
Regularized Robustly Reliable Learners and Instance Targeted Attacks

Anonymous Author(s)

Affiliation

Address

email

Abstract

1 Instance-targeted data poisoning attacks, where an adversary corrupts a training set
2 to induce errors on specific test points, have raised significant concerns. Balcan et al.
3 [2022] proposed an approach to addressing this challenge by defining a notion of
4 *robustly-reliable learners* that provide per-instance guarantees of correctness under
5 well-defined assumptions, even in the presence of data poisoning attacks. They then
6 give a generic optimal (but computationally inefficient) robustly-reliable learner as
7 well as a computationally efficient algorithm for the case of linear separators over
8 log-concave distributions.

9 In this work, we address two challenges left open by Balcan et al. [2022]. The
10 first is that the definition of robustly-reliable learners in Balcan et al. [2022]
11 becomes vacuous for highly-flexible hypothesis classes: if there are two classifiers
12 $h_0, h_1 \in \mathcal{H}$ both with zero error on the training set such that $h_0(x) \neq h_1(x)$, then
13 a robustly-reliable learner must abstain on x . We address this problem by defining
14 a modified notion of *regularized* robustly-reliable learners that allows for nontrivial
15 statements in this case. The second is that the generic algorithm of Balcan et al.
16 [2022] requires re-running an ERM oracle (essentially, retraining the classifier) on
17 each test point x , which is generally impractical even if ERM can be implemented
18 efficiently. To tackle this problem, we show that at least in certain interesting
19 cases we can design algorithms that can produce their outputs in time sublinear in
20 training time, by using techniques from dynamic algorithm design.

21

1 Introduction

22 As Machine Learning and AI are increasingly used for critical decision-making, it is becoming more
23 important than ever that these systems be trustworthy and reliable. This means they should know
24 (and say) when they are unsure, they should be able to provide real explanations for their answers
25 and why those answers should be trusted (not just how the prediction was made), and they should be
26 robust to malicious or unusual training data and to adversarial or unusual examples at test time.

27 Balcan et al. [2022] proposed an approach to addressing this problem by defining a notion of *robustly-*
28 *reliable learners* that provide per-instance guarantees of correctness under well-defined assumptions,
29 even in the presence of data poisoning attacks. This notion builds on the definition of *reliable learners*
30 by Rivest and Sloan [1988]. In brief, a robustly-reliable learner \mathcal{L} for some hypothesis class \mathcal{H} ,
31 when given a (possibly corrupted) training set S' , produces a classifier $\mathcal{L}_{S'}$ that on any example x
32 outputs both a prediction y and a confidence level k . The interpretation of the pair (y, k) is that y
33 is guaranteed to equal the correct label $f^*(x)$ if (a) the target function f^* indeed belongs to \mathcal{H} and
34 (b) the set S' contains at most k corrupted points; here, $k < 0$ corresponds to abstaining. Balcan
35 et al. [2022] then provide a generic pointwise-optimal algorithm for this problem: one that for each x
36 outputs the largest possible confidence level of any robustly-reliable learner. They also give efficient

37 algorithms for the case of homogeneous linear separators over uniform and log-concave distributions,
38 as well as analysis of the probability mass of points for which it outputs large values of k .

39 In this work, we address two challenges left open by Balcan et al. [2022]. The first is that the
40 definition of robustly-reliable learners in Balcan et al. [2022] becomes vacuous for highly-flexible
41 hypothesis classes: if there are two classifiers $h_0, h_1 \in \mathcal{H}$ both with zero error on the training set
42 such that $h_0(x) \neq h_1(x)$, then a robustly-reliable learner must abstain on x . We address this problem
43 by defining a modified notion of *regularized* robustly-reliable learners that allows for nontrivial
44 statements in this case. The second is that the generic algorithm of Balcan et al. [2022] requires re-
45 running an ERM oracle (essentially, retraining the classifier) on each test point x , which is generally
46 impractical even if ERM can be implemented efficiently. To tackle this problem, we show that at
47 least in certain interesting cases we can design algorithms that can make predictions in time sublinear
48 in training time, by using techniques from dynamic algorithm design, such as Bosek et al. [2014].

49 **1.1 Main contributions**

50 Our main contributions are three-fold.

- 51 1. The first is a definition of a *regularized* robustly-reliable learner, and of the *region* of
52 points it can certify, that is appropriate for highly-flexible hypothesis classes. We then
53 analyze the largest possible set of points that any regularized robustly-reliable learner could
54 possibly certify, and provide a *generic pointwise-optimal algorithm* whose regularized
55 robustly-reliable region (\mathbb{R}^4) matches this optimal set (OPTR^4).
- 56 2. The second is an analysis of the probability mass of this OPTR^4 set in some interesting
57 special cases, proving sample complexity bounds on the number of training examples
58 needed (relative to the data poisoning budget of the adversary and the complexity of the
59 target function) in order for OPTR^4 to w.h.p. have a large probability mass.
- 60 3. Finally, the third is an analysis of efficient regularized robustly-reliable learning algorithms
61 for interesting cases, with a special focus on algorithms that are able to output their reliability
62 guarantees more efficiently than re-training the entire classifier. In one case we do this
63 through a bi-directional dynamic programming algorithm, and in another case by utilizing
64 algorithms for maximum matching that are able to quickly re-establish the maximum
65 matching when a few nodes are added to or deleted from the graph.

66 In a bit more detail, for a given complexity (or “unnaturalness”) measure \mathcal{C} , a regularized robustly-
67 reliable learner \mathcal{L} is given as input a possibly-corrupted training set S' and outputs a function (an
68 “extended classifier”) $\mathcal{L}_{S'}$. The extended classifier $\mathcal{L}_{S'}$ takes in two inputs: a test example x and a
69 poisoning budget b , and outputs a prediction y along with two complexity levels c_{low} and c_{high} . The
70 meaning of the triple $(y, c_{\text{low}}, c_{\text{high}})$ is that y is guaranteed to be the correct label $f^*(x)$ if the training
71 set S' contains at most b poisoned points and the complexity of the target function f^* is less than
72 c_{high} . Moreover, there should exist a classifier f of complexity at most c_{low} that makes at most b
73 mistakes on S' and has $f(x) = y$. Thus, if we, as a user, believe that a complexity at or above c_{high}
74 is “unnatural” and that the training set should contain at most b corrupted points, then we can be
75 confident in the predicted label y . We then analyze the set of points for which $c_{\text{low}} \leq c < c_{\text{high}}$ for a
76 given complexity level c , and show there exists an algorithm that is simultaneously optimal in terms
77 of the size of this set for all values of c .

78 The above description has been treating the complexity function \mathcal{C} as a data-independent quantity.
79 However, in many cases we may want to consider notions of “unnaturalness” that involve how the
80 classifier relates to the test point, the training examples, or both. For instance, if x is surrounded by
81 positive examples, we might view a positive classification as more natural than a negative one even if
82 we allow arbitrary functions as classifiers; one way to model this would be to define the complexity
83 of a classifier h with respect to test point x as $1/r(h, x)$ where $r(h, x)$ is the distance of x to h ’s
84 decision boundary. Or, we might be interested in the margin of the classifier with respect to all the
85 data observed (the minimum distance to the decision boundary out of all data seen including the
86 training data and the test point). Our framework will allow for these notions as well, and several of
87 the concrete settings we discuss will use them.

88 **1.2 Context and Related Work**

89 **Learning from malicious noise.** The malicious noise model was introduced and analyzed in Valiant
90 [1985], Kearns and Li [1993], Bshouty et al. [2002], Klivans et al. [2009], Awasthi et al. [2017].
91 See also the book chapter Balcan and Haghtalab [2021]. However, the focus of this work was on
92 the overall error rate of the learned classifier, rather than on instance-wise guarantees that could be
93 provided on individual predictions.

94 **Instance targeted poisoning attacks.** Instance-targeted poisoning attacks were first introduced by
95 Barreno et al. [2006]. Subsequent work by Suciu et al. [2018] and Shafahi et al. [2018] demonstrated
96 empirically that such attacks can be highly effective, even when the adversary only adds *correctly-*
97 *labeled data* to the training set (known as “clean-label attacks”). These targeted poisoning attacks
98 have attracted considerable attention in recent years due to their potential to compromise the trustwor-
99 thiness of learning systems [Geiping et al., 2021, Mozaffari-Kermani et al., 2015, Chen et al., 2017].
100 Theoretical research on defenses against instance-targeted poisoning attacks has largely focused on
101 developing stability certificates, which indicate when an adversary with a limited budget cannot alter
102 the resulting prediction. For instance, Levine and Feizi [2021] suggest partitioning the training data
103 into k segments, training distinct classifiers on each segment, and using the strength of the majority
104 vote from these classifiers as a stability certificate, as any single poisoned point can affect only one
105 segment. Additionally, Gao et al. [2021] formalize various types of adversarial poisoning attacks
106 and explore the problem of providing stability certificates for them in both distribution-independent
107 and distribution-specific scenarios. Balcan et al. [2022] instead propose correctness certificates: in
108 contrast to the previous results that certify when a budget-limited adversary could not *change* the
109 learner’s prediction, their work focuses on certifying the prediction made is *correct*. This model
110 was extended in Balcan et al. [2023] to address test-time attacks as well. The model of Balcan et al.
111 [2022] can be seen as a generalization of the reliable-useful learning framework of Rivest and Sloan
112 [1988] and the perfect selective classification model of El-Yaniv and Wiener [2010], which focus
113 on the simpler scenario of learning from noiseless data, extending it to the more complex context of
114 noisy data and adversarial poisoning attacks.

115 **2 Formal Setup**

116 We consider a learner aiming to learn an unknown target function $f^* : \mathcal{X} \rightarrow \mathcal{Y}$, where \mathcal{X} denotes
117 the instance space and \mathcal{Y} the label space. The learner is given a training set $S' = \{(x_i, y_i)\}_{i=1}^n | x \in$
118 $\mathcal{X}, y \in \mathcal{Y}\}$, which might have been poisoned by a malicious adversary. Specifically, we assume S'
119 consists of an original dataset S labeled according to f^* , with possibly additional examples, whose
120 labels need not match f^* , added by an adversary. For original dataset S and non-negative integer b , it
121 will be helpful to define $\mathcal{A}_b(S)$ as the possible training sets that could be produced by an attacker
122 with corruption budget b . That is, $\mathcal{A}_b(S)$ consists of all S' that could be produced by adding at most
123 b points to S . Given the training set S' and test point x , the learner’s goal will be to output a label
124 y along with a guarantee that $y = f^*(x)$ so long as f^* is sufficiently “simple” and the adversary’s
125 corruption budget was sufficiently small. Conceptually, we will imagine that the adversary might
126 have been using its entire corruption budget specifically to cause us to make an error on x . Our basic
127 definitions will *not* require that the original set S be drawn iid (or that the test point x be drawn from
128 the same distribution) but our guarantees on the probability mass of points for which a given strength
129 of guarantee can be given will require such assumptions.

130 **Complexity measures** To establish a framework where certain classifiers or classifications are
131 considered more *natural* than others, we assume access to a *complexity measure* \mathcal{C} that formalizes
132 this degree of unnaturalness. We consider several distinct types of complexity measures.

- 133 1. *Data independent*: Each classifier h has a well-defined real-valued complexity $\mathcal{C}(h)$. For
134 example, in \mathbb{R}^1 , a natural measure of complexity of a Boolean function is the number of
135 alternations between positive and negative regions (See Definition 4.1).
- 136 2. *Test data dependent*: Here, complexity is a function of the classifier h and the test point
137 x_{test} . For example, suppose $\mathcal{X} = \mathbb{R}^d$ and we allow arbitrary classifiers. If x_{test} is inside a
138 cloud of positive examples, then while there certainly exist classifiers that perform well on
139 the training data and label x_{test} negative, they would necessarily have a small margin with

140 respect to x_{test} . This motivates a complexity measure $\mathcal{C}(h, x_{test}) = \frac{1}{r(x_{test}, h)}$ where r is
 141 the distance of x_{test} to h 's decision boundary. (See Definition 4.7).

142 3. *Training data dependent*: This complexity is a function of the classifier h and the training
 143 data. An example of this measure is the Interval Probability Mass complexity, detailed in
 144 the Appendix (See Definition A.3).

145 4. *Training and test data dependent*: Here, complexity is a function of the classifier h , the
 146 training data, and the test point x_{test} . For instance, we might be interested in the margin r
 147 of a classifier with respect to both the training set and the test point, and define complexity
 148 to be $\frac{1}{r}$ (See Definition 4.9).

149 In section 4, and Appendix A.1, we introduce several complexity measures across all four types, for
 150 assessing the structure and behavior of classifiers. We now define the notion of a *regularized-robustly-*
 151 *reliable* learner in the face of instance-targeted attacks. This learner, for any given test example x_{test} ,
 152 outputs both a prediction y and values c_{low} and c_{high} , such that y is guaranteed to be correct so long as
 153 the target function f^* has complexity less than c_{high} and the adversary has at most corrupted b points.
 154 Moreover, there should exist a candidate classifier of complexity at most c_{low} .

155 **Definition 2.1** (Regularized Robustly Reliable Learner). *A learner \mathcal{L} is regularized-robustly-reliable
 156 with respect to complexity measure \mathcal{C} if, given training set S' , the learner outputs a function $\mathcal{L}_{S'} :
 157 \mathcal{X} \times \mathbb{Z}^{ \geq 0} \rightarrow \mathcal{Y} \times \mathbb{R} \times \mathbb{R}$ with the following properties: Given a test point x_{test} , and mistake budget b ,
 158 $\mathcal{L}_{S'}(x_{test}, b)$ outputs a label y along with complexity levels c_{low}, c_{high} such that*

159 (a) *There exists a classifier h of complexity c_{low} (with respect to x_{test} if test-data-dependent and
 160 with respect to some S consistent with h such that $S' \in \mathcal{A}_b(S)$ if training-data-dependent)
 161 with at most b mistakes on S' such that $h(x_{test}) = y$, and*

162 (b) *There is no classifier h' of complexity less than c_{high} (with respect to x_{test} if test-data-
 163 dependent and with respect to any S consistent with h' such that $S' \in \mathcal{A}_b(S)$ if training-
 164 data-dependent) with at most b mistakes on S' such that $h'(x_{test}) \neq y$.*

165 So, if $\mathcal{L}_{S'}(x_{test}, b) = (y, c_{low}, c_{high})$, then we are guaranteed that $y = f^*(x_{test})$ if $S' \in \mathcal{A}_b(S)$ for
 166 some true sample set $S \in \mathcal{X} \times \mathcal{Y}$ and f^* has complexity less than c_{high} with respect to x_{test} and S .

167 **Remark 2.2.** We define $\mathcal{L}_{S'}$ as taking b as an input, whereas in Balcan et al. [2022], the corruption
 168 budget b is an output. We could also define $\mathcal{L}_{S'}$ as taking only x_{test} as input and producing output
 169 vectors $\mathbf{y}, \mathbf{c}_{low}, \mathbf{c}_{high}$, where $\mathbf{y}[b], \mathbf{c}_{low}[b]$ and $\mathbf{c}_{high}[b]$ correspond to the outputs of $\mathcal{L}_{S'}(x_{test}, b)$ in
 170 Definition 2.1. We define $\mathcal{L}_{S'}$ to take b as an input primarily for clarity of exposition, and all our
 171 algorithms indeed can be adapted to output a table of values if desired.

172 **Remark 2.3.** When the learner outputs a value $c_{high} \leq c_{low}$, we interpret it as “abstaining.”

173 Definition 2.1 motivates the following generic algorithm for implementing a regularized robustly
 174 reliable (RRR) learner, for data-independent complexity measures.

Algorithm 1 Generic RRR learner for data-independent complexity measures \mathcal{C}

1. Given S' , find the classifier $h_{S'}$ of minimum complexity that makes at most b mistakes on S' .
2. Given test point x_{test} , output (y, c_{low}, c_{high}) where $y = h_{S'}(x)$, $c_{low} = \mathcal{C}(h_{S'})$, and $c_{high} = \min\{\mathcal{C}(h) : h \text{ makes at most } b \text{ mistakes on } S' \text{ and } h(x) \neq h_{S'}(x)\}$.

175 **Remark 2.4.** Notice that the generic Algorithm 1 can compute $h_{S'}$ and c_{low} at training time, but
 176 requires re-solving an optimization problem on each test example to compute c_{high} . (For complexity
 177 measures that depend on the test point, even c_{low} may require re-optimizing).

178 We now define the notion of a regularized robustly reliable region.

179 **Definition 2.5** (Empirical Regularized Robustly Reliable Region). *For RRR learner \mathcal{L} , dataset
 180 S' , poisoning budget b , and complexity bound c , the empirical regularized robustly reliable region
 181 $\widehat{\mathcal{R}}^4_{\mathcal{L}}(S', b, c)$ is the set of points x for which $\mathcal{L}_{S'}(x, b)$ outputs c_{low}, c_{high} such that $c_{low} \leq c < c_{high}$.*

182 Similarly to Balcan et al. [2022], one can characterize the largest possible set $\widehat{\mathcal{R}}^4_{\mathcal{L}}(S', b, c)$ in terms
 183 of agreement regions. We describe the characterization below, and prove its optimality in Section 3.

184 **Definition 2.6** (Optimal Empirical Regularized Robustly Reliable Region). *Given dataset S' , poisoning budget b , and complexity bound c , the optimal empirical regularized robustly reliable region $\widehat{\text{OPTR}}^4(S', b, c)$ is the agreement region of the set of functions of complexity at most c that make at most b mistakes on S' . If there are no such functions, then $\widehat{\text{OPTR}}^4(S', b, c)$ is undefined. (For data-dependent complexity measures, we define the complexity of a function as its minimum possible complexity over possible original training sets S , and the point in question if test-data-dependent.)*

+ - - + + + + - - + - - -

Figure 1: The blue regions depict $\widehat{\text{OPTR}}^4(S', 0, 8)$ described in Definition 2.6 for the complexity measure Number of Alternations, mistake budget $b = 0$, and complexity level $c = 8$.

190 In the next section we give a regularized robustly reliable learner \mathcal{L} such that for all S' and b , \mathcal{L} 191 satisfies $\widehat{R}^4_{\mathcal{L}}(S', b, c) = \widehat{\text{OPTR}}^4(S', b, c)$ simultaneously for all values of c . We then prove that 192 any other regularized robustly reliable learner \mathcal{L}' must have $\widehat{R}^4_{\mathcal{L}'}(S', b, c) \subseteq \widehat{\text{OPTR}}^4(S', b, c)$. This 193 justifies the use of the term *optimal* in Definition 2.6.

194 3 General Results

195 Recall that a regularized robustly reliable (RRR) learner \mathcal{L} is given a sample S' and outputs a function 196 $\mathcal{L}_{S'}(x, b) = (y, c_{\text{low}}, c_{\text{high}})$ such that if $S' = \mathcal{A}_b(S)$ for some (unknown) uncorrupted sample S 197 labeled by some (unknown) target concept f^* , and $\mathcal{C}(f^*) \in [c_{\text{low}}, c_{\text{high}}]$, then $y = f^*(x)$.

198 **Theorem 3.1.** *For any RRR learner \mathcal{L}' we have $\widehat{R}^4_{\mathcal{L}'}(S', b, c) \subseteq \widehat{\text{OPTR}}^4(S', b, c)$. Moreover, there 199 exists an RRR learner \mathcal{L} such that $\widehat{R}^4_{\mathcal{L}}(S', b, c) = \widehat{\text{OPTR}}^4(S', b, c)$.*

200 *Proof.* First, consider any $x \notin \widehat{\text{OPTR}}^4(S', b, c)$. This means there exist h_0 and h_1 of complexity 201 at most c , each making at most b mistakes on S' , such that $h_0(x) \neq h_1(x)$. In particular, this 202 implies that for any label y , there exists a classifier h' of complexity at most c with at most b 203 mistakes on S' such that $h'(x) \neq y$. (For data-dependent complexity measures, h' has complexity 204 c with respect to some possible original training set S .) So, for any RRR learner \mathcal{L}' , by part (b) of 205 Definition 2.1, \mathcal{L}' cannot output $c_{\text{high}} > c$, and therefore $x \notin \widehat{R}^4_{\mathcal{L}'}(S', b, c)$. This establishes that 206 $\widehat{R}^4_{\mathcal{L}'}(S', b, c) \subseteq \widehat{\text{OPTR}}^4(S', b, c)$.

For the second part of the theorem, let us first consider complexity measures that are not data dependent. In that case, consider the learner \mathcal{L} given in Algorithm 1 that given S' finds the classifier $h_{S'}$ of minimum complexity that makes at most b mistakes on S' and then uses it on test point x . Specifically, it outputs $(y, c_{\text{low}}, c_{\text{high}})$ where $y = h_{S'}(x)$, $c_{\text{low}} = \mathcal{C}(h_{S'})$, and

$$c_{\text{high}} = \min\{\mathcal{C}(h) : h \text{ makes at most } b \text{ mistakes on } S' \text{ and } h(x) \neq h_{S'}(x)\}.$$

207 By construction, \mathcal{L} is a RRR learner. Now, if $x \in \widehat{\text{OPTR}}^4(S', b, c)$ then this learner \mathcal{L} will output 208 $(y, c_{\text{low}}, c_{\text{high}})$ such that $c_{\text{low}} \leq c$ and $c_{\text{high}} > c$. That is because x is in the agreement region of 209 classifiers of complexity at most c that make at most b mistakes on S' , which means that any classifier 210 making at most b mistakes on S' that outputs a label different than y on x must have complexity 211 strictly larger than c . So, $x \in \widehat{R}^4_{\mathcal{L}}(S', b, c)$. This establishes that $\widehat{R}^4_{\mathcal{L}}(S', b, c) \supseteq \widehat{\text{OPTR}}^4(S', b, c)$, 212 which together with the first part implies that $\widehat{R}^4_{\mathcal{L}}(S', b, c) = \widehat{\text{OPTR}}^4(S', b, c)$.

213 If the complexity measure is data dependent, the learner \mathcal{L} instead works as follows. Given S' , \mathcal{L} 214 simply stores S' producing $\mathcal{L}_{S'}$. Then, given x and b , $\mathcal{L}_{S'}(x, b)$ computes

$$y = h_{S'}(x) \text{ where } h_{S'} = \operatorname{argmin}_h \{\mathcal{C}(h, S', b, x) : h \text{ makes at most } b \text{ mistakes on } S'\},$$

$$c_{\text{low}} = \mathcal{C}(h_{S'}, S', b, x), \text{ and}$$

$$c_{\text{high}} = \min\{\mathcal{C}(h, S', b, x) : h \text{ makes at most } b \text{ mistakes on } S' \text{ and } h(x) \neq h_{S'}(x)\},$$

215 where here we define $\mathcal{C}(h, S', b, x)$ as the minimum complexity of h over all possible true training 216 sets S , that is, sets S consistent with h such that $S' \in \mathcal{A}_b(S)$. Again, by design, \mathcal{L} is a RRR learner, 217 and if $x \in \widehat{\text{OPTR}}^4(S', b, c)$ then it outputs $(y, c_{\text{low}}, c_{\text{high}})$ such that $c_{\text{low}} \leq c$ and $c_{\text{high}} > c$. \square

218 Definition 2.6 and Theorem 3.1 gave guarantees in terms of the observed sample S' . We now consider
 219 guarantees in terms of the *original* clean dataset S , defining the set of points that the learner will
 220 be able to correctly classify and provide meaningful confidence values *no matter how* an adversary
 221 corrupts S with up to b poisoned points. For simplicity and to keep the definitions clean, we assume
 222 for the remaining portion of this section that \mathcal{C} is *non-data-dependent*.

223 **Definition 3.2** (Regularized Robustly Reliable Region). *Given a complexity measure \mathcal{C} , a sample S
 224 labeled by some target function f^* with $\mathcal{C}(f^*) = c$, and a poisoning budget b , the regularized robustly
 225 reliable region $R_{\mathcal{L}}^4(S, b, c)$ for learner \mathcal{L} is the set of points $x \in \mathcal{X}$ such that for all $S' \in \mathcal{A}_b(S)$ we
 226 have $\mathcal{L}_{S'}(x, b) = (y, c_{low}, c_{high})$ with $c_{low} \leq c < c_{high}$.*

227 **Remark 3.3.** $R_{\mathcal{L}}^4(S, b, c) = \bigcap_{S' \in \mathcal{A}_b(S)} \widehat{R}_{\mathcal{L}}^4(S', b, c)$.

228 **Definition 3.4** (Optimal Regularized Robustly Reliable Region). *Given a complexity measure \mathcal{C} , a
 229 dataset S labeled by some target function f^* , with $\mathcal{C}(f^*) = c$, and a poisoning budget b , the optimal
 230 regularized robustly reliable region $\text{OPTR}^4(S, b, c)$ is the agreement region of the set of functions
 231 of complexity at most c that make at most b mistakes on S . If there are no such functions, then
 232 $\text{OPTR}^4(S, b, c)$ is undefined.*

233 **Theorem 3.5.** *For any RRR learner \mathcal{L}' , we have $R_{\mathcal{L}'}^4(S, b, \mathcal{C}(f^*)) \subseteq \text{OPTR}^4(S, b, \mathcal{C}(f^*))$. Moreover,
 234 there exists an RRR learner \mathcal{L} such that for any dataset S labeled by (unknown) target function f^* ,
 235 we have $R_{\mathcal{L}}^4(S, b, \mathcal{C}(f^*)) = \text{OPTR}^4(S, b, \mathcal{C}(f^*))$.*

236 *Proof.* For the first direction, consider $x \notin \text{OPTR}^4(S, b, \mathcal{C}(f^*))$. By definition, there is some h
 237 with $\mathcal{C}(h) \leq \mathcal{C}(f^*)$ that makes at most b mistakes on S and has $h(x) \neq f^*(x)$. Now, consider
 238 an adversary that adds no poisoned points, so that $S' = S$. In this case, such h makes at most
 239 b mistakes on S' , as well. Hence, by definition, $c_{high} \leq \mathcal{C}(f^*)$ and so $x \notin R_{\mathcal{L}}^4(S, b, c)$. Hence,
 240 $R_{\mathcal{L}}^4(S, b, c) \subseteq \text{OPTR}^4(S, \mathcal{C}(f^*), b)$. For the second direction, consider a learner \mathcal{L} training set S' ,
 241 finds the classifier $h_{S'}$ of minimum complexity that makes at most b mistakes on S' and then uses
 242 it on test point x . Specifically, it outputs (y, c_{low}, c_{high}) where $y = h_{S'}(x)$, $c_{low} = \mathcal{C}(h_{S'})$, and
 243 $c_{high} = \min\{\mathcal{C}(h) : h \text{ makes at most } b \text{ mistakes on } S' \text{ and } h(x) \neq h_{S'}(x)\}$. By construction, \mathcal{L}
 244 satisfies Definition 2.1 and so is a RRR learner. Now, suppose indeed $S' \in \mathcal{A}_b(S)$ for a true set S
 245 labeled by target function f^* . Then f^* makes at most b mistakes on S' , so \mathcal{L} will output $c_{low} \leq \mathcal{C}(f^*)$.
 246 Moreover, if $x \in \text{OPTR}^4(S, f^*, b)$, then any classifier h with $h(x) \neq f^*(x)$ either has complexity
 247 strictly greater than f^* or makes more than b mistakes on S (and therefore more than b mistakes
 248 on S'). Therefore, \mathcal{L} will output $c_{high} > \mathcal{C}(f^*)$ and have $y = f^*(x)$. So, $x \in R_{\mathcal{L}}^4(S, b, \mathcal{C}(f^*))$.
 249 Therefore, $\text{OPTR}^4(S, b, \mathcal{C}(f^*)) \subseteq R_{\mathcal{L}}^4(S, b, \mathcal{C}(f^*))$. \square

250 **Remark 3.6.** *The adversary's optimal strategy is to add no points, since the learner must consider
 251 all classifiers of a given complexity that make at most b mistakes on the training set, and adding new
 252 points can only shrink this set.*

253 4 Regularized Robustly Reliable Learners with Efficient Algorithms

254 In this section, we present efficient algorithms for implementing regularized robustly reliable learners
 255 with optimal values of c_{low} and c_{high} for a variety of complexity measures. We present additional
 256 examples in the Appendix.

257 4.1 Number of Alterations

258 We first consider the Number of Alterations complexity measure for data in \mathbb{R}^1 , and also analyze
 259 the sample-complexity for having a large regularized robustly reliable region.

260 **Definition 4.1** (Number of Alterations). *The number of alterations of a function $f : \mathbb{R} \rightarrow \{-1, +1\}$
 261 is the number of times the function's output changes between $+1$ and -1 as the input variable increases
 262 from negative to positive infinity.*

263 Number of Alterations is a data-independent measure. A higher number of alterations implies a more
 264 intricate decision boundary, as the classifier switches between classes more frequently. For instance,
 265 if f is the sign of a degree d polynomial, then it can have at most d alterations.

266 **Example 4.2** (Number of Alterations). Consider the dataset in Figure 2. Assuming there is no
 267 adversary, it is impossible to classify these points with any function that has less than 7 alterations.
 268 Suppose we now receive the test point shown in Figure 3. Given a corruption budget b , the learner
 269 will output a predicted label and interval $(c_{\text{low}}, c_{\text{high}})$ as shown in Table 1.

Table 1: Guarantee for the test point in Figure 3 and the complexity measure Number of Alterations.

| Mistake Budget | Label | $(c_{\text{low}}, c_{\text{high}})$ |
|-------------------------------------|-------|-------------------------------------|
| $b = 0$ | + | $[7, 9)$ |
| $b = 1$ | + | $[5, 7)$ |
| $b = 2$ | + | $[3, 5)$ |
| $b = 3$ | + | $[2, 4)$ |
| $b = 4$ | + | $[1, 3)$ |
| $b = 5$ | + | $[1, 2)$ |
| $b = 6$ | Any | $\{1\}$ |
| $b = 7, 8$ | — | $[0, 1)$ |
| $b = 9, 10, 11, 12, 13, 14, 15, 16$ | Any | $\{1\}$ |

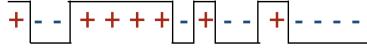


Figure 2: Number of Alterations

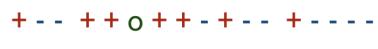


Figure 3: Test point arrives

270 **Definition 4.3** (Optimal Regularized Robustly Reliable Learner). We say a regularized robustly-
 271 reliable learner \mathcal{L} is optimal if it outputs values c_{low} and c_{high} that are respectively the lowest and
 272 highest possible values satisfying Definition 2.1.

273 **Theorem 4.4.** For binary classification, an optimal regularized-robustly-reliable learner can be
 274 implemented efficiently for complexity measure Number of Alterations.

275 **Proof sketch.** The high-level idea is to perform bi-directional Dynamic Programming on the training
 276 data. A left-to-right DP computes, for each point i and each $j \leq b$, the minimum-complexity solution
 277 that makes j mistakes up to that point (that is, on points $0, 1, \dots, i$) and labels i as positive, as well as
 278 the minimum-complexity solution that makes j mistakes so far and labels i as negative. A right-to-left
 279 DP does the same but in right-to-left order. Then, when a test point x arrives, we can use the DP
 280 tables to compute the values $y, c_{\text{low}}, c_{\text{high}}$ in time $O(b)$, without needing to re-train on the training
 281 data. In particular, we just need to consider all ways of partitioning the mistake-budget b into j
 282 mistakes on the left and $b - j$ mistakes on the right, and then using the DP tables to select the best
 283 choice. The full proof is given in Appendix A.2.1. \square

284 **Remark 4.5.** If instead of computing $y, c_{\text{low}}, c_{\text{high}}$ for a single value of b we wish to compute them
 285 for all $b \in [0, b_{\text{max}}]$, the straightforward approach would take time $O(b_{\text{max}}^2)$. However, we can also
 286 use an algorithm of Chi et al. [2022] for computing the $(\min, +)$ -convolution of monotone sequences
 287 to compute the entire set in time $\tilde{O}((b_{\text{max}} + c_{\text{max}})^{1.5})$, where c_{max} is the largest value in the DP
 288 tables (See Theorem A.8 in the Appendix).

289 We now analyze the sample complexity for having a large regularized robustly-reliable region for
 290 this complexity measure when data is iid.

291 **Theorem 4.6.** Suppose the Number of Alterations of the target function is c . For any $\epsilon, \delta \in (0, 1)$, and
 292 any mistake budget b , if the size of the (clean) sample $S \sim \mathcal{D}^m$ is at least $\tilde{O}\left(\frac{(b+1)c}{\epsilon}\right)$, and as long
 293 as there is at least $\frac{\epsilon}{2c}$ probability mass to the left and right of each alternation of the target function,
 294 with probability at least $1 - \delta$, the optimal regularized robustly reliable region, $\text{OPTR}^4(S, c, b)$,
 295 contains at least a $1 - \epsilon$ probability mass of the distribution.

296 **Proof sketch.** Consider $2c$ intervals I_1, I_2, \dots, I_{2c} , each of probability mass $\frac{\epsilon}{2c}$ to the left and right
 297 of each alternation. Without loss of generality, assume I_1 is positive, I_2 and I_3 are negative, I_4 and
 298 I_5 are positive, etc., according to the target function f^* . A sample size of $\tilde{O}\left(\frac{(b+1)c}{\epsilon}\right)$ is sufficient so
 299 that with high probability, S contains at least $b + 1$ points in each of these intervals I_j . Assuming S

300 indeed contains such points, then any classifier that does not label at least one point in each interval
 301 correctly must have error strictly larger than b . This in turn implies that any classifier h with b or
 302 fewer mistakes on S must have an alternation from positive to negative within $I_1 \cup I_2$, an alternation
 303 from negative to positive within $I_3 \cup I_4$, etc. Therefore, if h has complexity c , it *cannot* have any
 304 alternations outside of $\bigcup_j I_j$ and indeed must label all of $\mathbb{R} - \bigcup_j I_j$ in the same way as f^* . The full
 305 proof is given in Appendix A.2.2. \square

306 **4.2 Local Margin**

307 We now study a *test-data-dependent* measure.

308 **Definition 4.7** (Local Margin). *Given a metric space $(\mathcal{M}, d_{\mathcal{M}})$, for a classifier with a decision
 309 function $h : \mathcal{X} \rightarrow \mathcal{Y}$, where \mathcal{X} is the input space and \mathcal{Y} is the output space, the local margin of the
 310 classifier with respect to a point $x^* \in \mathcal{X}$ is the distance between x^* and the nearest point $x' \in \mathcal{X}$
 311 such that $h(x') \neq h(x^*)$.*

$$r(h, x^*) = \inf_{\{x' \in \mathcal{X} : h(x') \neq h(x^*)\}} d(x^*, x')$$

312 We define the local margin complexity measure $\mathcal{C}(h, x^*)$ as $1/r(h, x^*)$.

313 A larger local margin implies that the given point is well separated from the decision boundary. For
 314 this complexity measure, we have the convenient property that for any training set S' , test point x_{test} ,
 315 label y , and mistake budget b , the minimum complexity $c_{low, y}$ of a classifier h that makes at most b
 316 mistakes on S' and gives x_{test} a label of y is given by $1/r$ where r is the distance between x_{test} and
 317 the $(b + 1)$ st closest example in S' of label different from y . In particular, r cannot be larger than
 318 this value since at least one of these $b + 1$ points must be correctly labeled by h and therefore it is a
 319 legitimate choice for x' in Definition 4.7. Moreover, it is realized by the classifier that labels the open
 320 ball around x_{test} of radius r as y , and then outside of this ball is consistent with the labels of S' . This
 321 allows us to show:

322 **Theorem 4.8.** *For any multi-class classification task, an optimal regularized robustly reliable learner
 323 can be implemented efficiently for complexity measure Local Margin.*

324 *Proof sketch.* Given training data S' and test point x_{test} , we compute the distance of all training
 325 points from x_{test} . Then, for each class label y_i , we compute the radius r_i of the largest open ball
 326 we can draw around the test point that contains at most b training points with label different from
 327 y_i . The complexity of the least complex classifier that labels the test point as y_i is then $c_{y_i} = \frac{1}{r_i}$.
 328 We repeat this for all classes. We then define the predicted label $y = \operatorname{argmin}_{y_i} \{c_{y_i}\}$, $c_{low} = c_y$, and
 329 $c_{high} = \min_{y_i \neq y} \{c_{y_i}\}$. An example and the full proof is given in Appendix A.3. \square

330 **4.3 Global Margin**

331 Lastly, we study a *test-and-training-data-dependent* measure.

332 **Definition 4.9** (Global Margin). *Given a metric space $(\mathcal{M}, d_{\mathcal{M}})$, a set $\tilde{S} = \{(x, y) | x \in \mathcal{X}, y \in \mathcal{Y}\}$,
 333 and a classifier $h : \mathcal{X} \rightarrow \mathcal{Y}$ that realizes \tilde{S} , we define the global margin of h with respect to \tilde{S} as*

$$r(h, \tilde{S}) = \min_{x_i \in \tilde{S}} \inf_{\{x' \in \mathcal{X} : h(x') \neq h(x_i)\}} d(x_i, x').$$

334 We define the global margin complexity measure $\mathcal{C}(h, \tilde{S})$ as $1/r(h, \tilde{S})$. Furthermore, given a training
 335 set S' , test point x_{test} and corruption budget b , we define $\mathcal{C}(h, S', b, x_{test})$ as $1/r$ where r is the
 336 largest value of $r(h, S \cup \{x_{test}\})$ over all S such that $S' \in \mathcal{A}_b(S)$; that is, it is an “optimistic” value
 337 over possible original training sets S .

338 Intuitively, Global Margin says that the most natural label for a test point x_{test} is the label such that
 339 the resulting data is separable by the largest margin. Note that in the presence of an adversary with
 340 poisoning budget b , the set \tilde{S} in the above definition corresponds to the test point along with the
 341 training set S' , excluding the b points of S' of smallest margin.

342 **Theorem 4.10.** *On a binary classification task, an optimal regularized robustly reliable learner can
 343 be implemented efficiently for complexity measure Global Margin.*

344 *Proof sketch.* For simplicity, suppose that instead of being given a mistake-budget b and needing to
 345 compute c_{low} and c_{high} , we are given a complexity c with associated margin $r = 1/c$ and need to
 346 compute the minimum number of mistakes to label the test point as positive or negative subject to
 347 this margin. Now, construct a graph on the training data where we connect two examples x_i, x_j if
 348 their labels are different and $d(x_i, x_j) < 2r$. Note that the minimum *vertex cover* in this graph gives
 349 the smallest number of examples that would need to be removed to make the data consistent with a
 350 classifier of complexity c . In particular, the nearest-neighbor classifier with respect to the examples
 351 remaining (after the vertex cover has been removed) has margin at least r , while if a set of examples
 352 is removed that is *not* a vertex cover, then the margin of any consistent classifier is strictly less than r
 353 by triangle inequality. While Minimum Vertex Cover is NP-hard in general, it is efficiently solvable
 354 in *bipartite* graphs via maximum matching, and our graph is bipartite. Now, given our test point x_{test} ,
 355 we can consider the effect of giving it each possible label. If we label x_{test} as positive, then we would
 356 want to solve for the minimum vertex-cover *subject to* that cover containing all negative examples
 357 within distance $2r$ of x_{test} ; if we label x_{test} as negative, then we would solve for the minimum
 358 vertex cover *subject to* it containing all positive examples within distance $2r$ of x_{test} . We can do
 359 this by re-solving the maximum matching problem from scratch in the graph in which the associated
 360 neighbors of x_{test} have been removed, or we can do this more efficiently (especially when x_{test} does
 361 not have many neighbors) by using dynamic algorithms for maximum matching. Such algorithms are
 362 able to recompute a maximum matching under small changes to a given graph more quickly than
 363 doing so from scratch. Finally, to address the case that we are given the corruption budget b rather
 364 than the complexity level c , we pre-compute the graphs for all relevant complexity levels and then
 365 perform binary search on c at test time. Appendix A.4.1 describes some helpful properties of global
 366 margin and A.4.2 contains the proof. \square

367 The above argument is specific to binary classification. We show below that for three or more classes,
 368 achieving an optimal regularized robustly reliable learner is NP-hard.

369 **Theorem 4.11.** *For multi-class classification with $k \geq 3$ classes, achieving an optimal regularized
 370 robustly reliable learner for Global Margin complexity is NP-hard.*

371 *Proof sketch.* We reduce from the problem of Vertex Cover in k -regular graphs, which is NP-hard
 372 for $k \geq 3$. Given a k -regular graph, we first give it a k -coloring, which can be done in polynomial
 373 time (ignoring the trivial case of the $(k+1)$ -clique). We then embed the graph in \mathbb{R}^m such that any
 374 two vertices v_1, v_2 that were adjacent in the given graph have distance less than $2r$, and any two
 375 vertices that were not adjacent have distance greater than $2r$, for some value r . The points in this
 376 embedding are given labels corresponding to their colors in the k -coloring, ensuring that all pairs
 377 that were connected in the input graph have different labels. This then gives us that determining the
 378 minimum value of b for this radius r is at least as hard as determining the size of the minimum vertex
 379 cover in the original graph. The full proof is given in Appendix A.4.3. \square

380 **Other complexity measures** In the appendix, we give regularized robustly reliable learners for
 381 other complexity measures including interval probability mass and polynomial degree. We also define
 382 the notion of an Empirical Complexity Minimization oracle, analogous to ERM, that computes the
 383 general type of optimization needed for achieving an optimal regularized robustly-reliable learner.

384 5 Discussion and Conclusion

385 In this work, we define and analyze the notion of a *regularized* robustly-reliable learner that can
 386 provide meaningful reliability guarantees even for highly-flexible hypothesis classes. We give a
 387 generic pointwise-optimal algorithm, proving that it provides the largest possible reliability region
 388 simultaneously for all possible target complexity levels. We analyze the probability mass of this
 389 region under iid data for the Number of Alternations complexity measure, giving a bound on the
 390 number of samples sufficient for it to have large probability mass with high probability. We then
 391 give efficient optimal such learners for several natural complexity measures. In the Number of
 392 Alternations case, the algorithm uses bidirectional Dynamic Programming to provide its reliability
 393 guarantees quickly on new test points without needing to retrain. For Global Margin, we show a
 394 reduction to computing maximum matchings in a collection of bipartite graphs and utilize dynamic
 395 matching algorithms to produce outputs on test points more quickly than retraining from scratch.
 396 A limitation of our work is that in general these guarantees can be very expensive computationally.
 397 Nonetheless, we believe our formulation provides an interesting approach to giving meaningful
 398 per-instance guarantees for flexible hypothesis families in the face of data-poisoning attacks.

399 **References**

400 401 402 403 Paola Alimonti and Viggo Kann. Some apx-completeness results for cubic graphs. *Theoretical Computer Science*, 237(1):123–134, 2000. ISSN 0304-3975. doi: [https://doi.org/10.1016/S0304-3975\(98\)00158-3](https://doi.org/10.1016/S0304-3975(98)00158-3). URL <https://www.sciencedirect.com/science/article/pii/S0304397598001583>.

404 405 Pranjal Awasthi, Maria Florina Balcan, and Philip M Long. The power of localization for efficiently learning linear separators with noise. *Journal of the ACM (JACM)*, 63(6):1–27, 2017.

406 407 Maria-Florina Balcan and Nika Haghtalab. Noise in classification. *Beyond the Worst-Case Analysis of Algorithms*, page 361, 2021.

408 409 410 Maria-Florina Balcan, Avrim Blum, Steve Hanneke, and Dravyansh Sharma. Robustly-reliable learners under poisoning attacks. In *Conference on Learning Theory*, pages 4498–4534. PMLR, 2022.

411 412 413 Maria-Florina F Balcan, Steve Hanneke, Rattana Pukdee, and Dravyansh Sharma. Reliable learning in challenging environments. *Advances in Neural Information Processing Systems*, 36:48035–48050, 2023.

414 415 416 417 418 Marco Barreno, Blaine Nelson, Russell Sears, Anthony D. Joseph, and J. D. Tygar. Can machine learning be secure? In *Proceedings of the 2006 ACM Symposium on Information, Computer and Communications Security, ASIACCS ’06*, page 16–25, New York, NY, USA, 2006. Association for Computing Machinery. ISBN 1595932720. doi: 10.1145/1128817.1128824. URL <https://doi.org/10.1145/1128817.1128824>.

419 420 421 422 423 Battista Biggio, Blaine Nelson, and Pavel Laskov. Support vector machines under adversarial label noise. In Chun-Nan Hsu and Wee Sun Lee, editors, *Proceedings of the Asian Conference on Machine Learning*, volume 20 of *Proceedings of Machine Learning Research*, pages 97–112, South Garden Hotels and Resorts, Taoyuan, Taiwain, 14–15 Nov 2011. PMLR. URL <https://proceedings.mlr.press/v20/biggio11.html>.

424 425 426 M. Bona. *Walk Through Combinatorics, A: An Introduction To Enumeration And Graph Theory (Fourth Edition)*. World Scientific Publishing Company, 2016. ISBN 9789813148864. URL <https://books.google.com/books?id=uZRIDQAAQBAJ>.

427 428 429 Bartłomiej Bosek, Dariusz Leniowski, Piotr Sankowski, and Anna Zych. Online bipartite matching in offline time. In *2014 IEEE 55th Annual Symposium on Foundations of Computer Science*, pages 384–393, 2014. doi: 10.1109/FOCS.2014.48.

430 431 432 433 Nader H. Bshouty, Nadav Eiron, and Eyal Kushilevitz. Pac learning with nasty noise. *Theoretical Computer Science*, 288(2):255–275, 2002. ISSN 0304-3975. doi: [https://doi.org/10.1016/S0304-3975\(01\)00403-0](https://doi.org/10.1016/S0304-3975(01)00403-0). URL <https://www.sciencedirect.com/science/article/pii/S0304397501004030>. Algorithmic Learning Theory.

434 435 436 Li Chen, Rasmus Kyng, Yang P Liu, Richard Peng, Maximilian Probst Gutenberg, and Sushant Sachdeva. Maximum flow and minimum-cost flow in almost-linear time. In *2022 IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS)*, pages 612–623. IEEE, 2022.

437 438 Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. Targeted backdoor attacks on deep learning systems using data poisoning, 2017. URL <https://arxiv.org/abs/1712.05526>.

439 440 441 Shucheng Chi, Ran Duan, Tianle Xie, and Tianyi Zhang. Faster min-plus product for monotone instances. In *Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing*, pages 1529–1542, 2022.

442 443 444 Ran El-Yaniv and Yair Wiener. On the foundations of noise-free selective classification. *Journal of Machine Learning Research*, 11(53):1605–1641, 2010. URL <http://jmlr.org/papers/v11/el-yaniv10a.html>.

445 446 Ji Gao, Amin Karbasi, and Mohammad Mahmoody. Learning and certification under instance-targeted poisoning. In *Uncertainty in Artificial Intelligence*, pages 2135–2145. PMLR, 2021.

447 Jonas Geiping, Liam Fowl, W. Ronny Huang, Wojciech Czaja, Gavin Taylor, Michael Moeller, and
448 Tom Goldstein. Witches' brew: Industrial scale data poisoning via gradient matching, 2021. URL
449 <https://arxiv.org/abs/2009.02276>.

450 Michael Kearns and Ming Li. Learning in the presence of malicious errors. *SIAM Journal on*
451 *Computing*, 22(4):807–837, 1993. doi: 10.1137/0222052. URL <https://doi.org/10.1137/0222052>.

453 Adam Klivans, Philip Long, and Rocco Servedio. Learning halfspaces with malicious noise. vol-
454 ume 10, pages 2715–2740, 12 2009. ISBN 978-3-642-02926-4. doi: 10.1007/978-3-642-02927-1_51.

456 Dénes König. *Theory of Finite and Infinite Graphs*. Birkhäuser, Boston, 1950. English translation of
457 the original 1931 German edition.

458 Alexander Levine and Soheil Feizi. Deep partition aggregation: Provable defense against general
459 poisoning attacks, 2021. URL <https://arxiv.org/abs/2006.14768>.

460 Mehran Mozaffari-Kermani, Susmita Sur-Kolay, Anand Raghunathan, and Niraj K. Jha. Systematic
461 poisoning attacks on and defenses for machine learning in healthcare. *IEEE Journal of Biomedical*
462 *and Health Informatics*, 19(6):1893–1905, 2015. doi: 10.1109/JBHI.2014.2344095.

463 Ronald L Rivest and Robert H Sloan. Learning complicated concepts reliably and usefully. In
464 *Proceedings of the Association for the Advancement of Artificial Intelligence (AAAI)*, pages 635–
465 640, 1988.

466 Ali Shafahi, W Ronny Huang, Mahyar Najibi, Octavian Suciu, Christoph Studer, Tudor Dumitras,
467 and Tom Goldstein. Poison frogs! targeted clean-label poisoning attacks on neural networks.
468 *Advances in neural information processing systems*, 31, 2018.

469 Octavian Suciu, Radu Marginean, Yigitcan Kaya, Hal Daume III, and Tudor Dumitras. When
470 does machine learning FAIL? generalized transferability for evasion and poisoning attacks. In
471 *27th USENIX Security Symposium (USENIX Security 18)*, pages 1299–1316, Baltimore, MD,
472 August 2018. USENIX Association. ISBN 978-1-939133-04-5. URL <https://www.usenix.org/conference/usenixsecurity18/presentation/suciu>.

474 Leslie G Valiant. Learning disjunctions of conjunctions. In *Proceedings of the 9th International Joint*
475 *Conference on Artificial Intelligence*, pages 560–566, 1985.

476 **A Empirical Complexity Minimization**

477 **Definition A.1** (Empirical Complexity Minimization). *Given a complexity measure \mathcal{C} , a hypothesis*
 478 *class \mathcal{H} , a training set $S' = \{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$, and a mistake budget b , let $\mathcal{H}_{b, S'}$ be*
 479 *the set of hypotheses that make at most b mistakes on S' :*

$$\mathcal{H}_{b, S'} = \{h \mid \sum_{i=1}^n \mathbf{1}[h(x_i) \neq y_i] \leq b\}.$$

480 *For a data-independent complexity measure, we define the ECM learning rule to choose*

$$h_{ECM} = \arg \min_{h \in \mathcal{H}_{b, S'}} \mathcal{C}(h)$$

481 *For training-data-dependent complexity measures, we replace $\mathcal{C}(h)$ with the minimum value of*
 482 *$\mathcal{C}(h, \tilde{S})$ over all candidates \tilde{S} for the original training set S ; that is, $\min\{\mathcal{C}(h, \tilde{S}) : S' \in \mathcal{A}_b(\tilde{S})$ and*
 483 *$h \in \mathcal{H}_{0, \tilde{S}}$* . *When the complexity measure is test-data-dependent (or training-and-test dependent),*
 484 *we define the ECM learning rule to output just the complexity value, rather than a hypothesis.*

$$\min_{h \in \mathcal{H}_{b, S'} : h(x_{test}) = y_{test}} \mathcal{C}(h, x_{test}) \quad \text{or} \quad \min_{h \in \mathcal{H}_{b, S'} : h(x_{test}) = y_{test}} \mathcal{C}(h, S', b, x_{test}),$$

485 *where $\mathcal{C}(h, S', b, x_{test})$ is the minimum value of $\mathcal{C}(h, \tilde{S}, x_{test})$ over all candidates \tilde{S} for the original*
 486 *training set S .*

487 Note that for test-data-dependent complexity measures, an ECM oracle only outputs a complexity
 488 value, rather than a classifier, and so would be called for each possible label y_{test} , with the algorithm
 489 choosing the label of lowest complexity. The reason for this is that typically for such measures, the full
 490 classifier itself is quite complicated (e.g., a full Voronoi diagram for nearest-neighbor classification),
 491 whereas all we really need is a prediction on x_{test} .

492 **A.1 Other Examples of Complexity Measures**

493 **Definition A.2** (Interval Score). *Let $\{X_1, \dots, X_n\}$ be a set of n independent and identically dis-*
 494 *tributed real-valued random variables drawn from a distribution \mathcal{D} with cumulative distribution*
 495 *function $F(t)$. The empirical distribution function $\hat{F}_n(t)$ associated with this sample is defined as:*

$$\hat{F}_n(t) = \frac{1}{n} \sum_{i=1}^n \mathbf{1}_{\{X_i \leq t\}},$$

496 *where $\mathbf{1}_{\{X_i \leq t\}}$ denotes the indicator function that is 1 if $X_i \leq t$ and 0 otherwise. Consider m*
 497 *disjoint intervals $I_i = (s_i, e_i]$ on the real line, where $1 \leq i \leq m$. Each interval I_i is associated*
 498 *with a sequence of sample points sharing a common label. The empirical probability mass within an*
 499 *interval I_i is given by:*

$$\hat{F}_n(e_i) - \hat{F}_n(s_i) = \frac{1}{n} \sum_{j=1}^n \mathbf{1}_{\{s_i < X_j \leq e_i\}}.$$

500 *We define the interval score for I_i as:*

$$\text{Score}(I_i) = \frac{n}{1 + \sum_{j=1}^n \mathbf{1}_{\{s_i < X_j \leq e_i\}}} = \frac{n}{n \cdot (\hat{F}_n(e_i) - \hat{F}_n(s_i) + 1)} = \frac{1}{\hat{F}_n(e_i) - \hat{F}_n(s_i) + 1}. \quad (1)$$

501

502 In the definition of the score, we add one to the denominator to make sure that every I_i has a non-zero
 503 count. This score reflects the inverse of the empirical probability mass contained within the interval
 504 I_i , and is a *training-data-dependent* measure. A lower mass results in a higher score, indicating
 505 that the interval captures a more “complex” region of the sample space. We then define the Interval
 506 Probability Mass complexity using Definition A.2 above.

507 **Definition A.3** (Interval Probability Mass). *The Interval Probability Mass complexity of the set of*
 508 *intervals $\{I_1, \dots, I_m\}$ is then defined as the aggregate of the interval scores:*

$$509 \quad \text{Complexity}(S) = \sum_{i=1}^m \text{Score}(I_i) = \sum_{i=1}^m \frac{1}{\hat{F}_n(e_i) - \hat{F}_n(s_i) + 1}. \quad (2)$$

510 Definition A.3 is a training data dependent measure that sums the contributions from all intervals,
 511 providing a scalar quantity that quantifies the distribution of the sample points across the intervals. A
 512 higher complexity suggests that the sample is dispersed across many low-mass intervals.

513 **Definition A.4** (Degree of Polynomial). *Let $f(x) = \text{sign}[p(x)]$, where $f : \mathbb{R}^n \rightarrow \{-1, +1\}$ is*
 514 *defined by a polynomial function $p(x_1, x_2, \dots, x_n)$ over the input space $\mathcal{X} \subseteq \mathbb{R}^n$, and the function*
 515 *value changes between $+1$ and -1 based on the sign of $p(x)$.*

$$p(x) = \sum_{\alpha_1, \alpha_2, \dots, \alpha_n} c_{\alpha_1, \alpha_2, \dots, \alpha_n} x_1^{\alpha_1} x_2^{\alpha_2} \dots x_n^{\alpha_n},$$

516 where $\alpha_1, \alpha_2, \dots, \alpha_n \geq 0$, and $c_{\alpha_1, \alpha_2, \dots, \alpha_n} \in \mathbb{R}$ are the polynomial coefficients. The degree of
 517 the polynomial is defined as the maximum sum of exponents $\alpha_1 + \alpha_2 + \dots + \alpha_n$ for which the
 518 corresponding coefficient is non-zero.

519 Degree of Polynomial is a data independent measure. A higher degree indicates more intricate
 520 changes in the sign of $f(x)$ across the input space, corresponding to a more complex and flexible
 521 boundary. Note that in \mathbb{R}^1 , the Number of Alterations is a lower bound on the Degree of Polynomial.
 522 In Sections A.6 and A.5 we give optimal regularized robustly reliable learners for the Interval
 523 Probability Mass and Degree of Polynomial complexity measures, respectively.

— + — , — + — , — - + — , — - —

Figure 4: *Illustration of a Function’s Behavior on the Left and Right Sides of a Test Point:* **Leftmost:** The function labels both the leftmost and rightmost neighbors of the test point as positive. Labeling the test point as positive does not increase complexity, but labeling it as negative increases the complexity by two. **Middle Figures:** The function labels the left neighbor as positive (or negative) and the right neighbor as negative (or positive). The complexity is the sum of the complexities on each side of the test point plus one, since the function needs to alter in order to connect the left side to the right side, regardless of the test point’s label. **Rightmost:** The function labels both neighbors as negative. Labeling the test point as negative does not increase complexity, but labeling it as positive increases the complexity by two.

524 A.2 Number of Alterations

525 A.2.1 Proof of theorem 4.4

526 **Theorem 4.4.** *For binary classification, an optimal regularized-robustly-reliable learner (Definition*
 527 *4.3) can be implemented efficiently for complexity measure Number of Alterations (Definition 4.1).*

528 *Proof.* Algorithm 2 is the solution. We now prove its correctness. First, we define the DPs that store
 529 the scores used, then we use the DP table to compute the complexity level when the test point and
 530 mistake budget arrive. We define $DP+$, $DP-$, $\bar{DP}+$, $\bar{DP}-$ each of which are 2D tables of size
 531 $n \times (n + 1)$. The rows of the tables denote the position of the current data point, namely for $DP+$
 532 and $DP-$, we denote the rightmost point by index 0, and the leftmost point by index $n - 1$. As for
 533 $\bar{DP}+$ and $\bar{DP}-$, the rows of the tables denote the position of the current data point in the reverse
 534 sequence, i.e., we denote the rightmost point by index $n - 1$, and the leftmost point by index 0. The
 535 columns of the tables denote the number of mistakes made up to that point which can vary between 0
 536 to the position of the current point+1. We provide the proof of correctness for $DP+$, and it is similar
 537 for the other three.

538 Consider $i = 0$ (the first point in the sequence):

539 • **If** $a[0] = '+'$:

540 – We initialize $DP_+[0][0] = 0$ because the complexity is 0 with no mistakes made, and
541 the rightmost point is positive.

542 – We set $DP_+[0][1] = \infty$ since no mistakes can be made yet.

543 • **If** $a[0] = '-'$:

544 – We initialize $DP_+[0][0] = \infty$ because it is impossible to have the rightmost point be
545 positive without making a mistake.

546 – We set $DP_+[0][1] = 0$ because removing the negative point gives a valid sequence
547 with complexity 0.

548 The base case correctly handles both possible labels of the first point, ensuring the initialization aligns
549 with the definition of DP_+ .

550 **Induction Hypothesis:** Assume that for all $i' < i$ and all j , the table entries $DP_+[i'][j]$ correctly
551 compute the minimum complexity level such that the number of mistakes up to position i' is j and
552 the rightmost existing point in the sequence is positive.

553 **Inductive Step:** We need to show that $DP_+[i][j]$ is correctly computed for position i .

554 • **Case 1:** $a[i] = '+'$

555 – We have three possible scenarios:

556 1. **Keep the point $a[i]$ without making a mistake:** This scenario corresponds to
557 $DP_+[i-1][j]$.

558 2. **Remove $a[i]$ and use $j-1$ mistakes** if the leftmost point is positive: This scenario
559 corresponds to $DP_+[i-1][j-1]$.

560 3. **Switch the rightmost point from $-$ to $+$,** which adds one to the complexity due
561 to the Alterations: This scenario corresponds to $DP_-[i-1][j] + 1$.

562 Thus, the recursive relation is:

$$DP_+[i][j] = \min(DP_+[i-1][j], DP_+[i-1][j-1], DP_-[i-1][j] + 1)$$

563 This relation captures all the valid ways to ensure the rightmost point is positive while
564 maintaining exactly j mistakes.

565 • **Case 2:** $a[i] = '-'$

566 – To maintain the rightmost point as positive, we must remove $a[i]$, which requires using
567 one of the allowed mistakes:

$$DP_+[i][j] = DP_+[i-1][j-1]$$

568 This equation reflects the necessity to remove a negative point to maintain a valid
569 sequence with a positive rightmost point.

570 Since the recursive relation properly handles both cases for the current point i based on its label, and
571 the inductive hypothesis ensures correctness for all prior points, the table entry $DP_+[i][j]$ is correctly
572 computed.

573 **Computing the test label efficiently:** We now use the DP tables to obtain the test label. Note that
574 our approach does not require re-training to compute the test label efficiently.

575 Once we receive the test point's position along with the adversary's budget, b , we compute the *exact*
576 minimum complexity needed to label it point as positive and negative. We denote the test point's
577 position by $test_pos$, there are four different possibilities for how a function could behave on the left
578 side and the right side of the test point. See figure 4.

579 Given b , we iterate over all possible divisions of mistake budget between the left side and the right
580 side of the test point in each of these four formations. Define the minimum complexity to label
581 the test point as positive, c_+ , and the minimum complexity to label the test point as negative, c_- .
582 Then, $c_{low} = \min\{c_+, c_-\}$, and $c_{high} = \max\{c_+, c_-\}$. We output $y_{test} = \operatorname{argmin}_{+, -}\{c_+, c_-\}$, along
583 with c_{low}, c_{high} . □

584 **Remark A.5.** It suffices to run the test prediction with the entire mistake budget, b , since with more
 585 deletions the complexity never increases. We use this fact to fill our DP tables as well as do test time
 586 computations more efficiently.

587 **Remark A.6.** Theorem 4.4 can be generalized to classification tasks with more than two classes.

588 **Definition A.7** ((min, +)-Convolution). Given two sequences $a = (a[i])_{i=0}^{n-1}$ and $b = (b[i])_{i=0}^{n-1}$, the
 589 (min, +)-convolution of a and b is a sequence $c = (c[i])_{i=0}^{n-1}$, where

$$c[k] = \min_{i=0, \dots, k} \{a[i] + b[k-i]\}, \quad \text{for } k = 0, \dots, n-1.$$

590

591 **Theorem A.8.** Let $a = (a[i])_{i=0}^{n-1}$ and $b = (b[i])_{i=0}^{n-1}$ be two monotonically decreasing sequences of
 592 nonnegative integers, where all entries are bounded by $O(n)$. The (min, +)-convolution of a and b
 593 can be computed in $\tilde{O}(n^{1.5})$ time by reducing the problem to the case of monotonically increasing
 594 sequences, which can be solved using the algorithm presented in Theorem 1.2 of Chi et al. [2022].

595 *Proof.* The reduction that transforms monotonically decreasing sequences into monotonically increasing
 596 sequences is standard; we provide it here for completeness. This reduction allows the application
 597 of the efficient algorithm from Chi et al. [2022].

598 Given the input sequences $a = (a[i])_{i=0}^{n-1}$ and $b = (b[i])_{i=0}^{n-1}$, we first reverse them to obtain:

$$a_{\text{reverse}} = (a[n-1], a[n-2], \dots, a[0]), \quad b_{\text{reverse}} = (b[n-1], b[n-2], \dots, b[0]).$$

599 The reversed sequences are now monotonically increasing. We then append $n-1$ infinities to both
 600 sequences, resulting in:

$$a' = [a_{\text{reverse}}, \infty, \infty, \dots, \infty], \quad b' = [b_{\text{reverse}}, \infty, \infty, \dots, \infty].$$

601 These transformation steps take $O(n)$ time. Now, we can apply the algorithm from Chi et al. [2022],
 602 which computes the (min, +)-convolution of the monotonically increasing sequences in $\tilde{O}(n^{1.5})$
 603 time. Let the result be the sequence c' :

$$c'_k = \min_{0 \leq i \leq k} (a'_i + b'_{k-i}), \quad \text{for } k = 0, \dots, 2n-2.$$

604 We claim that removing the first n elements of c' and reversing the remaining sequence yields the
 605 desired convolution of the original sequences. Specifically:

- 606 • The first n elements of c' represent cases with an excessive mistake budget and should be
 607 discarded. For example, $c'[0]$ corresponds to a budget of $2n$, $c'[1]$ to $2n-1$, and so on,
 608 down to $c'[n-1]$, which corresponds to $n+1$.
- 609 • For indices $k \geq n$, the infinite values in the padded sequences force convolution contribu-
 610 tions from lower indices to be ignored, ensuring correctness.

611 Thus, extracting the last n elements from c' and reversing their order reconstructs the desired
 612 convolution of the original decreasing sequences, which completes the proof. \square

613 A.2.2 Proof of theorem 4.6

614 **Theorem 4.6.** Suppose the Number of Alterations (Definition 4.1) of the target function is c .
 615 For any $\epsilon, \delta \in (0, 1)$, and any mistake budget b , if the size of the (clean) sample $S \sim \mathcal{D}^m$ is at
 616 least $\tilde{O}\left(\frac{(b+1)c}{\epsilon}\right)$, and as long as there is at least $\frac{\epsilon}{2c}$ probability mass to the left and right of each
 617 alternation of the target function, with probability at least $1 - \delta$, the optimal regularized robustly
 618 reliable region, $\text{OPTR}^4(S, c, b)$, contains at least a $1 - \epsilon$ probability mass of the distribution.

619 *Proof.* We want to make sure with probability at least $1 - \delta$, the optimal regularized robustly reliable
 620 region, $\text{OPTR}^4(S, c, b)$, contains at least $1 - \epsilon$ probability mass. Define $2c$ intervals I_1, I_2, \dots, I_{2c} ,
 621 each of probability mass $\frac{\epsilon}{2c}$ to the left and right of each alternation of the target function f^* . Without
 622 loss of generality, assume I_1 is positive, I_2 and I_3 are negative, I_4 and I_5 are positive, etc., according

Algorithm 2 DP Score of Number of Alterations (Definition 4.1)

Input: a : Train set

Output: DP_+, DP_-, DP'_+, DP'_-
Function $DpScore(a, b)$:

```

 $n \leftarrow \text{length}(a)$   $a_{\text{reversed}} \leftarrow \text{reverse}(a)$ 
for  $i \leftarrow 0$  to  $n$  do
  for  $k \leftarrow 0$  to  $n - 1$  do
     $DP_+[i][k], DP_-[i][k], DP'_+[i][k], DP'_-[i][k] \leftarrow \infty$ 
  if  $a[0] = '+'$  then
     $DP_+[0][0] \leftarrow 0$ 
     $DP_-[0][1] \leftarrow 0$ 
  else
     $DP_+[0][1] \leftarrow 0$ 
     $DP_-[0][0] \leftarrow 0$ 
  if  $a_{\text{reversed}}[0] = '+'$  then
     $DP'_+[0][0] \leftarrow 0$ 
     $DP'_-[0][1] \leftarrow 0$ 
  else
     $DP'_+[0][1] \leftarrow 0$ 
     $DP'_-[0][0] \leftarrow 0$ 
for  $i \leftarrow 1$  to  $n - 1$  do
  for  $j \leftarrow 0$  to  $i + 1$  do
    if  $a[i] = '+'$  then
       $DP_+[i][j] \leftarrow \min(DP_+[i - 1][j], DP_+[i - 1][j - 1], DP_-[i - 1][j] + 1)$ 
       $DP_-[i][j] \leftarrow DP_-[i - 1][j - 1]$ 
    else if  $a[i] = '-'$  then
       $DP_-[i][j] \leftarrow \min(DP_+[i - 1][j], DP_+[i - 1][j - 1], DP_+[i - 1][j] + 1)$ 
       $DP_+[i][j] \leftarrow DP_+[i - 1][j - 1]$ 
    if  $a'[i] = '+'$  then
       $DP'_+[i][j] \leftarrow \min(DP'_+[i - 1][j], DP'_+[i - 1][j - 1], DP'_-[i - 1][j] + 1)$ 
       $DP'_-[i][j] \leftarrow DP'_-[i - 1][j - 1]$ 
    else if  $a'[i] = '-'$  then
       $DP'_-[i][j] \leftarrow \min(DP'_+[i - 1][j], DP'_+[i - 1][j - 1], DP'_+[i - 1][j] + 1)$ 
       $DP'_+[i][j] \leftarrow DP'_+[i - 1][j - 1]$ 
return  $DP_+, DP_-, DP'_+, DP'_-$ 

```

623 to f^* . We will show that a sample size of $\tilde{O}(\frac{(b+1)c}{\epsilon})$ is sufficient so that with high probability, S
 624 contains at least $b + 1$ points in each of these intervals I_j . Assuming S indeed contains such points,
 625 then any classifier that does not label at least one point in each interval correctly must have error
 626 strictly larger than b . This in turn implies that any classifier h with b or fewer mistakes on S must
 627 have an alternation from positive to negative within $I_1 \cup I_2$, an alternation from negative to positive
 628 within $I_3 \cup I_4$, etc. Therefore, if h has complexity c , it *cannot* have any alternations outside of $\bigcup_j I_j$
 629 and indeed must label all of $\mathbb{R} - \bigcup_j I_j$ in the same way as f^* . So, all that remains is to argue the
 630 sample size bound.

631 We will use concentration inequalities to derive a bound on the probability that less than $b + 1$ points
 632 from the sample fall into any of the $2c$ intervals. Let X_i be an indicator random variable such that:

$$X_i = \begin{cases} 1, & \text{if the } i\text{-th sample point falls into interval } I_j, \\ 0, & \text{otherwise.} \end{cases}$$

633 Thus, the sum $\sum_{i=1}^m X_i$ represents the number of sample points in S that fall into interval I_j .

634 The expected number of points in I_j , denoted as μ , is given by:

$$\mu = \mathbb{E} \left[\sum_{i=1}^m X_i \right] = m \cdot \frac{\epsilon}{2c}.$$

635 We are interested in the probability that less than or equal to $b + 1$ points fall into any of the $2c$
 636 intervals. We use the union bound to ensure that this probability holds across all intervals. That is we
 637 will show

$$\mathbb{P} \left(\exists j \text{ such that } \sum_{i=1}^m X_i \leq b \right) \leq \delta.$$

638 To do this, we will prove for a single interval I_j :

$$\mathbb{P} \left(\sum_{i=1}^m X_i \leq b \right) \leq \frac{\delta}{2c}.$$

639 Next, we apply Chernoff bounds to control the probability that fewer than $b + 1$ points fall into any
 640 interval. We are interested in the lower tail of the distribution, and Chernoff's inequality gives us the
 641 following bound:

$$\mathbb{P} \left(\sum_{i=1}^m X_i \leq \frac{\mu}{2} \right) \leq e^{-\frac{\mu}{8}}.$$

642 To ensure that this probability is smaller than $\frac{\delta}{2c}$, it suffices to have

$$\mu \geq 8 \ln \left(\frac{2c}{\delta} \right).$$

643 We also need to ensure that the expected number of points in any interval is sufficiently large to
 644 account for the threshold $b + 1$. Specifically, we need:

$$\mu \geq 2(b + 1).$$

645 Combining both conditions, we require:

$$\mu \geq \max \left\{ 2(b + 1), 8 \ln \left(\frac{2c}{\delta} \right) \right\}.$$

646

$$m \cdot \frac{\epsilon}{2c} \geq 2(b + 1) + 8 \ln \left(\frac{2c}{\delta} \right).$$

647

$$m \geq \frac{2c (2(b + 1) + 8 \ln (\frac{2c}{\delta}))}{\epsilon}.$$

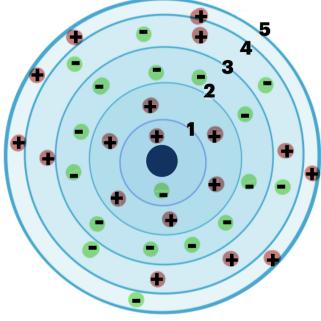
648 Thus, the sample complexity m is bounded by:

$$m = \tilde{O} \left(\frac{(b + 1)c}{\epsilon} \right),$$

649 Which ensures with high probability $\text{OPTR}^4(S, c, b)$ contains $1 - \epsilon$ of the probability mass. Therefore,
 650 any test point drawn from the same distribution as S , with probability $1 - \epsilon$ belongs to the optimal
 651 regularized robustly reliable region. \square

652 A.3 Local Margin

653 **Example A.9** (Local Margin). Consider the training set S' and test point x_{test} shown in Figure
 654 5. For mistake budget $b = 1$, the local margin of the (dark blue point in the center) test point
 655 $(x_{\text{test}}, y_{\text{test}})$ is 2 if it is labeled as positive, and 1 if it is labeled as negative. Table 6 shows the
 656 optimal intervals $(c_{\text{low}}, c_{\text{high}})$ for all values of b .



| Mistake Budget | Label | $(c_{\text{low}}, c_{\text{high}})$ |
|---------------------------|-------|--|
| $b = 0$ | Any | $(3, 3) = \emptyset$ |
| $b = 1, 2, \dots, 6$ | + | $[\frac{1}{2}, 1)$ |
| $b = 7, 8, \dots, 10, 11$ | - | $[\frac{1}{3}, \frac{1}{2})$ |
| $b = 12, 13, \dots, 16$ | - | $[\frac{1}{4}, \frac{1}{3})$ |
| $b = 17$ | Any | $(\frac{1}{4}, \frac{1}{4}) = \emptyset$ |
| $b = 18$ | Any | $(0, 0) = \emptyset$ |

Figure 6: Guarantee for Figure 5.

Figure 5: Local Margin example
(x_{test} at center)

657 As noted in Section 4.2, the lowest-complexity classifier with respect to $(x_{\text{test}}, y_{\text{test}})$ that makes at
658 most b mistakes on S' has local margin (Definition 4.7) equal to the distance of the test point to the
659 $(b + 1)^{\text{st}}$ closest point with a different label. In particular, the margin cannot be larger than this value
660 since at least one of these $b + 1$ points must be correctly labeled by the classifier and therefore it is
661 a legitimate choice for x' in Definition 4.7. Moreover, it is realized by the classifier that labels the
662 open ball around x_{test} of radius this radius as y_{test} , and then outside of this ball is consistent with
663 the labels of S' .

664 For example, Table 6 shows the optimal values for the data in Figure 5. So long as the complexity
665 of the target function belongs to the given interval and the adversary has corrupted at most b of the
666 training data points, the given prediction must be correct.

667 A.3.1 Proof of Theorem 4.8

668 **Theorem 4.8.** *For any multi-class classification task, an optimal regularized robustly reliable learner
669 (Definition 4.3) can be implemented efficiently for complexity measure Local Margin (Definition 4.7).*

670 *Proof.* Given the training data S' , the test point x_{test} , and the mistake budget b , we are interested in
671 the complexity of the classifiers with smallest local margin complexity with respect to the test point
672 and its assigned labels, that make at most b mistakes on S' . First, we compute the distance of all
673 training points from the yet unlabeled test point. For each class label, y_1, y_2, \dots, y_m create a key in a
674 dictionary and store the distances of all training points (from the test point) with labels opposite to
675 the keys', and sort the values of every key. In a m -class classification, there are m keys and each key
676 has at most n entries. The learner starts by labeling the test point as y_1 , and we check the y_1 key in
677 our dictionary. The $b + 1^{\text{th}}$ value is the radius of the largest open ball we can draw around the test
678 point labeled as y_1 such that it contains at most b points with labels different from y_1 . We denote this
679 radius by r_1 . The complexity of the least complex classifier that labels the test point as y_1 is $c_{y_1} = \frac{1}{r_1}$.
680 We repeat this for all classes. Without loss of generality, assume $c_{y_1} \leq c_{y_2} \leq \dots \leq c_{y_m}$. We define:

$$c_{\text{low}} = c_{y_1}, \quad c_{\text{high}} = c_{y_m}$$

681 where c_{low} represents the minimum complexity value among the different labelings of x_{test} , and c_{high}
682 represents the second-lowest complexity value.

683 Finally, the predicted label for x_{test} is determined as:

$$y = \underset{y_1, y_2, \dots, y_m}{\operatorname{argmin}} \{c_{y_1}, c_{y_2}, \dots, c_{y_m}\}$$

684 That is, the label y corresponding to the smallest complexity value is chosen. The learner then outputs
685 the triplet $(y, c_{\text{low}}, c_{\text{high}})$, where y is the predicted label, c_{low} is the lowest complexity value, and c_{high}
686 is the second-lowest complexity value, providing a guarantee on the prediction.

687

□

688 **A.4 Global Margin**

689 Before proving Theorem 4.10, we first describe some useful properties of the global margin.

690 **A.4.1 Understanding the Global Margin**

691 Figure 7 shows the margin on one dimensional data. Let $S = \{(x, y) | x \in \mathcal{X}, y \in \mathcal{Y}\}$ denote the set.
692 Given a metric space $(\mathcal{M}, d_{\mathcal{M}})$, draw the largest open ball, $B(x, r_x)$ centered on every $x \in S$, such
693 that for any $(x, y) \in S$, the ball $B(x, r_x)$ does not contain any point (x', y') from the set S with label
694 $y' \neq y$. Each of these balls denotes the (local) margin of their center point. The global margin of the
695 set S is the minimum over radius of such balls.

$$r_S = \min_{x \in S} r_x$$

696 We now prove the “simplest” classifier, f^* , that realizes set S has global margin(Definition 4.9) of
697 $\frac{r_S}{2}$. Moreover, the decision boundary of this classifier must be equidistant between the closest pairs
698 of points with different labels. Hence, the decision boundary is placed midway between the closest
699 points, and the global margin complexity of such function is $\frac{2}{r_S}$.

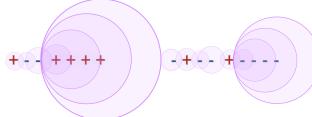


Figure 7: Global Margin on 1-dimensional data. Let r_S be the radius of the smallest ball, and correspond to the distance between the closest pair of points with different labels. Then, the function with minimum global margin complexity with respect to this set is $\frac{2}{r_S}$.

700 **Theorem A.10.** Let $(\mathcal{M}, d_{\mathcal{M}})$ be a metric space, and $S = \{(x_i, y_i) | x_i \in \mathcal{X}, y_i \in \mathcal{Y}\}$ be a finite
701 set of labeled points, where \mathcal{X} is the instance space and \mathcal{Y} is the label space.

702 1. For each $x_i \in \mathcal{X}$, let r_i be the minimum distance from x_i to any point with a different label.

$$r_i = \inf_{\substack{x_j \in \mathcal{X} \\ y_j \neq y_i}} d_{\mathcal{M}}(x_i, x_j),$$

703 2. Let r_S denote the minimum distance between any two differently labeled points in S .

$$r_S = \min_{x_i \in \mathcal{X}} r_i = \min_{\substack{(x_i, y_i), (x_j, y_j) \in S \\ y_i \neq y_j}} d_{\mathcal{M}}(x_i, x_j),$$

704 Consider a classifier $f^* : \mathcal{X} \rightarrow \mathcal{Y}$ that realizes S , and obtains minimum global margin complexity
705 (Definition 4.9) with respect to the set S . Then the global margin complexity of f^* is $\frac{2}{r_S}$. Moreover, its
706 decision boundary B_{f^*} is placed equidistantly between the closest pairs of points in S with different
707 labels.

708 *Proof.* We first show that for any classifier f^* that realizes S , the global margin r cannot exceed $\frac{r_S}{2}$.
709 Let $(x_p, y_p), (x_q, y_q) \in S$ be a pair of points such that: $y_p \neq y_q$, and $d_{\mathcal{M}}(x_p, x_q) = r_S$. Since r_S is
710 the minimum distance between any two differently labeled points in S , such a pair exists. Consider
711 any classifier f^* that correctly classifies S . The minimum distance from x_p (or x_q) to the decision
712 boundary cannot exceed $\frac{r_S}{2}$. Formally, since f^* must assign different labels to x_p and x_q , there must
713 exist a point $x_b \in B_{f^*}$ such that:

$$d_{\mathcal{M}}(x_p, x_b) + d_{\mathcal{M}}(x_b, x_q) = d_{\mathcal{M}}(x_p, x_q) = r_S.$$

714 By the triangle inequality, and because x_b lies between x_p and x_q , we have:

$$d_{\mathcal{M}}(x_p, x_b) = d_{\mathcal{M}}(x_b, x_q) \geq 0.$$

715 Since $d_{\mathcal{M}}(x_p, x_b) + d_{\mathcal{M}}(x_b, x_q) = r_S$, the maximal possible value for $d_{\mathcal{M}}(x_p, x_b)$ is $\frac{r_S}{2}$. Therefore,
716 the minimum distance from any point in S to the decision boundary B_{f^*} satisfies:

$$r \leq \frac{r_S}{2}.$$

717 Now, we construct the classifier f^* (which will just be the nearest-neighbor classifier) that realizes S
718 with a global margin $r = \frac{r_S}{2}$.

719 Let $f^* : \mathcal{X} \rightarrow \mathcal{Y}$ for any $x \in \mathcal{X}$ assign:

$$f^*(x) = \begin{cases} y_i, & \text{if } d_{\mathcal{M}}(x, x_i) < d_{\mathcal{M}}(x, x_j) \text{ for all } x_j \in S \text{ with } y_j \neq y_i, \\ y_i \text{ or } y_j, & \text{if } d_{\mathcal{M}}(x, x_i) = d_{\mathcal{M}}(x, x_j) \text{ for some } x_j \in S, y_j \neq y_i. \end{cases}$$

720 This means, place the decision boundary B_{f^*} equidistantly between all pairs $(x_p, y_p), (x_q, y_q) \in S$
721 with $y_p \neq y_q$ and $d_{\mathcal{M}}(x_p, x_q) = r_S$. Since f^* assigns to each $x_i \in S$ its correct label y_i , it correctly
722 classifies S . We will now show that: $r_{f^*} \geq \frac{r_S}{2}$. Assume, for contradiction, that the global margin
723 $r_{f^*} < \frac{r_S}{2}$. Then there exists $x_i \in S$ and $x_b \in B_{f^*}$ such that:

$$d_{\mathcal{M}}(x_i, x_b) = r - \epsilon < \frac{r_S}{2},$$

724 for some $\epsilon > 0$. Since $x_b \in B_{f^*}$, there exists $x_j \in S$ with $y_j \neq y_i$ such that:

$$d_{\mathcal{M}}(x_i, x_b) = d_{\mathcal{M}}(x_j, x_b).$$

725 Applying the triangle inequality:

$$d_{\mathcal{M}}(x_i, x_j) \leq d_{\mathcal{M}}(x_i, x_b) + d_{\mathcal{M}}(x_b, x_j) = 2d_{\mathcal{M}}(x_i, x_b) < r_S.$$

726 Which contradicts the definition of r_S as the minimum distance between differently labeled points in
727 S . Therefore, our assumption is false, and we conclude that:

$$r_{f^*} \geq \frac{r_S}{2}.$$

728 Combining both directions we get

$$r_{f^*} = \frac{r_S}{2}.$$

729 □

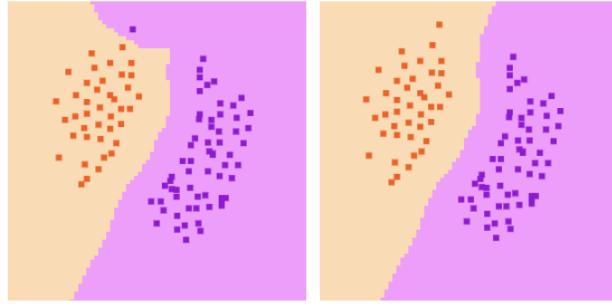


Figure 8: Illustration of Global Margin with different labelings of the test point

730 A.4.2 Proof of Theorem 4.10

731 **Definition A.11** ((k, r)-Classification Graph). Given $S = \{(x, y) | x \in \mathcal{X}, y \in \mathcal{Y}\}$, where \mathcal{X} denotes
732 the instance space and $\mathcal{Y} = \{1, 2, \dots, k\}$ the label space, we define the **(k, r)-Classification Graph**,
733 \mathcal{G}_r , as the graph produced by connecting every two points in S of different labels with distance less
734 than r .

735 **Remark A.12.** The Minimum Vertex Cover of \mathcal{G}_r corresponds to the smallest number of points that
736 can be removed from S to make the data consistent with a classifier of global margin complexity $\frac{2}{r}$.

737 Using the remark above, we now prove Theorem 4.10.

738 **Theorem 4.10.** *On a binary classification task, an optimal regularized robustly reliable learner*
 739 *(Definition 4.3) can be implemented efficiently for Global Margin complexity (Definition 4.9).*

740 *Proof.* Algorithm 4 is the solution. We first compute the distance between every pair of training
 741 points, S' , with opposite labels. Let $\mathcal{R} = \{0, r_0, r_1, \dots, r_p\}$ denote the set of aforementioned distances
 742 with an added zero. Without loss of generality, suppose $0 \leq r_0 \leq r_1, \dots \leq r_p$. For the case of binary
 743 classification, the $(2, r)$ -classification graph, \mathcal{G}_r , is bipartite. We construct each $(2, r)$ -classification
 744 graph of the set $\{\mathcal{G}_r(V^+, V^-, E_r)\}_{r \in \mathcal{R}}$ by putting every positive training point in V^+ , every negative
 745 training point in V^- , and connecting every two training points of opposite labels with distances
 746 less than r by an edge. Since these graphs are bipartite, their Minimum Vertex Cover can be found
 747 efficiently by computing a Maximum Matching [König, 1950]. Notice that by increasing the radius,
 748 the Maximum Matching of classification graphs in the set only gets *larger*. Note that there is no
 749 edge in \mathcal{G}_0 ; hence the Matching is zero. We continue with computing the Maximum Matching of
 750 the classification graph with respect to the smallest radius, \mathcal{G}_{r_0} , which corresponds to the largest
 751 global margin complexity value. We continue to compute $\{\mathcal{G}_{r_i}\}_{r_i \in \mathcal{R}}$ in ascending order of i , and
 752 we stop as soon as we reach $p' \in [0, p]$ such that the Maximum Matching of $\mathcal{G}_{r_{p'}}$ is greater than
 753 b , the mistake budget. Next, when the test point x_{test} arrives, the learner begins by assigning it a
 754 negative label. We compute the distance of the test point, x_{test} from every positive training point.
 755 We run a binary search on the possible values of radius, i.e., $[0, p']$. At every level r_i , we denote the
 756 set of training points labeled as positive with distance less than r_{i+1} from x_{test} by \bar{V}_{test}^+ . We denote
 757 the cardinality of \bar{V}_{test}^+ by δ_{test} , which is indeed the degree of x_{test} at the current complexity level.
 758 If δ_{test} exceeds our mistake budget, b , we break and move to a smaller radius (higher complexity).
 759 Otherwise, we add δ_{test} copies of the test point and connect each of them to a distinct point in
 760 \bar{V}_{test}^+ . We denote the set of δ_{test} newly added edges by \bar{E}_{test} . We have constructed a new graph
 761 $\mathcal{G}_{\text{test}} = \mathcal{G}_{r_i}(V^+, V^- \cup \{x_{\text{test}_i}\}_{i \in [1, \delta_{\text{test}}]}, E_{r_i} \cup \bar{E}_{\text{test}})$, which ensures all the points adjacent to x_{test}
 762 are contained in the Minimum Vertex Cover. We can compute the the Maximum Matching of $\mathcal{G}_{\text{test}}$ in
 763 time $O(\delta_{\text{test}} \cdot (\delta_{\text{test}} + |E|))$ by updating the Maximum Matching of \mathcal{G}_{r_i} via computing at most δ_{test}
 764 augmenting paths. Alternatively we can compute the Maximum Matching of \mathcal{G}_{r_i} from scratch in
 765 time $O((\delta_{\text{test}} + |E|)^{1+o(1)})$ using the fast maximum matching algorithm of Chen et al. [2022]. If
 766 the Maximum Matching at the current complexity level exceeds the poisoning budget, b , we move
 767 to a smaller radius (higher complexity), and if it is less than or equal to our mistake budget, b , we
 768 search to see if the condition still holds for a larger radius. We accordingly use the corresponding
 769 pre-computed representation graphs of the new complexity level. We do the same thing for the test
 770 point labeled as positive. Finally, $c_{\text{low}} = \min\{\frac{2}{r_{\max}^+}, \frac{2}{r_{\max}^-}\}$, and $c_{\text{high}} = \max\{\frac{2}{r_{\max}^+}, \frac{2}{r_{\max}^-}\}$. We output
 771 $y_{\text{test}} = \operatorname{argmin}_{+, -}\{\frac{2}{r_{\max}^+}, \frac{2}{r_{\max}^-}\}$, along with $c_{\text{low}}, c_{\text{high}}$. □

772 **Remark A.13.** *The running time for training-time pre-processing has two main components. The*
 773 *first is construction of the classification graphs. This involves computing all pairwise distances*
 774 *between training points of opposite labels and sorting them; each classification graph \mathcal{G}_r is just a*
 775 *prefix in this list. This portion takes time $O(n^2 \log n)$. The second is computing maximum matchings*
 776 *in each. We can do this from scratch for each graph (Algorithm 3). Alternatively, we can scan the*
 777 *edge list in increasing order, and for each edge insertion just run a single augmenting path (since*
 778 *the maximum matching size can increase by at most 1 per edge insertion). This gives a total cost*
 779 *of at most $O(m^2)$, where m is the number of edges in the graph at the time that the budget b is first*
 780 *exceeded. The running time for test-time prediction is given above, and involves computing at most*
 781 *δ_{test} augmenting paths per graph in the binary search.*

782 **Remark A.14.** *The proposed approach is especially fast for small values of δ_{test} , and we can make*
 783 *it faster for large values of δ_{test} , as well. When δ_{test} is large, one can instead remove \bar{V}_{test}^+ vertices*
 784 *from the original graph, \mathcal{G}_{r_i} , and re-compute the matching by iteratively finding augmenting paths.*
 785 *We expect the matching of the remaining graph to not exceed $b - \delta_{\text{test}}$, and if it does at any step of*
 786 *finding augmenting paths, we can halt. So, the overall time is at most $O((b - \delta_{\text{test}}) \cdot (\delta_{\text{test}} + |E|))$.*
 787 *Alternatively, Bosek et al. [2014] proposed an efficient dynamic algorithm for updating the Maximum*
 788 *Matching of bipartite graphs that can be coupled with our setting and is particularly useful for denser*
 789 *classification graphs, running in time $O((|V^+| + |V^-|)^{3/2})$.*

Algorithm 3 Global Margin (Definition 4.9) Learner Precomputing

Input: S : Train set, metric \mathcal{M} , b : Mistake budget
for every $(x, y), (x', y') \in S'$ with $y \neq y'$ **do**
 | Compute $d_{\mathcal{M}}(x, x')$
end
Store the sorted distances and zero in $\mathcal{R}_{train} = \{0, r_0, r_1, \dots, r_{p_{train}}\}$
Initialize $r \leftarrow 0, p' \leftarrow p_{train}$
while $r \leq p_{train}$ **do**
 | **for** each $\mathcal{G}_r(V^+, V^-, E_r)$ where $r \in \mathcal{R}_{train}$ **do**
 | | $V^+ \leftarrow \{x \mid (x, y) \in S, y = '+'\}$
 | | $V^- \leftarrow \{x \mid (x, y) \in S, y = '-'\}$
 | | $E_r \leftarrow \{e(u, v) \mid u \in V^+, v \in V^-, d_{\mathcal{M}}(u, v) < r\}$
 | **end**
 | Compute **MaxMatch**(\mathcal{G}_r)
 | **if** **MaxMatch**(\mathcal{G}_r) $> b$ **then**
 | | $r_{p'} \leftarrow r - 1$
 | | **break**
 | **end**
 | $r \leftarrow r + 1$
end
 $\mathcal{R}_{train} \leftarrow \{0, r_0, r_1, \dots, r_{p'}\}$
return $\mathcal{R}_{train}, \{\mathcal{G}_r(V^+, V^-, E_r)\}_{r \in \mathcal{R}_{train}}$

790 **A.4.3 Proof of Theorem 4.11**791 **Definition A.15** (K-Regular Graph). A graph is said to be K -regular if its every vertex has degree K .792 **Theorem 4.11.** For multi-class classification with $k \geq 3$ classes, achieving an optimal regularized
793 robustly reliable learner (Definition 4.3) for Global Margin complexity (Definition 4.9) is NP-hard,
794 and can be done efficiently with access to ECM oracle (Definition A.1).795 *Proof.* We aim to show that finding the minimum VERTEX COVER of a (k, r) -representation graph
796 $\mathcal{G}_{(r)}$, for $k \geq 3$ is NP-hard. It is known that finding the VERTEX COVER on cubic graphs is APX-
797 Hard, Alimonti and Kann [2000]. Moreover, by Brooks' theorem, Bona [2016], it is known that a
798 3-regular graph that is neither complete nor an odd cycle has a chromatic number of 3, and moreover
799 one can find a 3-coloring for such a graph in polynomial time. We now demonstrate that finding the
800 minimum VERTEX COVER for any k -colored 3-regular graph, where the graph is neither complete
801 nor an odd cycle, can be reduced in polynomial time to the problem of finding the minimum VERTEX
802 COVER of a (k, r) -classification graph. This reduction is accomplished by embedding the vertices of
803 the 3-regular graph into the edge space \mathbb{R}^m , where $m = |E|$, the number of edges in the graph. For
804 each vertex $v \in V$, we construct its embedding as follows: if edge e_i is incident to vertex v , then
805 the i 'th dimension of v 's embedding is set to 1; otherwise, it is set to 0. Since the graph is 3-regular,
806 each vertex embedding contains exactly three entries of 1, corresponding to the edges incident to
807 that vertex. Finally, each vertex embedding is given a label corresponding to its color in the given
808 k -coloring.809 The Hamming distance between two vertices in this embedding space encodes adjacency information.
810 Specifically, if two vertices v_1 and v_2 are adjacent in the graph, their Hamming distance in the
811 embedding space is 4; if they are not adjacent, their distance is 6. This embedding provides a direct
812 correspondence between the adjacency relations in the original graph and the structure of the (k, r) -
813 classification graph. Thus, any k -colored 3-regular graph can be reduced to a (k, r) -classification
814 graph in polynomial time. Given that the VERTEX COVER problem is hard for k -regular graphs,
815 it follows that finding the minimum VERTEX COVER in a (k, r) -classification graph is also hard.
816 Therefore, implementing the learner \mathcal{L} is NP-hard, completing the proof.817 **With ECM Oracle (Definition A.1) Access:** Let S' represent the corrupted training set. To evaluate
818 the test point x_{test} with label y_{test} , we proceed as follows. First, we augment S' by adding $b + 1$ copies
819 of x_{test} each labeled as $y_{\text{test}} = y_1$. This ensures that the mistake budget of the ECM algorithm is not

Algorithm 4 Global Margin (Definition 4.9) Learner

Input: x_{test} : Test point, S : Train set, b : Mistake budget, R_{train} : $\{0, r_0, r_1, \dots, r_{p'}\}$, $\{G_r(V^+, V^-, E_r)\}_{r \in R_{\text{train}}}$

Compute distances from x_{test} to positive training points.

Initialize $low \leftarrow 0$, $high \leftarrow |R_{\text{train}}| - 1$, $r_{\text{max}}^+ \leftarrow r_{\text{max}}^- \leftarrow \text{None}$.

while $low < high$ **do**

- Set $mid \leftarrow \lfloor (low + high)/2 \rfloor$
- Set $r_{\text{mid}} \leftarrow R_{\text{train}}[mid]$
- Define $V_{\text{test}}^+ \leftarrow \{p \mid (p, y) \in S, y = '+', d_{\mathcal{M}}(p, x_{\text{test}}) < r_{\text{mid}}\}$
- Compute $\delta_{\text{test}} \leftarrow |V_{\text{test}}^+|$
- if** $\delta_{\text{test}} > b$ **then**

 - | Set $high \leftarrow mid$ and continue.

- end**
- Create δ_{test} copies of x_{test} , denoted as $\{x_{\text{test},i}\}_{i \in [\delta_{\text{test}}]}$
- for** $i \in [\delta_{\text{test}}]$ **do**

 - | Connect $x_{\text{test},i}$ to $V_{\text{test}}^+[i]$ in $G_{r_{\text{mid}}}$

- end**
- Update Maximum Matching of $G_{r_{\text{mid}}}$
- if** $\text{MaxMatch}(G_{r_{\text{mid}}}) > b$ **then**

 - | Set $high \leftarrow mid$.

- end**
- else**

 - | Set $low \leftarrow mid + 1$
 - | Update $r_{\text{max}}^- \leftarrow R_{\text{train}}[mid - 1]$ if $mid - 1 > 0$, otherwise $r_{\text{max}}^- \leftarrow \min_{p \in V_{\text{test}}^+} d_{\mathcal{M}}(p, x_{\text{test}})$

- end**

end

Repeat the above for the negative training points ($V_{\text{test}}^-, r_{\text{max}}^+$)

return $\left(\frac{2}{r_{\text{max}}^+}, \frac{2}{r_{\text{max}}^-}\right)$

820 depleted by the test point x_{test} , as the additional copies force the algorithm to allocate its mistake
 821 budget elsewhere.

822 We then run the ECM algorithm on this modified dataset, and denote the complexity returned by
 823 the oracle as c_{y_1} . Next, we repeat this procedure for the remaining possible labels y_2, \dots, y_m , each
 824 time augmenting the dataset with $b + 1$ copies of x_{test} labeled according to y_i . Let the corresponding
 825 complexities returned by the ECM oracle be denoted as c_{y_2}, \dots, c_{y_k} . Without loss of generality,
 826 assume $c_{y_1} \leq c_{y_2} \leq \dots \leq c_{y_k}$. We define:

$$c_{\text{low}} = c_{y_1}, \quad c_{\text{high}} = c_{y_2}$$

827 where c_{low} represents the minimum complexity value among the different labelings of x_{test} , and c_{high}
 828 represents the second-lowest complexity value.

829 Finally, the predicted label for x_{test} is determined as:

$$y = \underset{y_1, y_2, \dots, y_k}{\operatorname{argmin}} \{c_{y_1}, c_{y_2}, \dots, c_{y_k}\}$$

830 That is, the label y corresponding to the smallest complexity value is chosen. The learner then outputs
 831 the triplet $(y, c_{\text{low}}, c_{\text{high}})$, where y is the predicted label, c_{low} is the lowest complexity value, and c_{high}
 832 is the second-lowest complexity value, providing a guarantee on the prediction.

833 □

834 **Example A.16.** We now aim to demonstrate why such a reduction to the edge space is necessary,
 835 and to clarify that not all 3-regular graphs, which are neither complete nor odd cycles, inherently
 836 belong to the class of (k, r) -Classification Graphs within their original metric space. Consider the
 837 well-known Petersen graph, which is a 3-regular and is neither complete nor an odd cycle; hence is
 838 3-colorable. While it satisfies the structural properties for 3-colorability, the graph does not behave
 839 as a 3-classification graph when embedded in \mathbb{R}^2 . Specifically, the metric space properties are not
 840 satisfied.

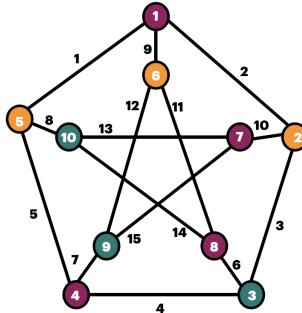


Figure 9: Petersen Graph

841 For example, the vertices v_6 and v_{10} are closer to each other than the vertices v_6 and v_9 , yet vertices
 842 v_6 and v_{10} are not connected in the original graph, violating the requirements of a classification
 843 graph in its natural embedding. This example highlights that the geometric constraints imposed
 844 by the original metric space are too restrictive for certain 3-regular graphs to be used directly as
 845 (k, r) -classification graphs. To resolve this issue, we embed the vertices of the Petersen graph into
 846 the edge space, \mathbb{R}^m , where $m = |E|$ is the number of edges in the graph.

847

- $v_1 : [1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]$,
- $v_2 : [0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]$,
- $v_3 : [0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]$,
- $v_4 : [0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]$,
- $v_5 : [1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]$,
- $v_6 : [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0]$,
- $v_7 : [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1]$,
- $v_8 : [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1]$,
- $v_9 : [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0]$,
- $v_{10} : [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0]$.

848 *This transformation ensures that the embeddings satisfy the metric space properties required for*
 849 *classification graphs since it preserves the required distance properties for classification: two*
 850 *adjacent vertices in the Petersen graph, such as v_6 and v_9 , have a Hamming distance of 4, while*
 851 *non-adjacent vertices such as v_6 and v_{10} have a distance of 6. By embedding the graph into the*
 852 *edge space, we transform it into a (k, r) -classification graph that respects the desired metric space*
 853 *properties.*

854 A.5 Degree of Polynomial

Theorem A.17. *On a binary classification task, an optimal regularized robustly reliable learner, \mathcal{L} , (Definition 4.3) can be implemented efficiently using ECM oracle (Definition A.1) for complexity measure Degree of Polynomial (Definition A.4).*

858 *Proof.* Given a corrupted training set S' , and a mistake budget b , we first run the ECM algorithm
 859 on the training set S' , which outputs a classifier $h_{S'}$ that minimizes the complexity while making at
 860 most b mistakes on S' . Let the complexity of $h_{S'}$ be denoted by $c_{\text{low}} = \mathcal{C}(h_{S'})$. The classifier $h_{S'}$ is
 861 the minimum complexity classifier among all hypotheses that make no more than b mistakes on S' .
 862 Using the classifier $h_{S'}$, we label the test point x_{test} , i.e., $y = h_{S'}(x_{\text{test}})$. We modify the training set
 863 by adding $b + 1$ copies of the test point x_{test} , but with the label opposite to y , i.e., the added points
 864 have label $\neg y$. Let this modified set be denoted as S'' . The addition of $b + 1$ copies of x_{test} ensures
 865 that any classifier produced by ECM will be forced to change the label of x_{test} if it is to remain within
 866 the mistake budget. We now run ECM on the modified training set S'' , which outputs a new classifier.
 867 The complexity of this new classifier is denoted by c_{high} . Since the classifier now labels x_{test} as
 868 $\neg y$, the complexity c_{high} represents the minimum complexity required to label x_{test} differently from
 869 $h_{S'}(x_{\text{test}})$. By construction, c_{high} must be greater than or equal to c_{low} due to the added complexity of
 870 labeling the test point differently. Finally, we output the triple $(y, c_{\text{low}}, c_{\text{high}})$ as our guarantee.

872 **A.6 Interval Probability Mass**

873 **Definition A.18** (Label Noise Biggio et al. [2011] Adversary). *Label noise was formally introduced*
 874 *in Biggio et al. [2011]. Consider the set of original points $S = \{(x_i, y_i)\}_{i=1}^n | x \in \mathcal{X}, y \in \mathcal{Y}\}$,*
 875 *where \mathcal{X} denote the instance space and \mathcal{Y} the label space. Concretely, given a mistake budget b , the*
 876 *label noise adversary is allowed to alter the labels of at most b points in the dataset S . That is, the*
 877 *Hamming distance between the original labels S and the modified labels S' , denoted by $d_H(S, S')$,*
 878 *must satisfy the constraint:*

$$d_H(S, S') = \sum_{i=1}^n \mathbf{1}(y_i \neq y'_i | x_i = x'_i) \leq b.$$

879 Let $\mathcal{A}(S)$ denote the sample corrupted by adversary \mathcal{A} . For a mistake budget b , let \mathcal{A}_b be the set
 880 of adversaries with corruption budget b and $\mathcal{A}_b(S) = \{S' | d(S, S') \leq b\}$ denote the possible
 881 corrupted training samples under an attack from an adversary in \mathcal{A}_b . Intuitively, if the given sample
 882 is S' , we would like to give guarantees for learning when $S' \in \mathcal{A}_b$ for some (realizable) un-corrupted
 883 sample S .

884 **Theorem A.19.** *For the binary classification task, an optimal regularized robustly reliable learner,*
 885 *\mathcal{L} , (Definition 4.3) can be implemented efficiently for complexity measure Interval Probability Mass*
 886 *(Definition A.3) with the label noise adversary (Definition A.18).*

887 *Proof.* First, we define the DPs that store the scores used, then we use the DP table to
 888 compute the complexity level when the test point and mistake budget arrive. We define
 889 DP_+, DP_-, DP'_+, DP'_- each of which are 3D tables of size $n \times (n + 1) \times n$. The first di-
 890 mension denote the position of the current data point, namely for DP_+ and DP_- , we denote the
 891 rightmost point by index 0, and the leftmost point by index $n - 1$. As for DP'_+ and DP'_- , the first
 892 dimension denote the position of the current data point in the reverse sequence, i.e., we denote the
 893 rightmost point by index $n - 1$, and the leftmost point by index 0. The second dimension denote the
 894 number of mistakes made up to the current point, which can vary between 0 to the number of points
 895 so far. Lastly, the third dimension denote the starting point of the interval containing the current point,
 896 denoted by the first dimension. We provide the proof of correctness for DP_+ , and it is similar for
 897 the other three.

898 **Base Case** Consider $i = 0$ (the first point in the sequence): Initialize the entire table to infinity.

- 899 • **If $a[0] = '+'$:**
 - 900 – We initialize $DP_+[0][0][0] = \frac{n}{2}$ because the complexity is $\frac{n}{2}$ with no mistakes made,
 901 and the rightmost point is positive.
- 902 • **If $a[0] = '-'$:**
 - 903 – We set $DP_+[0][1][0] = \frac{n}{2}$, as we can use the mistake budget and flip the negative label
 904 to a positive.

905 **Inductive Hypothesis:** Assume that for all positions up to $i - 1$, the table $DP_+[i - 1][j][k]$ correctly
 906 stores the minimum complexity score for all possible configurations of mistakes and interval
 907 boundaries.

908 **Inductive Step:** We will show that the table $DP_+[i][j][k]$ correctly computes the minimum
 909 complexity score at position i , based on the following cases:

- 910 • **Case 1: $a[i] = '-'$**
 - 911 – **if $k = i - 1$:** DP_+ requires the i 'th point to be a positive; thus, this point must be
 912 removed. We need to decrement the mistake count j of the $i - 1$ 'th point by one and
 913 use it to remove this point. Note that the $i - 1$ must be a negative point in order to have
 914 $k = i - 1$.

$$DP_+[i][j][k] = \min_{k', j' \in [0, j-1]} (DP_-[i-1][j'][k']) + \frac{n}{2}$$

915 – **if** $k < i - 1$: Then we flip the label of this point, and update the total score.

$$\text{DP}_{-+}[i][j][k] = \min_{j' \in [0, j-1]} \text{DP}_{-+}[i-1][j'][k] - \frac{n}{i-k+1} + \frac{n}{i-k+2}$$

916 • **Case 2:** $a[i] = '+'$

917 – **if** $k = i - 1$: The $i - 1$ must be a negative point in order to have $k = i - 1$.

$$\text{DP}_{-+}[i][j][k] = \min_{k', j' \in [0, j]} (\text{DP}_{-}[i-1][j'][k']) + \frac{n}{2}$$

918 – **if** $k < i - 1$: Then we update the total score.

$$\text{DP}_{-+}[i][j][k] = \min_{j' \in [0, j]} \text{DP}_{-+}[i-1][j'][k] - \frac{n}{i-k+1} + \frac{n}{i-k+2}$$

919 Thus, the DP algorithm correctly computes the complexity measure as defined, proving its correctness
920 for DP_{-+} .

921 **Computing the test label efficiently:** We now use the DP tables to obtain the test label. Note that our
922 approach does not require re-training to compute the test label efficiently. Once we receive the test
923 point's position along with adversary's budget, b , we compute the *exact* minimum complexity needed
924 to label it point as positive and negative. We denote the test point's position by test_pos , there are
925 four different formations for the label of test point's right most and left most neighbor. Given b , we
926 iterate over all possible divisions of mistake budget, as well as the position of the starting point of the
927 previous intervals from the left and the right side of the test point in each of these four formations.
928 Define the minimum complexity to label the test point as positive, c_+ and the minimum complexity
929 to label the test point as negative, c_- . Then, $c_{\text{low}} = \min\{c_+, c_-\}$, and $c_{\text{high}} = \max\{c_+, c_-\}$. We
930 output $y = \underset{+, -}{\text{argmin}}\{c_+, c_-\}$, along with $c_{\text{low}}, c_{\text{high}}$. \square

931 **Remark A.20.** *Theorem A.19 can be generalized to classification tasks with more than two classes.*

Algorithm 5 DP Score of Interval Probability Mass A.19 with Label Noise A.18

Input: a : Train set
Output: DP_+, DP_-, DP'_+, DP'_-

```

for  $i = 1$  to  $n$  do
  for  $j = 0$  to  $i + 2$  do
    for  $k = 0$  to  $i + 1$  do
      if  $a[i]$  is '+' then
        if  $k == i$  then
           $DP_+[i][j][k] \leftarrow \min_{k', j' \in [0, j]} (DP_-[i-1][j'][k']) + \frac{n}{2}$ 
           $DP_-[i][j][k] \leftarrow \min_{k', j' \in [0, j-1]} (DP_+[i-1][j'][k']) + \frac{n}{2}$ 
        else
           $DP_+[i][j][k] \leftarrow \min_{j' \in [0, j]} DP_+[i-1][j'][k] - \frac{n}{i-k+1} + \frac{n}{i-k+2}$ 
           $DP_-[i][j][k] \leftarrow \min_{j' \in [0, j-1]} DP_-[i-1][j'][k] - \frac{n}{i-k+1} + \frac{n}{i-k+2}$ 
        end
      end
      if  $a[i]$  is '-' then
        if  $k == i$  then
           $DP_+[i][j][k] \leftarrow \min_{k', j' \in [0, j-1]} (DP_-[i-1][j'][k']) + \frac{n}{2}$ 
           $DP_-[i][j][k] \leftarrow \min_{k', j' \in [0, j]} (DP_+[i-1][j'][k']) + \frac{n}{2}$ 
        else
           $DP_+[i][j][k] \leftarrow \min_{j' \in [0, j-1]} DP_+[i-1][j'][k] - \frac{n}{i-k+1} + \frac{n}{i-k+2}$ 
           $DP_-[i][j][k] \leftarrow \min_{j' \in [0, j]} DP_-[i-1][j'][k] - \frac{n}{i-k+1} + \frac{n}{i-k+2}$ 
        end
      end
      if  $a\_reversed[i]$  is '+' then
        if  $k == i$  then
           $DP'_+[i][j][k] \leftarrow \min_{k', j' \in [0, j]} (DP'_-[i-1][j'][k']) + \frac{n}{2}$ 
           $DP'_-[i][j][k] \leftarrow \min_{k', j' \in [0, j-1]} (DP'_+[i-1][j'][k']) + \frac{n}{2}$ 
        else
           $DP'_+[i][j][k] \leftarrow \min_{j' \in [0, j]} DP'_+[i-1][j'][k] - \frac{n}{i-k+1} + \frac{n}{i-k+2}$ 
           $DP'_-[i][j][k] \leftarrow \min_{j' \in [0, j-1]} DP'_-[i-1][j'][k] - \frac{n}{i-k+1} + \frac{n}{i-k+2}$ 
        end
      end
      if  $a\_reversed[i]$  is '-' then
        if  $k == i$  then
           $DP'_+[i][j][k] \leftarrow \min_{k', j' \in [0, j-1]} (DP'_-[i-1][j'][k']) + \frac{n}{2}$ 
           $DP'_-[i][j][k] \leftarrow \min_{k', j' \in [0, j]} (DP'_+[i-1][j'][k']) + \frac{n}{2}$ 
        else
           $DP'_+[i][j][k] \leftarrow \min_{j' \in [0, j-1]} DP'_+[i-1][j'][k] - \frac{n}{i-k+1} + \frac{n}{i-k+2}$ 
           $DP'_-[i][j][k] \leftarrow \min_{j' \in [0, j]} DP'_-[i-1][j'][k] - \frac{n}{i-k+1} + \frac{n}{i-k+2}$ 
        end
      end
    else
    end
  end
end
return  $DP_+, DP_-, DP'_+, DP'_-$ 

```

932 **NeurIPS Paper Checklist**

933 The checklist is designed to encourage best practices for responsible machine learning research,
934 addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
935 the checklist: **The papers not including the checklist will be desk rejected.** The checklist should
936 follow the references and follow the (optional) supplemental material. The checklist does NOT count
937 towards the page limit.

938 Please read the checklist guidelines carefully for information on how to answer these questions. For
939 each question in the checklist:

940 • You should answer **[Yes]** , **[No]** , or **[NA]** .
941 • **[NA]** means either that the question is Not Applicable for that particular paper or the
942 relevant information is Not Available.
943 • Please provide a short (1–2 sentence) justification right after your answer (even for NA).

944 **The checklist answers are an integral part of your paper submission.** They are visible to the
945 reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
946 (after eventual revisions) with the final version of your paper, and its final version will be published
947 with the paper.

948 The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
949 While "**[Yes]**" is generally preferable to "**[No]**", it is perfectly acceptable to answer "**[No]**" provided a
950 proper justification is given (e.g., "error bars are not reported because it would be too computationally
951 expensive" or "we were unable to find the license for the dataset we used"). In general, answering
952 "**[No]**" or "**[NA]**" is not grounds for rejection. While the questions are phrased in a binary way, we
953 acknowledge that the true answer is often more nuanced, so please just use your best judgment and
954 write a justification to elaborate. All supporting evidence can appear either in the main paper or the
955 supplemental material, provided in appendix. If you answer **[Yes]** to a question, in the justification
956 please point to the section(s) where related material for the question can be found.

957 **IMPORTANT**, please:

958 • **Delete this instruction block, but keep the section heading "NeurIPS Paper Checklist",**
959 • **Keep the checklist subsection headings, questions/answers and guidelines below.**
960 • **Do not modify the questions and only use the provided macros for your answers.**

961 **1. Claims**

962 Question: Do the main claims made in the abstract and introduction accurately reflect the
963 paper's contributions and scope?

964 Answer: **[Yes]**

965 Justification: Proofs and definitions provided in the main paper and appendix.

966 Guidelines:

967 • The answer NA means that the abstract and introduction do not include the claims
968 made in the paper.
969 • The abstract and/or introduction should clearly state the claims made, including the
970 contributions made in the paper and important assumptions and limitations. A No or
971 NA answer to this question will not be perceived well by the reviewers.
972 • The claims made should match theoretical and experimental results, and reflect how
973 much the results can be expected to generalize to other settings.
974 • It is fine to include aspirational goals as motivation as long as it is clear that these goals
975 are not attained by the paper.

976 **2. Limitations**

977 Question: Does the paper discuss the limitations of the work performed by the authors?

978 Answer: **[Yes]**

979 Justification: In the discussion section.

980 Guidelines:

- 981 • The answer NA means that the paper has no limitation while the answer No means that
982 the paper has limitations, but those are not discussed in the paper.
- 983 • The authors are encouraged to create a separate "Limitations" section in their paper.
- 984 • The paper should point out any strong assumptions and how robust the results are to
985 violations of these assumptions (e.g., independence assumptions, noiseless settings,
986 model well-specification, asymptotic approximations only holding locally). The authors
987 should reflect on how these assumptions might be violated in practice and what the
988 implications would be.
- 989 • The authors should reflect on the scope of the claims made, e.g., if the approach was
990 only tested on a few datasets or with a few runs. In general, empirical results often
991 depend on implicit assumptions, which should be articulated.
- 992 • The authors should reflect on the factors that influence the performance of the approach.
993 For example, a facial recognition algorithm may perform poorly when image resolution
994 is low or images are taken in low lighting. Or a speech-to-text system might not be
995 used reliably to provide closed captions for online lectures because it fails to handle
996 technical jargon.
- 997 • The authors should discuss the computational efficiency of the proposed algorithms
998 and how they scale with dataset size.
- 999 • If applicable, the authors should discuss possible limitations of their approach to
1000 address problems of privacy and fairness.
- 1001 • While the authors might fear that complete honesty about limitations might be used by
1002 reviewers as grounds for rejection, a worse outcome might be that reviewers discover
1003 limitations that aren't acknowledged in the paper. The authors should use their best
1004 judgment and recognize that individual actions in favor of transparency play an impor-
1005 tant role in developing norms that preserve the integrity of the community. Reviewers
1006 will be specifically instructed to not penalize honesty concerning limitations.

1007 **3. Theory assumptions and proofs**

1008 Question: For each theoretical result, does the paper provide the full set of assumptions and
1009 a complete (and correct) proof?

1010 Answer: [\[Yes\]](#)

1011 Justification: Every theorem statement is rigorously stated and is followed by a complete
1012 and correct proof.

1013 Guidelines:

- 1014 • The answer NA means that the paper does not include theoretical results.
- 1015 • All the theorems, formulas, and proofs in the paper should be numbered and cross-
1016 referenced.
- 1017 • All assumptions should be clearly stated or referenced in the statement of any theorems.
- 1018 • The proofs can either appear in the main paper or the supplemental material, but if
1019 they appear in the supplemental material, the authors are encouraged to provide a short
1020 proof sketch to provide intuition.
- 1021 • Inversely, any informal proof provided in the core of the paper should be complemented
1022 by formal proofs provided in appendix or supplemental material.
- 1023 • Theorems and Lemmas that the proof relies upon should be properly referenced.

1024 **4. Experimental result reproducibility**

1025 Question: Does the paper fully disclose all the information needed to reproduce the main ex-
1026 perimental results of the paper to the extent that it affects the main claims and/or conclusions
1027 of the paper (regardless of whether the code and data are provided or not)?

1028 Answer: [\[NA\]](#).

1029 Justification:

1030 Guidelines:

- 1031 • The answer NA means that the paper does not include experiments.

- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
 - (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
 - (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
 - (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [NA].

Justification:

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- The authors should provide instructions on data access and preparation, including how to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).

1086 • Providing as much information as possible in supplemental material (appended to the
1087 paper) is recommended, but including URLs to data and code is permitted.

1088 **6. Experimental setting/details**

1089 Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
1090 parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
1091 results?

1092 Answer:[NA] .

1093 Justification:

1094 Guidelines:

1095 • The answer NA means that the paper does not include experiments.
1096 • The experimental setting should be presented in the core of the paper to a level of detail
1097 that is necessary to appreciate the results and make sense of them.
1098 • The full details can be provided either with the code, in appendix, or as supplemental
1099 material.

1100 **7. Experiment statistical significance**

1101 Question: Does the paper report error bars suitably and correctly defined or other appropriate
1102 information about the statistical significance of the experiments?

1103 Answer:[NA] .

1104 Justification:

1105 Guidelines:

1106 • The answer NA means that the paper does not include experiments.
1107 • The authors should answer "Yes" if the results are accompanied by error bars, confi-
1108 dence intervals, or statistical significance tests, at least for the experiments that support
1109 the main claims of the paper.
1110 • The factors of variability that the error bars are capturing should be clearly stated (for
1111 example, train/test split, initialization, random drawing of some parameter, or overall
1112 run with given experimental conditions).
1113 • The method for calculating the error bars should be explained (closed form formula,
1114 call to a library function, bootstrap, etc.)
1115 • The assumptions made should be given (e.g., Normally distributed errors).
1116 • It should be clear whether the error bar is the standard deviation or the standard error
1117 of the mean.
1118 • It is OK to report 1-sigma error bars, but one should state it. The authors should
1119 preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
1120 of Normality of errors is not verified.
1121 • For asymmetric distributions, the authors should be careful not to show in tables or
1122 figures symmetric error bars that would yield results that are out of range (e.g. negative
1123 error rates).
1124 • If error bars are reported in tables or plots, The authors should explain in the text how
1125 they were calculated and reference the corresponding figures or tables in the text.

1126 **8. Experiments compute resources**

1127 Question: For each experiment, does the paper provide sufficient information on the com-
1128 puter resources (type of compute workers, memory, time of execution) needed to reproduce
1129 the experiments?

1130 Answer: [NA] .

1131 Justification:

1132 Guidelines:

1133 • The answer NA means that the paper does not include experiments.
1134 • The paper should indicate the type of compute workers CPU or GPU, internal cluster,
1135 or cloud provider, including relevant memory and storage.

1136 • The paper should provide the amount of compute required for each of the individual
1137 experimental runs as well as estimate the total compute.
1138 • The paper should disclose whether the full research project required more compute
1139 than the experiments reported in the paper (e.g., preliminary or failed experiments that
1140 didn't make it into the paper).

1141 **9. Code of ethics**

1142 Question: Does the research conducted in the paper conform, in every respect, with the
1143 NeurIPS Code of Ethics <https://neurips.cc/public/EthicsGuidelines>?

1144 Answer: **[Yes]**

1145 Justification: I have read the guideline and my answer is yes.

1146 Guidelines:

1147 • The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
1148 • If the authors answer No, they should explain the special circumstances that require a
1149 deviation from the Code of Ethics.
1150 • The authors should make sure to preserve anonymity (e.g., if there is a special consid-
1151 eration due to laws or regulations in their jurisdiction).

1152 **10. Broader impacts**

1153 Question: Does the paper discuss both potential positive societal impacts and negative
1154 societal impacts of the work performed?

1155 Answer: **[Yes]**

1156 Justification: The paper is a step toward reliable and trustworthy machine learning.

1157 Guidelines:

1158 • The answer NA means that there is no societal impact of the work performed.
1159 • If the authors answer NA or No, they should explain why their work has no societal
1160 impact or why the paper does not address societal impact.
1161 • Examples of negative societal impacts include potential malicious or unintended uses
1162 (e.g., disinformation, generating fake profiles, surveillance), fairness considerations
1163 (e.g., deployment of technologies that could make decisions that unfairly impact specific
1164 groups), privacy considerations, and security considerations.
1165 • The conference expects that many papers will be foundational research and not tied
1166 to particular applications, let alone deployments. However, if there is a direct path to
1167 any negative applications, the authors should point it out. For example, it is legitimate
1168 to point out that an improvement in the quality of generative models could be used to
1169 generate deepfakes for disinformation. On the other hand, it is not needed to point out
1170 that a generic algorithm for optimizing neural networks could enable people to train
1171 models that generate Deepfakes faster.
1172 • The authors should consider possible harms that could arise when the technology is
1173 being used as intended and functioning correctly, harms that could arise when the
1174 technology is being used as intended but gives incorrect results, and harms following
1175 from (intentional or unintentional) misuse of the technology.
1176 • If there are negative societal impacts, the authors could also discuss possible mitigation
1177 strategies (e.g., gated release of models, providing defenses in addition to attacks,
1178 mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
1179 feedback over time, improving the efficiency and accessibility of ML).

1180 **11. Safeguards**

1181 Question: Does the paper describe safeguards that have been put in place for responsible
1182 release of data or models that have a high risk for misuse (e.g., pretrained language models,
1183 image generators, or scraped datasets)?

1184 Answer: **[NA]**.

1185 Justification:

1186 Guidelines:

1187 • The answer NA means that the paper poses no such risks.

1188 • Released models that have a high risk for misuse or dual-use should be released with
1189 necessary safeguards to allow for controlled use of the model, for example by requiring
1190 that users adhere to usage guidelines or restrictions to access the model or implementing
1191 safety filters.
1192 • Datasets that have been scraped from the Internet could pose safety risks. The authors
1193 should describe how they avoided releasing unsafe images.
1194 • We recognize that providing effective safeguards is challenging, and many papers do
1195 not require this, but we encourage authors to take this into account and make a best
1196 faith effort.

1197 **12. Licenses for existing assets**

1198 Question: Are the creators or original owners of assets (e.g., code, data, models), used in
1199 the paper, properly credited and are the license and terms of use explicitly mentioned and
1200 properly respected?

1201 Answer: [NA]

1202 Justification:

1203 Guidelines:

1204 • The answer NA means that the paper does not use existing assets.
1205 • The authors should cite the original paper that produced the code package or dataset.
1206 • The authors should state which version of the asset is used and, if possible, include a
1207 URL.
1208 • The name of the license (e.g., CC-BY 4.0) should be included for each asset.
1209 • For scraped data from a particular source (e.g., website), the copyright and terms of
1210 service of that source should be provided.
1211 • If assets are released, the license, copyright information, and terms of use in the
1212 package should be provided. For popular datasets, paperswithcode.com/datasets
1213 has curated licenses for some datasets. Their licensing guide can help determine the
1214 license of a dataset.
1215 • For existing datasets that are re-packaged, both the original license and the license of
1216 the derived asset (if it has changed) should be provided.
1217 • If this information is not available online, the authors are encouraged to reach out to
1218 the asset's creators.

1219 **13. New assets**

1220 Question: Are new assets introduced in the paper well documented and is the documentation
1221 provided alongside the assets?

1222 Answer: [NA]

1223 Justification:

1224 Guidelines:

1225 • The answer NA means that the paper does not release new assets.
1226 • Researchers should communicate the details of the dataset/code/model as part of their
1227 submissions via structured templates. This includes details about training, license,
1228 limitations, etc.
1229 • The paper should discuss whether and how consent was obtained from people whose
1230 asset is used.
1231 • At submission time, remember to anonymize your assets (if applicable). You can either
1232 create an anonymized URL or include an anonymized zip file.

1233 **14. Crowdsourcing and research with human subjects**

1234 Question: For crowdsourcing experiments and research with human subjects, does the paper
1235 include the full text of instructions given to participants and screenshots, if applicable, as
1236 well as details about compensation (if any)?

1237 Answer: [NA].

1238 Justification:

1239 Guidelines:

1240 • The answer NA means that the paper does not involve crowdsourcing nor research with
1241 human subjects.

1242 • Including this information in the supplemental material is fine, but if the main contribu-
1243 tion of the paper involves human subjects, then as much detail as possible should be
1244 included in the main paper.

1245 • According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
1246 or other labor should be paid at least the minimum wage in the country of the data
1247 collector.

1248 **15. Institutional review board (IRB) approvals or equivalent for research with human
1249 subjects**

1250 Question: Does the paper describe potential risks incurred by study participants, whether
1251 such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
1252 approvals (or an equivalent approval/review based on the requirements of your country or
1253 institution) were obtained?

1254 Answer: [NA] .

1255 Justification:

1256 Guidelines:

1257 • The answer NA means that the paper does not involve crowdsourcing nor research with
1258 human subjects.

1259 • Depending on the country in which research is conducted, IRB approval (or equivalent)
1260 may be required for any human subjects research. If you obtained IRB approval, you
1261 should clearly state this in the paper.

1262 • We recognize that the procedures for this may vary significantly between institutions
1263 and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
1264 guidelines for their institution.

1265 • For initial submissions, do not include any information that would break anonymity (if
1266 applicable), such as the institution conducting the review.

1267 **16. Declaration of LLM usage**

1268 Question: Does the paper describe the usage of LLMs if it is an important, original, or
1269 non-standard component of the core methods in this research? Note that if the LLM is used
1270 only for writing, editing, or formatting purposes and does not impact the core methodology,
1271 scientific rigorousness, or originality of the research, declaration is not required.

1272 Answer: [NA] .

1273 Justification:

1274 Guidelines:

1275 • The answer NA means that the core method development in this research does not
1276 involve LLMs as any important, original, or non-standard components.

1277 • Please refer to our LLM policy (<https://neurips.cc/Conferences/2025/LLM>)
1278 for what should or should not be described.