,0,0,0,0,0,1,0,0,0,0,0,0], « v :[0,0,0,0,0,0,0,0,1,0,1,1,0,0,0],
« vy:[0,1,1,0,0,0,0,0,0,1,0,0,0,0,0], « v7:10,0,0,0,0,0,0,0,0,1,1,0,0,0,1],
« v5:[0,0,1,1,0,1,0,0,0,0,0,0,0,0,0], « v5:[0,0,0,0,0,1,0,0,0,0,0,0,0, 1, 1],
e v4:[0,0,0,1,1,0,1,0,0,0,0,0,0,0,0], « w9 : [0,0,0,0,0,0,1,0,0,0,0,0,1,1,0],
e v5:[1,0,0,0,1,0,0,1,0,0,0,0,0,0,0], « v10: [0,0,0,0,0,0,0,1,0,0,0,1,1,0,0].

This transformation ensures that the embeddings satisfy the metric space properties required for
classification graphs since it preserves the required distance properties for classification: two
adjacent vertices in the Petersen graph, such as vg and vy, have a Hamming distance of 4, while
non-adjacent vertices such as vg and v1o have a distance of 6. By embedding the graph into the
edge space, we transform it into a (k, r)-classification graph that respects the desired metric space
properties.

A.5 Degree of Polynomial

Theorem A.17. On a binary classification task, an optimal regularized robustly reliable learner, L,
(Definition can be implemented efficiently using ECM oracle (Definition [A.1)) for complexity
measure Degree of Polynomial (Definition [A.4).

Proof. Given a corrupted training set S/, and a mistake budget b, we first run the ECM algorithm
on the training set S’, which outputs a classifier hg/ that minimizes the complexity while making at
most b mistakes on S’. Let the complexity of hg be denoted by ¢jow = C(hgr). The classifier hg: is
the minimum complexity classifier among all hypotheses that make no more than b mistakes on S’.
Using the classifier hg/, we label the test point Xy, 1.€., ¥ = hg/ (Ties). We modify the training set
by adding b + 1 copies of the test point ., but with the label opposite to v, i.e., the added points
have label —y. Let this modified set be denoted as S”. The addition of b + 1 copies of x5 ensures
that any classifier produced by ECM will be forced to change the label of z if it is to remain within
the mistake budget. We now run ECM on the modified training set S”, which outputs a new classifier.
The complexity of this new classifier is denoted by cyign. Since the classifier now labels @ as
-y, the complexity cpign represents the minimum complexity required to label x differently from
hsr (st ). By construction, Chigh must be greater than or equal to ¢joy due to the added complexity of
labeling the test point differently. Finally, we output the triple (Y, Ciow, Chigh) as our guarantee.

O

24



872

873
874
875
876
877

879
880
881
882
883

884
885
886

887
888
889
890
891
892
893
894
895
896
897

898

899

900
901

902

903
904

905
906
907

908
909

910

911
912
913
914

A.6 Interval Probability Mass

Definition A.18 (Label Noise Biggio et al.[[2011] Adversary). Label noise was formally introduced
in|Biggio et al.| [2011|]. Consider the set of original points S = {{(zi,y;)}1-1|z € X,y € V},
where X denote the instance space and ) the label space. Concretely, given a mistake budget b, the
label noise adversary is allowed to alter the labels of at most b points in the dataset S. That is, the
Hamming distance between the original labels S and the modified labels S’, denoted by dg (S, S"),
must satisfy the constraint:

du(S, ') => 1(yi # v} | wi = ) <b.

i=1

Let A(S) denote the sample corrupted by adversary A. For a mistake budget b, let Ay, be the set
of adversaries with corruption budget b and Ay(S) = {5’ | d(S,S’) < b} denote the possible
corrupted training samples under an attack from an adversary in Ay. Intuitively, if the given sample
is S’, we would like to give guarantees for learning when S’ € Ay, for some (realizable) un-corrupted
sample S.

Theorem A.19. For the binary classification task, an optimal regularized robustly reliable learner,
L, (Definition can be implemented efficiently for complexity measure Interval Probability Mass
(Definition[A.3) with the label noise adversary (Definition[A.18).

Proof. First, we define the DPs that store the scores used, then we use the DP table to
compute the complexity level when the test point and mistake budget arrive. We define
DP+,DP—, DP'+, DP’— each of which are 3D tables of size n x (n + 1) x n. The first di-
mension denote the position of the current data point, namely for D P+ and D P—, we denote the
rightmost point by index 0, and the leftmost point by index n — 1. As for DP’+ and D P’ —, the first
dimension denote the position of the current data point in the reverse sequence, i.e., we denote the
rightmost point by index n — 1, and the leftmost point by index 0. The second dimension denote the
number of mistakes made up to the current point, which can vary between 0 to the number of points
so far. Lastly, the third dimension denote the starting point of the interval containing the current point,
denoted by the first dimension. We provide the proof of correctness for D P+, and it is similar for
the other three.

Base Case Consider 7 = 0 (the first point in the sequence): Initialize the entire table to infinity.

o Ifal0] = 7+

- We initialize D P, [0][0][0] = 5 because the complexity is 5 with no mistakes made,
and the rightmost point is positive.

e Ifal0] = 7-":

— We set DP, [0][1][0] = %, as we can use the mistake budget and flip the negative label
to a positive.

Inductive Hypothesis: Assume that for all positions up to ¢ — 1, the table DP_+[¢ — 1] [5] [k]
correctly stores the minimum complexity score for all possible configurations of mistakes and interval
boundaries.

Inductive Step: We will show that the table DP_+[4] [j] [£] correctly computes the minimum
complexity score at position ¢, based on the following cases:

» Casel: afi] = -’

— if £ = ¢ — 1: DP_+ requires the :’th point to be a positive; thus, this point must be
removed. We need to decrement the mistake count j of the ¢ — 1’th point by one and
use it to remove this point. Note that the ¢« — 1 must be a negative point in order to have
k=i-1.

DP_+[i1[j1[k] = min (DP_-[i— 11j'1 (K1) +g

k’,5'€[0,5—1]
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— if k£ <7 — 1: Then we flip the label of this point, and update the total score.

DP+[ LK) = min DP_+[i— 1101 K] — T
» Case2: afi] = ’+’
— if K = ¢ — 1: The ¢ — 1 must be a negative point in order to have k = ¢ — 1.
PP+ [ LI TA] = min (OP_-[i~ 110/ IKD) + 5
— if £ <7 — 1: Then we update the total score.
DP_+ (i1 [j] ) = min DP_+[i — 1 (') K] — Z+ - — Z+ 5

Thus, the DP algorithm correctly computes the complexity measure as defined, proving its correctness
for DP_+.

Computing the test label efficiently: We now use the DP tables to obtain the test label. Note that our
approach does not require re-training to compute the test label efficiently. Once we receive the test
point’s position along with adversary’s budget, b, we compute the exact minimum complexity needed
to label it point as positive and negative. We denote the test point’s position by test_pos, there are
four different formations for the label of test point’s right most and left most neighbor. Given b, we
iterate over all possible divisions of mistake budget, as well as the position of the starting point of the
previous intervals from the left and the right side of the test point in each of these four formations.
Define the minimum complexity to label the test point as positive, ¢ and the minimum complexity
to label the test point as negative, c_. Then, ciow = min{cy,c_}, and chigh = max{c;,c_}. We
output y = argmin{c,, c_}, along with Ciow, Chigh-

)

Remark A.20. Theorem can be generalized to classification tasks with more than two classes.
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Algorithm 5 DP Score of Interval Probability Mass [A.19) with Label Noise [A.1§]

Input: a: Train set

Output: DP,, DP_, DP|, DP’
for i = 1ton do

forj =0to:+2do

end

end

fork=0to7+ 1do

if afi] is ‘+’ then
if £ == i then
DP[i][5][k] = ming jeeo, ;) (DP-[i —1][7"][K']) + 5
| DP_[i][j][k] = ming: jrejoj-1(DP4 [i — 1[7'][K]) + 3
DP,[i][j][k] <= minj e ;) DPy[i — 1][j'][k] —

[+ = = + =i
DP_[i)j|IK]  minjejo4—1 DP-[i — 1][j"][K] =

n n
Fpny s i i s

end
end
if a[i] is *-” then
if kK == i then
DP.[i][5][k] = ming jejo ;-1 (DP-[i — 1[§'][K']) + 5
DP_[i][j][k] ¢ ming: jrefo,5) (D P4 [i = 1][F'][K']) + 5

else
n n
Fy vy i iy )

DPy[i][j][k] = minjefo ;1) DPy[i — 1][j'][k
/ e el

DP_[i][j][k] = minj cpo,;) DP [0 = 1][5][F]

end

end

if a_reversed|[i] is ‘+’ then
if k == i then

D P [i][j][k] = ming jrefo,(DP[i — 1][5'][F']) +

)+ 5
DP[i][j][k] <= ming jrejo,j—1) (DPLE = 1][j][K]) + 5

3

else

DP.[i][j][k] < minjiejo5) DPL[E =[]k — =7 + =i

DPL|[7][k] 4= minepo ;1] P! [ =UGK = =7 + =i
end
end
if a_reversed|i] is ‘-’ then
if £ == ¢ then

DP.[i)[5][k] = ming jrejo ;-1 (DPL[i — 1[§'][K']) + 5
DP[i][j][k] = ming: jocjo ;1 (DPL[i — 1][5'][K']) + 5

else

DP.[i][j][k] <= minjejo,j—1) DP[i — 1]/[]/“

] z k+1 + z k+2
DPL[i][j][k] <= minjefo 5 DP [Z — 1[5"][k] -

17— k—i—l +1 k+2

end

else
end

end

return DP,, DP_, DP, DP’

27



932

933
934
935
936
937

938
939

940

941
942

943

944
945
946
947

948
949
950
951
952
953

955
956

957

958

959

960

961

962
963

965

966

968

969
970
971

972
973

974
975

976

977

978

979

NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

¢ You should answer [Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.
* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: Proofs and definitions provided in the main paper and appendix.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: In the discussion section.
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Guidelines:

The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Every theorem statement is rigorously stated and is followed by a compelete
and correct proof.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.

The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA] .

Justification:

Guidelines:

The answer NA means that the paper does not include experiments.
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* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA] .
Justification:
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer:[NA] .
Justification:
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:[NA] .
Justification:
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA] .
Justification:
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.
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0.

10.

11.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: I have read the guideline and my answer is yes.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: The paper is a step toward reliable and trustworthy machine learning.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA] .
Justification:
Guidelines:

* The answer NA means that the paper poses no such risks.
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* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification:
Guidelines:

» The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

¢ For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification:
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA] .

Justification:
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Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA] .
Justification:
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA] .
Justification:
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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