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Abstract

Human-Object Interaction Detection (HOI-DET) aims to localize human-object
pairs and identify their interactive relationships. To aggregate contextual cues,
existing methods typically propagate information across all detected entities via
self-attention mechanisms, or establish message passing between humans and ob-
jects with bipartite graphs. However, they primarily focus on pairwise relationships,
overlooking that interactions in real-world scenarios often emerge from collective
behaviors (i.e., multiple humans and objects engaging in joint activities). In light
of this, we revisit relation modeling from a group view and propose GroupHOI, a
framework that propagates contextual information in terms of geometric proximity
and semantic similarity. To exploit the geometric proximity, humans and objects
are grouped into distinct clusters using a learnable proximity estimator based on
spatial features derived from bounding boxes. In each group, a soft correspon-
dence is computed via self-attention to aggregate and dispatch contextual cues.
To incorporate the semantic similarity, we enhance the vanilla transformer-based
interaction decoder with local contextual cues from HO-pair features. Extensive ex-
periments on HICO-DET and V-COCO benchmarks demonstrate the superiority of
GroupHOI over the state-of-the-art methods. It also exhibits leading performance
on the more challenging Nonverbal Interaction Detection (NVI-DET) task, which
involves varied forms of higher-order interactions within groups.

1 Introduction

No man is an island, entire of itself.
— John Donne, Meditation XVII Devotions

Human-Object Interaction Detection (HOI-DET), as a critical pillar in visual relationship understand-
ing, identifies entities (i.e., humans and objects) as basic building blocks, and leverages relationships
as the connective glue that weaves them into meaningful patterns. Early works [ 1, 2] typically recog-
nize HO-pairs, which are cropped from natural images by manually obtained bounding boxes, as
composites (i.e., visual phrases) in isolation. Recent efforts [3, 4] extend HOI reasoning to real-world
scenarios involving multiple entities with complex relational structures. Building upon object
detection frameworks, HOI-DET methods evolve alongside advancements in detector architectures
from Faster R-CNN [5] to DETR-like variants [6, 7]. As a semantic interpretation task, HOI-DET can
also benefit from large visual-linguistic models (e.g., CLIP [8] and BLIP [9]) pre-trained on extensive
image-text corpora. Despite architectural innovations and multi-modal knowledge transfer, the core
challenge remains unchanged: @®how to structure and reason about relationships among entities?

Current methods [3, 10, 1 1] primarily reason over global context via the self-attention mechanism
(Fig. 1(a)), while another strand of research constrains information exchange within homogeneous
entities (i.e., human-human, object-object) [12, 13] or heterogeneous neighborhoods (i.e., human-
object, object-human) [11] via bipartite graph (Fig. 1(b)). Despite achieving impressive performance,
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Figure 1: Relation modeling paradigms. While existing methods primarily model relations using complete (a)
or bipartite (b) graphs, our approach introduces geometric (c) and semantic (d) graphs, enabling more structured
and context-aware relational reasoning. ®, ©, and ® denote humans, objects, and interactions, respectively.

these methods remain confined to the modeling of predefined pairwise relations, leaving the inherent
collective patterns [14] (i.e., multiple entities engaging in joint activities) between entities unexplored.

Tackling this notable void brings us back to the classical clustering view for structuring and organizing
visual entities by finding groups of similar ones, i.e., detecting HOIs as groups. Tomasello’s
theory of shared intentionality [15] posits that with joint goals (“we-mode”) and role coordination,
participants tend to draw close to each other and perform collaborative actions. Considering a busy
street with numerous pedestrians (Fig. 1), even without their explicit interpersonal relationships
or social affiliations, the individuals can be naturally categorized into distinct groups based on
their spatial proximity (Fig. 1(c)). Moreover, the walkers pulling suitcases typically exhibit similar
visual characteristics—walking forward with swinging arms and suitcases trailing behind them—
highlighting their shared behavior (Fig. 1(d)). Hence question @ becomes more fundamental from a
group view: @ how is a group formed? and ® how does a group function?

Driven by question @, we construct social groups guided by the Gestalt grouping principles of
Proximity and Similarity [16]: First, the geometric proximity principle, i.e., the tendency for
individuals to form groups with those physically close to, is implemented by constructing geometric
groups based on the central distance and Intersection over Union (IoU) of bounding boxes. Second,
the semantic similarity principle, i.e., the tendency for individuals to affiliate with those sharing
visual characteristics or behavioral patterns, is operationalized through building semantic groups
of interaction proposals based on similarity of their feature embeddings. Notably, groups in social
environments demonstrate complex and diverse compositions with overlapping memberships, which
complicates quantification and modeling. To address this, we treat each proposal and its neighbors as
a distinct group, establishing a one-to-one correspondence between groups and proposals.

To address question ®, we propose GroupHOI, a HOI detector that enhances interaction reasoning
by discovering inherent group patterns within visual scenes. Building on DETR [17], we model
two distinct group structures to capture contextual dependencies: First, based on object detection
outputs, we construct geometric groups for each entity and perform structure-aware reasoning via soft
correspondence through self-attention, enabling fine-grained aggregation and targeted dissemination
of local cues (§3.3). Second, we construct semantic groups to extract localized interaction priors,
which are then integrated into the interaction decoder via a pooling operator to enable context-aware
reasoning through a structured local-global processing scheme (§3.4). Visualizations in §4.5 provide
transparency into how contextual dependencies are organized and leveraged.

To conclude, our contributions are: i) defining two visual attraction principles to construct groups; ii)
proposing a one-stage framework that integrates these principles into HOI-DET; iii) endowing the
HOI detector with enhanced interpretability via grouping mechanisms.

Our method is evaluated on two standard HOI-DET benchmarks: V-COCO [18] and HICO-DET [2],
achieving impressive performance with 36.70 mAP on HICO-DET and 65.0 mAP on V-COCO. It
surpasses the state-of-the-art method (i.e., Pose-Aware [19]) by solid margins, i.e., +0.84 and +3.9
mAP. Moreover, it achieves leading performance on the more challenging Nonverbal Interaction
Detection (NVI-DET) [20] task, which permits diverse forms of higher-order group interactions. On
the NVI benchmark [20], it reaches 73.19 AR on val and 75.21 AR on test.

2 Related Work

Human-Object Interaction Detection. Current HOI detectors can be categorized into two-stage and
one-stage paradigms. Two-stage methods [ 1, 2, 21-28] typically employ off-the-shelf detectors (e.g.,



Faster R-CNN [5]) to locate humans and objects, then generate human-object pairs for interaction
recognition. In contrast, one-stage methods [29-39], inspired by DETR [6], reformulate the task as a
set prediction problem, and perform end-to-end triplets detection without explicit pairing. Recent
studies [3, 4, 40-44] show strong gains by transferring knowledge from models pre-trained on large-
scale image-text corpora (e.g., CLIP [8], BLIP [9], and Stable Diffusion [45]) or large language
models (e.g., OPT [46]). Instead of focusing solely on architectural innovations or large-scale
knowledge transfer, our approach highlights a complementary perspective on relation modeling,
emphasizing how to organize and structure relations among entities.

Relation Modeling for Detection Tasks. Early object detectors [47—49] mainly built upon R-CNN
family to localize and recognize each object in isolation, without contextual information exchange.
To tackle this issue, [50] proposes a cascaded multi-stage framework with group recursive learning,
while [51] incorporates global context across local regions. Recently, transformer-based methods
such as DETR [6] reformulate detection as a set prediction problem, using self-attention to aggregate
global context and enhance relational reasoning. HOI-DET methods have undergone a similar
evolution. Early two-stage HOI-DET methods [23—-25] confine information sharing to pre-defined
human-object pairs and restrict interaction reasoning to isolated triplets, while DETR-based HOI-
DET methods [30-32] leverage self-attention mechanisms to enable more comprehensive relational
reasoning. Graph-based approaches [1 1, 13, 52-56] construct fully connected or bipartite graphs
to facilitate message passing between entities. Building on this idea, several recent works [57, 58]
further explore hypergraph representations, offering a more expressive way for high-order relations.
However, most of them prioritize how to reason about relations across entities while neglecting how
to structure the relations among them, thereby introducing noise from spurious correlations.

Group Analysis for Vision Tasks. Groups, as the fundamental units of human society, have become
a pivotal analysis tool to understand complex human-centric scenes, with applications in crowd
analysis, pedestrian trajectory prediction, and collective activity recognition. In crowd analysis, group-
based methods [59] treat groups as atomic units of the scene, while individual-group methods [60]
seek to leverage collective human information rather than processing them in isolation. Recently,
PANDA [61] dataset enriched the task by integrating global context, high-resolution localized details,
and temporal activity patterns, providing rich and hierarchical annotations. For pedestrian trajectory
prediction, a number of existing approaches [57, 62—64] aim to improve multi-person tracking by
incorporating group relationships. For instance, GroupNet [57] addresses the multi-agent trajectory
prediction problem by leveraging multiscale hypergraphs to model both pairwise and group-level
interactions more effectively. Collective activity recognition principally aims to capture the nuances
of multi-human interactions in wide field-of-view scene, prompting many explorations of intra-group
dynamics. For instance, ARG [65] tries to model both appearance and spatial dependencies between
humans, and SAM [66] builds a dense relation graph and prunes it to a sparse one.

Inspired by these endeavors, we revisit HOI-DET from a group perspective, explore the visual
principles underlying group formation, and propose a dedicated framework designed to operationalize
these principles for HOI-DET, while introducing little extra computational overhead.

3 Methodology

3.1 Preliminary

Prevailing HOI-DET methods [3, 4, 19, 67, 68] employ a standardized DETR-based [69] pipeline for
instance detection. Given an input image I with position embeddings P,, a visual encoder preceded
by a CNN backbone is applied to extract features V.. Then, an instance decoder D;,, s is employed to
transform human @}, and object Q, queries into the outputs by retrieving the encoded features V:

[QI}”Q;] - Dins(‘/erh/7Qo)7 (1)

where @Q},, Q. are then processed into bounding boxes B},, B, and object class labels L. In the
interaction branch, human @}, and object @/, outputs are exhaustively enumerated [33, 68] or directly
associated [3, 67, 69] to form HO-pairs and interaction queries @, for interaction classification.

3.2 Rethinking the Relation Modeling in HOI-DET

Revisiting Transformer-based Relation Modeling. Building upon DETR [69], most transformer-
based HOI-DET models [3, 10, 1 1] perform global relational modeling among all the entity candidates



- - -

Bounding - Geometric Group e Semantic Group

& =~ ~|Boxes I Construction Construction
% = LBn I L " I q q;4 3
= f - f_ - 11. A/, -
Qo Qh . Human
qj, 9js
Positional L . ?
Encoding
& Instance Geometric-aware Sematic-aware FEN
Decoder Local Transformer Interaction Decoder
i % t 0% | 0n Qine 1 Qe T
Isua -An B —y---n -0
Encoder Object & Human Interaction
Queries Queries

Figure 2: Overview of GroupHOI. GroupHOI comprises three key modules: i) a visual encoder extracts
features, followed by an instance decoder to locate human-object pairs; ii) a geometric-aware local transformer
aggregates and distributes contextual information within geometric groups; iii) a semantic-aware interaction
decoder leverages local-global semantic dependencies for interaction prediction.

or their compositions via attention, which inherently establish a fully-connected graph for information
exchange. Specifically, given an entity candidate qf € Q. = Q}, U Q., the relational modeling is
achieved by the transformer decoder through self-attention operations with all entity queries:

=Y, g St )5 2

where Softmax propagates contextual cues by establishing soft correspondences from a global view,
g; € Q. denotes all the detected entities.

Revisiting Graph-based Relation Modeling. Another line of research [11-13, 32, 54] constructs
graphs based on the detected entities to enable relational modeling. Each node g is connected to a
predefined set of neighboring nodes N; and exchanges contextual information via message passing:

G =g +o(3 . o -NessagePassing(q!. ;). %)
e

where o is the activation function, « is an adjacency weight between nodes, and MessagePassing
denotes the message passing function. In terms of the set of neighboring nodes A (i), many studies [ 12,

] define it as the union of all other entities in the scene, resulting in a fully-connected graph
comprising both human and object nodes, while others [1 1, 13, 32, 54] restrict it to heterogeneous
entities (i.e., human-object, object-human), thereby formulating a bipartite graph.

Though effective, these methods either treat all the entities as a single group or crudely partition them
into two homogeneous groups. However, real-world scenarios demonstrate greater complexity in
collective patterns: picture a cocktail party where a cluster of guests holding wine glasses or bottles
is debating heatedly, while individuals seated on chairs around the venue are eating pizza. Given this
divergence, we propose learning HOI as groups guided by the Gestalt grouping principles [16]: the
geometric proximity principle and semantic similarity principle. The former is operationalized by
learning entities as geometric groups, and the latter by learning interactions as semantic groups.

3.3 Learning Entities as Geometric Groups

According to Gestalt psychology [ 6], the proximity principle states that spatially adjacent elements
are naturally perceived as coherent groups. This perceptual tendency has been applied as a strong
inductive bias for structuring visual scenes [70]. Motivated by this principle, we extend it to HOI-DET
by constructing geometric groups that organize detected entities based on their spatial configurations.

Geometric Group Construction. We construct groups for each entity embedding g by selecting
its K9 nearest neighbor entities based on the geometric distance of their corresponding bounding
boxes B obtained by the instance decoder. However, simple geometric metrics often fall short
in capturing the diverse sizes and spatial configurations of bounding boxes. To address this, we
introduce a learnable estimator to measure geometric proximity among bounding boxes. First, we
formulate the spatial feature ffj ;= [dis; j,IoU; ;] by concatenating two geometric properties: i)
the Euclidean distance dis; ; between the centroids of two bounding boxes c; and ¢; (i.e., dis; j =

\/(Acg”,j)2 + (Ac;)?, where Acf; = ¢f — ¢f and Ac/; = ¢] — ¢}), and ii) the IoU between two




bounding boxes B; and Bj, i.e., IoU; ; = |B; N B;|/|B; U Bj;|. Then, a simple linear layer is
employed to compute the proximity score s; ; from f; ; and yields a proximity score matrix. In this
matrix, lower scores indicate closer spatial proximity. For each entity, we select the K9 neighbors
with the lowest scores to construct its geometric neighbor set N .

Geometric Context Aggregation and Dispatch. GroupHOI adopts a geometric-aware local trans-
former to capture the contextual cues from unordered entities by applying self-attention locally. First,
to preserve the relative positional information within groups, we introduce trainable, parameterized
position encodings p; ; as follows:

pi; = 6(af — qj), “)

where 0 is a two-layer MLP with ReLU nonlinearity. Then, we compute the dispatch matrix ¢; ; for
each entity:

t; j = Softmax(y(¢1(q;) — ¢2(q5) + Ppij)), %)

where ¢, and ¢ are linear projections to perform point-wise feature transformation, and - is an MLP

to produce the subtraction relation. Based on dispath matrix, GroupHOI adaptively aggregates the
contextual cues within groups and utilizes them to update the entity embeddings:

q~f = H(Zq;eNiggiJ © (¢3(Qj) +p2,])) + qg’ (6)

where ¢ is a linear projection, and ¢ denotes a feature alignment function. This process is applied
among homogeneous entities, yielding @}, and Q,, for human and object embeddings, respectively.

3.4 Learning Interactions as Semantic Groups

The concept of semantic grouping has long been recognized in cognitive science as a fundamental
mechanism by which humans perceive and organize the world. According to Gestalt principles [16],
humans naturally group elements based on contextual similarity to reduce cognitive load and enable
efficient reasoning. Inspired by this insight, we incorporate semantic-aware grouping into interaction
reasoning and enhance the vanilla transformer decoder with semantic-aware local cues.

Semantic Group Construction. We first initialize the interaction queries Q;,: by computing the
mean of Qj, and Q,. Given the complex and diverse group structures with overlapping memberships
in social environments, we avoid using traditional partitioning techniques like k-means clustering to
construct groups. Instead, we formulate distinct groups N for each interaction query g/ € Q;n: by
assessing pairwise cosine similarity sim;; = (q; - q})/(l[q; ||/|q}||) between it and other queries g
and selecting its top-/(® most similar counterparts.

Semantic Context Aggregation. Given each query ¢! with its semantic group N, we utilize max
pooling to aggregate semantic message from its group members g;:

m; = max(¢4(qf, q; - qzr))v q; € Ms7 @)
where ¢, represents a sequence of linear layers, batch normalization, and ReLU layers.

Local-Global Integration. As described in §3.2, the transformer-based interaction decoder models
global relations through self-attention but lacks explicit local relation modeling. To address this limi-
tation, we construct a semantic-aware interaction decoder by integrating the proposed local semantic
context aggregation mechanism into the naive decoder, which enhances its capacity for interaction
reasoning. Specifically, prior to each decoder layer, the local semantic context is aggregated and
incorporated into the original query via residual connection:

q; = q; + ¢s5(my), (®)

where ¢ shares the same identity structure as ¢4. §; is subsequently passed through the self-attention
and cross-attention modules in the interaction decoder layer.

3.5 Implementation Details

Network Architecture. To ensure fair comparison with previous HOI-DET methods [3, 4, 67, 71],
we adopt ResNet-50 [72] as the visual backbone. Our transformer-based architecture consists of
a 6-layer encoder, a 3-layer instance decoder, and a 3-layer interaction decoder. Following [3, 4],
we initialize 64 learnable queries for human and object branches, and set the feature dimensions to



256 for human/object representations and 768 for interaction representations. We perform group
construction independently at each layer of both the instance and interaction decoders, where the
geometric and semantic group sizes are set to 4 and 2. We evaluate three variants of GroupHOI using
different pre-trained VLMs: i) CLIP (ViT-B/16) [8], ii) CLIP (ViT-L/14), and iii) BLIP2 (ViT-L) [9].
In each variant, we follow [3, 4] to initialize the classification heads using VLM text embeddings and
integrate visual features from the VLM visual encoder into the interaction decoder.

Training Objectives. Following [3, 4], our model is optimized by the following loss:
Lot = MLy + MLy + AL+ NLE, &)

where £; denotes the box regression loss, £,, indicates the intersection-over-union loss, £2 and £¢
represent the cross-entropy loss for object and interactions classification, respectively. The coefficient
factors {Ap, Ay, A2, A2} are empirically set as {2.5,1,1,1}.

Cc

Reproducibility. GroupHOI is implemented in PyTorch. The model is trained with a batchsize of 8
for 90 epochs on 2 GeForce RTX 4090 GPUs.

4 Experiment

4.1 Experiments on HOI-DET
Datasets. We conduct experiments on V-COCO [ 18] and HICO-DET [2]:

* V-COCO is a specialized subset of MS-COCO [73], which comprises 10,346 images (5,400
for training and 4,946 for testing). The dataset annotates 263 unique human-object interactions,
covering 29 action categories and 80 object categories.

* HICO-DET comprises a total of 47,776 images, with 38,118 designated for training and 9,658
for testing. It includes 80 object categories, consistent with those in V-COCO dataset, 117 action
categories and 600 distinct HOI classes.

Evaluation Metrics. We employ mAP as our evaluation metric. For V-COCO [ 18], mAP is reported
under two different scenarios: scenario 1 for all 29 action categories, and scenario 2 which excludes 4
body motion categories. For HICO-DET [2], we evaluate GroupHOI in complete 600 HOI categories
(Full), the 138 rare categories with fewer than 10 training instances (Rare), and remaining 462
categories (Non-Rare). For each object, mAP is computed in the whole dataset (Default) and subset
containing the object (Known Object).

Training. Our backbone is initialized with DETR [6] pre-trained on MS-COCO [73]. The model is
trained using AdamW optimizer [74] with a batchsize of 8 for 90 epochs. The initial learning is set to
5e~5, which reduces by a factor of 10 every 30 epochs.

Testing. For fairness, GroupHOI operates without data augmentation. We retain the top-K HOI
candidates (K = 100) followed by Non-Maximum Suppression for redundancy removal.

Quantitative Results on HICO-DET. As shown in Table 1, our model with a VIT-B/16 CLIP [&]
variant already outperforms all the competitors under the same setting by a substantial margin. In
particular, GroupHOI surpasses the previous state-of-the-art Pose-Aware [19] by 0.84/2.38/0.40 mAP
on the Full, Rare, and Non-Rare settings. Notably, GroupHOI exhibits a comparable number of pa-
rameters and FLOPs to HOICLIP [4] (§4.3), but delivers substantial improvements of 2.11/3.74/1.52
mAP on HICO-DET [2]. Moreover, leveraging more powerful VLMs, i.e., ViT-L/14 CLIP [8] and
ViT-L BLIP2 [9], GroupHOI boosts its performance and sustains state-of-the-art results. Both with
ViT-L/14 CLIP, GroupHOI suppresses CMMP [68] by a large margin with 1.32 mAP under Full,
while it narrowly trails CMMP in Rare setting. Compared to UniHOI [40] which retrieves knowledge
from large language models, GroupHOI with ViT/L BLIP2 still leads by 0.47/ 0.71/0.39 mAP.

Quantitative Results on V-COCO. For V-COCO, GroupHOI exhibits competitive performance but
remains slightly inferior to STIP [33], VIL [75], and CQL [76]. However, on HOI-DET, our method
surpasses them by a solid margin. We attribute this to GroupHOI’s improved capability in handling
more complex interactions, as evidenced by: HOI-DET contains 600 HOI interactions (vs.293 in
V-COCO), an average of 4 interactions (vs.3 in V-COCO) and 6 entities per sample (vs.4 in V-COCO).



Table 1: Quantitative results on HICO-DET [2] test and V-COCO [18] test. DF and KO denote the Default
and Known Object evaluation settings of HICO-DET. CLIP/B16, CLIP/B32, CLIP/L14 represent VIT-B/16,
VIT-B/32 and VIT-L/14 settings for CLIP respectively. See §4.1 for details.

HICO-DET (DF) HICO-DET (KO) V-COCO

Method Config Full Rare Non-Rare| Full Rare Non-Rare|APS3} APS2
QPIC[67]icveran R50 29.07 21.85 31.23 |31.68 24.14 3393 58.8 61.0
QPIC[67]icverat R101 2990 2392 31.69 |32.38 26.06 34.27 58.3 60.7
HOTR [69]icvrr2iy R50 2346 16.21 25.60 - - - 55.2 64.4
CDN(S) [17]Neurips21] R50 31.44 2739 32.64 |34.09 29.63 3542 61.2 63.8
CDN(B) [ 7]Neurips21] R50 31.78 27.55 33.05 |34.53 29.73 35.96 62.3 64.4
CDN(L) [ 1 7]Neurtps21) R101 32.07 27.19 3353 |34.79 2948 36.38 63.9 65.9
MSTR[77]icvrr22) R50 31.17 2531 3292 |34.02 28.83 35.57 62.0 65.2
STIP[33]icvrraz) R50 3222 28.15 3343 3529 3143 3645 65.1 69.7
PVIiC[71]iccvas R50 34.69 32.14 3545 |38.14 3538 38.97 62.8 67.8
Pose-Aware[ 1 9]icver24) R50 35.86 3248 36.86 |[39.48 36.10 40.49 61.1 66.6

- DOQ[78]icvrro2) |RS0+CLIP/B16(33.28 29.19 3450 | - - - | ¢ 635 -
GEN-VLKT[3]cver22) | RS0+CLIP/B16 |33.75 29.25 35.10 |37.80 34.76  38.71 62.4 64.4
ADA-CM[79]icevas) | R50+CLIP/B16|33.80 31.72  34.42 - - - 56.1 61.5

HOICLIP[4]icver23) | RS0+CLIP/B32|34.59 31.12 35.74 |37.61 34.47 38.54 63.5 64.8
VIL[75]iacmviv23 RS0+CLIP/B16 | 34.21 30.58  35.30 |[37.67 34.88  38.50 65.3 67.7

CQL[76]icver23) | R50+CLIP/B16|35.36 32.97  36.07 - - - 66.4 69.2
LOGICHOI[38]Neurips23) | RS0+CLIP/B16 | 35.47 32.03  36.22 |38.21 3529 39.03 64.4 65.6
CMMP[68]Eccva4) | RS0+CLIP/B16 | 33.24 3226 33.53 - - - - 61.2

HOIGen [68]acvvivioa| RSO+CLIP/B16 | 34.84 34.52  34.94 - - - - -
CEFA [80]acmvv24] R50+CLIP/B16 | 35.00 32.30  35.81 [38.23 35.62 39.02 63.5 -
GroupHOI (ours) |[R50+CLIP/B16|36.70 34.86 37.26 |[39.42 37.78 39.91 65.0 66.0

ADA-CM[79]nccvas; | R50+CLIP/L14 | 38.40 37.52  38.66 - - - 58.6 64.0
UniVRD[81]nccves) | RS0+CLIP/L14 | 37.41 28.90  39.95 - - - - -
CMMP[68]Eccva4 | RSO+CLIP/L14 | 38.14 37.75  38.25 - - - - 64.0

GroupHOI (ours) |R50+CLIP/L14|39.46 37.10 40.16 |[41.58 39.42 4240 66.4 67.3

UniHOI[40]Neurips23) | RS0+BLIP2 | 40.06 3991  40.11 |42.20 42.60 42.08 65.6 68.3
GroupHOI (ours) R50+BLIP2 |40.53 40.62 40.50 |42.70 42.92 42.64 66.4 67.8

4.2 Experiments on NVI-DET

Task Formulation. Given an input image, it predicts a set of (individual, group, interaction) triplets,
aiming to localize each individual and identify the social group it belongs to, while determining the
category of its nonverbal interaction. Unlike HOI-DET [18] that focuses on recognizing actions
between human-object pairs, NVI-DET models interactions in a more flexible and generalized manner.
Specifically, it accounts for interactions involving arbitrary numbers of humans, which makes the
task significantly more challenging.

Dataset. NVI [20] densely labeling social groups in pictures, along with 22 atomic-level nonverbal
behaviors (16 individual- and 6 group-wise) under five broad interaction types. It contains 13,711
images in total and splits them into 9,634, 1,418 and 2,659 for train, val and test.

Evaluation Metrics. Consistent with [20], we utilize mean Recall @K (mR@K) for evaluation.
Specifically, we report mR @25, mR @50, and mR @100 under different IoU thresholds for matching
predictions with ground truth, along with their average (AR) to provide a comprehensive evaluation.

Quantitative Results. Following [20], we compare GroupHOI with modified versions of three
state-of-the-art HOI-DET methods (i.e., m-QPIC [67], m-CDN [17], and m-GEN-VLKT [3]) and
NVI-DEHR [20] on NVI [20]. As shown in Table 2, GroupHOI surpasses all other methods, reaching
73.19 and 75.21 AR on NVI val and test. Furthermore, we analyze performance across individual-
wise and group-wise interactions. Table 3 shows our model consistently outperforms others by
significant margins in both sets. These results verify our model’s effectiveness in identifying social
group structures and capturing the collective behaviors within them.

4.3 Diagnostic Experiments

As shown in Table 4, we conduct a set of ablation studies on HICO-DET [2] for deeper analysis.



Table 2: NVI-DET results on NVI [20] val and test. See §4.2 for details.

val test
mR@25 mR@50 mR@100 AR |mR@25 mR@50 mR@100 AR
m-QPIC[67]icver2i] | 56.89 69.52 78.36  68.26| 59.44 71.46 80.07 70.32
m-CDN[ | 7]Newtps21]|  55.57 71.06 78.81 68.48| 59.01 72.94 82.61 71.52
m-GEN-VLKT[3]icver22) | 50.59 70.87 80.08 67.18| 56.68 74.32 84.18 71.72
NVI-DEHR [20](eccvaa) | 54.85 73.42 8533 71.20| 59.46 76.01 88.52 74.67
GroupHOI (ours) 55.67 76.73 87.16 73.19| 62.67 76.57 86.42 75.21

Method

Table 3: Individual- and group-wise interactions results on NVI [20] val. See §4.2 for details.

Method individual group
mR@25 mR@50 mR@100 AR |mR@25 mR@50 mR@100 AR
m-QPIC[67]icveral] | 5223 66.09 7598 6477 69.18  78.62 84.85 7755
m-CDN[17]Neups21]|  50.67  68.23 76.74 6521 | 68.66  78.60 84.34 77.20
m-GEN-VLKT[3]icver22) | 4498  68.51 78.30 63.93| 67.84  79.47 87.12 78.14
NVI-DEHR [20]ieccvad) | 4937 70.04 83.82 67.74| 6947 8245 89.35 80.42

GroupHOI (ours) 49.60  74.03 85.63 69.75| 71.87 83.92 91.24 82.34

Analysis of Key Modules. We analyze the effects of geometric and semantic groups in our framework.
As shown in Table 4 (a), the results indicate that: First, both geometric and semantic relation learning
contribute to HOI prediction. Incorporating geometric and semantic groups individually yields mAP
gains of 0.67/0.91/0.81 and 0.21/0.45/0.31 under Full/Rare/Non-Rare settings respectively. Second,
the combination of them yields optimal performance, delivering 0.98/2.66/0.70 mAP improvements
over the baseline, which highlights a more comprehensive relation modeling in HOI prediction.

Table 4: Ablation study of GroupHOI on HICO-DET [2] test, where GEO and SEM represent geometric
group and semantic group, Homo. and Hetero. mean homogeneous group and heterogeneous group (§4.3).

(a) Analysis of key modules (b) Analysis of geometric group size (c) Analysis of semantic group size
GEO SEM| Full Rare Non-Rare Group Size| Full Rare Non-Rare = Group Size| Full Rare Non-Rare
- - (35723220 36.56 K9 =12 36233297 37.13 K® =1 [36.0732.09 37.26
v - 136.3933.11 37.37 K? =3 (36.3433.87 37.32 K* =2 |36.70 34.86 37.26
- v’ [35.9332.65 36.87 K?%=4 |36.7034.86 37.26 K® =3 |36.1832.67 37.21
v v [36.7034.86 37.26 K% =5 |(36.4533.57 36.95 K* =4 |359232.06 37.07

(d) Analysis of fusion strategy  (e) Analysis of geometric group layer (f) Analysis of semantic group layer

Model | Full Rare Non-Rare Group Layer| Full Rare Non-Rare Group Layer| Full Rare Non-Rare
Baseline (35.7232.20 36.56 LY = 36.70 34.80  37.26 L*=1 136.1331.58 37.49
+ Homo. |36.2332.40 37.20 L9 =2 (36473196 37.81 L°* =2 36.5332.20 37.82
+ Hetero.|36.70 34.86 37.26 LY =3 |35.6431.20 37.00 L =3 |36.7034.86 37.26
L9 =4 136.1732.72 37.20 L° =4 36.1331.53 37.51

Analysis of Group Size. We evaluate the impact of the geometric group size K9 and semantic
group size K ° in Table 4 (b) and (c). Our design performs independent group construction at each
decoder layer, allowing entities and interactions to exchange information with different neighbors
across layers. As shown in the table, the performance peaks at K9 =4 and drops as K9 increases,
suggesting that oversized geometric groups introduce noise from less relevant neighbors. In contrast,
the model performs best at K ° =2, and both larger and smaller K ° degrade performance, implying
only highly relevant semantic cues are beneficial for interaction prediction. Notably, since groups are
constructed independently per layer, the geometric and semantic group sizes across the three-layer
decoder range from 4-10 and 2-4, respectively, under the optimal setup. This aligns with real-world
scenarios: over 94% of samples in V-COCO [18] and 91% in HICO-DET [2] involve no more than
10 entities, and even large groups are dominated by a few key participants (only around 4) [82].

Homo. vs. Hetero. Geometric Group. We make a comparison between homogeneous and heteroge-
neous paradigms for geometric groups in Table 4 (d). The heterogeneous paradigm models humans
and objects as distinct node types with exclusive intra-class (human-human/object-object) message
passing. In contrast, the homogeneous paradigm treats all entities uniformly, allowing unrestricted
cross-entity communication. The heterogeneous design achieves higher performance, surpassing the
homogeneous counterpart by 0.47/2.46/0.06 mAP. This disparity suggests that integrating humans
and objects into a group may dilute relevant context and hinder the specialized information exchange.



(a) human work on computer (b) human ride elephant (c) human kick ball (d) human carry suitcase
human sit chair human walk

(e) human hold baseball bat () human work on computer (g) human sit car (h) human hold umbrella
human hit ball human hold mouse human talk on phone human carry bag

A § ~—

(i) human sit chair (j) human ride snowboard (k) human hit ball (1) human jump
human hold phone human look at ball human look at ball

Figure 3: Visualization of GroupHOI results on V-COCO [18] test. The first two rows represent samples
where all interactions are successfully detected, while the third row corresponds to samples with missed
interactions. Detected interactions are marked in Green, while missed interactions and objects are in Red.

Analysis of Group Layer. Table 4 (e) and (f) present the evaluation of geometric group layer LY and
semantic group layer L°. We observe that increasing L9 does not lead to consistent improvement.
While the performance improves as L® increases from 1 to 3, after which the gains plateau, indicating
that excessive local context aggregation brings diminishing returns.

Comparison of Model Efficiency. Table 5 com- Table 5: Comparison of model efficiency.
pares the model scalability in terms of the num-

ber of Parameters (Params), Floating Point Opera- PPDM[ |]}\c4\?::3? li;rjr;;i f; 10 ;Sé 113;92;
tions (FLOPs), and Frames Per Second (FPS). Al- GEN-VLKT‘[X]\(‘VPR;“’] 41 '9M 60 0 iG 26.18
though GroupHOI maintains a comparable param- HOICLIP[]cveros) | 66.1M  104.68G 19.57
eter count and experiences only a marginal reduc- VIiPLO[&3] vy | 1182M 41.35G 14.89
tion in inference speed compared to HOICLIP [4], GroupHOI (ours) | 792M  83.67G 16.42
it achieves significantly better performance, out- . . .
performing HOICLIP by 2.11 mAP on HICO-DET [2] (see Table 1). Compared to ViPLO [83],
GroupHOI achieves superior performance (+1.75 mAP) while requiring fewer parameters and less in-
ference time, underscoring its efficiency. A detailed comparison is available in Table S2 in Appendix.

4.4 Qualitative Results

Fig. 3 illustrates the qualitative results of GroupHOI on V-COCO [ 18] test. As seen, it can robustly
localize and predict interactions under challenging conditions. For instance, our method generalizes
well to interactions with little training data like riding elephant in Fig. 3(b), consistent with its superior
rare-set performance (Table 1). As shown in Fig. 3(c-h), GroupHOI also handles complex scenes
with multiple humans and objects, benefiting from effective intra-group information propagation.
The third row presents failure cases, mainly due to: i) severe occlusion causing missed detections,
e.g., the failure in detecting human hold phone (Fig. 3(i)) and human ride skateboard (Fig. 3(j)). ii)
Ambiguous interactions arising from insufficient spatiotemporal information, such as difficulty in
recognizing gaze direction (Fig. 3(k)). iii) Lack of domain-specific knowledge, exemplified by the
misclassification of looking at ball as kicking ball in (Fig. 3(1)), which is caused by lacking knowledge
of basketball, i.e., players typically do not use their feet to kick the ball during games. These



er'nantlc‘group Ll ¢ . ~ semantic group L2~ emantic group L3

Figure 4: Visualization of groups on V-COCO [18] test. L1, L2 and L3 represent the first, second and last
layer of instance or interaction decoder. The center of the geometric and semantic groups is mark in Red (§4.5).

limitations could potentially be addressed by developing spatiotemporal reasoning modules based on
video-level datasets [84] or integrating knowledge via pre-trained large language models [40].

4.5 Visualization of Groups

Fig. 4 shows examples of geometric and semantic groups across decoder layers on V-COCO [1§]
test. In the first row, two main geometric group patterns emerge: i) multiple proposals targeting
to the same human/object, enabling feature completion; ii) adjacent distinct proposals that interact
closely to show mutual influence. Moreover, groups may also include unannotated entities, revealing
GroupHOTI’s ability to exploit implicit contextual relations. When grouping by semantic similarity (the
second row of Fig. 4), the grouping patterns can also be observed, i.e., distinct individuals performing
the same interaction. In summary, our method demonstrates the capability to automatically uncover
latent patterns in complex scenarios, thereby enhancing the model’s holistic scene comprehension.

5 Discussion

Future Direction. Current HOI benchmarks involve limited entities within small fields of view,
leading to global relational modeling in the mainstream HOI-DET [18] methods. However, when
applied to larger scenarios (e.g., gigapixel-level crowd images [01]), this paradigm leads to high
computational cost and information redundancy. A practical solution is to confine relational modeling
to local regions, making the principles proposed in this paper highly applicable to real-world settings.

Limitation. A limitation of our method is its focus on interaction reasoning without integrating the
proposed mechanisms into the object detection branch. We think this direction intriguing, yet it lies
beyond the scope of the present study. Moreover, like other HOI-DET [ 18] models, GroupHOI is
trained with limited label diversity, posing challenges for generalization to in-the-wild scenarios.

6 Conclusion

We present GoupHOI, a framework builds upon the idea of reorganizing the unordered in the visual
scenes by exploring their inherent grouping patterns. By revisiting HOI-DET [18] task from a group
perspective, we formulate two visual attraction principles, i.e., geometric proximity and semantic
similarity, to explain group dynamics. These principles are instantiated via two paradigms: i) learning
entities as geometric groups, and ii) learning interactions as semantic groups. By introducing marginal
computational overhead, GroupHOI advances state-of-the-art methods by solid margins and sets new
SOTAs for HOI-DET and NVI-DET [20] task, which verifies its superiority.
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Provincial Natural Science Foundation of China (No. LD25F020001), and CIE-Tencent Robotics X
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For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: There is no theoretical result.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The implementation details have been provided in §3.5.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: Code is available at https://github.com/JiajunHongl/GroupHOI.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The experimental setup, including data splits, training and testing detailed, are
provided in §4.1.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: The prior work included into comparison does not provide error bar. It could
be too expensive and time-consuming to run the experiments on large-scale datasets for
multiple times

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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8.

10.

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: The computer resources are described in §4.1.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: This work conforms the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: The border impacts is provided in Appendix.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The proposed method uses pre-trained models. This proposed methods is safe
under the safeguards of adopted pre-trained models.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: V-COCO dataset is released under the MIT license. HICO-DET dataset is

released under the CCO: Public Domain license. The weight of DETR is released under
Apache 2.0 license.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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15.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: We will release our code base with README file.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: There is no research with human subjects in this work.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: There is no research with human subjects in this work.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]
Justification: LLMs employed in this work are illustrated in §3.5.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Summary of the Appendix

For a better understanding of the main paper, we provide additional details in this supplementary
material, which is organized as follows:

* §A provides more implementation details of GroupHOL.
* §B offers more qualitative results.

* §C provides more experimental results.

» §D presents the pseudo code of GroupHOI.

» §E discusses the societal impact of this work.

A More Implementation Details

We follow HOICLIP [4] in converting HOI triplets and object labels into textual descriptions to
generate CLIP [8] text embeddings. Specifically, each HOI triplet <human, verb, object> is converted
into a sentence like “A photo of a person [verb-ing] a/an [object]”. For “no-interaction” instances,
we use “A photo of a person and a/an [object]”, and object labels are converted into “A photo of
a/an [object]”. These textual descriptions are then processed by the pre-trained CLIP text encoder to
obtain corresponding embeddings, which initialize the weights of the interaction classifier C* and
object classifier C°. During training, these classifiers are fine-tuned with a small learning rate to adapt
to the specific dataset. We employ the pre-trained CLIP visual encoder to extract visual features
Veiip. These features, along with our encoded features V, are independently processed by separate
interaction decoders. The resulting outputs are then fused to facilitate the final reasoning. We also
introduce two key modifications based on HOICLIP [4]. First, to address the dimensional mismatch
between positional embeddings (256) and the interaction decoder (768), we expand the positional
embeddings by stacking them three times. Second, we replace the Focal Loss with Asymmetric
Loss [85] to better handle the long-tail distribution of HOI categories.

B More Qualitative Results

We further provide qualitative examples of our approach in Fig. S1. These results highlight
GroupHOTI’s robust performance in HOI detection across various scenes. Notably, our model
effectively captures complex interaction patterns in scenarios involving group activities such as
team sports (e.g., soccer or tennis). This capability enhances interaction prediction with mutual
communication. We also present several failure examples of our model, primarily due to missed
object detection, as seen in Fig. S1(c). Additionally, our model encounters challenges when dealing
with highly ambiguous relations. For instance, in Fig. S1(s), GroupHOI fails to detect the look at ball
between the girl at the center and the ball, which is disrupted by her surrounding teammates.

C More Experiments

Ablative Experiments. We evaluate four strategies for measuring geometric proximity between
entities, using intersection-over-union (IoU), center distance (CD), and global image features (IF).
As shown in Table S1, combining IoU and Table S1: Analysis of geometric proximity measurement
CD consistently yields the best performance on HICO-DET [2] test(§C).

across all splits, indicating that both spatial cues Measurement Full Rare  Non-Rare
complement each other effectively. In contrast, IOU only 36.02  32.19 37.16
adding global image features slightly degrades CD only 36.14  33.60 36.90
performance, suggesting that they are not essen- 10U + CD 36.70  34.86 37.26
tial for proximity estimation. 10U+ CD +IF | 3621 3345 36.97

Efficiency Comparison. Table S2 presents a comprehensive comparison of the model scalability
(i.e., number of Parameters (Params), Floating Point Operations (FLOPs) and Frames Per Second
(FPS)) for various HOI detection methods. As shown, GroupHOI achieves significant performance
improvements over previous models while maintaining a comparable number of parameters. We also
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Table S2: Comparison of efficiency and performance on HICO-DET [2] test and V-COCO [1§] test.

Default S1 S92
Method| Backbone | Params| FLOPs| FPS?T Full Rare Non-Rare AP>,. AP>°,
1ICAN[22]Bumveis) R50 39.8 - - 14.84 1045 16.15 45.3 -
DRG[54]ccvao | R50-FPN | 46.1 - - |19.26 17.74  19.71 51.0 -
PPDM[31]icverao; | HG104 194.9 - - |21.73 13.78 24.10 - -
SCG[32]uceva | R50-FPN | 53.9 - - |31.33 2472 3331 542  60.9
HOTR[69] cverai R50 51.2 - - 2510 17.34 2742 552 644
HOITrans[37]cveror R50 414 - - 12346 1691 2541 52.9 -
AS-Net[86]cveral R50 52.5 - - |28.87 2425 33.14 53.9 -
QPIC[67]icveral R50 41.9 - - 129.07 21.85 31.23 58.8  61.0
CDN-S[17]inewtps2n|  R50 42.1 - - |31.78 27.55 33.05 623 644
STIP[33]icveraz) R50 50.4 - - 3222 28.15 3343 65.1  69.7
GEN-VLKT|[3]cveroz R50 41.9 60.04 26.18|33.75 29.25 35.10 624 644
HOICLIP[4]cvero3 R50 66.1 104.68 19.57|34.59 31.12 35.74 63.5 648
CLIP4HOI[87]iNewps231|  R50 71.2 - - 13533 3395 3574 - 66.3
VIiPLO[83]icveros) | VIT-B/32 | 118.2 - - 3495 33.83 35.28 609  66.6
GroupHOI (ours) R50 79.2 83.67 16.42(36.70 34.86 37.26 65.0 66.0

compare FLOPs and FPS with GEN-VLKT [3] and HOICLIP [4]. Despite a marginal reduction in in-
ference speed relative to HOICLIP, GroupHOI has lower FLOPs and yields solid mAP improvements
of 2.11/3.74/1.52 in HICO-DET [2], highlighting the effectiveness of our proposed framework.

D Pseudo Code

The pseudo code for semantic and geometric group are given in Algorithm 1 and Algorithm 2.

Algorithm 1: Pseudo-code for Geometric Group in a PyTorch-like style.

nun

hs: output human/object embeddings from the instance decoder.
pos_embed: position embeddings for human/object queries.
coords: bounding boxes of humans/objects.
K_g: geometric group size.
wnn
def Geometric_Group(hs, pos_embed, coords, K_g):
# Formulate the spatial feature
F_p = Cat([Square_distance(coords[:, Nonel, coords[None, :]), IoU(coords[:, Nonel], coords[None, :1)1)
# Compute the proximity score
S = Linear(F_p)
# Select the topk neighbors
knn_idx = TopK(S, K_g)

# Compute the position encodings

pos_enc = MLP(pos_embed - Gather(pos_embed, knn_idx))

# Formulate query, key, and value

q, k, v = Linear(hs), Linear(Gather(hs, knn_idx)), Linear(Gather(hs, knn_idx))
# Compute dispatch matrix

G = Softmax(q - k + pos_enc)

# Aggregate geometric context

C_g = Linear(G * (v + pos_enc))

out = hs + C_g

return out

Algorithm 2: Pseudo-code for Semantic Group in a PyTorch-like style.

wn

hs: interaction embeddings from the interaction decoder.
K_s: semantic group size.
win
def Semantic_Group(hs, pos_embed, K_s):
# Compute the similarity score
S = CosineSimilarity(hs[:, Nonel, hs[:, Nonel)
# Select the topk neighbors
knn_idx = TopK(S, K_s)

# Aggregate semantic context
C_s = MLP(Max(MLP(hs[:, Nonel, hs[:, None]-Gather(hs, knn_idx)), dim=-1))
out = hs + C_s

return out
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E Boarder Impact

This work advances the recognition of human-object interactions in complex scenarios, particularly in
scenes where small groups of people naturally form, which is a common occurrence in real-world set-
tings. This capability holds significant promise for applications in collaborative robotics, autonomous
systems, healthcare monitoring, among others. However, there are also potential downsides. Our
method risks propagating irrelevant contextual information among entities that merely happen to be
co-located but share no collective pattern, leading to “hallucinated” interaction predictions. Moreover,
group-level clustering may inadvertently propagate systemic biases, particularly in scenarios requiring
differential treatment of individuals within clusters (e.g., unfair reward and punishment allocation in
crowd behavior analysis). Hence, it is essential to rigorously consider legal regulations and integrate
certain fairness constraints to avoid potential negative societal impacts.
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(a) human hold tennis racket (b) human hold surfboard (c) human hold baseball bat ~ (d) human work on computer
human hit ball human walk human hold bag human hold mouse

=

(7758, i

(e) human hold cup (f) human sit chair 7 (g) human hold bowl (il) human snowboard snowboard
human hold phone human walk human walk human hold human

=T St >

(i) human throw frisbee (j) human snowboard snowboard
human look at frisbee human jump snowboard

(1) human catch frisbee
human jump

Vil e _ - L
(m) human look at human (n) human hold baseball bat (0) human lay bed (p) human kick ball
human ride boat human look at ball human sit bed human run

(q) human ride elephant (r) human look at ball (s) human look at ball (t) human work on computer
human kick ball human jump human sit chair

(u) human hold cup (v) human hold knife (w) human skateboard skateboard (x) human hold knife
human smile human sit chair human jump human cat cake

Figure S1: Visualization of GroupHOI results on V-COCO [18] test. Detected interactions are marked in
Green, while missed interactions and objects are in Red.
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