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Abstract

The synthetic control (SC) framework is widely used for observational causal
inference with time-series panel data. SC has been successful in diverse applica-
tions, but existing methods typically treat the ordering of pre-intervention time
indices interchangeable. This invariance means they may not fully take advantage
of temporal structure when strong trends are present. We propose Time-Aware
Synthetic Control (TASC), which employs a state-space model with a constant
trend, while preserving a low-rank structure of the signal. TASC uses the Kalman
filter and Rauch-Tung—Striebel smoother: it first fits a generative time-series model
with expectation—maximization and then performs counterfactual inference. As an
initial demonstration, we apply the TASC to a case study on California’s healthcare
policy (Proposition 99). Our method showed promising results in placebo tests,
indicating its potential applicability in a broader range of healthcare contexts.

1 Introduction

Synthetic Control (SC) is a popular method in observational causal inference. Often described as
a natural extension of the Difference-in-Differences (D-in-D, [1]]), SC aims to evaluate the effects
of an intervention more accurately by creating synthetic counterfactual data. The first application
was measuring the economic impact of the 1960’s terrorist conflict in Basque Country, Spain (a
target unit) by combining GDP data from other Spanish regions (donor units) prior to the conflict to
construct a synthetic GDP data for Basque Country in the counterfactual world without the conflict
[2]]. Unlike D-in-D, which compares the changes in outcomes over time between a treated group and
a comparison group, SC builds a synthetic comparison unit as a weighted combination of donors.
SC is becoming increasingly popular with an expanding range of applications, including economics
[2, 13} 4], political sciences [13,16], social sciences [7} 8], and healthcare [9, 8, [10].

SC methods assume that time-series panel data arise from a latent variable model, without restricting
a relationship among the time-varying latent factors. The linear factor model, widely adopted in
SC literature [2 13l 5], is one example. This model is both flexible and versatile; for example, it
can be extended to incorporate autoregressive components. However, this same flexibility leads SC
methods built on top of the model to produce identical estimations when the pre-intervention time
indices are permuted. While such flexibility avoids imposing strong structural assumptions, it also
prevents the model from capturing predictive signals when a learnable trend exists. A key insight is
that time-series data often exhibit stable trends, which we explicitly incorporate into the model.

Another key property of time-series panel dataset is that, as the data size increases, the resulting data
matrix tends to be approximately low-rank. This phenomenon, well analyzed by [11], becomes more
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pronounced when temporal trends are stronger, limiting the movement of latent factors across time
points. Building on this insight, numerous SC variants have been proposed to leverage the data’s
low-rank structure. These methods typically rely on spectral analysis of the data matrix: for example,
[12] employs principal component regression, while [[L3] frames SC as a nuclear-norm minimization
problem. However, these approaches are also time-agnostic because shuffling of time indices does
not affect the spectrum of a matrix.

Our contribution lies in embedding SC panel data within a state-space model to simultaneously
harness both the low-rank and time-series properties of the data. In Section [3] we introduce our
model and outline a simple EM approach to learn the model, employing Kalman filtering and
Rauch-Tung—Striebel smoothing. In Section ] we apply our method to a classic health policy
evaluation case (Proposition 99) demonstrating enhanced performance and interpretability relative to
traditional methods. This approach offers a principled framework for integrating causal inference
with time-series analysis, which is particularly valuable in healthcare and clinical research settings.

2 Background
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trates the general structure of an SC dataset, Fjgure 1: General data structure for synthetic control.
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where the superscript — denotes the pre- The donor pool (Y = [ya,...,yns1] ) and the target
intervention period and the superscript + ynit (y;) are divided into pre- and post-intervention
denotes the post-intervention period. periods.

Based on this data structure, we define SC
family of methods (Algorithm/[T)) as follows.
SC first learns the relationship between the target unit and donors using the pre-intervention data. For
example, this (M) can be a vertical regression where the pre-intervention column vectors Y2.p, 41 ¢
become input features for the label Y7 , for all ¢ € [Tj]. Then, SC uses this knowledge (f) to project

the post-intervention donor data Y+ and predict Yfr. Finally, the causal effect of the intervention for
the target unit is estimated as Y;* — YT

Algorithm 1 Synthetic Control Family of Methods

Data: Target unit’s pre-intervention data Y;~ € R”°, Donordata Y = [Y~, Y] € R"*7

Result: Counterfactual prediction Yfr, SC weights f

1. Learn f=M(Y;, Y, Y1) /* the use of Y is optional */
2. Project V" = f(Y)

3. Infer the estimated causal effect of the intervention for the target is Y;" — ¥,

M refers to the SC learning algorlthm Much of the SC literature has adopted a least squares
predictor over the convex scan of Y ~: f = argminy ||Y;” — fTY || where 31" | fi = 1,0 <
f < 1Vi e [n][2l3,5]. The convex scan condition can be replaced by Lasso (|| f]|1) or Rldge
(|| £]|3) regularization [14}[12]. Some approaches use PCA to keep only the top few singular values in
data prior to the optimization step [[12, [15]. Other variations of synthetic control algorithms focused
on issues such as handling multiple treated units [[16 [17]], dealing with a large the number of donors
[4,|18]], and correcting biases [[19]]. See [20] for a detailed survey of these techniques.



2.2 Latent Variable Models for Synthetic Control
The first SC algorithm suggested by [2] assumes a linear factor model
Yie =00 + 0.2 + Mepii + €54, ()

where §; is a time trend, Z; € R? and p; € R? are vector of observed and unobserved predictors,
with coefficients 6, and ;, and €; ; is the noise. This model implies that the signal component of
the matrix has a rank no more than p 4+ g + 1. When this quantity is considerably smaller than the
matrix’s full rank, the observation matrix becomes approximately low rank. This is indeed a common
case for a factor model, verified in many real-world data [21} 22| 23]]. This has inspired a range
of SC algorithms to utilize the approximately low-rank structure of data. Several SC algorithms
employ simplex constraints or regularizers to minimize the number of active donor units [2} 3} [14} 24];
[L8] introduces donor selection step to reduce the number of donors in the first place; [12} [15] uses
principal component regression; and [[13] frames SC as a problem of nuclear norm minimization.

Another characteristic of the panel data used in SC is its time-series nature. Despite this, many SC
algorithm variants remain invariant to permutations of time indices in pre-intervention data. Although
the permutation-invariant approach provides robustness by accommodating a wide range of temporal
trends, it discards ordering information, whereas explicit modeling strategies can exploit additional
structure when meaningful temporal patterns exist. To address this, some researchers have introduced
algorithms that assume temporal trend by utilizing state-space models. [25] designed the state vector
to include elements such as SC weights, local linear trends, and seasonality. [26}[27] further simplified
this structure and only take SC weights as a latent state. The central concept of these approaches
is to allow SC weights to change over time, defining the target unit’s time series as an observation
(scalar) and the SC weights (potentially alongside additional components) as latent states (at least
n-dimensional vector, where n is the number of donors). Therefore, these modeling approaches
do not necessarily ensure that the observation matrix is approximately low-rank. Furthermore, by
not explicitly modeling the stochasticity of the donor pool, these models may not fully leverage the
information available in the donor pool.

3 State-Space Model for Time-Aware Synthetic Control

We assume the following state space model:

= Az 1+ q—1 q—1 ~N(0,Q), 2)
yt:HIt+Tt ,T’tNN(O,R). (3)

where we assume the initial hidden state zg to be drawn from N (myg, Py) (i.e., o ~ N (mq, Py).)

The model parameters are § = {A, H, Q, R, mg, Py}, where A € R4, H € R(*+1)xd ¢ RIx4,
R e R+Dx(n+1) o e RY, Py € R4, and d < min(n, T). This is a classical linear Gaussian
model, and we set all covariance matrices ), R, and Py, be positive semi-definite. If desired, we may
constrain that the noise covariance matrices () and R are diagonal with non-zero diagonal entries to
reduce the number of parameters. The advantage of this model is that the output Y = [yy, ..., yr]
will be an approximately low-rank matrix (with the approximate rank being d), and the learning
algorithm will no longer be agnostic to the permutations of pre-intervention time indices.

Based on this model, we propose an approach for model learning and counterfactual inference:
Time-Aware Synthetic Control (TASC). We use an Expectation-Maximization (EM) algorithm to
learn both the parameters and the hidden states from the observations y;. The algorithm begins by
randomly initializing the parameters 6, and then alternates between two steps: first, estimating the
hidden states while keeping the parameters fixed; and second, updating the parameters while holding
the hidden states constant|'| This EM algorithm is designed using Kalman filter and RTS smoother,
and we use only the pre-intervention data to learn the model parameters. For counterfactual inference,
we set the variance of the post-intervention target data to infinity, ensuring that the model does not
gain any information from that data. This counterfactual estimation phase utilizes post-intervention
data, while keeping the model parameters we learned from pre-intervention data. A full description
of algorithms are deferred to Appendix [B]

!See [28] for more information.



3.1 When TASC Model Is Advantageous

A distinctive feature of the TASC approach is its explicit modeling of the trend A. This design choice
offers several advantages, though it may introduce limitations in certain cases. First, incorporating A
enhances the interpretability of the TASC model, as it captures the underlying trend in time-series data.
Second, if trend A persists beyond the intervention point, it provides TASC with strong predictive
power, which is particularly advantageous over longer time horizons. Third, by modeling A, TASC
becomes sensitive to the time orders, rather than being agnostic to them. Overall, TASC leverages
temporal structure when a consistent trend exists but offers limited benefits when the trend is weak or
absent (e.g., A = 0).

Another benefit of TASC is the approximately low-rank structure, represented as Y = H X + F, where
H X is an exactly low-rank signal and £ denotes noise. This low-rank property commonly appears
in real-world datasets, especially as the data size increases. In such cases, Principal Component
Analysis (PCA) is a widely adopted technique for extracting low-rank signals. It has been applied
in various domains such as image processing, speech and audio analysis, genomics, finance, and
sensor data analysis, and has also been utilized in synthetic control methods by [[12]. However, the
performance of PCA deteriorates in the presence of substantial observational noise, as it assumes that
the learned principal components are noise-free in the selected directions. In contrast, TASC may
offer improved robustness in extracting signals under noisy conditions by assuming omnidirectional
noise (i.e., the noise matrix is full rank).

4 Evaluating Effect of Proposition 99 in California

We illustrate our method on the Proposition 99 case from [3]]. Proposition 99 was a policy enacted in
California in 1988 that significantly increased the state’s cigarette tax. This policy was followed by
a noticeable decline in cigarette sales (black line in Figure ). To assess whether this decline was
causally driven by the policy, synthetic control methods can be applied to estimate the counterfactual
outcome for California—i.e., what cigarette sales would have looked like had the policy not been
implemented. For economic analyses, multiple auxiliary predictors are often used to improve
predictive accuracy. For example, [3]] incorporate variables such as the average retail price of
cigarettes, per capita state personal income, the percentage of the population aged 15-24, and per
capita beer consumption, in addition to the target time series (per-capita cigarette sales). However, in
our analysis, we intentionally focus on a single predictor, per-capita cigarette sales, to ensure a fair
and consistent comparison across different methods. Our goal is not to produce the most accurate
estimate of the effect of the policy, but to evaluate the performance of competing methodologies
under a controlled setting.

G 140
o
g 50 -
c 120 Method o
= I TASC
B 407 = sc ° o
'© 100 Em RSC
301 W am
2 3 o
Y 80 California 2
S 201
k= —— TASC
& 60y —— SC
s —— RSC : 107
Y 4ol — CM g L
9] : 0
S 1970 1975 1980 1985 1990 1995 2000
Year Figure 3: Post-intervention RMSE from placebo

Figure 2: Per-capita cigarette sales in packs in  test for different SC algorithms.
California (black line), and estimated counterfac-
tual values from SC.



We compare the estimated counterfactuals by Synthetic Control (SC [3]]), Robust Synthetic Control
(RSC [12]), Causal Impact Model (CIM [25]]), and our TASCE In Figure all predictions lie above
the observed trend, with the gap capturing the policy’s effect. To test which SC estimates are most
reliable, we use a placebo test: predicting each donor’s time series by constructing a separate SC
instance using the remaining donors as the donor pool. A valid SC method should also accurately
reproduce untreated outcomes. Figure 3] shows post-intervention root mean squared error (RMSE)
from the placebo test. Among these, TASC achieves the lowest RMSE and all three benchmarks show
similar median RMSE with SC having the largest variance. This ordering suggests that the TASC
estimates in Figure 2|likely yield counterfactual predictions with smaller error and may therefore be
closer to the true counterfactual. In Appendix D] we present additional analyses with the Proposition
99 case study.

5 Conclusion and Future Work

In this work, we introduced Time-Aware Synthetic Control using a state-space model. We provide
algorithms for model learning and counterfactual inference based on Kalman filtering and RTS
smoothing. With this approach, we enforce synthetic control algorithm to be aware of the temporal
structure of data, which was not explicitly modeled in many variations of synthetic control algorithms.
We demonstrated TASC on the classical Proposition 99 case study, and the placebo test showed
promising result that TASC may be a favorable choice in certain datasets over SC or RSC. We suspect
that a pronounced temporal trend is the key for TASC to succeed, which is a common case for a lot
of health and clinical time-series panel data.

Looking forward, we see several directions for extension. In terms of the model and algorithms,
we can incorporate multiple auxiliary time series, improve the parameter learning algorithm, and
also consider non-linear state-space models. From a theoretical perspective, it would be valuable to
identify conditions under which TASC is preferable to other SC variants, and to determine if these
conditions are testable. For the applications, we can apply TASC to clinical trial datasets or electronic
health records. With the promising initial result, we envision that TASC could serve as a robust
framework for integrating causal inference with time-series modeling.
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A Basic Algorithms

In this section, we provide the full pseudocode for the basic algorithms comprising the EM approach:

Kalman Filter (Algorithm [Z), RTS Smoother (Algorithm [3), and the M-step (Algorithm ).

Algorithm 2 Kalman Filter

Input :y;, € R™™L, previous estimate my_1, Px_1, current parameter § = {A, H,Q, R, mq, Py}

Output :my, Py

My p—1 < Amg_1 /* prediction from the previous timestep k —1
Prjr—1 AP, AT +Q /* prediction from the previous timestep k — 1
Vg < Y — Hmgp_1

Sk HPk“C,lHT + R

Ky Pk|k_1HTSk_l /* Kalman Gain
My < Mpjp—1 + Kgvg /* Update after observing yi
Py <+ Pyjp—1 — KkSkK,;'— /* Update after observing yi

*/
*/

*/
*/
*/

Algorithm 3 RTS Smoother

Input :Kalman filter estimate my, P, smooted estimate mJ L1 P 1> current parameter 0
{A>H7Q3R7 mO7PO}
Output :mj, P}

Myl Amy, /* prediction from Kalman filter estimate my

Py < AP AT +Q /* prediction from Kalman filter estimate P
Tp-1

Gk — PkA pk+1|k

my, < my + Gp[mi | — mypk]  /* m§ =m; for the last timestep t =Ty or T
Pg < Py + GplPfy — PopawlGL /% Pf =P, for the last timestep t =Ty or T
return m;, P;, Gy,

*/
*/

*/
*/

Algorithm 4 Parameter Update (M-Step)

Input :current parameter § = {A, H, Q, R, mg, Py}, length of the sequence T, RTS parameters

mj, P, Gy forall k € {0,...,T}, observations y;, forall k € {1,...,T}
Output : 6’
Define - .
1 S S90S

X= TZ[]%:IP]C +mpmy,

s s s T
¢ =7 ZkT:1 Pi_y+mi_ymj_,
B = % 21%21 ykaT

s Son8 T
C=1 ZkT=1 PGy +mimi_,
D=3 ke
Update
A — Cd!
H « BY !

Q' < Diag(¥ —2CAT + APAT) /* Diag(:) keeps only the diagonal elements of

the input */
R' <+ Diag(D — 2BHT + HXHT)
my < ms
Py < Py + (m — mo) (m —mo) "
return §' = {A’"  H', Q', R',m{, P}}




B Full description of Time-Award Synthetic Control (TASC) Algorithm

In this section, we disclose the derivation of TASC.

B.1 Pre-intervention Fit

For pre-intervention data, we can take the classical EM approach for a linear gaussian state-space
model. The E-step comprises of a forward pass (Kalman filter) and a backward pass (RTS smoothing).
This gives us estimates my and P} to define a lower bound for the posterior probability distribution.

Algorithm 5 EM,,,..(Ypre; N), EM for Pre-intervention Fit

Data: Y,,.. where (i, j)-th element is y; ; V(¢,t) € [1 : n+ 1] x [1 : Tp] (pre-intervention data from
the target and donors)
Result: 0 = {A, H,Q, R, mo, Po}
Initialize 6(°)
for i < 1to N do

for k < 1to 1, do

‘ Update my,, Py, via Kalman filtering with §¢—1); /* forward pass */
end
for k < Ty — 1to 0 do

| Update m, P¢, G, via RTS Smoothing with §¢~1); /* backward pass */
end
Update #) via the M-step of EM

end
return (V)

TASC utilizes Algorithm [5]to learn the parameters 6 from the pre-intervention data. With these fixed
parameters, TASC uses Kalman filter and RTS smoother to estimate the internal states m; , P, and
then translate these to finally estimate the post-intervention time series. However, this is impossible
without a special treatment since the first element of y; (which belongs to the target unit) is missing.
To handle this, we deem that the target unit’s data is missing, and separate the donor portion of the
data and parameters:

Yt 1 re1 h{ rt 0
= : = : H= 1 and R =
Yt |:yt,2:|7rt |:Tt,2:|7 |:H2:|7 |: 0 R2 )
where y; 2,72 € R", Hy € R™*4 and R, € R™*™,
Then, we redefine the observation model (i.e., Equation (3)) to be the following
Yi,2 = Howy + 14 2,
where 1, o ~ N (0, Ry). With this new model, the post-intervention observations will not inform the
target-related parameters: hq and 7. This is equivalent to setting r; — oo in the original model.
Algorithm [f] shows the Kalman filtering process with infinite variance for the target observation (i.e.,
r1 — o0). Note that
Ky = Py H' S,

- [ 0 Pyt HJ (HyPyyHJ + Rp)™" ]

)

and the update on my, is
my = My|p—1 + Krvg

=Mmpjg—1+ P]C_|]1,1H2T(H2Pk|k'—1H2T + Ro) ™! o0,

(Note: vy, o € R™ is the last n elements of vy—i.e., V2 = Yr,2 — Hgmk‘k_l) , and the update on P
is
Py = Pyp_1 + KpSp K
= Pyjj—1 + Pop—1 Hy (Ho Py Hy + R2)_1H2PJ1<:71-



Algorithm 6 Kalman Filter with Infinite Variance

Input :y; € R™*! with the target(first) element missing, previous estimate my_1, Py_1, current
parameter 0" = {A, H,Q, R, mq, Py}, where R ; = oo
Output :my, Py

Deﬁnehl,Hg,RgfromH:[iﬁ;2 ],R’:[%O 122 ]

Yk < [hirmk:\kflvyl,k;---ayn,k]T /* augment target values x/
My -1 < Amg_y /* prediction from the previous timestep k—1 */
Prjr—1 < AP, _ AT +Q /* prediction from the previous timestep k—1 */
Vg < Y — Hmygp— /* the first element is zero */
Sk HPMk_lHT + R

Sk_l — 8 (H2pk|k—1j(7)[2—r+R2)il ] /* by Schur Complement */
Ky, Pk|k,1HTSk_1

My 4 M| g—1 + Ky, /* Update after observing yi */
Py < Prjp—1 —KkSkK,;r /* Update after observing yj */

With the infinite variance, post-intervention target time series do not affect the outcome of
Kalman filtering, hence we can set it to any value (such as zero for the first element in y; <
0,92k, -, ynJrl’k]T). The RTS Smoother algorithm remains the same, as it does not use R or yj
as an input—it only utilizes my,, P}, estimates from the Kalman filter in addition to the parameters A
and Q. As a result, this only changes the Kalman filter part in the post-intervention time steps from
Algorithm [2]to Algorithm[6] The full description of TASC is provided in Algorithm 7]

Algorithm 7 TASC(Y'; V)
Data: y; , V(i,t) € [l : n+ 1] x [1: Tp]and V(i,t) € 2:n+1] x [Tp+1:T)
Result: 0 = {Av H7 Qa R7 mo, P0}7 gl,Tg+17 .. 72’)1,T
Learn 0N < EMc(Ypre; N1)
for k <+ 1to Ty do
‘ Update my, Py, via Algorithmwith oM /* pre-intervention forward pass */
end
for k < Ty + 1to T do
\ Update my, Py, via Algorithm@with oM /* post-intervention forward pass */
end
fork < T —1to0do
| Update mj, P§ via RTS Smoothing with §(—1) /* backward pass */
end

-
Define H = { hy }

Hy
fork « Ty + 1toT do
‘ Predict §; ; + h] m; /* Post-intervention target prediction */
end
return 0™ Gy 141, T

C Benchmark Synthetic Control Algorithms
In this section, we provide a full algorithm description for the benchmark synthetic control algorithms,
SC and RSC.

The classical Synthetic Control (SC) performs a vertical regression with simplex constraint [3]].
Algorithm 8] shows the classical SC implemented in our study, where the importance matrix V' is set
to an identity matrix. Note that our implementation in Proposition 99 study is slightly different from

10



the original analysis (in [3]]) because we only use the target time series of interest (per capita tobacco
sales in packs) without any additional covariates.

Algorithm 8 Synthetic Control, [3]

Data: Target unit’s pre-intervention data Y;~ € R0, Donordata Y = [Y—,Y*] € R**T

Result: Counterfactual prediction v, sc weights f

1. Learn

f=argming|[Y;7 — fTY |?where0< f < 1,57 fi=1 /* Simplex constraint */
2. Project ;" = f(Y1)

3. Infer the estimated causal effect of the intervention for the target is Y;" — ¥+

Robust Synthetic Control (RSC, [12]]) performs hard singular-value thresholding (HSVT) as a
pre-processing step to denoise the observation data. Then, it learns a vertical regression model
using the pre-intervention portion of the data, and projects with the post-intervention data for
counterfactual inference. Algorithm [J] describes our adoption of the original algorithm with the
observation probability p = 1 (no missing data).

Algorithm 9 Robust Synthetic Control [12]]

Data: Target unit’s pre-intervention data Y;~ € R0, Donor data Y = [Y~,Y*] € R"*T, Number
of singular values to keep d

Result: Counterfactual prediction Y;", SC weights f

1-1. Denoise

Y = ZZT("’T) ERTOA /* Singular Value Decomposition (SVD) */

Y = Z?zl siuv; /* Hard Singular Value Thresholding (HSVT) */

1-2. Learn f = argming ||Y;” — fTY |12 4+ )| f|?

2. Project Y," = fTY*

3. Infer the estimated causal effect of the intervention for the target is Y, — ¥,

D Additional Experiments with Proposition 99 Data

In this section, we provide additional experiments we ran with Proposition 99 data that were not
included in the main text due to the space limit. Following the approach from [3]], we plot the
difference between the observed outcome and the predicted counterfactual for California, alongside
those of the control states obtained from the placebo test. The first column of Figure ] reports the
gap between prediction and observation of per-capita cigarette sales (in packs) for California and the
38 control states. Subsequent columns restrict the set of control states based on the relative quality
of pre-intervention fit, measured by mean-squared error (MSE). The second column includes only
control states whose pre-intervention MSE is no more than 10 times that of California, while the third
and fourth columns apply stricter thresholds of 5 and 2 times, respectively.

Notably, the last row (CIM) retains the largest number of control states as stricter thresholds are
imposed, indicating that the accuracy of pre-intervention prediction was similar across states. In
contrast, the TASC approach (the first row) retains substantially fewer control states under the most
stringent threshold compared to SC or RSC. This indicates that the pre-intervention fit for California
was more accurate than other states when using TASC. Note that California is one of the most
populated states in the US, and hence the collected data (per capita cigarette sales) may have lower
variance compared to other states due to averaging effect. In such case, TASC may have learned
smaller observation noise variance (R) and yielded more accurate (pre-intervention) fit for California.
Indeed, corresponding variance for California was the smallest (2.58, with median 12.95, standard
deviation 36.17 and maximum 170.79). Across all specifications, California consistently displays the
largest gap, while it is more apparent in the plots in the top right corner (stricter thresholds, TASC
method). The estimate effect of policy is similar across methods, diverging only at the end. TASC
and RSC shows flatter estimates closer to 2000, whereas SC and CIM estimates keep increasing.
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Figure 4: Gap in per-capita cigarette sales (in packs) between the observed outcome and synthetic con-
trol predictions (comparable to Figures 4-7 in [3]]). Each row represents a different algorithm—TASC,
SC, RSC, and CIM (from top to bottom)—while each column applies a different threshold for select-
ing control units: no threshold, at most 10 times California’s pre-intervention error, 5 times, and 2
times (from left to right).
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