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Abstract

The synthetic control (SC) framework is a key tool for observational causal in-1

ference in time-series panel data, common in healthcare and clinical research.2

Although the data analyzed by SC are inherently time-seires, most SC approaches3

are invariant to permutations of the time indices in the pre-intervention data. In4

this work, we suggest Time-Aware Synthetic Control (TASC), which models the5

observations using a linear state space model and performs counterfactual inference6

using the Kalman filter and RTS smoothing. TASC ensures that the data maintains7

a low-rank signal with latent factors evolving gradually over time. As an initial8

demonstration, we apply the TASC approach to a case study on California’s health-9

care policy (Proposition 99). Our method showed promising results in placebo10

tests, indicating its potential applicability in a broader range of healthcare contexts.11

1 Introduction12

Synthetic Control (SC) is a popular method in observational causal inference. Often called as a natural13

extension of the Difference-in-Differences method (D-in-D, [1]), SC aims to evaluate the effects14

of an intervention more accurately by creating synthetic counterfactual data. The first application15

was measuring the economic impact of the 1960’s terrorist conflict in Basque Country, Spain (a16

target unit) by combining GDP data from other Spanish regions (donor units) prior to the conflict to17

construct a synthetic GDP data for Basque Country in the counterfactual world without the conflict [2].18

Rather than selecting the nearest neighbor as in D-in-D, the syntheitc control estimate is computed as19

a linear combination of donor units. SC is becoming more and more popular with expanding range of20

applications, including economics [2, 3, 4], political sciences [5, 6], social sciences [7, 8], healthcare21

[9, 8, 10], to name a few.22

A fundamental assumption of SC is that the time-series panel data arises from a latent variable23

model, producing an (approximately) low-rank matrix. Various latent variable models have been24

adopted, including the linear factor model [2, 3, 5], latent variable models with Lipschitz-continuous25

functions [11, 12], and the interactive fixed-effect model [13]. Despite differences in these models,26

they commonly assume that the observation matrix can be well-approximated by a low-rank matrix,27

implying that the latent factors are simpler than the observed data. These methods typically leverage28

the matrix’s spectrum analysis: RSC [11] uses principal component regression, while [14] frames SC29

as a nuclear-norm minimization problem. However, due to their reliance on spectrum analysis, these30

approaches are time-agnostic, meaning permutations of pre-intervention columns do not impact the31

results.32

Remind that the panel data analyzed using SC is inherently time-series data, and we can use33

this in learning the SC model. Some approaches were proposed to incorporate the ordered nature34

of time indices using a state-space model. [15] designed the state vector to include elements like35

SC weights, local linear trends, and seasonality, and the observation is the target unit’s outcomes.36

[16, 17] further simplified this structure and only take SC weights as a latent state. These approaches37

model the observation as a time series of the target unit, but does not explicitly connect their results38
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to the low-rank structure of the panel data (SC weights are n dimensional, where n is the number of39

donors).40

Our contribution lies in embedding SC panel data within a state-space model to simultaneously41

harness both the low-rank and time-series properties of the data. In Section 3, we introduce our42

model and outline a simple MAP approach to learn the model, employing Kalman filtering and43

Rauch–Tung–Striebel smoothing. In Section 4, we apply our method to a classic health policy44

evaluation case (Proposition 99) demonstrating enhanced performance and interpretability relative to45

traditional methods. This approach offers a principled framework for integrating causal inference46

with time-series analysis, which is particularly valuable in healthcare and clinical research settings.47

2 Background48

2.1 Synthetic Control Methods49

Figure 1: General data structure for synthetic control.
The donor pool (Y = [y1, . . . , yn]

⊤) and the target unit
(x0) are divided into pre- and post-intervention periods.

The time-series panel dataset for SC con-50

sists of the following components. Let51

Yi,t ∈ R be the observation from i-th unit52

at time t. We have n (untreated) donor units53

indexed by i ∈ {1, . . . , n} and a (treated)54

target unit with index 0. The untreated ob-55

servation matrix is of size (n + 1) × T ,56

where the target unit’s values after t > T057

is missing due to the treatment happening58

at time T0. Figure 1 illustrates the gen-59

eral structure of an SC dataset, where the60

superscript − denotes the pre-intervention61

period and the superscript + denotes the62

post-intervention period.63

Based on this data structure, we define SC family of methods (Algorithm 1) as follows. SC first learns64

the relationship between the target unit and donors using the pre-intervention data. For example,65

this (M) can be a vertical regression where the pre-intervention column vectors Y1:n,t become66

input features for the label Y0,t, for all t ∈ [T0]. Then, SC uses this knowledge (f ) to project the67

post-intervention donor data Y + and predict Ŷ +
0 . Finally, the causal effect of the intervention for the68

target unit is estimated as Y +
0 − Ŷ +

0 .69

Algorithm 1 Synthetic Control Family of Methods

Data: Target unit’s pre-intervention data Y −
0 ∈ RT0 , Donor data Y = [Y −, Y +] ∈ Rn×T

Result: Counterfactual prediction Ŷ +
0 , SC weights f

1. Learn f =M(Y −
0 , Y −, Y +) /* the use of Y + is optional */

2. Project Ŷ +
0 = f(Y +)

3. Infer the estimated causal effect of the intervention for the target is Y +
0 − Ŷ +

0

The core learning algorithm for SC is theM part. The first SC algorithm suggested by [2] assumes a70

linear factor model71

Yi,t = δt + θtZi + λtµi + ϵi,t, (1)

where δt is a time trend, Zi ∈ Rp and µi ∈ Rq are vector of observed and unobserved predictors,72

with coefficients θt and µi, and ϵi,t is the noise. Then, it uses the following optimization approach:73

minf∈Rn ||Y −
0 − Y −⊤

f ||2 s.t.
∑

i fi = 1, 0 ≤ fi ≤ 1 ∀i ∈ [n]. This can be easily extended to74

have regularizers (such as Lasso ||f ||1 or Ridge ||f ||22 added to the minimization objective) and/or75

dropping the simplex constraint. Robust Synthetic Control (RSC, [11]) uses PCA to keep only the76

top few singular values in donor data prior to the optimization step (essentially performing Principal77

Component Regression).78
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2.2 Approximately Low-Rank Observation with Temporal Structure79

The classical SC method is based on a linear factor model, as described in Equation (1). This model80

implies that the signal component of the matrix has a rank no more than p+ q+1. When this quantity81

is considerably smaller than the matrix’s full rank, the observation matrix becomes approximately82

low rank. This has inspired a range of SC algorithms. Several SC algorithms [2, 3, 18, 19] employ83

simplex constraints or regularizers to minimize the number of active donor units; RSC [11, 12] uses84

principal component regression; and [14] frames SC as a problem of nuclear norm minimization.85

Another characteristic of the panel data used in SC is its time-series nature. Despite this, many86

SC algorithm variants, including all those mentioned in the previous paragraph, remain invariant to87

permutations of time indices in pre-intervention data. To address this limitation, some researchers have88

introduced algorithms that understand temporal structure by utilizing state space models [15, 16, 17].89

The central concept of these approaches is to allow SC weights to change over time, defining the90

target unit’s time series as an observation (scalar) and the SC weights (potentially alongside additional91

components) as latent states (at least n-dimensional vector). These modeling approaches do not92

necessarily ensure that the observation matrix is approximately low-rank.93

3 State-Space Model for Time-Aware Synthetic Control94

We assume the following state space model:95

xt = Axt−1 + qt−1 qt−1 ∼ N (0, Q), (2)
yt = Hxt + rt , rt ∼ N (0, R). (3)

where we assume the initial hidden state x0 to be drawn from N (m0, P0) (i.e., x0 ∼ N (m0, P0).)96

The model parameters are θ = {A,H,Q,R,m0, P0}, where A ∈ Rd×d, H ∈ R(n+1)×d, Q ∈ Rd×d,97

R ∈ R(n+1)×(n+1), m0 ∈ Rd, P0 ∈ Rd×d, and d≪ min(n, T ). This is a classical linear Gaussian98

model, and we set all covariance matrices Q,R, and Pk be positive semi-definite. If desired, we may99

constrain that the noise covariance matrices Q and R are diagonal with non-zero diagonal entries to100

reduce the number of parameters. The advantage of this model is that the output Y = [y1, . . . , yT ]101

will be an approximately low-rank matrix (with the approximate rank being d), and the learning102

algorithm will no longer be agnostic to the permutations of pre-intervention time indices.103

Based on this model, we propose two versions of TASC Algorithms to obtain MAP estimators:104

TASCpre and TASCfull. Both are Expectation-Maximization(EM) algorithms to learn the pa-105

rameters: we start by randomly choosing the parameters θ, and then keep updating as we get the106

data. TASCpre only uses the pre-intervention data to learn the parameters, and then use Kalman107

filter and RTS smoother to predict the counterfactual outcomes. Note this prediction phase still108

utilizes post-intervention data, but they are not used for updating parameters. TASCfull continues to109

update the parameters using post-intervention observations as well. To do so, we augment the target’s110

post-intervention observations with the prediction based on the most recently updated parameter. A111

full description of algorithms are deferred to Appendix B.112

3.1 Comparison to RSC113

Assume that matrix entries follow a latent variable model Yi,t = g(θi, ρt) + ϵi,t where g is a dot114

product, θi and ρt are d dimensional latent vectors characterizing i-th unit and t-th time, and ϵi,t115

is observation noise. In RSC [11], θi and ρt are derived from PCA: X =
∑min(n,T )

i=1 siuiv
⊤
i =116 ∑d

i=1 siuiv
⊤
i +

∑min(n,T )
i=d+1 siuiv

⊤
i , where si is singular values in decreasing order. By defining Ũ117

to have s
1/2
i ui for i ≤ d as columns and Ṽ ⊤ to have s

1/2
i vi for i ≤ d as rows, the rows of Ũ can be118

interpreted as θi and the columns of Ṽ as ρt. Similary, the TASC model suggests a decomposition119

Y = HX +E, where the columns of X are hidden states xt and the columns of E are observation120

noise rt. Here, the rows of H are analogous to θi and the columns of X are to ρt. Both Ũ Ṽ ⊤ and121

HX are exactly low-rank matrices, but with differ in how we separate the noise. The difference122

comes from the learning objectives: RSC’s approach minimizes the size of the noise matrix (in terms123

of spectral norm), whereas TASC focuses on making sure the time-features ρt (or xt in our model)124

evolves gradually over time with a trend (A). As a result, the noise portion in RSC becomes rank125

min(n, T )− d, whereas E is almost surely full rank (omnidirectional).126
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Figure 2: Per-capita cigarette sales in packs in
California (black solid line), and estimated coun-
terfactual values from SC (dotted lines).

Figure 3: Post-intervention RMSE from placebo
test for different SC algorithms

4 Evaluating Effect of Proposition 99 in California127

We illustrate our method on the Proposition 99 case [3], which raised California’s cigarette tax in 1988128

and was followed by a drop in sales (black line, Figure 2). To test if this decline was policy-driven,129

we compare counterfactuals from SC [3], RSC [11], and our TASCpre and TASCfull models1. All130

predictions lie above the observed trend, with the gap capturing the policy’s effect.131

The next question is which SC estimates are most reliable. Since counterfactuals are unobservable,132

we use a placebo test: predicting each donor’s time series from the others. A valid SC method should133

also accurately reproduce untreated outcomes. Figure 3 shows post-intervention root mean squared134

error (RMSE) from the placebo test across different implementations of SC. Among these, TASCpre135

achieves the lowest RMSE, followed by TASCpost, RSC-Ridge, SC, and RSC-OLS. This ordering136

suggests that the TASC estimates in Figure 2 likely yield counterfactual predictions with smaller137

error and may therefore be closer to the true counterfactual.138

In Appendix D, we present additional analyses, including a comparison highlighting the advantages139

of our interpretable latent factor model, practical strategies for improving the EM algorithm, and a140

dropout analysis to assess the robustness of California’s counterfactual prediction.141

5 Conclusion and Future Work142

In this work, we introduced a state-space framework to model synthetic control type of data, and a143

family of algorithms (TASC) to learn the model. With this approach, we enforce synthetic control144

algorithm to be aware of the temporal structure of data, which was ignored in many variations of145

synthetic control algorithms. We demonstrated TASC on the classical Proposition 99 case study, and146

the placebo test showed promising result that TASC may be a favorable choice in certain datasets147

over SC or RSC. We suspect that a pronounced temporal trend is the key for TASC to succeed,148

which is a common case for a lot of health and clinical time-series panel data.149

Looking forward, we see several directions for extension. In terms of the model and algorithms,150

we can incorporate multiple auxiliary time series, improve the parameter learning algorithm, and151

also consider non-linear state-space models. From a theoretical perspective, it would be valuable to152

identify conditions under which TASC is preferable to other SC variants, and to determine if these153

conditions are testable. For the applications, we can apply TASC to clinical trial datasets or electronic154

health records. With the promising initial result, we envision that TASC could serve as a robust155

framework for integrating causal inference with time-series modeling.156

1SC uses the relative importance matrix V = I (See [3] for more information, it is equivalent to linear
regression with simplex constraint introduced in Section 2.1); RSC uses top d = 2 singular values in noise
filtering step and Ridge regression coefficient was set to 0.1 (See [11] for more information); TASC uses d = 2
for hidden state dimension
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A Basic Algorithms207

In this section, we provide the full pseudocode for the basic algorithms comprising the EM approach:208

Kalman Filter (Algorithm 2), RTS Smoother (Algorithm 3), and the M-step (Algorithm 4).209

Algorithm 2 Kalman Filter
Input :yk ∈ Rn+1, previous estimate mk−1, Pk−1, current parameter θ = {A,H,Q,R,m0, P0}
Output :mk, Pk

mk|k−1 ← Amk−1 /* prediction from the previous timestep k − 1 */
Pk|k−1 ← APk−1A

⊤ +Q /* prediction from the previous timestep k − 1 */
vk ← yk −Hmk|k−1

Sk ← HPk|k−1H
⊤ +R

Kk ← Pk|k−1H
⊤S−1

k /* Kalman Gain */
mk ← mk|k−1 +Kkvk /* Update after observing yk */
Pk ← Pk|k−1 −KkSkK

⊤
k /* Update after observing yk */

Algorithm 3 RTS Smoother
Input : Kalman filter estimate mk, Pk, smooted estimate ms

k+1, P
s
k+1, current parameter θ =

{A,H,Q,R,m0, P0}
Output :ms

k, P
s
k

mk+1|k ← Amk /* prediction from Kalman filter estimate mk */
Pk+1|k ← APkA

⊤ +Q /* prediction from Kalman filter estimate Pk */
Gk ← PkA

⊤P−1
k+1|k

ms
k ← mk +Gk[m

s
k+1 −mk+1|k] /* ms

t = mt for the last timestep t = T0 or T */
P s
k ← Pk +Gk[P

s
k+1 − Pk+1|k]G

⊤
k /* P s

t = Pt for the last timestep t = T0 or T */
return ms

k, P
s
k , Gk

Algorithm 4 Parameter Update (M-Step)
Input :current parameter θ = {A,H,Q,R,m0, P0}, length of the sequence T , RTS parameters

ms
k, P

s
k , Gk for all k ∈ {0, . . . , T}, observations yk for all k ∈ {1, . . . , T}

Output :θ′
Define
Σ = 1

T

∑T
k=1 P

s
k +ms

km
s
k
⊤

Φ = 1
T

∑T
k=1 P

s
k−1 +ms

k−1m
s
k−1

⊤

B = 1
T

∑T
k=1 ykm

s
k
⊤

C = 1
T

∑T
k=1 P

s
kG

⊤
k−1 +ms

km
s
k−1

⊤

D = 1
T

∑T
k=1 ykyk

⊤

Update
A′ ← CΦ−1

H ′ ← BΣ−1

Q′ ← Diag(Σ− 2CA⊤ +AΦA⊤) /* Diag(·) keeps only the diagonal elements of
the input */
R′ ← Diag(D − 2BH⊤ +HΣH⊤)
m′

0 ← ms
0

P ′
0 ← P s

0 + (ms
0 −m0)(m

s
0 −m0)

⊤

return θ′ = {A′, H ′, Q′, R′,m′
0, P

′
0}
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B Full description of Time-Award Synthetic Control (TASC) Algorithms210

In this section, we disclose the derivation of the three versions of Kalman Synthetic Control:TASCpre211

(only using pre-intervention data for EM updates) and TASCfull (using both pre- and post-212

intervention data for EM updates).213

B.1 Pre-intervention Fit214

For pre-intevention data, we can take the classical EM approach for a linear gaussian state-space215

model. The E-step comprises of a forwad pass (Kalman filter) and a backward pass (RTS smoothing).216

This gives us estimates ms
k and P s

k to define a lower bound for the posterior probability distribution.217

Algorithm 5 EMpre(Ypre;N), EM for Pre-intervention Fit
Data: Ypre where (i, j)-th element is yi,t ∀(i, t) ∈ [0 : n]× [1 : T0] (pre-intervention data from the

target and donors)
Result: θ = {A,H,Q,R,m0, P0}
Initialize θ(0)

for i← 1 to N do
for k ← 1 to T0 do

Update mk, Pk via Kalman filtering with θ(i−1); /* forward pass */
end
for k ← T0 − 1 to 0 do

Update ms
k, P

s
k , Gk via RTS Smoothing with θ(i−1); /* backward pass */

end
Update θ(i) via the M-step of EM

end
return θ(N)

TASCpre utilizes Algorithm 5 to learn the parameters θ from the pre-intervention data. With this218

fixed parameters, TASCpre uses Kalman filter and RTS smoother to estimate the internal states219

ms
k, P

s
k , and then translate these to finally estimate the post-intervention time series. However, this220

is impossible without a special treatment since the first element of yk (which belongs to the target221

unit) is missing. To handle this, we deem that the target unit’s data is missing, and separate the donor222

portion of the data and parameters:223

yt =

[
yt,1
yt,2

]
, rt =

[
rt,1
rt,2

]
, H =

[
h⊤
1

H2

]
, and R =

[
r1 0
0 R2

]
,

where yt,2, rt,2 ∈ Rn, H2 ∈ Rn×d, and R2 ∈ Rn×n.

Then, we redefine the observation model (i.e., Equation (3)) to be the following224

yt,2 = H2xt + rt,2,

where rt,2 ∼ N (0, R2). With this new model, the post-intervention observations will not inform the225

target-related parameters: h1 and r1. This is equivalent to setting r1 →∞ in the original model.226

Algorithm 6 shows the Kalman filtering process with infinite variance for the target observation (i.e.,227

r1 →∞). Note that228

Kk = Pk|k−1H
⊤S−1

k

=
[
0 P−1

k|k−1H
⊤
2 (H2Pk|k−1H

⊤
2 +R2)

−1
]
,

and the update on mk is229

mk = mk|k−1 +Kkvk

= mk|k−1 + P−1
k|k−1H

⊤
2 (H2Pk|k−1H

⊤
2 +R2)

−1 vk,2,
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(Note: vk,2 ∈ Rn is the last n elements of vk—i.e., vk,2 = yk,2 −H2mk|k−1) , and the update on Pk230

is231

Pk = Pk|k−1 +KkSkK
⊤
k

= Pk|k−1 + Pk|k−1H
⊤
2 (H2Pk|k−1H

⊤
2 +R2)

−1H2P
⊤
k|k−1.

Algorithm 6 Kalman Filter with Infinite Variance
Input :yk ∈ Rn+1 with the target(first) element missing, previous estimate mk−1, Pk−1, current

parameter θ′ = {A,H,Q,R,m0, P0}, where R′
1,1 =∞

Output :mk, Pk

Define h1, H2, R2 from H =

[
h⊤
1

H2

]
, R′ =

[
∞ 0
0 R2

]
yk ← [h⊤

1 mk|k−1, y1,k, . . . , yn,k]
⊤ /* augment target values */

mk|k−1 ← Amk−1 /* prediction from the previous timestep k − 1 */
Pk|k−1 ← APk−1A

⊤ +Q /* prediction from the previous timestep k − 1 */
vk ← yk −Hmk|k−1 /* the first element is zero */
Sk ← HPk|k−1H

⊤ +R′

S−1
k ←

[
0 0
0 (H2Pk|k−1H

⊤
2 +R2)

−1

]
/* by Schur Complement */

Kk ← Pk|k−1H
⊤S−1

k

mk ← mk|k−1 +Kkvk /* Update after observing yk */
Pk ← Pk|k−1 −KkSkK

⊤
k /* Update after observing yk */

With the infinite variance, post-intervention target time series do not affect the outcome of Kalman fil-232

tering, hence we can set it to any value (such as zero for the first element in yk ← [0, y1,k, . . . , yn,k]
⊤).233

The RTS Smoother algorithm remains the same, as it does not use R or yk as an input—it only utilizes234

mk, Pk estimates from the Kalman filter in addition to the parameters A and Q. As a result, this only235

changes the Kalman filter part in the post-intervention time steps from Algorithm 2 to Algorithm 6.236

The full description of TASCpre is provided in Algorithm 7.237

Algorithm 7 TASCpre(Y ;N1), Parameter learning from pre-intervention only
Data: yi,t ∀(i, t) ∈ [0 : n]× [1 : T0] and ∀(i, t) ∈ [1 : n]× [T0 + 1 : T ]

Result: θ̂ = {A,H,Q,R,m0, P0}, ŷ0,T0+1, . . . , ŷ0,T
Learn θN1 ← EMpre(Ypre;N1)
for k ← 1 to T0 do

Update mk, Pk via Algorithm 2 with θN1 /* pre-intervention forward pass */
end
for k ← T0 + 1 to T do

Update mk, Pk via Algorithm 6 with θN1 /* post-intervention forward pass */
end
for k ← T − 1 to 0 do

Update ms
k, P

s
k via RTS Smoothing with θ(i−1) /* backward pass */

end

Define H =

[
h⊤
1

H2

]
for k ← T0 + 1 to T do

Predict ŷ0,t ← h⊤
1 m

s
t /* Post-intervention target prediction */

end
return θN1 , ŷ0,T0+1, . . . , ŷ0,T
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B.2 Continued Parameter Learning with Post-Intervention Data238

One could continue to update the parameters based on the post-intervention data as well. In this case,239

we will have to augment the post-intervention target values in a realistic way, because the M-step240

(Algorithm 4) uses yk to update the parameters. The most natural way is to use the most recent241

parameters to predict post-intervention target values, just the same as we do in the prediction phase242

of TASCpre (the last for-loop). Algorithm 8 shows this approach, TASCfull, where we run N2243

additional rounds of M-step to update the parameters, using both pre- and post-intervention data.244

Algorithm 8 TASCfull(Y ;N1, N2), Continued Parameter Learning with Post-Intervention Data
(the Full EM Algorithm)
Data: yi,t ∀(i, t) ∈ [0 : n]× [1 : T0] and ∀(i, t) ∈ [1 : n]× [T0 + 1 : T ]
Result: θ = {A,H,Q,R,m0, P0}
Learn θN1 ← EMpre(Ypre;N1)
for i← N1 + 1 to N1 +N2 do

for k ← 1 to T0 do
Update mk, Pk via Algorithm 2 with θ(i−1) /* pre-intervention forward pass */

end
for k ← T0 + 1 to T do

Update mk, Pk via Algorithm 6 with θ(i−1) /* post-intervention forward pass */
end

Define H =

[
h⊤
1

H2

]
for k ← T − 1 to 0 do

Update ms
k, P

s
k via RTS Smoothing with θ(i−1) /* backward pass */

Augment ỹk ← [h⊤
1 m

s
k, y1,k, . . . , yn,k]

⊤

end
Update θ(i) via the M-step of EM with ỹk

end
return θ(N1+N2)

C Advanced Model245

Without loss of generality, we can add a constant state x0 and let only x′
t part to change over time.246

x′
t = Ax′

t−1 + qt−1 qt−1 ∼ N (0, Q), (4)

xt = x∗ + x′
t (5)

yt = Hxt + rt , rt ∼ N (0, R). (6)

The model parameters are θ = {A,H,Q,R,m0, P0}, where A ∈ Rd×d, H ∈ R(n+1)×d, Q ∈ Rd×d,247

R ∈ R(n+1)×(n+1), m0 ∈ Rd, P0 ∈ Rd×d, and x∗ ∈ Rd. This model can be easily adopted with our248

algorithms with minimal modifications.249
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D Additional Experiments with Proposition 99 Data250

In this section, we provide additional experiments we ran with Proposition 99 data that were not251

included in the main text due to the space limit.252

First, we take a deeper dive into comparing RSC and our methods. Among the various SC methods253

we tested, TASC and RSC explicitly filter the data matrix to be exactly low-rank before constructing254

the counterfactuals. To see how our interpretable latent factor model helps, we test the performance255

of two methods with varying d (approximate rank for RSC, hidden dimension for TASC). Figure 4256

reports the post-intervention RMSE from the placebo test. The lowest error occurs with TASCpre257

at d = 2, followed by TASCpost, RSC. Both TASC and RSC perform best at d = 2, but RSC’s258

performance deteriorates rapidly as d increases, while TASC remains relatively stable. Hence,259

TASC may offer advantages in settings where the true value of d is difficult to estimate.260

Figure 4: Post-intervention RMSE from placebo test, with varying d.

Next, we tested a boosting approach to help boost the accuracy of prediction. While running the261

experiments, we realized that the EM algorithm is extremely sensitive to the initialization of the262

parameters. This is especially important for larger d, as we need more rounds of EM updates with263

increased number of parameters to learn. This can be remedied by incorporating boosting rounds—the264

most naive approach can be iterating b rounds of EM and taking the median outcome as final estimate.265

Figure 5 shows the placebo test results for varying rounds of boosting, where we set d = 8.266

Figure 5: Post-intervention RMSE from placebo test with varying number of boosting rounds (1
means no boosting). We fixed d = 8 for all instances included in this plot.

Lastly, following the approach of [3], we plot the difference between the observed outcome and267

the predicted counterfactual for California, alongside those of the control states obtained from the268
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placebo test. The first column of Figure 6 reports the gap in per-capita cigarette sales (in packs) for269

California and the 38 control states. Subsequent columns restrict the set of control states based on the270

relative quality of pre-intervention fit, measured by mean-squared error (MSE). The second column271

includes only control states whose pre-intervention MSE is no more than 10 times that of California,272

while the third and fourth columns apply stricter thresholds of 5 and 2 times, respectively.273

Notably, the last row (RSC) retains the largest number of control states as stricter thresholds are274

imposed, indicating that the distribution of pre-intervention fit shows lower variance relative to the275

other methods. In contrast, the TASC approaches (first two rows) retain substantially fewer control276

states under the most stringent threshold compared to SC or RSC. Across all specifications, California277

consistently displays the largest gap, while it is more apparent in the plots in the top right corner278

(stricter thresholds, TASC methods).279

Figure 6: Gap in per-capita cigarette sales (in packs) between the observed outcome and the synthetic
control (SC) predictions (comparable to Figures 4–7 in [3]). Each row corresponds to a different
algorithm (TASCpre, TASCfull, SC, and RSC, from top to bottom), and each column applies
a different threshold for selecting control units (no threshold, at most 10 times California’s pre-
intervention error, 5 times, and 2 times, from left to right).
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