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Abstract

The synthetic control (SC) framework is a key tool for observational causal in-
ference in time-series panel data, common in healthcare and clinical research.
Although the data analyzed by SC are inherently time-seires, most SC approaches
are invariant to permutations of the time indices in the pre-intervention data. In
this work, we suggest Time-Aware Synthetic Control (TASC), which models the
observations using a linear state space model and performs counterfactual inference
using the Kalman filter and RTS smoothing. TASC ensures that the data maintains
a low-rank signal with latent factors evolving gradually over time. As an initial
demonstration, we apply the TASC approach to a case study on California’s health-
care policy (Proposition 99). Our method showed promising results in placebo
tests, indicating its potential applicability in a broader range of healthcare contexts.

1 Introduction

Synthetic Control (SC) is a popular method in observational causal inference. Often called as a natural
extension of the Difference-in-Differences method (D-in-D, [1]), SC aims to evaluate the effects
of an intervention more accurately by creating synthetic counterfactual data. The first application
was measuring the economic impact of the 1960’s terrorist conflict in Basque Country, Spain (a
target unit) by combining GDP data from other Spanish regions (donor units) prior to the conflict to
construct a synthetic GDP data for Basque Country in the counterfactual world without the conflict [2]].
Rather than selecting the nearest neighbor as in D-in-D, the syntheitc control estimate is computed as
a linear combination of donor units. SC is becoming more and more popular with expanding range of
applications, including economics [2} 3, 4], political sciences [} 16]], social sciences [7, 18], healthcare
[9, 18, [10], to name a few.

A fundamental assumption of SC is that the time-series panel data arises from a latent variable
model, producing an (approximately) low-rank matrix. Various latent variable models have been
adopted, including the linear factor model [2, 3} S]], latent variable models with Lipschitz-continuous
functions [[11} [12], and the interactive fixed-effect model [13]]. Despite differences in these models,
they commonly assume that the observation matrix can be well-approximated by a low-rank matrix,
implying that the latent factors are simpler than the observed data. These methods typically leverage
the matrix’s spectrum analysis: RSC [[11] uses principal component regression, while [[14] frames SC
as a nuclear-norm minimization problem. However, due to their reliance on spectrum analysis, these
approaches are time-agnostic, meaning permutations of pre-intervention columns do not impact the
results.

Remind that the panel data analyzed using SC is inherently time-series data, and we can use
this in learning the SC model. Some approaches were proposed to incorporate the ordered nature
of time indices using a state-space model. [[15] designed the state vector to include elements like
SC weights, local linear trends, and seasonality, and the observation is the target unit’s outcomes.
[L6,117] further simplified this structure and only take SC weights as a latent state. These approaches
model the observation as a time series of the target unit, but does not explicitly connect their results
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to the low-rank structure of the panel data (SC weights are n dimensional, where n is the number of
donors).

Our contribution lies in embedding SC panel data within a state-space model to simultaneously
harness both the low-rank and time-series properties of the data. In Section [3] we introduce our
model and outline a simple MAP approach to learn the model, employing Kalman filtering and
Rauch-Tung—Striebel smoothing. In Section f] we apply our method to a classic health policy
evaluation case (Proposition 99) demonstrating enhanced performance and interpretability relative to
traditional methods. This approach offers a principled framework for integrating causal inference
with time-series analysis, which is particularly valuable in healthcare and clinical research settings.

2 Background

t=123 Ty T+l = T
2.1 Synthetic Control Methods Target unit — Unit 0 Yo B’j

The time-series panel dataset for SC con- Unit 1 Yir

sists of the following components. Let Unit 2 Y

Y; : € R be the observation from ¢-th unit

at time t. We have n (untreated) donor units Donor pool Y- v+
indexed by ¢ € {1,...,n} and a (treated) P ;

target unit with index 0. The untreated ob-

servation matrix is of size (n + 1) x T, '

where the target unit’s values after ¢ > Ty Unitn fu

is missing due to the treatment happening Intervention at T +1

at time Tp. Figure [T] illustrates the gen-

eral structure of an SC dataset, where the Figure 1: General data structure for synthetic control.
superscript — denotes the pre-intervention The donor pool (Y = [y1,...,y,] ") and the target unit
period and the superscript + denotes the (xo) are divided into pre- and post-intervention periods.
post-intervention period.

Based on this data structure, we define SC family of methods (Algorithm|[T) as follows. SC first learns
the relationship between the target unit and donors using the pre-intervention data. For example,
this (M) can be a vertical regression where the pre-intervention column vectors Y7., ; become
input features for the label Yy ¢, for all ¢ € [T]. Then, SC uses this knowledge (f) to project the
post-intervention donor data Y and predict YJ. Finally, the causal effect of the intervention for the
target unit is estimated as Y™ — YJ.

Algorithm 1 Synthetic Control Family of Methods

Data: Target unit’s pre-intervention data Y; € R™>, Donordata Y = [V, Y ] € R**T

Result: Counterfactual prediction Y, SC weights f

1. Learn f=M(Y, .Y, Y1) /* the use of YT is optional */
2. Project Y, = f(Y')

3. Infer the estimated causal effect of the intervention for the target is Y™ — Y;"

The core learning algorithm for SC is the M part. The first SC algorithm suggested by [2] assumes a
linear factor model

Yie =00 + 075 + Mpyi + €5, (1

where §; is a time trend, Z; € R? and p; € R? are vector of observed and unobserved predictors,
with coefficients 6, and y;, and €; ; is the noise. Then, it uses the following optimization approach:
minyegn ||Yy — Y_Tf||2 sty fi=1,0< f; <1 Vi€ [n]. This can be easily extended to
have regularizers (such as Lasso || f||; or Ridge || f||3 added to the minimization objective) and/or
dropping the simplex constraint. Robust Synthetic Control (RSC, [11]]) uses PCA to keep only the
top few singular values in donor data prior to the optimization step (essentially performing Principal
Component Regression).
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2.2 Approximately Low-Rank Observation with Temporal Structure

The classical SC method is based on a linear factor model, as described in Equation (II]) This model
implies that the signal component of the matrix has a rank no more than p + ¢ + 1. When this quantity
is considerably smaller than the matrix’s full rank, the observation matrix becomes approximately
low rank. This has inspired a range of SC algorithms. Several SC algorithms [2} 3} 18, |19] employ
simplex constraints or regularizers to minimize the number of active donor units; RSC [11} [12]] uses
principal component regression; and [14] frames SC as a problem of nuclear norm minimization.

Another characteristic of the panel data used in SC is its time-series nature. Despite this, many
SC algorithm variants, including all those mentioned in the previous paragraph, remain invariant to
permutations of time indices in pre-intervention data. To address this limitation, some researchers have
introduced algorithms that understand temporal structure by utilizing state space models [15 |16} [17].
The central concept of these approaches is to allow SC weights to change over time, defining the
target unit’s time series as an observation (scalar) and the SC weights (potentially alongside additional
components) as latent states (at least n-dimensional vector). These modeling approaches do not
necessarily ensure that the observation matrix is approximately low-rank.

3 State-Space Model for Time-Aware Synthetic Control

We assume the following state space model:
ry=Ars 1+ g1 g1 ~N(0,Q), @)
yt:HZCt-i-’f't ,TtNN(O,R). (3)

where we assume the initial hidden state zq to be drawn from A (mg, Py) (i.e., zg ~ N (mq, Py).)

The model parameters are 0 = {A, H, Q, R, mg, Py}, where A € R4 [ ¢ R(r+1)xd () ¢ RIx4,
R e ROHDx(n+1) o € RY, Py € R4*?, and d < min(n, T). This is a classical linear Gaussian
model, and we set all covariance matrices @, R, and Py, be positive semi-definite. If desired, we may
constrain that the noise covariance matrices () and R are diagonal with non-zero diagonal entries to
reduce the number of parameters. The advantage of this model is that the output Y = [y1, ..., yr]
will be an approximately low-rank matrix (with the approximate rank being d), and the learning
algorithm will no longer be agnostic to the permutations of pre-intervention time indices.

Based on this model, we propose two versions of TASC Algorithms to obtain MAP estimators:
TASCyre and TASCyyy. Both are Expectation-Maximization(EM) algorithms to learn the pa-
rameters: we start by randomly choosing the parameters 6, and then keep updating as we get the
data. TASC),. only uses the pre-intervention data to learn the parameters, and then use Kalman
filter and RTS smoother to predict the counterfactual outcomes. Note this prediction phase still
utilizes post-intervention data, but they are not used for updating parameters. T"’ASC'y,,;; continues to
update the parameters using post-intervention observations as well. To do so, we augment the target’s
post-intervention observations with the prediction based on the most recently updated parameter. A
full description of algorithms are deferred to Appendix [B]

3.1 Comparison to RSC

Assume that matrix entries follow a latent variable model Y; ;, = ¢(0;, p;) + €;; where g is a dot
product, ¢; and p; are d dimensional latent vectors characterizing i-th unit and ¢-th time, and €; ¢

is observation noise. In RSC [[I1]], §; and p; are derived from PCA: X = Z?:f(n’T) s, =

d in(n,T . . . .=
Doict siuiv + Z:’:;ﬁ ) s;u;v, , where s; is singular values in decreasing order. By defining U
1/

to have s, 2ui for i < d as columns and V' T to have si/Qvi for i < d as rows, the rows of U can be
interpreted as 6, and the columns of V" as p;. Similary, the 7"’ASC model suggests a decomposition
Y = HX + E, where the columns of X are hidden states x; and the columns of E are observation
noise ;. Here, the rows of H are analogous to #; and the columns of X are to p;. Both U VT and
HX are exactly low-rank matrices, but with differ in how we separate the noise. The difference
comes from the learning objectives: RSC’s approach minimizes the size of the noise matrix (in terms
of spectral norm), whereas T'ASC focuses on making sure the time-features p; (or x; in our model)
evolves gradually over time with a trend (A). As a result, the noise portion in RSC becomes rank
min(n,T) — d, whereas E is almost surely full rank (omnidirectional).
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Figure 2: Per-capita cigarette sales in packs in
California (black solid line), and estimated coun-
terfactual values from SC (dotted lines).

Figure 3: Post-intervention RMSE from placebo
test for different SC algorithms

4 Evaluating Effect of Proposition 99 in California

We illustrate our method on the Proposition 99 case [3]], which raised California’s cigarette tax in 1988
and was followed by a drop in sales (black line, Figure[2). To test if this decline was policy-driven,
we compare counterfactuals from SC [3]], RSC [11]], and our T' ASCpre and TASC oy modelsﬂ All
predictions lie above the observed trend, with the gap capturing the policy’s effect.

The next question is which SC estimates are most reliable. Since counterfactuals are unobservable,
we use a placebo test: predicting each donor’s time series from the others. A valid SC method should
also accurately reproduce untreated outcomes. Figure [3]shows post-intervention root mean squared
error (RMSE) from the placebo test across different implementations of SC. Among these, TASCl..
achieves the lowest RMSE, followed by T'ASC,,s:, RSC-Ridge, SC, and RSC-OLS. This ordering
suggests that the TASC estimates in Figure 2]likely yield counterfactual predictions with smaller
error and may therefore be closer to the true counterfactual.

In Appendix [D] we present additional analyses, including a comparison highlighting the advantages
of our interpretable latent factor model, practical strategies for improving the EM algorithm, and a
dropout analysis to assess the robustness of California’s counterfactual prediction.

5 Conclusion and Future Work

In this work, we introduced a state-space framework to model synthetic control type of data, and a
family of algorithms (TASC) to learn the model. With this approach, we enforce synthetic control
algorithm to be aware of the temporal structure of data, which was ignored in many variations of
synthetic control algorithms. We demonstrated 7'ASC on the classical Proposition 99 case study, and
the placebo test showed promising result that 7”ASC may be a favorable choice in certain datasets
over SC or RSC. We suspect that a pronounced temporal trend is the key for TASC' to succeed,
which is a common case for a lot of health and clinical time-series panel data.

Looking forward, we see several directions for extension. In terms of the model and algorithms,
we can incorporate multiple auxiliary time series, improve the parameter learning algorithm, and
also consider non-linear state-space models. From a theoretical perspective, it would be valuable to
identify conditions under which TASC'is preferable to other SC variants, and to determine if these
conditions are testable. For the applications, we can apply TASC to clinical trial datasets or electronic
health records. With the promising initial result, we envision that T ASC' could serve as a robust
framework for integrating causal inference with time-series modeling.

'SC uses the relative importance matrix V' = I (See [3] for more information, it is equivalent to linear
regression with simplex constraint introduced in Section 2.1)); RSC uses top d = 2 singular values in noise
filtering step and Ridge regression coefficient was set to 0.1 (See [11]] for more information); TASC uses d = 2
for hidden state dimension
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A Basic Algorithms

In this section, we provide the full pseudocode for the basic algorithms comprising the EM approach:

Kalman Filter (Algorithm [Z), RTS Smoother (Algorithm [3), and the M-step (Algorithm ).

Algorithm 2 Kalman Filter

Input :y;, € R™™L, previous estimate my_1, Px_1, current parameter § = {A, H,Q, R, mq, Py}

Output :my, Py

My p—1 < Amg_1 /* prediction from the previous timestep k —1
Prjr—1 AP, AT +Q /* prediction from the previous timestep k — 1
Vg < Y — Hmgp_1

Sk HPk“C,lHT + R

Ky Pk|k_1HTSk_l /* Kalman Gain
My < Mpjp—1 + Kgvg /* Update after observing yi
Py <+ Pyjp—1 — KkSkK,;'— /* Update after observing yi

*/
*/

*/
*/
*/

Algorithm 3 RTS Smoother

Input :Kalman filter estimate my, P, smooted estimate mJ L1 P 1> current parameter 0
{A>H7Q3R7 mO7PO}
Output :mj, P}

Myl Amy, /* prediction from Kalman filter estimate my

Py < AP AT +Q /* prediction from Kalman filter estimate P
Tp-1

Gk — PkA pk+1|k

my, < my + Gp[mi | — mypk]  /* m§ =m; for the last timestep t =Ty or T
Pg < Py + GplPfy — PopawlGL /% Pf =P, for the last timestep t =Ty or T
return m;, P;, Gy,

*/
*/

*/
*/

Algorithm 4 Parameter Update (M-Step)

Input :current parameter § = {A, H, Q, R, mg, Py}, length of the sequence T, RTS parameters

mj, P, Gy forall k € {0,...,T}, observations y;, forall k € {1,...,T}
Output : 6’
Define - .
1 S S90S

X= TZ[]%:IP]C +mpmy,

s s s T
¢ =7 ZkT:1 Pi_y+mi_ymj_,
B = % 21%21 ykaT

s Son8 T
C=1 ZkT=1 PGy +mimi_,
D=3 ke
Update
A — Cd!
H « BY !

Q' < Diag(¥ —2CAT + APAT) /* Diag(:) keeps only the diagonal elements of

the input */
R' <+ Diag(D — 2BHT + HXHT)
my < ms
Py < Py + (m — mo) (m —mo) "
return §' = {A’"  H', Q', R',m{, P}}
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B Full description of Time-Award Synthetic Control (TASC) Algorithms

In this section, we disclose the derivation of the three versions of Kalman Synthetic Control:T'ASC),..
(only using pre-intervention data for EM updates) and T'ASC't,;; (using both pre- and post-
intervention data for EM updates).

B.1 Pre-intervention Fit

For pre-intevention data, we can take the classical EM approach for a linear gaussian state-space
model. The E-step comprises of a forwad pass (Kalman filter) and a backward pass (RTS smoothing).
This gives us estimates my and P} to define a lower bound for the posterior probability distribution.

Algorithm 5 EM,,,..(Y,,.; N), EM for Pre-intervention Fit

Data: Y. where (i, j)-th element is y; ; V(¢,t) € [0 : n] x [1 : T] (pre-intervention data from the
target and donors)
Result: 6 = {A, H,Q, R, mq, Py}
Initialize 6%
for i < 1to N do

for k < 1to 1, do

| Update my,, P; via Kalman filtering with 90 —1); /* forward pass */
end
for k< Typ — 1to 0 do

‘ Update mj, P, Gy, via RTS Smoothing with gli-1), /* backward pass */
end
Update 6(*) via the M-step of EM

end
return 6(2¥)

TASC)py. utilizes Algon’thmE]to learn the parameters € from the pre-intervention data. With this
fixed parameters, T'ASC),. uses Kalman filter and RTS smoother to estimate the internal states
mg, P, and then translate these to finally estimate the post-intervention time series. However, this
is impossible without a special treatment since the first element of y;, (which belongs to the target
unit) is missing. To handle this, we deem that the target unit’s data is missing, and separate the donor
portion of the data and parameters:

o yt,l _ 'rf,,l _ h;r _ T1 0
yt_|:yt’2:|7Tt_|:’f‘t’2:|7H_|:H2:|7andR_|:O R2 )
where y; 2,712 € R", Hy € R"*4 and Ry € R™*".
Then, we redefine the observation model (i.e., Equation (EI)) to be the following
Y2 = Hoxy + 1y 0,

where 7 o ~ N (0, Rg). With this new model, the post-intervention observations will not inform the
target-related parameters: i and r;. This is equivalent to setting r; — oo in the original model.

Algorithm [f] shows the Kalman filtering process with infinite variance for the target observation (i.e.,
r1 — o0). Note that

Ky = Py H' S,

_ [ 0 Pl HJ (HyPyy—1Hf + Ry)™! ]

9
and the update on my, is
my = Mpjp—1 + Kpvg

= Mypk—1 + P,J,i,ngT(HQPMkAHgT + Ro) ™! g2,
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(Note: vg 2 € R™ is the last n elements of vg—i.e., vk 2 = Yk 2 — Hamy—1) , and the update on Py
is
Py = Pyt + Kp Sk K]
= Pyjp—1 + Pyp—1 Hy (HaPyp—1 Hj + R2)71H2P];|\—k—1'

Algorithm 6 Kalman Filter with Infinite Variance

Input :y;. € R™! with the target(first) element missing, previous estimate my_1, Py_1, current
parameter ' = {A, H,Q, R, mq, Py}, where R} ; = oo
Output :my, Py

.
Deﬁnehl,Hg,RgfromH{h1 ],R’{OO 0 ]

H, 0 Ry
Yk < [hImk\k—hyLk,~~,yn,k]T /* augment target values */
My p—1 < Amg_1 /* prediction from the previous timestep k—1 */
Prjr—1 < AP, AT +Q /* prediction from the previous timestep k—1 */
Vg < Y — Hmyp—1 /* the first element is zero */

Sk; < HPklk.,lHT +R/

St 8 (Hng|k,1132T+Rz)_1 ] /* by Schur Complement */
Ky Py HT S

My = Mg|k—1 + Kok /* Update after observing yj */
Py < Pyj—1 — KiSe K] /* Update after observing yj */

With the infinite variance, post-intervention target time series do not affect the outcome of Kalman fil-
tering, hence we can set it to any value (such as zero for the first element in yz, < [0, Y1 5, - - -, Yn, Kl ).
The RTS Smoother algorithm remains the same, as it does not use R or yy, as an input—it only utilizes
my,, Py estimates from the Kalman filter in addition to the parameters A and (). As a result, this only
changes the Kalman filter part in the post-intervention time steps from Algorithm 2|to Algorithm [6]
The full description of T ASC,.. is provided in Algorithm [7}

Algorithm 7 TASC,,.(Y'; N1 ), Parameter learning from pre-intervention only
Data: y; , V(i,t) € [0: n] x [1: Tyl and V(i,¢) € [1:n] x [To+1:T]
Result: 6 = {Av Ha Qa R7 mo, P0}7 yO,Tg—i-lv e 72&0,T
Learn ™V « EMpre(Ypre; Ni1)
for k < 1to T, do

‘ Update my, Py, via Algorithmwith oM /* pre-intervention forward pass */
end
fork « Ty +1toT do

‘ Update my,, Pj; via Algorithm@with oM /* post-intervention forward pass */
end
fork < T —1to0do

‘ Update m{,, P; via RTS Smoothing with gli—1) /* backward pass */
end

h{

Define H = { H, }
for k < Ty +1toT do

‘ Predict o < h{ m; /* Post-intervention target prediction */
end
return 6™, o 7, 41, - . -, Jo,7
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B.2 Continued Parameter Learning with Post-Intervention Data

One could continue to update the parameters based on the post-intervention data as well. In this case,
we will have to augment the post-intervention target values in a realistic way, because the M-step
(Algorithm [)) uses y;, to update the parameters. The most natural way is to use the most recent
parameters to predict post-intervention target values, just the same as we do in the prediction phase
of TASC),. (the last for-loop). Algorithm@ shows this approach, TASC's,,;;, where we run N
additional rounds of M-step to update the parameters, using both pre- and post-intervention data.

Algorithm 8 TASCY,;;(Y; N1, N2), Continued Parameter Learning with Post-Intervention Data
(the Full EM Algorithm)
Data: y; , V(i,t) € [0: n] x [1: Tp]and V(i,¢) € [1:n] x [To+1:T]
Result: 0 = {A, H,Q, R, mo, Po}
Learn 0N < EMc(Ypre; N1)
for i < Ny +1to Ny + Ny do
for k < 1to T, do
‘ Update my, Py, via Algorithmwith 6t~ /x pre-intervention forward pass */
end
for k < Ty + 1toT do
‘ Update my,, Py via Algorithm@with 61 /% post-intervention forward pass */

end
h{
Define H = [ Hy }
fork < T —1to0do
Update m§, P via RTS Smoothing with §(—1) /* backward pass */
Augment gk «— [hirm]ia Ylky--- 7yn,k]—r
end

Update #) via the M-step of EM with g,
end
return (V1 +1z2)

C Advanced Model

Without loss of generality, we can add a constant state x and let only } part to change over time.

.1':5 = Angl + dt—1 qt—1 ~ N(07 Q)a (4)
x=a" + ) 5)
yt:H:Et+Tt ,TtNN(O,R). (6)

The model parameters are § = {A, H, Q, R, mg, Py}, where A € R4, H ¢ R("+1)xd () ¢ RIx4,
R e ROHDX(+D) o e R, Py € R¥4, and 2* € RY. This model can be easily adopted with our
algorithms with minimal modifications.
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D Additional Experiments with Proposition 99 Data

In this section, we provide additional experiments we ran with Proposition 99 data that were not
included in the main text due to the space limit.

First, we take a deeper dive into comparing RSC and our methods. Among the various SC methods
we tested, 7'ASC and RSC explicitly filter the data matrix to be exactly low-rank before constructing
the counterfactuals. To see how our interpretable latent factor model helps, we test the performance
of two methods with varying d (approximate rank for RSC, hidden dimension for T’ASC). Figure 4]
reports the post-intervention RMSE from the placebo test. The lowest error occurs with T ASCp,.
at d = 2, followed by T'ASC)s:, RSC. Both TASC' and RSC perform best at d = 2, but RSC’s
performance deteriorates rapidly as d increases, while T"ASC' remains relatively stable. Hence,
T ASC may offer advantages in settings where the true value of d is difficult to estimate.

120

. TASCpre
. TASCry
1001 mmm RSC-Ridge

Al u“ “.x 1

dest

Post-intervention RMSE

=]

Figure 4: Post-intervention RMSE from placebo test, with varying d.

Next, we tested a boosting approach to help boost the accuracy of prediction. While running the
experiments, we realized that the EM algorithm is extremely sensitive to the initialization of the
parameters. This is especially important for larger d, as we need more rounds of EM updates with
increased number of parameters to learn. This can be remedied by incorporating boosting rounds—the
most naive approach can be iterating b rounds of EM and taking the median outcome as final estimate.
Figure[5]shows the placebo test results for varying rounds of boosting, where we set d = 8.

. TASCpre
80 mmm TASCi

Wil

Boosting repetitions

[}
o

Post-intervention RMSE
N
o

N
o

Figure 5: Post-intervention RMSE from placebo test with varying number of boosting rounds (1
means no boosting). We fixed d = 8 for all instances included in this plot.

Lastly, following the approach of [3]], we plot the difference between the observed outcome and
the predicted counterfactual for California, alongside those of the control states obtained from the
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placebo test. The first column of Figure [f]reports the gap in per-capita cigarette sales (in packs) for
California and the 38 control states. Subsequent columns restrict the set of control states based on the
relative quality of pre-intervention fit, measured by mean-squared error (MSE). The second column
includes only control states whose pre-intervention MSE is no more than 10 times that of California,
while the third and fourth columns apply stricter thresholds of 5 and 2 times, respectively.

Notably, the last row (RSC) retains the largest number of control states as stricter thresholds are
imposed, indicating that the distribution of pre-intervention fit shows lower variance relative to the
other methods. In contrast, the T'ASC' approaches (first two rows) retain substantially fewer control
states under the most stringent threshold compared to SC or RSC. Across all specifications, California
consistently displays the largest gap, while it is more apparent in the plots in the top right corner
(stricter thresholds, T"’ASC methods).
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Figure 6: Gap in per-capita cigarette sales (in packs) between the observed outcome and the synthetic
control (SC) predictions (comparable to Figures 4-7 in [3]]). Each row corresponds to a different
algorithm (T"’ASCyye, TASCyyuu, SC, and RSC, from top to bottom), and each column applies
a different threshold for selecting control units (no threshold, at most 10 times California’s pre-
intervention error, 5 times, and 2 times, from left to right).
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