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Abstract

Instance-targeted data poisoning attacks, where an adversary corrupts a training set1

to induce errors on specific test points, have raised significant concerns. Balcan et al.2

[2022] proposed an approach to addressing this challenge by defining a notion of3

robustly-reliable learners that provide per-instance guarantees of correctness under4

well-defined assumptions, even in the presence of data poisoning attacks. They then5

give a generic optimal (but computationally inefficient) robustly-reliable learner as6

well as a computationally efficient algorithm for the case of linear separators over7

log-concave distributions.8

In this work, we address two challenges left open by Balcan et al. [2022]. The9

first is that the definition of robustly-reliable learners in Balcan et al. [2022]10

becomes vacuous for highly-flexible hypothesis classes: if there are two classifiers11

h0, h1 ∈ H both with zero error on the training set such that h0(x) ̸= h1(x), then12

a robustly-reliable learner must abstain on x. We address this problem by defining13

a modified notion of regularized robustly-reliable learners that allows for nontrivial14

statements in this case. The second is that the generic algorithm of Balcan et al.15

[2022] requires re-running an ERM oracle (essentially, retraining the classifier) on16

each test point x, which is generally impractical even if ERM can be implemented17

efficiently. To tackle this problem, we show that at least in certain interesting18

cases we can design algorithms that can produce their outputs in time sublinear in19

training time, by using techniques from dynamic algorithm design.20

1 Introduction21

As Machine Learning and AI are increasingly used for critical decision-making, it is becoming more22

important than ever that these systems be trustworthy and reliable. This means they should know23

(and say) when they are unsure, they should be able to provide real explanations for their answers24

and why those answers should be trusted (not just how the prediction was made), and they should be25

robust to malicious or unusual training data and to adversarial or unusual examples at test time.26

Balcan et al. [2022] proposed an approach to addressing this problem by defining a notion of robustly-27

reliable learners that provide per-instance guarantees of correctness under well-defined assumptions,28

even in the presence of data poisoning attacks. This notion builds on the definition of reliable learners29

by Rivest and Sloan [1988]. In brief, a robustly-reliable learner L for some hypothesis class H,30

when given a (possibly corrupted) training set S′, produces a classifier LS′ that on any example x31

outputs both a prediction y and a confidence level k. The interpretation of the pair (y, k) is that y32

is guaranteed to equal the correct label f∗(x) if (a) the target function f∗ indeed belongs toH and33

(b) the set S′ contains at most k corrupted points; here, k < 0 corresponds to abstaining. Balcan34

et al. [2022] then provide a generic pointwise-optimal algorithm for this problem: one that for each x35

outputs the largest possible confidence level of any robustly-reliable learner. They also give efficient36
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algorithms for the case of homogeneous linear separators over uniform and log-concave distributions,37

as well as analysis of the probability mass of points for which it outputs large values of k.38

In this work, we address two challenges left open by Balcan et al. [2022]. The first is that the39

definition of robustly-reliable learners in Balcan et al. [2022] becomes vacuous for highly-flexible40

hypothesis classes: if there are two classifiers h0, h1 ∈ H both with zero error on the training set41

such that h0(x) ̸= h1(x), then a robustly-reliable learner must abstain on x. We address this problem42

by defining a modified notion of regularized robustly-reliable learners that allows for nontrivial43

statements in this case. The second is that the generic algorithm of Balcan et al. [2022] requires re-44

running an ERM oracle (essentially, retraining the classifier) on each test point x, which is generally45

impractical even if ERM can be implemented efficiently. To tackle this problem, we show that at46

least in certain interesting cases we can design algorithms that can make predictions in time sublinear47

in training time, by using techniques from dynamic algorithm design, such as Bosek et al. [2014].48

1.1 Main contibutions49

Our main contributions are three-fold.50

1. The first is a definition of a regularized robustly-reliable learner, and of the region of51

points it can certify, that is appropriate for highly-flexible hypothesis classes. We then52

analyze the largest possible set of points that any regularized robustly-reliable learner could53

possibly certify, and provide a generic pointwise-optimal algorithm whose regularized54

robustly-reliable region (R4) matches this optimal set (OPTR4).55

2. The second is an analysis of the probability mass of this OPTR4 set in some interesting56

special cases, proving sample complexity bounds on the number of training examples57

needed (relative to the data poisoning budget of the adversary and the complexity of the58

target function) in order for OPTR4 to w.h.p. have a large probability mass.59

3. Finally, the third is an analysis of efficient regularized robustly-reliable learning algorithms60

for interesting cases, with a special focus on algorithms that are able to output their reliability61

guarantees more efficiently than re-training the entire classifier. In one case we do this62

through a bi-directional dynamic programming algorithm, and in another case by utilizing63

algorithms for maximum matching that are able to quickly re-establish the maximum64

matching when a few nodes are added to or deleted from the graph.65

In a bit more detail, for a given complexity (or “unnaturalness”) measure C, a regularized robustly-66

reliable learner L is given as input a possibly-corrupted training set S′ and outputs a function (an67

“extended classifier") LS′ . The extended classifier LS′ takes in two inputs: a test example x and a68

poisoning budget b, and outputs a prediction y along with two complexity levels clow and chigh. The69

meaning of the triple (y, clow, chigh) is that y is guaranteed to be the correct label f∗(x) if the training70

set S′ contains at most b poisoned points and the complexity of the target function f∗ is less than71

chigh. Moreover, there should exist a classifier f of complexity at most clow that makes at most b72

mistakes on S′ and has f(x) = y. Thus, if we, as a user, believe that a complexity at or above chigh73

is “unnatural” and that the training set should contain at most b corrupted points, then we can be74

confident in the predicted label y. We then analyze the set of points for which clow ≤ c < chigh for a75

given complexity level c, and show there exists an algorithm that is simultaneously optimal in terms76

of the size of this set for all values of c.77

The above description has been treating the complexity function C as a data-independent quantity.78

However, in many cases we may want to consider notions of “unnaturalness” that involve how the79

classifier relates to the test point, the training examples, or both. For instance, if x is surrounded by80

positive examples, we might view a positive classification as more natural than a negative one even if81

we allow arbitrary functions as classifiers; one way to model this would be to define the complexity82

of a classifier h with respect to test point x as 1/r(h, x) where r(h, x) is the distance of x to h’s83

decision boundary. Or, we might be interested in the margin of the classifier with respect to all the84

data observed (the minimum distance to the decision boundary out of all data seen including the85

training data and the test point). Our framework will allow for these notions as well, and several of86

the concrete settings we discuss will use them.87
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1.2 Context and Related Work88

Learning from malicious noise. The malicious noise model was introduced and analyzed in Valiant89

[1985], Kearns and Li [1993], Bshouty et al. [2002], Klivans et al. [2009], Awasthi et al. [2017].90

See also the book chapter Balcan and Haghtalab [2021]. However, the focus of this work was on91

the overall error rate of the learned classifier, rather than on instance-wise guarantees that could be92

provided on individual predictions.93

Instance targeted poisoning attacks. Instance-targeted poisoning attacks were first introduced by94

Barreno et al. [2006]. Subsequent work by Suciu et al. [2018] and Shafahi et al. [2018] demonstrated95

empirically that such attacks can be highly effective, even when the adversary only adds correctly-96

labeled data to the training set (known as “clean-label attacks”). These targeted poisoning attacks97

have attracted considerable attention in recent years due to their potential to compromise the trustwor-98

thiness of learning systems [Geiping et al., 2021, Mozaffari-Kermani et al., 2015, Chen et al., 2017].99

Theoretical research on defenses against instance-targeted poisoning attacks has largely focused on100

developing stability certificates, which indicate when an adversary with a limited budget cannot alter101

the resulting prediction. For instance, Levine and Feizi [2021] suggest partitioning the training data102

into k segments, training distinct classifiers on each segment, and using the strength of the majority103

vote from these classifiers as a stability certificate, as any single poisoned point can affect only one104

segment. Additionally, Gao et al. [2021] formalize various types of adversarial poisoning attacks105

and explore the problem of providing stability certificates for them in both distribution-independent106

and distribution-specific scenarios. Balcan et al. [2022] instead propose correctness certificates: in107

contrast to the previous results that certify when a budget-limited adversary could not change the108

learner’s prediction, their work focuses on certifying the prediction made is correct. This model109

was extended in Balcan et al. [2023] to address test-time attacks as well. The model of Balcan et al.110

[2022] can be seen as a generalization of the reliable-useful learning framework of Rivest and Sloan111

[1988] and the perfect selective classification model of El-Yaniv and Wiener [2010], which focus112

on the simpler scenario of learning from noiseless data, extending it to the more complex context of113

noisy data and adversarial poisoning attacks.114

2 Formal Setup115

We consider a learner aiming to learn an unknown target function f∗ : X → Y , where X denotes116

the instance space and Y the label space. The learner is given a training set S′ = {{(xi, yi)}ni=1|x ∈117

X , y ∈ Y}, which might have been poisoned by a malicious adversary. Specifically, we assume S′118

consists of an original dataset S labeled according to f∗, with possibly additional examples, whose119

labels need not match f∗, added by an adversary. For original dataset S and non-negative integer b, it120

will be helpful to define Ab(S) as the possible training sets that could be produced by an attacker121

with corruption budget b. That is, Ab(S) consists of all S′ that could be produced by adding at most122

b points to S. Given the training set S′ and test point x, the learner’s goal will be to output a label123

y along with a guarantee that y = f∗(x) so long as f∗ is sufficiently “simple” and the adversary’s124

corruption budget was sufficiently small. Conceptually, we will imagine that the adversary might125

have been using its entire corruption budget specifically to cause us to make an error on x. Our basic126

definitions will not require that the original set S be drawn iid (or that the test point x be drawn from127

the same distribution) but our guarantees on the probability mass of points for which a given strength128

of guarantee can be given will require such assumptions.129

Complexity measures To establish a framework where certain classifiers or classifications are130

considered more natural than others, we assume access to a complexity measure C that formalizes131

this degree of unnaturalness. We consider several distinct types of complexity measures.132

1. Data independent: Each classifier h has a well-defined real-valued complexity C(h). For133

example, in R1, a natural measure of complexity of a Boolean function is the number of134

alternations between positive and negative regions (See Definition 4.1).135

2. Test data dependent: Here, complexity is a function of the classifier h and the test point136

xtest. For example, suppose X = Rd and we allow arbitrary classifiers. If xtest is inside a137

cloud of positive examples, then while there certainly exist classifiers that perform well on138

the training data and label xtest negative, they would necessarily have a small margin with139
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respect to xtest. This motivates a complexity measure C(h, xtest) =
1

r(xtest,h)
where r is140

the distance of xtest to h’s decision boundary. (See Definition 4.7).141

3. Training data dependent: This complexity is a function of the classifier h and the training142

data. An example of this measure is the Interval Probability Mass complexity, detailed in143

the Appendix (See Definition A.3).144

4. Training and test data dependent: Here, complexity is a function of the classifier h, the145

training data, and the test point xtest. For instance, we might be interested in the margin r146

of a classifier with respect to both the training set and the test point, and define complexity147

to be 1
r (See Definition 4.9).148

In section 4, and Appendix A.1, we introduce several complexity measures across all four types, for149

assessing the structure and behavior of classifiers. We now define the notion of a regularized-robustly-150

reliable learner in the face of instance-targeted attacks. This learner, for any given test example xtest,151

outputs both a prediction y and values clow and chigh, such that y is guaranteed to be correct so long as152

the target function f∗ has complexity less than chigh and the adversary has at most corrupted b points.153

Moreover, there should exist a candidate classifier of complexity at most clow.154

Definition 2.1 (Regularized Robustly Reliable Learner). A learner L is regularized-robustly-reliable155

with respect to complexity measure C if, given training set S′, the learner outputs a function LS′ :156

X × Z≥0 → Y ×R×R with the following properties: Given a test point xtest, and mistake budget b,157

LS′(xtest, b) outputs a label y along with complexity levels clow, chigh such that158

(a) There exists a classifier h of complexity clow (with respect to xtest if test-data-dependent and159

with respect to some S consistent with h such that S′ ∈ Ab(S) if training-data-dependent)160

with at most b mistakes on S′ such that h(xtest) = y, and161

(b) There is no classifier h′ of complexity less than chigh (with respect to xtest if test-data-162

dependent and with respect to any S consistent with h′ such that S′ ∈ Ab(S) if training-163

data-dependent) with at most b mistakes on S′ such that h′(xtest) ̸= y.164

So, if LS′(xtest, b) = (y, clow, chigh), then we are guaranteed that y = f∗(xtest) if S′ ∈ Ab(S) for165

some true sample set S ∈ X × Y and f∗ has complexity less than chigh with respect to xtest and S.166

Remark 2.2. We define LS′ as taking b as an input, whereas in Balcan et al. [2022], the corruption167

budget b is an output. We could also define LS′ as taking only xtest as input and producing output168

vectors y, clow, chigh, where y[b], clow[b] and chigh[b] correspond to the outputs of LS′(xtest, b) in169

Definition 2.1. We define LS′ to take b as an input primarily for clarity of exposition, and all our170

algorithms indeed can be adapted to output a table of values if desired.171

Remark 2.3. When the learner outputs a value chigh ≤ clow, we interpret it as “abstaining."172

Definition 2.1 motivates the following generic algorithm for implementing a regularized robustly173

reliable (RRR) learner, for data-independent complexity measures.174

Algorithm 1 Generic RRR learner for data-independent complexity measures C
1. Given S′, find the classifier hS′ of minimum complexity that makes at most b mistakes on S′.
2. Given test point xtest, output (y, clow, chigh) where y = hS′(x), clow = C(hS′), and chigh =
min{C(h) : h makes at most b mistakes on S′ and h(x) ̸= hS′(x)}.

Remark 2.4. Notice that the generic Algorithm 1 can compute hS′ and clow at training time, but175

requires re-solving an optimization problem on each test example to compute chigh. (For complexity176

measures that depend on the test point, even clow may require re-optimizing).177

We now define the notion of a regularized robustly reliable region.178

Definition 2.5 (Empirical Regularized Robustly Reliable Region). For RRR learner L, dataset179

S′, poisoning budget b, and complexity bound c, the empirical regularized robustly reliable region180

R̂4L(S
′, b, c) is the set of points x for which LS′(x, b) outputs clow, chigh such that clow ≤ c < chigh.181

Similarly to Balcan et al. [2022], one can characterize the largest possible set R̂4L(S
′, b, c) in terms182

of agreement regions. We describe the characterization below, and prove its optimality in Section 3.183
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Definition 2.6 (Optimal Empirical Regularized Robustly Reliable Region). Given dataset S′, poi-184

soning budget b, and complexity bound c, the optimal empirical regularized robustly reliable region185

ÔPTR4(S′, b, c) is the agreement region of the set of functions of complexity at most c that make186

at most b mistakes on S′. If there are no such functions, then ÔPTR4(S′, b, c) is undefined. (For187

data-dependent complexity measures, we define the complexity of a function as its minimum possible188

complexity over possible original training sets S, and the point in question if test-data-dependent.)189

Figure 1: The blue regions depict ÔPTR4(S′, 0, 8) described in Definition 2.6 for the complexity
measure Number of Alternations, mistake budget b = 0, and complexity level c = 8.

In the next section we give a regularized robustly reliable learner L such that for all S′ and b, L190

satisfies R̂4L(S
′, b, c) = ÔPTR4(S′, b, c) simultaneously for all values of c. We then prove that191

any other regularized robustly reliable learner L′ must have R̂4L′(S′, b, c) ⊆ ÔPTR4(S′, b, c). This192

justifies the use of the term optimal in Definition 2.6.193

3 General Results194

Recall that a regularized robustly reliable (RRR) learner L is given a sample S′ and outputs a function195

LS′(x, b) = (y, clow, chigh) such that if S′ = Ab(S) for some (unknown) uncorrupted sample S196

labeled by some (unknown) target concept f∗, and C(f∗) ∈ [clow, chigh), then y = f∗(x).197

Theorem 3.1. For any RRR learner L′ we have R̂4L′(S′, b, c) ⊆ ÔPTR4(S′, b, c). Moreover, there198

exists an RRR learner L such that R̂4L(S
′, b, c) = ÔPTR4(S′, b, c).199

Proof. First, consider any x ̸∈ ÔPTR4(S′, b, c). This means there exist h0 and h1 of complexity200

at most c, each making at most b mistakes on S′, such that h0(x) ̸= h1(x). In particular, this201

implies that for any label y, there exists a classifier h′ of complexity at most c with at most b202

mistakes on S′ such that h′(x) ̸= y. (For data-dependent complexity measures, h′ has complexity203

c with respect to some possible original training set S.) So, for any RRR learner L′, by part (b) of204

Definition 2.1, L′ cannot output chigh > c, and therefore x ̸∈ R̂4L′(S′, b, c). This establishes that205

R̂4L′(S′, b, c) ⊆ ÔPTR4(S′, b, c).206

For the second part of the theorem, let us first consider complexity measures that are not data
dependent. In that case, consider the learner L given in Algorithm 1 that given S′ finds the classifier
hS′ of minimum complexity that makes at most b mistakes on S′ and then uses it on test point x.
Specifically, it outputs (y, clow, chigh) where y = hS′(x), clow = C(hS′), and

chigh = min{C(h) : h makes at most b mistakes on S′ and h(x) ̸= hS′(x)}.

By construction, L is a RRR learner. Now, if x ∈ ÔPTR4(S′, b, c) then this learner L will output207

(y, clow, chigh) such that clow ≤ c and chigh > c. That is because x is in the agreement region of208

classifiers of complexity at most c that make at most b mistakes on S′, which means that any classifier209

making at most b mistakes on S′ that outputs a label different than y on x must have complexity210

strictly larger than c. So, x ∈ R̂4L(S
′, b, c). This establishes that R̂4L(S

′, b, c) ⊇ ÔPTR4(S′, b, c),211

which together with the first part implies that R̂4L(S
′, b, c) = ÔPTR4(S′, b, c).212

If the complexity measure is data dependent, the learner L instead works as follows. Given S′, L213

simply stores S′ producing LS′ . Then, given x and b, LS′(x, b) computes214

y = hS′(x) where hS′ = argminh{C(h, S′, b, x) : h makes at most b mistakes on S′},
clow = C(hS′ , S′, b, x), and
chigh = min{C(h, S′, b, x) : h makes at most b mistakes on S′ and h(x) ̸= hS′(x)},

where here we define C(h, S′, b, x) as the minimum complexity of h over all possible true training215

sets S, that is, sets S consistent with h such that S′ ∈ Ab(S). Again, by design, L is a RRR learner,216

and if x ∈ ÔPTR4(S′, b, c) then it outputs (y, clow, chigh) such that clow ≤ c and chigh > c.217
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Definition 2.6 and Theorem 3.1 gave guarantees in terms of the observed sample S′. We now consider218

guarantees in terms of the original clean dataset S, defining the set of points that the learner will219

be able to correctly classify and provide meaningful confidence values no matter how an adversary220

corrupts S with up to b poisoned points. For simplicity and to keep the definitions clean, we assume221

for the remaining portion of this section that C is non-data-dependent.222

Definition 3.2 (Regularized Robustly Reliable Region). Given a complexity measure C, a sample S223

labeled by some target function f∗ with C(f∗) = c, and a poisoning budget b, the regularized robustly224

reliable region R4
L(S, b, c) for learner L is the set of points x ∈ X such that for all S′ ∈ Ab(S) we225

have LS′(x, b) = (y, clow, chigh) with clow ≤ c < chigh.226

Remark 3.3. R4
L(S, b, c) =

⋂
S′∈Ab(S) R̂

4L(S
′, b, c).227

Definition 3.4 (Optimal Regularized Robustly Reliable Region). Given a complexity measure C, a228

dataset S labeled by some target function f∗, with C(f∗) = c, and a poisoning budget b, the optimal229

regularized robustly reliable region OPTR4(S, b, c) is the agreement region of the set of functions230

of complexity at most c that make at most b mistakes on S. If there are no such functions, then231

OPTR4(S, b, c) is undefined.232

Theorem 3.5. For any RRR learner L′, we have R4
L′(S, b, C(f∗)) ⊆ OPTR4(S, b, C(f∗)). Moreover,233

there exists an RRR learner L such that for any dataset S labeled by (unknown) target function f∗,234

we have R4
L(S, b, C(f∗)) = OPTR4(S, b, C(f∗)).235

Proof. For the first direction, consider x /∈ OPTR4(S, b, C(f∗)). By definition, there is some h236

with C(h) ≤ C(f∗) that makes at most b mistakes on S and has h(x) ̸= f∗(x). Now, consider237

an adversary that adds no poisoned points, so that S′ = S. In this case, such h makes at most238

b mistakes on S′, as well. Hence, by definition, chigh ≤ C(f∗) and so x /∈ R4
L(S, b, c). Hence,239

R4
L(S, b, c) ⊆ OPTR4(S, C(f∗), b). For the second direction, consider a learner L training set S′,240

finds the classifier hS′ of minimum complexity that makes at most b mistakes on S′ and then uses241

it on test point x. Specifically, it outputs (y, clow, chigh) where y = hS′(x), clow = C(hS′), and242

chigh = min{C(h) : h makes at most b mistakes on S′ and h(x) ̸= hS′(x)}. By construction, L243

satisfies Definition 2.1 and so is a RRR learner. Now, suppose indeed S′ ∈ Ab(S) for a true set S244

labeled by target function f∗. Then f∗ makes at most b mistakes on S′, so L will output clow ≤ C(f∗).245

Moreover, if x ∈ OPTR4(S, f∗, b), then any classifier h with h(x) ̸= f∗(x) either has complexity246

strictly greater than f∗ or makes more than b mistakes on S (and therefore more than b mistakes247

on S′). Therefore, L will output chigh > C(f∗) and have y = f∗(x). So, x ∈ R4
L(S, b, C(f∗)).248

Therefore, OPTR4(S, b, C(f∗)) ⊆ R4
L(S, b, C(f∗)).249

Remark 3.6. The adversary’s optimal strategy is to add no points, since the learner must consider250

all classifiers of a given complexity that make at most b mistakes on the training set, and adding new251

points can only shrink this set.252

4 Regularized Robustly Reliable Learners with Efficient Algorithms253

In this section, we present efficient algorithms for implementing regularized robustly reliable learners254

with optimal values of clow and chigh for a variety of complexity measures. We present additional255

examples in the Appendix.256

4.1 Number of Alternations257

We first consider the Number of Alternations complexity measure for data in R1, and also analyze258

the sample-complexity for having a large regularized robustly reliable region.259

Definition 4.1 (Number of Alterations). The number of alterations of a function f : R→ {−1,+1}260

is the number of times the function’s output changes between +1 and -1 as the input variable increases261

from negative to positive infinity.262

Number of Alterations is a data-independent measure. A higher number of alterations implies a more263

intricate decision boundary, as the classifier switches between classes more frequently. For instance,264

if f is the sign of a degree d polynomial, then it can have at most d alternations.265
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Example 4.2 (Number of Alterations). Consider the dataset in Figure 2. Assuming there is no266

adversary, it is impossible to classify these points with any function that has less than 7 alterations.267

Suppose we now receive the test point shown in Figure 3. Given a corruption budget b, the learner268

will output a predicted label and interval (clow, chigh) as shown in Table 1.269

Table 1: Guarantee for the test point in Figure 3 and the complexity measure Number of Alterations.

Mistake Budget Label (clow, chigh)
b = 0 + [7, 9)
b = 1 + [5, 7)
b = 2 + [3, 5)
b = 3 + [2, 4)
b = 4 + [1, 3)
b = 5 + [1, 2)
b = 6 Any {1}
b = 7, 8 − [0, 1)

b = 9, 10, 11, 12, 13, 14, 15, 16 Any {1}

Figure 2: Number of Alterations Figure 3: Test point arrives

Definition 4.3 (Optimal Regularized Robustly Reliable Learner). We say a regularized robustly-270

reliable learner L is optimal if it outputs values clow and chigh that are respectively the lowest and271

highest possible values satisfying Definition 2.1.272

Theorem 4.4. For binary classification, an optimal regularized-robustly-reliable learner can be273

implemented efficiently for complexity measure Number of Alterations.274

Proof sketch. The high-level idea is to perform bi-directional Dynamic Programming on the training275

data. A left-to-right DP computes, for each point i and each j ≤ b, the minimum-complexity solution276

that makes j mistakes up to that point (that is, on points 0, 1, ..., i) and labels i as positive, as well as277

the minimum-complexity solution that makes j mistakes so far and labels i as negative. A right-to-left278

DP does the same but in right-to-left order. Then, when a test point x arrives, we can use the DP279

tables to compute the values y, clow, chigh in time O(b), without needing to re-train on the training280

data. In particular, we just need to consider all ways of partitioning the mistake-budget b into j281

mistakes on the left and b− j mistakes on the right, and then using the DP tables to select the best282

choice. The full proof is given in Appendix A.2.1.283

Remark 4.5. If instead of computing y, clow, chigh for a single value of b we wish to compute them284

for all b ∈ [0, bmax], the straightforward approach would take time O(b2max). However, we can also285

use an algorithm of Chi et al. [2022] for computing the (min,+)-convolution of monotone sequences286

to compute the entire set in time Õ((bmax + cmax)
1.5), where cmax is the largest value in the DP287

tables (See Theorem A.8 in the Appendix).288

We now analyze the sample complexity for having a large regularlized robustly-reliable region for289

this complexity measure when data is iid.290

Theorem 4.6. Suppose the Number of Alterations of the target function is c. For any ϵ, δ ∈ (0, 1), and291

any mistake budget b, if the size of the (clean) sample S ∼ Dm is at least Õ
(

(b+1)c
ϵ

)
, and as long292

as there is at least ϵ
2c probability mass to the left and right of each alternation of the target function,293

with probability at least 1 − δ, the optimal regularized robustly reliable region, OPTR4(S, c, b),294

contains at least a 1− ϵ probability mass of the distribution.295

Proof sketch. Consider 2c intervals I1, I2, ..., I2c, each of probability mass ϵ
2c to the left and right296

of each alternation. Without loss of generality, assume I1 is positive, I2 and I3 are negative, I4 and297

I5 are positive, etc., according to the target function f∗. A sample size of Õ( (b+1)c
ϵ ) is sufficient so298

that with high probability, S contains at least b+ 1 points in each of these intervals Ij . Assuming S299
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indeed contains such points, then any classifier that does not label at least one point in each interval300

correctly must have error strictly larger than b. This in turn implies that any classifier h with b or301

fewer mistakes on S must have an alternation from positive to negative within I1 ∪ I2, an alternation302

from negative to positive within I3 ∪ I4, etc. Therefore, if h has complexity c, it cannot have any303

alternations outside of
⋃

j Ij and indeed must label all of R−
⋃

j Ij in the same way as f∗. The full304

proof is given in Appendix A.2.2.305

4.2 Local Margin306

We now study a test-data-dependent measure.307

Definition 4.7 (Local Margin). Given a metric space (M, dM), for a classifier with a decision308

function h : X → Y , where X is the input space and Y is the output space, the local margin of the309

classifier with respect to a point x∗ ∈ X is the distance between x∗ and the nearest point x′ ∈ X310

such that h(x′) ̸= h(x∗).311

r(h, x∗) = inf
{x′∈X :h(x′ )̸=h(x∗)}

d(x∗, x′)

We define the local margin complexity measure C(h, x∗) as 1/r(h, x∗).312

A larger local margin implies that the given point is well separated from the decision boundary. For313

this complexity measure, we have the convenient property that for any training set S′, test point xtest,314

label y, and mistake budget b, the minimum complexity clow,y of a classifier h that makes at most b315

mistakes on S′ and gives xtest a label of y is given by 1/r where r is the distance between xtest and316

the (b+ 1)st closest example in S′ of label different from y. In particular, r cannot be larger than317

this value since at least one of these b+ 1 points must be correctly labeled by h and therefore it is a318

legitimate choice for x′ in Definition 4.7. Moreover, it is realized by the classifier that labels the open319

ball around xtest of radius r as y, and then outside of this ball is consistent with the labels of S′. This320

allows us to show:321

Theorem 4.8. For any multi-class classification task, an optimal regularized robustly reliable learner322

can be implemented efficiently for complexity measure Local Margin.323

Proof sketch. Given training data S′ and test point xtest, we compute the distance of all training324

points from xtest. Then, for each class label yi, we compute the radius ri of the largest open ball325

we can draw around the test point that contains at most b training points with label different from326

yi. The complexity of the least complex classifier that labels the test point as yi is then cyi = 1
ri

.327

We repeat this for all classes. We then define the predicted label y = argminyi
{cyi
}, clow = cy , and328

chigh = minyi ̸=y{cyi
}. An example and the full proof is given in Appendix A.3.329

4.3 Global Margin330

Lastly, we study a test-and-training-data-dependent measure.331

Definition 4.9 (Global Margin). Given a metric space (M, dM), a set S̃ = {(x, y)|x ∈ X , y ∈ Y},332

and a classifier h : X → Y that realizes S̃, we define the global margin of h with respect to S̃ as333

r(h, S̃) = min
xi∈S̃

inf
{x′∈X :h(x′ )̸=h(xi)}

d(xi, x
′).

We define the global margin complexity measure C(h, S̃) as 1/r(h, S̃). Furthermore, given a training334

set S′, test point xtest and corruption budget b, we define C(h, S′, b, xtest) as 1/r where r is the335

largest value of r(h, S ∪{xtest}) over all S such that S′ ∈ Ab(S); that is, it is an “optimistic” value336

over possible original training sets S.337

Intuitively, Global Margin says that the most natural label for a test point xtest is the label such that338

the resulting data is separable by the largest margin. Note that in the presence of an adversary with339

poisoning budget b, the set S̃ in the above definition corresponds to the test point along with the340

training set S′, excluding the b points of S′ of smallest margin.341

Theorem 4.10. On a binary classification task, an optimal regularized robustly reliable learner can342

be implemented efficiently for complexity measure Global Margin.343
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Proof sketch. For simplicity, suppose that instead of being given a mistake-budget b and needing to344

compute clow and chigh, we are given a complexity c with associated margin r = 1/c and need to345

compute the minimum number of mistakes to label the test point as positive or negative subject to346

this margin. Now, construct a graph on the training data where we connect two examples xi, xj if347

their labels are different and d(xi, xj) < 2r. Note that the minimum vertex cover in this graph gives348

the smallest number of examples that would need to be removed to make the data consistent with a349

classifier of complexity c. In particular, the nearest-neighbor classifier with respect to the examples350

remaining (after the vertex cover has been removed) has margin at least r, while if a set of examples351

is removed that is not a vertex cover, then the margin of any consistent classifier is strictly less than r352

by triangle inequality. While Minimum Vertex Cover is NP-hard in general, it is efficiently solvable353

in bipartite graphs via maximum matching, and our graph is bipartite. Now, given our test point xtest,354

we can consider the effect of giving it each possible label. If we label xtest as positive, then we would355

want to solve for the minimum vertex-cover subject to that cover containing all negative examples356

within distance 2r of xtest; if we label xtest as negative, then we would solve for the minimum357

vertex cover subject to it containing all positive examples within distance 2r of xtest. We can do358

this by re-solving the maximum matching problem from scratch in the graph in which the associated359

neighbors of xtest have been removed, or we can do this more efficiently (especially when xtest does360

not have many neighbors) by using dynamic algorithms for maximum matching. Such algorithms are361

able to recompute a maximum matching under small changes to a given graph more quickly than362

doing so from scratch. Finally, to address the case that we are given the corruption budget b rather363

than the complexity level c, we pre-compute the graphs for all relevant complexity levels and then364

perform binary search on c at test time. Appendix A.4.1 describes some helpful properties of global365

margin and A.4.2 contains the proof.366

The above argument is specific to binary classification. We show below that for three or more classes,367

achieving an optimal regularized robustly reliable learner is NP-hard.368

Theorem 4.11. For multi-class classification with k ≥ 3 classes, achieving an optimal regularized369

robustly reliable learner for Global Margin complexity is NP-hard.370

Proof sketch. We reduce from the problem of Vertex Cover in k-regular graphs, which is NP-hard371

for k ≥ 3. Given a k-regular graph, we first give it a k-coloring, which can be done in polynomial372

time (ignoring the trivial case of the (k + 1)-clique). We then embed the graph in Rm such that any373

two vertices v1, v2 that were adjacent in the given graph have distance less than 2r, and any two374

vertices that were not adjacent have distance greater than 2r, for some value r. The points in this375

embedding are given labels corresponding to their colors in the k-coloring, ensuring that all pairs376

that were connected in the input graph have different labels. This then gives us that determining the377

minimum value of b for this radius r is at least as hard as determining the size of the minimum vertex378

cover in the original graph. The full proof is given in Appendix A.4.3.379

Other complexity measures In the appendix, we give regularized robustly reliable learners for380

other complexity measures including interval probability mass and polynomial degree. We also define381

the notion of an Empirical Complexity Minimization oracle, analogous to ERM, that computes the382

general type of optimization needed for achieving an optimal regularized robustly-reliable learner.383

5 Discussion and Conclusion384

In this work, we define and analyze the notion of a regularized robustly-reliable learner that can385

provide meaningful reliability guarantees even for highly-flexible hypothesis classes. We give a386

generic pointwise-optimal algorithm, proving that it provides the largest possible reliability region387

simultaneously for all possible target complexity levels. We analyze the probability mass of this388

region under iid data for the Number of Alternations complexity measure, giving a bound on the389

number of samples sufficient for it to have large probability mass with high probability. We then390

give efficient optimal such learners for several natural complexity measures. In the Number of391

Alternations case, the algorithm uses bidirectional Dynamic Programming to provide its reliability392

guarantees quickly on new test points without needing to retrain. For Global Margin, we show a393

reduction to computing maximum matchings in a collection of bipartite graphs and utilize dynamic394

matching algorithms to produce outputs on test points more quickly than retraining from scratch.395

A limitation of our work is that in general these guarantees can be very expensive computationally.396

Nonetheless, we believe our formulation provides an interesting approach to giving meaningful397

per-instance guarantees for flexible hypothesis families in the face of data-poisoning attacks.398
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A Empirical Complexity Minimization476

Definition A.1 (Empirical Complexity Minimization). Given a complexity measure C, a hypothesis477

class H, a training set S′ = {(x1, y1), (x2, y2), ..., (xn, yn)}, and a mistake budget b, let Hb,S′ be478

the set of hypotheses that make at most b mistakes on S′:479

Hb,S′ = {h |
n∑

i=1

1[h(xi) ̸= yi] ≤ b}.

For a data-independent complexity measure, we define the ECM learning rule to choose480

hECM = arg min
h∈Hb,S′

C(h)

For training-data-dependent complexity measures, we replace C(h) with the minimum value of481

C(h, S̃) over all candidates S̃ for the original training set S; that is, min{C(h, S̃) : S′ ∈ Ab(S̃) and482

h ∈ H0,S̃}. When the complexity measure is test-data-dependent (or training-and-test dependent),483

we define the ECM learning rule to output just the complexity value, rather than a hypothesis.484

min
h∈Hb,S′ :h(xtest)=ytest

C(h, xtest) or min
h∈Hb,S′ :h(xtest)=ytest

C(h, S′, b, xtest),

where C(h, S′, b, xtest) is the minimum value of C(h, S̃, xtest) over all candidates S̃ for the original485

training set S.486

Note that for test-data-dependent complexity measures, an ECM oracle only outputs a complexity487

value, rather than a classifier, and so would be called for each possible label ytest, with the algorithm488

choosing the label of lowest complexity. The reason for this is that typically for such measures, the full489

classifier itself is quite complicated (e.g., a full Voronoi diagram for nearest-neighbor classification),490

whereas all we really need is a prediction on xtest.491

A.1 Other Examples of Complexity Measures492

Definition A.2 (Interval Score). Let {X1, . . . , Xn} be a set of n independent and identically dis-493

tributed real-valued random variables drawn from a distribution D with cumulative distribution494

function F (t). The empirical distribution function F̂n(t) associated with this sample is defined as:495

F̂n(t) =
1

n

n∑
i=1

1{Xi≤t},

where 1{Xi≤t} denotes the indicator function that is 1 if Xi ≤ t and 0 otherwise. Consider m496

disjoint intervals Ii = (si, ei] on the real line, where 1 ≤ i ≤ m. Each interval Ii is associated497

with a sequence of sample points sharing a common label. The empirical probability mass within an498

interval Ii is given by:499

F̂n(ei)− F̂n(si) =
1

n

n∑
j=1

1{si<Xj≤ei}.

We define the interval score for Ii as:500

Score(Ii) =
n

1 +
∑n

j=1 1{si<Xj≤ei}
=

n

n ·
(
F̂n(ei)− F̂n(si) + 1

) =
1

F̂n(ei)− F̂n(si) + 1
.

(1)
501

In the definition of the score, we add one to the denominator to make sure that every Ii has a non-zero502

count. This score reflects the inverse of the empirical probability mass contained within the interval503

Ii, and is a training-data-dependent measure. A lower mass results in a higher score, indicating504

that the interval captures a more “complex" region of the sample space. We then define the Interval505

Probability Mass complexity using Definition A.2 above.506
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Definition A.3 (Interval Probability Mass). The Interval Probability Mass complexity of the set of507

intervals {I1, . . . , Im} is then defined as the aggregate of the interval scores:508

Complexity(S) =
m∑
i=1

Score(Ii) =
m∑
i=1

1

F̂n(ei)− F̂n(si) + 1
. (2)

509

Definition A.3 is a training data dependent measure that sums the contributions from all intervals,510

providing a scalar quantity that quantifies the distribution of the sample points across the intervals. A511

higher complexity suggests that the sample is dispersed across many low-mass intervals.512

Definition A.4 (Degree of Polynomial). Let f(x) = sign[p(x)], where f : Rn → {−1,+1} is513

defined by a polynomial function p(x1, x2, . . . , xn) over the input space X ⊆ Rn, and the function514

value changes between +1 and −1 based on the sign of p(x).515

p(x) =
∑

α1,α2,...,αn

cα1,α2,...,αn
xα1
1 xα2

2 . . . xαn
n ,

where α1, α2, . . . , αn ≥ 0, and cα1,α2,...,αn
∈ R are the polynomial coefficients. The degree of516

the polynomial is defined as the maximum sum of exponents α1 + α2 + · · · + αn for which the517

corresponding coefficient is non-zero.518

Degree of Polynomial is a data independent measure. A higher degree indicates more intricate519

changes in the sign of f(x) across the input space, corresponding to a more complex and flexible520

boundary. Note that in R1, the Number of Alternations is a lower bound on the Degree of Polynomial.521

In Sections A.6 and A.5 we give optimal regularized robustly reliable learners for the Interval522

Probability Mass and Degree of Polynomial complexity measures, respectively.523

Figure 4: Illustration of a Function’s Behavior on the Left and Right Sides of a Test Point: Leftmost:
The function labels both the leftmost and rightmost neighbors of the test point as positive. Labeling
the test point as positive does not increase complexity, but labeling it as negative increases the
complexity by two. Middle Figures: The function labels the left neighbor as positive (or negative)
and the right neighbor as negative (or positive). The complexity is the sum of the complexities on
each side of the test point plus one, since the function needs to alter in order to connect the left side to
the right side, regardless of the test point’s label. Rightmost: The function labels both neighbors as
negative. Labeling the test point as negative does not increase complexity, but labeling it as positive
increases the complexity by two.

A.2 Number of Alterations524

A.2.1 Proof of theorem 4.4525

Theorem 4.4. For binary classification, an optimal regularized-robustly-reliable learner (Definition526

4.3) can be implemented efficiently for complexity measure Number of Alterations (Definition 4.1).527

Proof. Algorithm 2 is the solution. We now prove its correctness. First, we define the DPs that store528

the scores used, then we use the DP table to compute the complexity level when the test point and529

mistake budget arrive. We define DP+, DP−, DP ′+, DP ′− each of which are 2D tables of size530

n× (n+ 1). The rows of the tables denote the position of the current data point, namely for DP+531

and DP−, we denote the rightmost point by index 0, and the leftmost point by index n− 1. As for532

DP ′+ and DP ′−, the rows of the tables denote the position of the current data point in the reverse533

sequence, i.e., we denote the rightmost point by index n− 1, and the leftmost point by index 0. The534

columns of the tables denote the number of mistakes made up to that point which can vary between 0535

to the position of the current point+1. We provide the proof of correctness for DP+, and it is similar536

for the other three.537

Consider i = 0 (the first point in the sequence):538
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• If a[0] = ’+’:539

– We initialize DP+[0][0] = 0 because the complexity is 0 with no mistakes made, and540

the rightmost point is positive.541

– We set DP+[0][1] =∞ since no mistakes can be made yet.542

• If a[0] = ’-’:543

– We initialize DP+[0][0] =∞ because it is impossible to have the rightmost point be544

positive without making a mistake.545

– We set DP+[0][1] = 0 because removing the negative point gives a valid sequence546

with complexity 0.547

The base case correctly handles both possible labels of the first point, ensuring the initialization aligns548

with the definition of DP+.549

Induction Hypothesis: Assume that for all i′ < i and all j, the table entries DP+[i
′][j] correctly550

compute the minimum complexity level such that the number of mistakes up to position i′ is j and551

the rightmost existing point in the sequence is positive.552

Inductive Step: We need to show that DP+[i][j] is correctly computed for position i.553

• Case 1: a[i] = ’+’554

– We have three possible scenarios:555

1. Keep the point a[i] without making a mistake: This scenario corresponds to556

DP+[i− 1][j].557

2. Remove a[i] and use j − 1 mistakes if the leftmost point is positive: This scenario558

corresponds to DP+[i− 1][j − 1].559

3. Switch the rightmost point from − to +, which adds one to the complexity due560

to the Alterations: This scenario corresponds to DP−[i− 1][j] + 1.561

Thus, the recursive relation is:562

DP+[i][j] = min(DP+[i− 1][j], DP+[i− 1][j − 1], DP−[i− 1][j] + 1)

This relation captures all the valid ways to ensure the rightmost point is positive while563

maintaining exactly j mistakes.564

• Case 2: a[i] = ’-’565

– To maintain the rightmost point as positive, we must remove a[i], which requires using566

one of the allowed mistakes:567

DP+[i][j] = DP+[i− 1][j − 1]

This equation reflects the necessity to remove a negative point to maintain a valid568

sequence with a positive rightmost point.569

Since the recursive relation properly handles both cases for the current point i based on its label, and570

the inductive hypothesis ensures correctness for all prior points, the table entry DP+[i][j] is correctly571

computed.572

Computing the test label efficiently: We now use the DP tables to obtain the test label. Note that573

our approach does not require re-training to compute the test label efficiently.574

Once we receive the test point’s position along with the adversary’s budget, b, we compute the exact575

minimum complexity needed to label it point as positive and negative. We denote the test point’s576

position by test_pos, there are four different possibilities for how a function could behave on the left577

side and the right side of the test point. See figure 4.578

Given b, we iterate over all possible divisions of mistake budget between the left side and the right579

side of the test point in each of these four formations. Define the minimum complexity to label580

the test point as positive, c+, and the minimum complexity to label the test point as negative, c−.581

Then, clow = min{c+, c−}, and chigh = max{c+, c−}. We output ytest = argmin
+,−

{c+, c−}, along582

with clow, chigh.583
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Remark A.5. It suffices to run the test prediction with the entire mistake budget, b, since with more584

deletions the complexity never increases. We use this fact to fill our DP tables as well as do test time585

computations more efficiently.586

Remark A.6. Theorem 4.4 can be generalized to classification tasks with more than two classes.587

Definition A.7 ((min,+)-Convolution). Given two sequences a = (a[i])n−1
i=0 and b = (b[i])n−1

i=0 , the588

(min,+)-convolution of a and b is a sequence c = (c[i])n−1
i=0 , where589

c[k] = min
i=0,...,k

{a[i] + b[k − i]}, for k = 0, . . . , n− 1.

590

Theorem A.8. Let a = (a[i])n−1
i=0 and b = (b[i])n−1

i=0 be two monotonically decreasing sequences of591

nonnegative integers, where all entries are bounded by O(n). The (min,+)-convolution of a and b592

can be computed in Õ(n1.5) time by reducing the problem to the case of monotonically increasing593

sequences, which can be solved using the algorithm presented in Theorem 1.2 of Chi et al. [2022].594

Proof. The reduction that transforms monotonically decreasing sequences into monotonically increas-595

ing sequences is standard; we provide it here for completeness. This reduction allows the application596

of the efficient algorithm from Chi et al. [2022].597

Given the input sequences a = (a[i])n−1
i=0 and b = (b[i])n−1

i=0 , we first reverse them to obtain:598

areverse = (a[n− 1], a[n− 2], . . . , a[0]), breverse = (b[n− 1], b[n− 2], . . . , b[0]).

The reversed sequences are now monotonically increasing. We then append n− 1 infinities to both599

sequences, resulting in:600

a′ = [areverse,∞,∞, . . . ,∞], b′ = [breverse,∞,∞, . . . ,∞].

These transformation steps take O(n) time. Now, we can apply the algorithm from Chi et al. [2022],601

which computes the (min,+)-convolution of the monotonically increasing sequences in Õ(n1.5)602

time. Let the result be the sequence c′:603

c′k = min
0≤i≤k

(a′i + b′k−i), for k = 0, . . . , 2n− 2.

We claim that removing the first n elements of c′ and reversing the remaining sequence yields the604

desired convolution of the original sequences. Specifically:605

• The first n elements of c′ represent cases with an excessive mistake budget and should be606

discarded. For example, c′[0] corresponds to a budget of 2n, c′[1] to 2n − 1, and so on,607

down to c′[n− 1], which corresponds to n+ 1.608

• For indices k ≥ n, the infinite values in the padded sequences force convolution contribu-609

tions from lower indices to be ignored, ensuring correctness.610

Thus, extracting the last n elements from c′ and reversing their order reconstructs the desired611

convolution of the original decreasing sequences, which completes the proof.612

A.2.2 Proof of theorem 4.6613

Theorem 4.6. Suppose the Number of Alterations (Definition 4.1) of the target function is c.614

For any ϵ, δ ∈ (0, 1), and any mistake budget b, if the size of the (clean) sample S ∼ Dm is at615

least Õ
(

(b+1)c
ϵ

)
, and as long as there is at least ϵ

2c probability mass to the left and right of each616

alternation of the target function, with probability at least 1 − δ, the optimal regularized robustly617

reliable region, OPTR4(S, c, b), contains at least a 1− ϵ probability mass of the distribution.618

Proof. We want to make sure with probability at least 1− δ, the optimal regularized robustly reliable619

region, OPTR4(S, c, b), contains at least 1− ϵ probability mass. Define 2c intervals I1, I2, . . . , I2c,620

each of probability mass ϵ
2c to the left and right of each alternation of the target function f∗. Without621

loss of generality, assume I1 is positive, I2 and I3 are negative, I4 and I5 are positive, etc., according622
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Algorithm 2 DP Score of Number of Alterations (Definition 4.1)
Input: a: Train set
Output: DP+, DP−, DP ′

+, DP ′
−

Function DpScore(a, b):
n← length(a) a_reversed← reverse(a)
for i← 0 to n do

for k ← 0 to n− 1 do
DP+[i][k], DP−[i][k], DP ′

+[i][k], DP ′
−[i][k]←∞

if a[0] =′+′ then
DP+[0][0]← 0
DP−[0][1]← 0

else
DP+[0][1]← 0
DP−[0][0]← 0

if a_reversed[0] =′+′ then
DP ′

+[0][0]← 0
DP ′

−[0][1]← 0
else

DP ′
+[0][1]← 0

DP ′
−[0][0]← 0

for i← 1 to n− 1 do
for j ← 0 to i+ 1 do

if a[i] =′+′ then
DP+[i][j]← min(DP+[i− 1][j], DP+[i− 1][j − 1], DP−[i− 1][j] + 1)
DP−[i][j]← DP−[i− 1][j − 1]

else if a[i] =′-′ then
DP−[i][j]← min(DP+[i− 1][j], DP+[i− 1][j − 1], DP+[i− 1][j] + 1)
DP+[i][j]← DP+[i− 1][j − 1]

if a′[i] =′+′ then
DP ′

+[i][j]← min(DP ′
+[i− 1][j], DP ′

+[i− 1][j − 1], DP ′
−[i− 1][j] + 1)

DP ′
−[i][j]← DP ′

−[i− 1][j − 1]

else if a′[i] =′-′ then
DP ′

−[i][j]← min(DP ′
+[i− 1][j], DP ′

+[i− 1][j − 1], DP ′
+[i− 1][j] + 1)

DP ′
+[i][j]← DP ′

+[i− 1][j − 1]

return DP+, DP−, DP ′
+, DP ′

−

to f∗. We will show that a sample size of Õ( (b+1)c
ϵ ) is sufficient so that with high probability, S623

contains at least b+ 1 points in each of these intervals Ij . Assuming S indeed contains such points,624

then any classifier that does not label at least one point in each interval correctly must have error625

strictly larger than b. This in turn implies that any classifier h with b or fewer mistakes on S must626

have an alternation from positive to negative within I1 ∪ I2, an alternation from negative to positive627

within I3 ∪ I4, etc. Therefore, if h has complexity c, it cannot have any alternations outside of
⋃

j Ij628

and indeed must label all of R −
⋃

j Ij in the same way as f∗. So, all that remains is to argue the629

sample size bound.630

We will use concentration inequalities to derive a bound on the probability that less than b+ 1 points631

from the sample fall into any of the 2c intervals. Let Xi be an indicator random variable such that:632

Xi =

{
1, if the i-th sample point falls into interval Ij ,
0, otherwise.

Thus, the sum
∑m

i=1 Xi represents the number of sample points in S that fall into interval Ij .633

The expected number of points in Ij , denoted as µ, is given by:634
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µ = E

[
m∑
i=1

Xi

]
= m · ϵ

2c
.

We are interested in the probability that less than or equal to b + 1 points fall into any of the 2c635

intervals. We use the union bound to ensure that this probability holds across all intervals. That is we636

will show637

P

(
∃j such that

m∑
i=1

Xi ≤ b

)
≤ δ.

To do this, we will prove for a single interval Ij :638

P

(
m∑
i=1

Xi ≤ b

)
≤ δ

2c
.

Next, we apply Chernoff bounds to control the probability that fewer than b+ 1 points fall into any639

interval. We are interested in the lower tail of the distribution, and Chernoff’s inequality gives us the640

following bound:641

P

(
m∑
i=1

Xi ≤
µ

2

)
≤ e−

µ
8 .

To ensure that this probability is smaller than δ
2c , it suffices to have642

µ ≥ 8 ln

(
2c

δ

)
.

We also need to ensure that the expected number of points in any interval is sufficiently large to643

account for the threshold b+ 1. Specifically, we need:644

µ ≥ 2(b+ 1).

Combining both conditions, we require:645

µ ≥ max

{
2(b+ 1), 8 ln

(
2c

δ

)}
.

646

m · ϵ

2c
≥ 2(b+ 1) + 8 ln

(
2c

δ

)
.

647

m ≥
2c
(
2(b+ 1) + 8 ln

(
2c
δ

))
ϵ

.

Thus, the sample complexity m is bounded by:648

m = Õ

(
(b+ 1)c

ϵ

)
,

Which ensures with high probability OPTR4(S, c, b) contains 1−ϵ of the probability mass. Therefore,649

any test point drawn from the same distribution as S, with probability 1− ϵ belongs to the optimal650

regularized robustly reliable region.651

A.3 Local Margin652

Example A.9 (Local Margin). Consider the training set S′ and test point xtest shown in Figure653

5. For mistake budget b = 1, the local margin of the (dark blue point in the center) test point654

(xtest, ytest) is 2 if it is labeled as positive, and 1 if it is labeled as negative. Table 6 shows the655

optimal intervals (clow, chigh) for all values of b.656
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Figure 5: Local Margin example
(xtest at center)

Mistake Budget Label (clow, chigh)
b = 0 Any (3, 3) = ∅

b = 1, 2, ..., 6 + [ 12 , 1)
b = 7, 8, ..., 10, 11 − [ 13 ,

1
2 )

b = 12, 13, ..., 16 − [ 14 ,
1
3 )

b = 17 Any ( 14 ,
1
4 ) = ∅

b = 18 Any (0, 0) = ∅

Figure 6: Guarantee for Figure 5.

As noted in Section 4.2, the lowest-complexity classifier with respect to (xtest, ytest) that makes at657

most b mistakes on S′ has local margin (Definition 4.7) equal to the distance of the test point to the658

(b+ 1)st closest point with a different label. In particular, the margin cannot be larger than this value659

since at least one of these b+ 1 points must be correctly labeled by the classifier and therefore it is660

a legitimate choice for x′ in Definition 4.7. Moreover, it is realized by the classifier that labels the661

open ball around xtest of radius this radius as ytest, and then outside of this ball is consistent with662

the labels of S′.663

For example, Table 6 shows the optimal values for the data in Figure 5. So long as the complexity664

of the target function belongs to the given interval and the adversary has corrupted at most b of the665

training data points, the given prediction must be correct.666

A.3.1 Proof of Theorem 4.8667

Theorem 4.8. For any multi-class classification task, an optimal regularized robustly reliable learner668

(Definition 4.3) can be implemented efficiently for complexity measure Local Margin (Definition 4.7).669

Proof. Given the training data S′, the test point xtest, and the mistake budget b, we are interested in670

the complexity of the classifiers with smallest local margin complexity with respect to the test point671

and its assigned labels, that make at most b mistakes on S′. First, we compute the distance of all672

training points from the yet unlabeled test point. For each class label, y1, y2, ..., ym create a key in a673

dictionary and store the distances of all training points (from the test point) with labels opposite to674

the keys’, and sort the values of every key. In a m-class classification, there are m keys and each key675

has at most n entries. The learner starts by labeling the test point as y1, and we check the y1 key in676

our dictionary. The b+ 1’th value is the radius of the largest open ball we can draw around the test677

point labeled as y1 such that it contains at most b points with labels different from y1. We denote this678

radius by r1. The complexity of the least complex classifier that labels the test point as y1 is cy1 = 1
r1

.679

We repeat this for all classes. Without loss of generality, assume cy1
≤ cy2

≤ · · · ≤ cyk
. We define:680

clow = cy1
, chigh = cy2

where clow represents the minimum complexity value among the different labelings of xtest, and chigh681

represents the second-lowest complexity value.682

Finally, the predicted label for xtest is determined as:683

y = argmin
y1,y2,...,ym

{cy1 , cy2 , . . . , cym}

That is, the label y corresponding to the smallest complexity value is chosen. The learner then outputs684

the triplet (y, clow, chigh), where y is the predicted label, clow is the lowest complexity value, and chigh685

is the second-lowest complexity value, providing a guarantee on the prediction.686

687
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A.4 Global Margin688

Before proving Theorem 4.10, we first describe some useful properties of the global margin.689

A.4.1 Understanding the Global Margin690

Figure 7 shows the margin on one dimensional data. Let S = {(x, y)|x ∈ X , y ∈ Y} denote the set.691

Given a metric space (M, dM), draw the largest open ball, B(x, rx) centered on every x ∈ S, such692

that for any (x, y) ∈ S, the ball B(x, rx) does not contain any point (x′, y′) from the set S with label693

y′ ̸= y. Each of these balls denotes the (local) margin of their center point. The global margin of the694

set S is the minimum over radius of such balls.695

rS = min
x∈S

rx

We now prove the “simplest" classifier, f∗, that realizes set S has global margin(Definition 4.9) of696
rS
2 . Moreover, the decision boundary of this classifier must be equidistant between the closest pairs697

of points with different labels. Hence, the decision boundary is placed midway between the closest698

points, and the global margin complexity of such function is 2
rS

.699

Figure 7: Global Margin on 1-dimensional data. Let rS be the radius of the smallest ball, and
correspond to the distance between the closest pair of points with different labels. Then, the function
with minimum global margin complexity with respect to this set is 2

rS
complex.

Theorem A.10. Let (M, dM) be a metric space, and S = {(xi, yi) | xi ∈ X , yi ∈ Y} be a finite700

set of labeled points, where X is the instance space and Y is the label space.701

1. For each xi ∈ X , let ri be the minimum distance from xi to any point with a different label.702

ri = inf
xj∈X
yj ̸=yi

dM(xi, xj),

2. Let rS denote the minimum distance between any two differently labeled points in S.703

rS = min
xi∈X

ri = min
(xi,yi), (xj ,yj)∈S

yi ̸=yj

dM(xi, xj),

Consider a classifier f∗ : X → Y that realizes S, and obtains minimum global margin complexity704

(Definition 4.9) with respect to the set S. Then the global margin complexity of f∗ is 2
rS

. Moreover, its705

decision boundary Bf∗ is placed equidistantly between the closest pairs of points in S with different706

labels.707

Proof. We first show that for any classifier f∗ that realizes S, the global margin r cannot exceed rS
2 .708

Let (xp, yp), (xq, yq) ∈ S be a pair of points such that: yp ̸= yq , and dM(xp, xq) = rS . Since rS is709

the minimum distance between any two differently labeled points in S, such a pair exists. Consider710

any classifier f∗ that correctly classifies S. The minimum distance from xp (or xq) to the decision711

boundary cannot exceed
rS
2

. Formally, since f∗ must assign different labels to xp and xq , there must712

exist a point xb ∈ Bf∗ such that:713

dM(xp, xb) + dM(xb, xq) = dM(xp, xq) = rS .

By the triangle inequality, and because xb lies between xp and xq , we have:714

dM(xp, xb) = dM(xb, xq) ≥ 0.
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Since dM(xp, xb) + dM(xb, xq) = rS , the maximal possible value for dM(xp, xb) is rS
2 . Therefore,715

the minimum distance from any point in S to the decision boundary Bf∗ satisfies:716

r ≤ rS
2
.

Now, we construct the classifier f∗ (which will just be the nearest-neighbor classifier) that realizes S717

with a global margin r = rS
2 .718

Let f∗ : X → Y for any x ∈ X assign:719

f∗(x) =

{
yi, if dM(x, xi) < dM(x, xj) for all xj ∈ S with yj ̸= yi,

yi or yj , if dM(x, xi) = dM(x, xj) for some xj ∈ S, yj ̸= yi.

This means, place the decision boundary Bf∗ equidistantly between all pairs (xp, yp), (xq, yq) ∈ S720

with yp ̸= yq and dM(xp, xq) = rS . Since f∗ assigns to each xi ∈ S its correct label yi, it correctly721

classifies S. We will now show that: rf∗ ≥ rS
2 . Assume, for contradiction, that the global margin722

rf∗ < rS
2 . Then there exists xi ∈ S and xb ∈ Bf∗ such that:723

dM(xi, xb) = r − ϵ <
rS
2
,

for some ϵ > 0. Since xb ∈ Bf∗ , there exists xj ∈ S with yj ̸= yi such that:724

dM(xi, xb) = dM(xj , xb).

Applying the triangle inequality:725

dM(xi, xj) ≤ dM(xi, xb) + dM(xb, xj) = 2dM(xi, xb) < rS .

Which contradicts the definition of rS as the minimum distance between differently labeled points in726

S. Therefore, our assumption is false, and we conclude that:727

rf∗ ≥ rS
2
.

Combining both directions we get728

rf∗ =
rS
2
.

729

Figure 8: Illustration of Global Margin with different labelings of the test point

A.4.2 Proof of Theorem 4.10730

Definition A.11 ((k, r)-Classification Graph). Given S = {(x, y)|x ∈ X , y ∈ Y}, where X denotes731

the instance space and Y = {1, 2, ..., k} the label space, we define the (k, r)-Classification Graph,732

Gr, as the graph produced by connecting every two points in S of different labels with distance less733

than r.734

Remark A.12. The Minimum Vertex Cover of Gr corresponds to the smallest number of points that735

can be removed from S to make the data consistent with a classifier of global margin complexity 2
r .736
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Using the remark above, we now prove Theorem 4.10.737

Theorem 4.10. On a binary classification task, an optimal regularized robustly reliable learner738

(Definition 4.3) can be implemented efficiently for Global Margin complexity (Definition 4.9).739

Proof. Algorithm 4 is the solution. We first compute the distance between every pair of training740

points, S′, with opposite labels. LetR = {0, r0, r1, ..., rp} denote the set of aforementioned distances741

with an added zero. Without loss of generality, suppose 0 ≤ r0 ≤ r1, ... ≤ rp. For the case of binary742

classification, the (2, r)-classification graph, Gr, is bipartite. We construct each (2, r)-classification743

graph of the set {Gr(V +, V −, Er)}r∈R by putting every positive training point in V +, every negative744

training point in V −, and connecting every two training points of opposite labels with distances745

less than r by an edge. Since these graphs are bipartite, their Minimum Vertex Cover can be found746

efficiently by computing a Maximum Matching [Kőnig, 1950]. Notice that by increasing the radius,747

the Maximum Matching of classification graphs in the set only gets larger. Note that there is no748

edge in G0; hence the Matching is zero. We continue with computing the Maximum Matching of749

the classification graph with respect to the smallest radius, Gr0 , which corresponds to the largest750

global margin complexity value. We continue to compute {Gri}ri∈R in ascending order of i, and751

we stop as soon as we reach p′ ∈ [0, p] such that the Maximum Matching of Grp′ is greater than752

b, the mistake budget. Next, when the test point xtest arrives, the learner begins by assigning it a753

negative label. We compute the distance of the test point, xtest from every positive training point.754

We run a binary search on the possible values of radius, i.e., [0, p′]. At every level ri, we denote the755

set of training points labeled as positive with distance less than ri+1 from xtest by V̄ +
test. We denote756

the cardinality of V̄ +
test by δtest, which is indeed the degree of xtest at the current complexity level.757

If δtest exceeds our mistake budget, b, we break and move to a smaller radius (higher complexity).758

Otherwise, we add δtest copies of the test point and connect each of them to a distinct point in759

V̄ +
test. We denote the set of δtest newly added edges by Ētest. We have constructed a new graph760

Gtest = Gri(V +, V −∪{xtesti}i∈[1,δtest], Eri ∪ Ētest), which ensures all the points adjacent to xtest761

are contained in the Minimum Vertex Cover. We can compute the the Maximum Matching of Gtest in762

time O(δtest.(δtest + |E|)) by updating the Maximum Matching of Gri via computing at most δtest763

augmenting paths. Alternatively we can compute the Maximum Matching of Gri from scratch in764

time O((δtest + |E|)1+o(1)) using the fast maximum matching algorithm of Chen et al. [2022]. If765

the Maximum Matching at the current complexity level exceeds the poisoning budget, b, we move766

to a smaller radius (higher complexity), and if it is less than or equal to our mistake budget, b, we767

search to see if the condition still holds for a larger radius. We accordingly use the corresponding768

pre-computed representation graphs of the new complexity level. We do the same thing for the test769

point labeled as positive. Finally, clow = min{ 2
r+max

, 2
r−max
}, and chigh = max{ 2

r+max
, 2
r−max
}. We output770

ytest = argmin
+,−

{ 2
r+max

, 2
r−max
}, along with clow, chigh.771

Remark A.13. The running time for training-time pre-processing has two main components. The772

first is construction of the classification graphs. This involves computing all pairwise distances773

between training points of opposite labels and sorting them; each classification graph Gr is just a774

prefix in this list. This portion takes time O(n2 log n). The second is computing maximum matchings775

in each. We can do this from scratch for each graph (Algorithm 3). Alternatively, we can scan the776

edge list in increasing order, and for each edge insertion just run a single augmenting path (since777

the maximum matching size can increase by at most 1 per edge insertion). This gives a total cost778

of at most O(m2), where m is the number of edges in the graph at the time that the budget b is first779

exceeded. The running time for test-time prediction is given above, and involves computing at most780

δtest augmenting paths per graph in the binary search.781

Remark A.14. The proposed approach is especially fast for small values of δtest, and we can make782

it faster for large values of δtest, as well. When δtest is large, one can instead remove V̄ +
test vertices783

from the original graph, Gri , and re-compute the matching by iteratively finding augmenting paths.784

We expect the matching of the remaining graph to not exceed b− δtest, and if it does at any step of785

finding augmenting paths, we can halt. So, the overall time is at most O((b− δtest).(δtest + |E|)).786

Alternatively, Bosek et al. [2014] proposed an efficient dynamic algorithm for updating the Maximum787

Matching of bipartite graphs that can be coupled with our setting and is particularly useful for denser788

classification graphs, running in time O((|V +|+ |V −|)3/2).789
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Algorithm 3 Global Margin (Definition 4.9) Learner Precomputing
Input: S : Train set, metricM, b: Mistake budget
for every (x, y), (x′, y′) ∈ S′ with y ̸= y′ do

Compute dM(x, x′)
end
Store the sorted distances and zero inRtrain = {0, r0, r1, . . . , rptrain

}
Initialize r ← 0, p′ ← ptrain
while r ≤ ptrain do

for each Gr(V +, V −, Er) where r ∈ Rtrain do
V + ← {x | (x, y) ∈ S, y = ‘+’}
V − ← {x | (x, y) ∈ S, y = ‘-’}
Er ← {e(u, v) | u ∈ V +, v ∈ V −, dM(u, v) < r}

end
Compute MaxMatch(Gr)

if MaxMatch(Gr) > b then
rp′ ← r − 1
break

end
r ← r + 1

end
Rtrain ← {0, r0, r1, . . . , rp′}

return Rtrain, {Gr(V +, V −, Er)}r∈Rtrain

A.4.3 Proof of Theorem 4.11790

Definition A.15 (K-Regular Graph). A graph is said to be K-regular if its every vertex has degree K.791

Theorem 4.11. For multi-class classification with k ≥ 3 classes, achieving an optimal regularized792

robustly reliable learner (Definition 4.3) for Global Margin complexity (Definition 4.9) is NP-hard,793

and can be done efficiently with access to ECM oracle (Definition A.1).794

Proof. We aim to show that finding the minimum VERTEX COVER of a (k, r)-representation graph795

G(r), for k ≥ 3 is NP-hard. It is known that finding the VERTEX COVER on cubic graphs is APX-796

Hard, Alimonti and Kann [2000]. Moreover, by Brooks’ theorem, Bona [2016], it is known that a797

3-regular graph that is neither complete nor an odd cycle has a chromatic number of 3, and moreover798

one can find a 3-coloring for such a graph in polynomial time. We now demonstrate that finding the799

minimum VERTEX COVER for any k-colored 3-regular graph, where the graph is neither complete800

nor an odd cycle, can be reduced in polynomial time to the problem of finding the minimum VERTEX801

COVER of a (k, r)-classification graph. This reduction is accomplished by embedding the vertices of802

the 3-regular graph into the edge space Rm, where m = |E|, the number of edges in the graph. For803

each vertex v ∈ V , we construct its embedding as follows: if edge ei is incident to vertex v, then804

the i’th dimension of v’s embedding is set to 1; otherwise, it is set to 0. Since the graph is 3-regular,805

each vertex embedding contains exactly three entries of 1, corresponding to the edges incident to806

that vertex. Finally, each vertex embedding is given a label corresponding to its color in the given807

k-coloring.808

The Hamming distance between two vertices in this embedding space encodes adjacency information.809

Specifically, if two vertices v1 and v2 are adjacent in the graph, their Hamming distance in the810

embedding space is 4; if they are not adjacent, their distance is 6. This embedding provides a direct811

correspondence between the adjacency relations in the original graph and the structure of the (k, r)-812

classification graph. Thus, any k-colored 3-regular graph can be reduced to a (k, r)-classification813

graph in polynomial time. Given that the VERTEX COVER problem is hard for k-regular graphs,814

it follows that finding the minimum VERTEX COVER in a (k, r)-classification graph is also hard.815

Therefore, implementing the learner L is NP-hard, completing the proof.816

With ECM Oracle (Definition A.1) Access: Let S′ represent the corrupted training set. To evaluate817

the test point xtest with label ytest, we proceed as follows. First, we augment S′ by adding b+1 copies818

of xtest each labeled as ytest = y1. This ensures that the mistake budget of the ECM algorithm is not819
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Algorithm 4 Global Margin (Definition 4.9) Learner
Input: xtest: Test point, S: Train set, b: Mistake budget, Rtrain: {0, r0, r1, . . . , rp′},

{Gr(V
+, V −, Er)}r∈Rtrain

Compute distances from xtest to positive training points.
Initialize low ← 0, high← |Rtrain| − 1, r+max, r

−
max ← None.

while low < high do
Set mid← ⌊(low + high)/2⌋

Set rmid ← Rtrain[mid]
Define V +

test ← {p | (p, y) ∈ S, y = ‘+’, dM(p, xtest) < rmid}
Compute δtest ← |V +

test|
if δtest > b then

Set high← mid and continue.
end
Create δtest copies of xtest, denoted as {xtest,i}i∈[δtest]

for i ∈ [δtest] do
Connect xtest,i to V +

test[i] in Grmid

end
Update Maximum Matching of Grmid

if MaxMatch(Grmid ) > b then
Set high← mid.

end
else

Set low ← mid+ 1
Update r−max ← Rtrain[mid− 1] if mid− 1 > 0, otherwise r−max ← minp∈V +

test
dM(p, xtest)

end
end
Repeat the above for the negative training points (V −

test, r
+
max)

return
(

2
r+max

, 2
r−max

)

depleted by the test point xtest, as the additional copies force the algorithm to allocate its mistake820

budget elsewhere.821

We then run the ECM algorithm on this modified dataset, and denote the complexity returned by822

the oracle as cy1 . Next, we repeat this procedure for the remaining possible labels y2, . . . , ym, each823

time augmenting the dataset with b+ 1 copies of xtest labeled according to yi. Let the corresponding824

complexities returned by the ECM oracle be denoted as cy2 , . . . , cyk
. Without loss of generality,825

assume cy1
≤ cy2

≤ · · · ≤ cyk
We define:826

clow = cy1 , chigh = cy2

where clow represents the minimum complexity value among the different labelings of xtest, and chigh827

represents the second-lowest complexity value.828

Finally, the predicted label for xtest is determined as:829

y = argmin
y1,y2,...,yk

{cy1 , cy2 , . . . , cyk
}

That is, the label y corresponding to the smallest complexity value is chosen. The learner then outputs830

the triplet (y, clow, chigh), where y is the predicted label, clow is the lowest complexity value, and chigh831

is the second-lowest complexity value, providing a guarantee on the prediction.832

833

Example A.16. We now aim to demonstrate why such a reduction to the edge space is necessary,834

and to clarify that not all 3-regular graphs, which are neither complete nor odd cycles, inherently835

belong to the class of (k, r)-Classification Graphs within their original metric space. Consider the836

well-known Petersen graph, which is a 3-regular and is neither complete nor an odd cycle; hence is837

3-colorable. While it satisfies the structural properties for 3-colorability, the graph does not behave838

as a 3-classification graph when embedded in R2. Specifically, the metric space properties are not839

satisfied.840
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Figure 9: Petersen Graph

For example, the vertices v6 and v10 are closer to each other than the vertices v6 and v9, yet vertices841

v6 and v10 are not connected in the original graph, violating the requirements of a classification842

graph in its natural embedding. This example highlights that the geometric constraints imposed843

by the original metric space are too restrictive for certain 3-regular graphs to be used directly as844

(k, r)-classification graphs. To resolve this issue, we embed the vertices of the Petersen graph into845

the edge space, Rm, where m = |E| is the number of edges in the graph.846

• v1 : [1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0],

• v2 : [0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0],

• v3 : [0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0],

• v4 : [0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0],

• v5 : [1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0],

• v6 : [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0],

• v7 : [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1],

• v8 : [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1],

• v9 : [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0],

• v10 : [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0].

847

This transformation ensures that the embeddings satisfy the metric space properties required for848

classification graphs since it preserves the required distance properties for classification: two849

adjacent vertices in the Petersen graph, such as v6 and v9, have a Hamming distance of 4, while850

non-adjacent vertices such as v6 and v10 have a distance of 6. By embedding the graph into the851

edge space, we transform it into a (k, r)-classification graph that respects the desired metric space852

properties.853

A.5 Degree of Polynomial854

Theorem A.17. On a binary classification task, an optimal regularized robustly reliable learner, L,855

(Definition 4.3) can be implemented efficiently using ECM oracle (Definition A.1) for complexity856

measure Degree of Polynomial (Definition A.4).857

Proof. Given a corrupted training set S′, and a mistake budget b, we first run the ECM algorithm858

on the training set S′, which outputs a classifier hS′ that minimizes the complexity while making at859

most b mistakes on S′. Let the complexity of hS′ be denoted by clow = C(hS′). The classifier hS′ is860

the minimum complexity classifier among all hypotheses that make no more than b mistakes on S′.861

Using the classifier hS′ , we label the test point xtest, i.e., y = hS′(xtest). We modify the training set862

by adding b+ 1 copies of the test point xtest, but with the label opposite to y, i.e., the added points863

have label ¬y. Let this modified set be denoted as S′′. The addition of b+ 1 copies of xtest ensures864

that any classifier produced by ECM will be forced to change the label of xtest if it is to remain within865

the mistake budget. We now run ECM on the modified training set S′′, which outputs a new classifier.866

The complexity of this new classifier is denoted by chigh. Since the classifier now labels xtest as867

¬y, the complexity chigh represents the minimum complexity required to label xtest differently from868

hS′(xtest). By construction, chigh must be greater than or equal to clow due to the added complexity of869

labeling the test point differently. Finally, we output the triple (y, clow, chigh) as our guarantee.870

871
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A.6 Interval Probability Mass872

Definition A.18 (Label Noise Biggio et al. [2011] Adversary). Label noise was formally introduced873

in Biggio et al. [2011]. Consider the set of original points S = {{(xi, yi)}ni=1|x ∈ X , y ∈ Y},874

where X denote the instance space and Y the label space. Concretely, given a mistake budget b, the875

label noise adversary is allowed to alter the labels of at most b points in the dataset S. That is, the876

Hamming distance between the original labels S and the modified labels S′, denoted by dH(S, S′),877

must satisfy the constraint:878

dH(S, S′) =

n∑
i=1

1(yi ̸= y′i | xi = x′
i) ≤ b.

Let A(S) denote the sample corrupted by adversary A. For a mistake budget b, let Ab be the set879

of adversaries with corruption budget b and Ab(S) = {S′ | d(S, S′) ≤ b} denote the possible880

corrupted training samples under an attack from an adversary in Ab. Intuitively, if the given sample881

is S′, we would like to give guarantees for learning when S′ ∈ Ab for some (realizable) un-corrupted882

sample S.883

Theorem A.19. For the binary classification task, an optimal regularized robustly reliable learner,884

L, (Definition 4.3) can be implemented efficiently for complexity measure Interval Probability Mass885

(Definition A.3) with the label noise adversary (Definition A.18).886

Proof. First, we define the DPs that store the scores used, then we use the DP table to887

compute the complexity level when the test point and mistake budget arrive. We define888

DP+, DP−, DP ′+, DP ′− each of which are 3D tables of size n × (n + 1) × n. The first di-889

mension denote the position of the current data point, namely for DP+ and DP−, we denote the890

rightmost point by index 0, and the leftmost point by index n− 1. As for DP ′+ and DP ′−, the first891

dimension denote the position of the current data point in the reverse sequence, i.e., we denote the892

rightmost point by index n− 1, and the leftmost point by index 0. The second dimension denote the893

number of mistakes made up to the current point, which can vary between 0 to the number of points894

so far. Lastly, the third dimension denote the starting point of the interval containing the current point,895

denoted by the first dimension. We provide the proof of correctness for DP+, and it is similar for896

the other three.897

Base Case Consider i = 0 (the first point in the sequence): Initialize the entire table to infinity.898

• If a[0] = ’+’:899

– We initialize DP+[0][0][0] =
n
2 because the complexity is n

2 with no mistakes made,900

and the rightmost point is positive.901

• If a[0] = ’-’:902

– We set DP+[0][1][0] =
n
2 , as we can use the mistake budget and flip the negative label903

to a positive.904

Inductive Hypothesis: Assume that for all positions up to i − 1, the table DP_+[i − 1][j][k]905

correctly stores the minimum complexity score for all possible configurations of mistakes and interval906

boundaries.907

Inductive Step: We will show that the table DP_+[i][j][k] correctly computes the minimum908

complexity score at position i, based on the following cases:909

• Case 1: a[i] = ’-’910

– if k = i − 1: DP_+ requires the i’th point to be a positive; thus, this point must be911

removed. We need to decrement the mistake count j of the i− 1’th point by one and912

use it to remove this point. Note that the i− 1 must be a negative point in order to have913

k = i− 1.914

DP_+[i][j][k] = min
k′,j′∈[0,j−1]

(DP_-[i− 1][j′][k′]) +
n

2
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– if k < i− 1: Then we flip the label of this point, and update the total score.915

DP_+[i][j][k] = min
j′∈[0,j−1]

DP_+[i− 1][j′][k]− n

i− k + 1
+

n

i− k + 2

• Case 2: a[i] = ’+’916

– if k = i− 1: The i− 1 must be a negative point in order to have k = i− 1.917

DP_+[i][j][k] = min
k′,j′∈[0,j]

(DP_-[i− 1][j′][k′]) +
n

2

– if k < i− 1: Then we update the total score.918

DP_+[i][j][k] = min
j′∈[0,j]

DP_+[i− 1][j′][k]− n

i− k + 1
+

n

i− k + 2

Thus, the DP algorithm correctly computes the complexity measure as defined, proving its correctness919

for DP_+.920

Computing the test label efficiently: We now use the DP tables to obtain the test label. Note that our921

approach does not require re-training to compute the test label efficiently. Once we receive the test922

point’s position along with adversary’s budget, b, we compute the exact minimum complexity needed923

to label it point as positive and negative. We denote the test point’s position by test_pos, there are924

four different formations for the label of test point’s right most and left most neighbor. Given b, we925

iterate over all possible divisions of mistake budget, as well as the position of the starting point of the926

previous intervals from the left and the right side of the test point in each of these four formations.927

Define the minimum complexity to label the test point as positive, c+ and the minimum complexity928

to label the test point as negative, c−. Then, clow = min{c+, c−}, and chigh = max{c+, c−}. We929

output y = argmin
+,−

{c+, c−}, along with clow, chigh.930

Remark A.20. Theorem A.19 can be generalized to classification tasks with more than two classes.931
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Algorithm 5 DP Score of Interval Probability Mass A.19 with Label Noise A.18
Input: a: Train set
Output: DP+, DP−, DP ′

+, DP ′
−

for i = 1 to n do
for j = 0 to i+ 2 do

for k = 0 to i+ 1 do
if a[i] is ‘+’ then

if k == i then
DP+[i][j][k]← mink′,j′∈[0,j](DP−[i− 1][j′][k′]) + n

2
DP−[i][j][k]← mink′,j′∈[0,j]−1(DP+[i− 1][j′][k′]) + n

2

else
DP+[i][j][k]← minj′∈[0,j] DP+[i− 1][j′][k]− n

i−k+1 + n
i−k+2

DP−[i][j][k]← minj′∈[0,j−1] DP−[i− 1][j′][k]− n
i−k+1 + n

i−k+2

end
end
if a[i] is ‘-’ then

if k == i then
DP+[i][j][k]← mink′,j′∈[0,j−1](DP−[i− 1][j′][k′]) + n

2
DP−[i][j][k]← mink′,j′∈[0,j](DP+[i− 1][j′][k′]) + n

2

else
DP+[i][j][k]← minj′∈[0,j−1] DP+[i− 1][j′][k]− n

i−k+1 + n
i−k+2

DP−[i][j][k]← minj′∈[0,j] DP−[i− 1][j′][k]− n
i−k+1 + n

i−k+2

end
end
if a_reversed[i] is ‘+’ then

if k == i then
DP ′

+[i][j][k]← mink′,j′∈[0,j](DP ′
−[i− 1][j′][k′]) + n

2
DP ′

−[i][j][k]← mink′,j′∈[0,j−1](DP ′
+[i− 1][j′][k′]) + n

2

else
DP ′

+[i][j][k]← minj′∈[0,j] DP ′
+[i− 1][j′][k]− n

i−k+1 + n
i−k+2

DP ′
−[i][j][k]← minj′∈[0,j−1] DP ′

−[i− 1][j′][k]− n
i−k+1 + n

i−k+2

end
end
if a_reversed[i] is ‘-’ then

if k == i then
DP ′

+[i][j][k]← mink′,j′∈[0,j−1](DP ′
−[i− 1][j′][k′]) + n

2
DP ′

−[i][j][k]← mink′,j′∈[0,j](DP ′
+[i− 1][j′][k′]) + n

2

else
DP ′

+[i][j][k]← minj′∈[0,j−1] DP ′
+[i− 1][j′][k]− n

i−k+1 + n
i−k+2

DP ′
−[i][j][k]← minj′∈[0,j] DP ′

−[i− 1][j′][k]− n
i−k+1 + n

i−k+2

end
else
end

end
end

end
return DP+, DP−, DP ′

+, DP ′
−
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NeurIPS Paper Checklist932

The checklist is designed to encourage best practices for responsible machine learning research,933

addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove934

the checklist: The papers not including the checklist will be desk rejected. The checklist should935

follow the references and follow the (optional) supplemental material. The checklist does NOT count936

towards the page limit.937

Please read the checklist guidelines carefully for information on how to answer these questions. For938

each question in the checklist:939

• You should answer [Yes] , [No] , or [NA] .940

• [NA] means either that the question is Not Applicable for that particular paper or the941

relevant information is Not Available.942

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).943

The checklist answers are an integral part of your paper submission. They are visible to the944

reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it945

(after eventual revisions) with the final version of your paper, and its final version will be published946

with the paper.947

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.948

While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a949

proper justification is given (e.g., "error bars are not reported because it would be too computationally950

expensive" or "we were unable to find the license for the dataset we used"). In general, answering951

"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we952

acknowledge that the true answer is often more nuanced, so please just use your best judgment and953

write a justification to elaborate. All supporting evidence can appear either in the main paper or the954

supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification955

please point to the section(s) where related material for the question can be found.956

IMPORTANT, please:957

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",958

• Keep the checklist subsection headings, questions/answers and guidelines below.959

• Do not modify the questions and only use the provided macros for your answers.960

1. Claims961

Question: Do the main claims made in the abstract and introduction accurately reflect the962

paper’s contributions and scope?963

Answer: [Yes]964

Justification: Proofs and definitions provided in the main paper and appendix.965

Guidelines:966

• The answer NA means that the abstract and introduction do not include the claims967

made in the paper.968

• The abstract and/or introduction should clearly state the claims made, including the969

contributions made in the paper and important assumptions and limitations. A No or970

NA answer to this question will not be perceived well by the reviewers.971

• The claims made should match theoretical and experimental results, and reflect how972

much the results can be expected to generalize to other settings.973

• It is fine to include aspirational goals as motivation as long as it is clear that these goals974

are not attained by the paper.975

2. Limitations976

Question: Does the paper discuss the limitations of the work performed by the authors?977

Answer: [Yes]978

Justification: In the discussion section.979
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Guidelines:980

• The answer NA means that the paper has no limitation while the answer No means that981

the paper has limitations, but those are not discussed in the paper.982

• The authors are encouraged to create a separate "Limitations" section in their paper.983

• The paper should point out any strong assumptions and how robust the results are to984

violations of these assumptions (e.g., independence assumptions, noiseless settings,985

model well-specification, asymptotic approximations only holding locally). The authors986

should reflect on how these assumptions might be violated in practice and what the987

implications would be.988

• The authors should reflect on the scope of the claims made, e.g., if the approach was989

only tested on a few datasets or with a few runs. In general, empirical results often990

depend on implicit assumptions, which should be articulated.991

• The authors should reflect on the factors that influence the performance of the approach.992

For example, a facial recognition algorithm may perform poorly when image resolution993

is low or images are taken in low lighting. Or a speech-to-text system might not be994

used reliably to provide closed captions for online lectures because it fails to handle995

technical jargon.996

• The authors should discuss the computational efficiency of the proposed algorithms997

and how they scale with dataset size.998

• If applicable, the authors should discuss possible limitations of their approach to999

address problems of privacy and fairness.1000

• While the authors might fear that complete honesty about limitations might be used by1001

reviewers as grounds for rejection, a worse outcome might be that reviewers discover1002

limitations that aren’t acknowledged in the paper. The authors should use their best1003

judgment and recognize that individual actions in favor of transparency play an impor-1004

tant role in developing norms that preserve the integrity of the community. Reviewers1005

will be specifically instructed to not penalize honesty concerning limitations.1006

3. Theory assumptions and proofs1007

Question: For each theoretical result, does the paper provide the full set of assumptions and1008

a complete (and correct) proof?1009

Answer: [Yes]1010

Justification: Every theorem statement is rigorously stated and is followed by a compelete1011

and correct proof.1012

Guidelines:1013

• The answer NA means that the paper does not include theoretical results.1014

• All the theorems, formulas, and proofs in the paper should be numbered and cross-1015

referenced.1016

• All assumptions should be clearly stated or referenced in the statement of any theorems.1017

• The proofs can either appear in the main paper or the supplemental material, but if1018

they appear in the supplemental material, the authors are encouraged to provide a short1019

proof sketch to provide intuition.1020

• Inversely, any informal proof provided in the core of the paper should be complemented1021

by formal proofs provided in appendix or supplemental material.1022

• Theorems and Lemmas that the proof relies upon should be properly referenced.1023

4. Experimental result reproducibility1024

Question: Does the paper fully disclose all the information needed to reproduce the main ex-1025

perimental results of the paper to the extent that it affects the main claims and/or conclusions1026

of the paper (regardless of whether the code and data are provided or not)?1027

Answer: [NA] .1028

Justification:1029

Guidelines:1030

• The answer NA means that the paper does not include experiments.1031

29



• If the paper includes experiments, a No answer to this question will not be perceived1032

well by the reviewers: Making the paper reproducible is important, regardless of1033

whether the code and data are provided or not.1034

• If the contribution is a dataset and/or model, the authors should describe the steps taken1035

to make their results reproducible or verifiable.1036

• Depending on the contribution, reproducibility can be accomplished in various ways.1037

For example, if the contribution is a novel architecture, describing the architecture fully1038

might suffice, or if the contribution is a specific model and empirical evaluation, it may1039

be necessary to either make it possible for others to replicate the model with the same1040

dataset, or provide access to the model. In general. releasing code and data is often1041

one good way to accomplish this, but reproducibility can also be provided via detailed1042

instructions for how to replicate the results, access to a hosted model (e.g., in the case1043

of a large language model), releasing of a model checkpoint, or other means that are1044

appropriate to the research performed.1045

• While NeurIPS does not require releasing code, the conference does require all submis-1046

sions to provide some reasonable avenue for reproducibility, which may depend on the1047

nature of the contribution. For example1048

(a) If the contribution is primarily a new algorithm, the paper should make it clear how1049

to reproduce that algorithm.1050

(b) If the contribution is primarily a new model architecture, the paper should describe1051

the architecture clearly and fully.1052

(c) If the contribution is a new model (e.g., a large language model), then there should1053

either be a way to access this model for reproducing the results or a way to reproduce1054

the model (e.g., with an open-source dataset or instructions for how to construct1055

the dataset).1056

(d) We recognize that reproducibility may be tricky in some cases, in which case1057

authors are welcome to describe the particular way they provide for reproducibility.1058

In the case of closed-source models, it may be that access to the model is limited in1059

some way (e.g., to registered users), but it should be possible for other researchers1060

to have some path to reproducing or verifying the results.1061

5. Open access to data and code1062

Question: Does the paper provide open access to the data and code, with sufficient instruc-1063

tions to faithfully reproduce the main experimental results, as described in supplemental1064

material?1065

Answer: [NA] .1066

Justification:1067

Guidelines:1068

• The answer NA means that paper does not include experiments requiring code.1069

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/1070

public/guides/CodeSubmissionPolicy) for more details.1071

• While we encourage the release of code and data, we understand that this might not be1072

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not1073

including code, unless this is central to the contribution (e.g., for a new open-source1074

benchmark).1075

• The instructions should contain the exact command and environment needed to run to1076

reproduce the results. See the NeurIPS code and data submission guidelines (https:1077

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.1078

• The authors should provide instructions on data access and preparation, including how1079

to access the raw data, preprocessed data, intermediate data, and generated data, etc.1080

• The authors should provide scripts to reproduce all experimental results for the new1081

proposed method and baselines. If only a subset of experiments are reproducible, they1082

should state which ones are omitted from the script and why.1083

• At submission time, to preserve anonymity, the authors should release anonymized1084

versions (if applicable).1085
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• Providing as much information as possible in supplemental material (appended to the1086

paper) is recommended, but including URLs to data and code is permitted.1087

6. Experimental setting/details1088

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-1089

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the1090

results?1091

Answer:[NA] .1092

Justification:1093

Guidelines:1094

• The answer NA means that the paper does not include experiments.1095

• The experimental setting should be presented in the core of the paper to a level of detail1096

that is necessary to appreciate the results and make sense of them.1097

• The full details can be provided either with the code, in appendix, or as supplemental1098

material.1099

7. Experiment statistical significance1100

Question: Does the paper report error bars suitably and correctly defined or other appropriate1101

information about the statistical significance of the experiments?1102

Answer:[NA] .1103

Justification:1104

Guidelines:1105

• The answer NA means that the paper does not include experiments.1106

• The authors should answer "Yes" if the results are accompanied by error bars, confi-1107

dence intervals, or statistical significance tests, at least for the experiments that support1108

the main claims of the paper.1109

• The factors of variability that the error bars are capturing should be clearly stated (for1110

example, train/test split, initialization, random drawing of some parameter, or overall1111

run with given experimental conditions).1112

• The method for calculating the error bars should be explained (closed form formula,1113

call to a library function, bootstrap, etc.)1114

• The assumptions made should be given (e.g., Normally distributed errors).1115

• It should be clear whether the error bar is the standard deviation or the standard error1116

of the mean.1117

• It is OK to report 1-sigma error bars, but one should state it. The authors should1118

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis1119

of Normality of errors is not verified.1120

• For asymmetric distributions, the authors should be careful not to show in tables or1121

figures symmetric error bars that would yield results that are out of range (e.g. negative1122

error rates).1123

• If error bars are reported in tables or plots, The authors should explain in the text how1124

they were calculated and reference the corresponding figures or tables in the text.1125

8. Experiments compute resources1126

Question: For each experiment, does the paper provide sufficient information on the com-1127

puter resources (type of compute workers, memory, time of execution) needed to reproduce1128

the experiments?1129

Answer: [NA] .1130

Justification:1131

Guidelines:1132

• The answer NA means that the paper does not include experiments.1133

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,1134

or cloud provider, including relevant memory and storage.1135
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• The paper should provide the amount of compute required for each of the individual1136

experimental runs as well as estimate the total compute.1137

• The paper should disclose whether the full research project required more compute1138

than the experiments reported in the paper (e.g., preliminary or failed experiments that1139

didn’t make it into the paper).1140

9. Code of ethics1141

Question: Does the research conducted in the paper conform, in every respect, with the1142

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?1143

Answer: [Yes]1144

Justification: I have read the guideline and my answer is yes.1145

Guidelines:1146

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.1147

• If the authors answer No, they should explain the special circumstances that require a1148

deviation from the Code of Ethics.1149

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-1150

eration due to laws or regulations in their jurisdiction).1151

10. Broader impacts1152

Question: Does the paper discuss both potential positive societal impacts and negative1153

societal impacts of the work performed?1154

Answer: [Yes]1155

Justification: The paper is a step toward reliable and trustworthy machine learning.1156

Guidelines:1157

• The answer NA means that there is no societal impact of the work performed.1158

• If the authors answer NA or No, they should explain why their work has no societal1159

impact or why the paper does not address societal impact.1160

• Examples of negative societal impacts include potential malicious or unintended uses1161

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations1162

(e.g., deployment of technologies that could make decisions that unfairly impact specific1163

groups), privacy considerations, and security considerations.1164

• The conference expects that many papers will be foundational research and not tied1165

to particular applications, let alone deployments. However, if there is a direct path to1166

any negative applications, the authors should point it out. For example, it is legitimate1167

to point out that an improvement in the quality of generative models could be used to1168

generate deepfakes for disinformation. On the other hand, it is not needed to point out1169

that a generic algorithm for optimizing neural networks could enable people to train1170

models that generate Deepfakes faster.1171

• The authors should consider possible harms that could arise when the technology is1172

being used as intended and functioning correctly, harms that could arise when the1173

technology is being used as intended but gives incorrect results, and harms following1174

from (intentional or unintentional) misuse of the technology.1175

• If there are negative societal impacts, the authors could also discuss possible mitigation1176

strategies (e.g., gated release of models, providing defenses in addition to attacks,1177

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from1178

feedback over time, improving the efficiency and accessibility of ML).1179

11. Safeguards1180

Question: Does the paper describe safeguards that have been put in place for responsible1181

release of data or models that have a high risk for misuse (e.g., pretrained language models,1182

image generators, or scraped datasets)?1183

Answer: [NA] .1184

Justification:1185

Guidelines:1186

• The answer NA means that the paper poses no such risks.1187
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• Released models that have a high risk for misuse or dual-use should be released with1188

necessary safeguards to allow for controlled use of the model, for example by requiring1189

that users adhere to usage guidelines or restrictions to access the model or implementing1190

safety filters.1191

• Datasets that have been scraped from the Internet could pose safety risks. The authors1192

should describe how they avoided releasing unsafe images.1193

• We recognize that providing effective safeguards is challenging, and many papers do1194

not require this, but we encourage authors to take this into account and make a best1195

faith effort.1196

12. Licenses for existing assets1197

Question: Are the creators or original owners of assets (e.g., code, data, models), used in1198

the paper, properly credited and are the license and terms of use explicitly mentioned and1199

properly respected?1200

Answer: [NA]1201

Justification:1202

Guidelines:1203

• The answer NA means that the paper does not use existing assets.1204

• The authors should cite the original paper that produced the code package or dataset.1205

• The authors should state which version of the asset is used and, if possible, include a1206

URL.1207

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.1208

• For scraped data from a particular source (e.g., website), the copyright and terms of1209

service of that source should be provided.1210

• If assets are released, the license, copyright information, and terms of use in the1211

package should be provided. For popular datasets, paperswithcode.com/datasets1212

has curated licenses for some datasets. Their licensing guide can help determine the1213

license of a dataset.1214

• For existing datasets that are re-packaged, both the original license and the license of1215

the derived asset (if it has changed) should be provided.1216

• If this information is not available online, the authors are encouraged to reach out to1217

the asset’s creators.1218

13. New assets1219

Question: Are new assets introduced in the paper well documented and is the documentation1220

provided alongside the assets?1221

Answer: [NA]1222

Justification:1223

Guidelines:1224

• The answer NA means that the paper does not release new assets.1225

• Researchers should communicate the details of the dataset/code/model as part of their1226

submissions via structured templates. This includes details about training, license,1227

limitations, etc.1228

• The paper should discuss whether and how consent was obtained from people whose1229

asset is used.1230

• At submission time, remember to anonymize your assets (if applicable). You can either1231

create an anonymized URL or include an anonymized zip file.1232

14. Crowdsourcing and research with human subjects1233

Question: For crowdsourcing experiments and research with human subjects, does the paper1234

include the full text of instructions given to participants and screenshots, if applicable, as1235

well as details about compensation (if any)?1236

Answer: [NA] .1237

Justification:1238
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Guidelines:1239

• The answer NA means that the paper does not involve crowdsourcing nor research with1240

human subjects.1241

• Including this information in the supplemental material is fine, but if the main contribu-1242

tion of the paper involves human subjects, then as much detail as possible should be1243

included in the main paper.1244

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,1245

or other labor should be paid at least the minimum wage in the country of the data1246

collector.1247

15. Institutional review board (IRB) approvals or equivalent for research with human1248

subjects1249

Question: Does the paper describe potential risks incurred by study participants, whether1250

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)1251

approvals (or an equivalent approval/review based on the requirements of your country or1252

institution) were obtained?1253

Answer: [NA] .1254

Justification:1255

Guidelines:1256

• The answer NA means that the paper does not involve crowdsourcing nor research with1257

human subjects.1258

• Depending on the country in which research is conducted, IRB approval (or equivalent)1259

may be required for any human subjects research. If you obtained IRB approval, you1260

should clearly state this in the paper.1261

• We recognize that the procedures for this may vary significantly between institutions1262

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1263

guidelines for their institution.1264

• For initial submissions, do not include any information that would break anonymity (if1265

applicable), such as the institution conducting the review.1266

16. Declaration of LLM usage1267

Question: Does the paper describe the usage of LLMs if it is an important, original, or1268

non-standard component of the core methods in this research? Note that if the LLM is used1269

only for writing, editing, or formatting purposes and does not impact the core methodology,1270

scientific rigorousness, or originality of the research, declaration is not required.1271

Answer: [NA] .1272

Justification:1273

Guidelines:1274

• The answer NA means that the core method development in this research does not1275

involve LLMs as any important, original, or non-standard components.1276

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)1277

for what should or should not be described.1278
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