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Abstract
Video try-on is challenging and has not been well tackled in pre-
vious works. The main obstacle lies in preserving the clothing
details and modeling the coherent motions simultaneously. Faced
with those difficulties, we address video try-on by proposing a
diffusion-based framework named "Tunnel Try-on." The core idea
is excavating a “focus tunnel” in the input video that gives close-up
shots around the clothing regions. We zoom in on the region in the
tunnel to better preserve the fine details of the clothing. To gen-
erate coherent motions, we leverage the Kalman filter to smooth
the tunnel and inject its position embedding into attention layers
to improve the continuity of the generated videos. In addition, we
develop an environment encoder to extract the context information
outside the tunnels. Equipped with these techniques, Tunnel Try-
on keeps fine clothing details and synthesizes stable and smooth
videos. Demonstrating significant advancements, Tunnel Try-on
could be regarded as the first attempt toward the commercial-level
application of virtual try-on in videos. The Project page is here.
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1 Introduction
Video virtual try-on aims to dress the given clothing on the target
person in videos. It requires to preserve both the appearance of the
clothing and the motions of the person. It provides an interactive
experience, enabling consumers to explore clothing options without
the necessity for physical try-on, which has garnered widespread
attention from both the fashion industry and consumers alike.

Although there are not many studies on video try-on, image-
based try-on have already been extensively researched. Numer-
ous classical image virtual try-on methods rely on the Generative-
Adversarial-Networks(GANs) [7, 9, 10, 20, 39]. These methods typi-
cally comprise two primary components: a warping module that
warps clothing to fit the person in semantic level and a try-on
generator that blends the warped clothing with the person image.
Recently, diffusion models [33] have significantly improved the
quality of image and video generation. Some diffusion-based meth-
ods [23, 51] for image virtual try-on have been proposed, which
do not explicitly incorporate a warp module but instead integrate
the warp and blend process in a single unified process. Leveraging
pre-trained text-to-image diffusion models, these diffusion-based
models achieve fidelity surpassing that of GAN-based models.

Video try-on provides a more comprehensive presentation of
the try-on clothing under different conditions compared to image
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https://doi.org/10.1145/3664647.3680836
https://doi.org/10.1145/3664647.3680836


MM ’24, October 28-November 1, 2024, Melbourne, VIC, Australia Zhengze Xu et al.

Input Video Clothing Synthetic Video

Figure 1: Results of Tunnel Try-on. It achieves state-of-the-art performance, which can not only handle complex clothing and
backgrounds but also adapt to different types of movements (first and second rows) and camera angle changes (third row).

try-on. A direct transfer approach is to apply image try-on methods
to process videos frame by frame. However, this leads to significant
inter-frame inconsistency, resulting in unacceptable generation out-
comes. Several approaches have explored specialized designs for
video virtual try-on [8, 21, 25, 50]. These methods typically utilize
optical flow prediction modules to warp frames generated by the
try-on generator, aiming to enhance temporal consistency. Cloth-
Former [21] additionally proposes temporal smoothing operations
for the input to the warping module. While these explorations make
steady advancements, most of them only tackle simple scenarios.
For example, in VVT [8] dataset, samples mainly include simple
textures, tight-fitting T-shirts, plain backgrounds, fixed camera an-
gles, and repetitive human movements. This notably lags behind
image virtual try-on and falls short of meeting practical application
needs. We analyze that, different from the image-based settings,
the main challenge in video try-on is preserving the fine detail of
the clothing and generating coherent motions at the same time.

In this paper, to address the aforementioned challenges in com-
plex natural scenes, we propose a novel framework termed Tunnel
Try-on. We start with a strong baseline of image-based virtual try-
on. It leverages an inpainting U-Net (noted as Main U-Net) as the
main branch and utilizes a reference U-Net (noted as Ref U-Net) to
extract and inject the fine details of the given clothing. By inserting
motion modules after each stage of the Main U-Net, we extend
this model to conduct video try-on. However, this basic solution is
insufficient to deal with the challenging cases in real-world videos.

We observe that the human often occupies a small area in videos
and the area or location could change violently along with the
camera movements. Thus, we propose to excavate a “tunnel” in the
given video to provide a stable close-up shot of the clothing region.
Specifically, we conduct a region crop in each frame and zoom in

on the cropped region to ensure that the individuals are appropri-
ately centered. This strategy maximizes the model’s capabilities for
preserving the fine details of the reference clothing. At the same
time, we leverage Kalman filtering [42] to calculate the coordinates
of the cropping boxes and inject the position embedding of the
focus tunnel into the motion module. In this way, we could keep
the smoothness and continuity of the cropped video region and as-
sist in generating more consistent motions. Additionally, although
the regions inside the tunnel deserve more attention, the outside
region could provide the global context for the background around
the clothing. Thus, we develop an environment encoder. It extracts
global high-level features outside the tunnels and incorporates them
into the Main U-Net to enhance the background generation.

Extensive experiments demonstrate that equipped with the afore-
mentioned techniques, our proposed Tunnel Try-on significantly
outperforms other video virtual try-on methods. In summary, our
contributions can be summarized in the following three aspects:

• We proposed Tunnel Try-on, the first diffusion-based video
virtual try-on model achieving state-of-the-art performance.
• We design a novel technique called focus tunnel to emphasize
the clothing region and generate coherent motion in videos.
• We further develop several enhancing strategies like incorpo-
rating the Kalman filter to smooth the focus tunnel, leverag-
ing the tunnel position embedding and environment context
in the attentions to improve the generation quality.

2 Related Work
2.1 Image virtual try-on
Image virtual try-on methods can generally be divided into two
categories: GAN-based methods [7, 10, 13, 20, 26, 29, 36, 39] and
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diffusion-based methods [1, 4, 11, 23, 28, 51]. GAN-based meth-
ods typically utilize Conditional Generative Adversarial Network
(cGAN) [27] and have two decoupled modules: a warping module to
fit the clothing to human body and a GAN-based generator to blend
the clothing with the body. They achieve accurate wrapping by esti-
mating dense flow maps or using alignment strategies. VITON [13]
proposes a coarse-to-fine strategy to warp the clothing onto the
target region. CP-VTON [39] preserves the clothing identity with
a geometric matching module. PBAFN [10] employs knowledge
distillation for a parser-free method, reducing the need for accurate
masks. VITON-HD [7] adopts alignment-aware segment normal-
ization to address misalignment issues. However, these approaches
face challenges in dealing with images of persons in complex poses
and intricate backgrounds. Moreover, cGANs struggle with signifi-
cant spatial transformations between the clothing and the person’s
posture. The exceptional generative capabilities of diffusion have
inspired several diffusion-based image try-on methods. TryOnDif-
fusion [51] employs a dual U-Nets architecture for image try-on,
which requires extensive datasets for training. Subsequent methods
leverage large-scale pre-trained diffusion models as priors in the
try-on networks [16, 33, 44]. LADI-VTON [28] treats clothing as
pseudo-words. DCI-VTON [11] integrates clothing into pre-trained
diffusion models using warping networks. StableVITON [23] con-
ditions the intermediate feature maps of the Main U-Net with a
zero cross-attention block. These methods achieve high-fidelity
single-image inference, but when applied to video virtual try-on,
the lack of inter-frame relationship consideration leads to signifi-
cant inconsistency, resulting in unacceptable generation results.

2.2 Video virtual try-on
Compared to image-based try-on, video virtual try-on offers users
more freedom and a more realistic try-on experience. However,
few studies have explored this area to date. FW-GAN [8] and Fash-
ionMirror [3] use optical flow to warp past frames for coherent
video, with the latter warping at the feature level instead of the
pixel level. MV-TON [50] adopts a memory refinement module to
remember the previously generated frames. ClothFormer [21] pro-
poses a dual-stream transformer architecture to extract and fuse
the clothing and the person’s features. It uses a tracking strategy
based on optical flow and ridge regression to obtain temporally
consistent warps. Due to the difficulties faced by warp modules in
handling complex textures and significant motion, previous video
try-on methods are limited to handling simple cases like minor
movements, simple backgrounds, and clothing with simple tex-
tures, focusing mainly on tight-fitting tops. These limitations make
them inadequate for real-world scenarios involving diverse clothing
types, complex backgrounds, free-form movements, and variations
in the size, proportion, and position of individuals. Therefore, we
propose to remove explicit warp modules and utilize diffusion mod-
els for video try-on, along with a focus tunnel strategy to adapt to
varied relationships between individuals and backgrounds.

2.3 Image Animation
Image animation aims to generate video sequences from static
images. Recently, some diffusion-based models have shown un-
precedented success [6, 18, 19, 22, 30, 40, 43, 45, 47, 49]. Among

them, Magic Animate [43] and Animate Anyone [18] show the best
results. Both models use an additional U-Net to extract appearance
information and an encoder for pose sequences. Combining these
animation frameworks with advanced image try-on methods can
enable video try-on. However, this pipeline lacks guidance from
actual video information, often resulting in static backgrounds that
make it difficult for characters to blend into real environments. Ad-
ditionally, relying solely on pose-driven actions can lead to strange
generation results when conducting virtual try-on with significant
changes in the magnitude or position of the person’s movements.

3 Method
In Section 3.1, we introduce the foundational knowledge of latent
diffusionmodels required for subsequent discussions. Section 3.2 de-
tails the network architecture of our Tunnel Try-on. In Section 3.3,
we present details of the focus tunnel extraction strategy. In Sec-
tion 3.4, we introduce the enhancing strategies for the focus tunnel,
including tunnel smoothing and tunnel embedding. In Section 3.5,
we elaborate on the environment encoder which aims at extracting
the global context as the complementary. At last, we summarize
our training and validation pipeline in Section 3.6.

3.1 Preliminaries
Diffusion models [17] have demonstrated promising capabilities
in both image and video generation. Built on the Latent Diffusion
Model (LDM), Stable Diffusion [33] conducts denoising in the la-
tent space of an auto-encoder. Trained on the large-scale LAION
dataset [35], Stable Diffusion demonstrates excellent generation
performance. Our network is built upon Stable Diffusion.

Given an input image x0, the model first employs a latent en-
coder [24] to project it into the latent space: z0 = E(x0). Throughout
the training, Stable Diffusion transforms the latent representation
into Gaussian noise by applying a variance-preserving Markov
process [37] to z0, which can be formulated as:

z𝑡 =
√
𝛼𝑡 z0 +

√
1 − 𝛼𝑡𝝐, 𝝐 ∼ U([0, 1]) (1)

where 𝛼𝑡 is the cumulative product of the noise coefficient 𝛼𝑡 at
each step. Subsequently, the denoising process learns the prediction
of noise 𝝐𝜃 (z𝑡 , c, 𝑡), which can be summarized as:

L𝐿𝐷𝑀 = Ez,c,𝝐,𝑡 ( |𝝐 − 𝝐𝜃 (z𝑡 , c, 𝑡) |22). (2)

Here, 𝑡 represents the diffusion timestep, c denotes the condi-
tioning text prompts from the CLIP [32], and 𝝐𝜃 denotes the noise
prediction neural networks like the U-Net [34]. In inference, Stable
Diffusion reconstructs an image from Gaussian noise step by step,
predicting the noise added at each stage. The denoised results are
then fed into a latent decoder to regenerate images from the latent
representations, denoted as x̂0 = D(ẑ0).

3.2 Overall Architecture
This section provides a comprehensive illustration of the pipeline
presented in Figure 2. We start with introducing the strong baseline
for image try-on. Then, we extend it to videos by adding motion
modules. Afterwards, we briefly describe our novel designs which
will be elaborated on in the next sections.
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Figure 2: The overview of Tunnel Try-on. Given an input video and a clothing image, we first extract a focus tunnel to zoom in
on the garment area to better preserve the details. The zoomed region is represented by a sequence of tensors consisting of
the background latent, latent noise, and the garment mask. Human pose information is added to the latent noise to assist the
generation. Afterward, the 9-channel tensor is fed into the Main U-Net. A Ref U-Net and a CLIP Encoder extract the clothing
image representations, which are added to the Main U-Net with Ref-attention. We also add the tunnel embedding into temporal
attention for consistent motions and use an environment encoder to extract global context for additional guidance.

Image try-on baseline. The baseline (modules in gray) of Tunnel
Try-on consists of two U-Nets: the Main U-Net and the Ref U-Net.
The Main U-Net is initialized with an inpainting model. The Ref U-
Net [46] has been proven effective [4, 18, 43] in preserving detailed
information of reference images. Therefore, Tunnel Try-on utilizes
the Ref U-Net to encode the fine-grained features of reference cloth-
ing. Additionally, Tunnel Try-on employs a CLIP image encoder to
capture high-level semantic information of target clothing images,
such as overall color. Specifically, the Main U-Net takes a 9-channel
tensor with the shape of 𝐵 × 9 × 𝐻 ×𝑊 as input, where B, H, and
W denote the batch size, height, and width. The 9 channels consist
of the clothing-masked video frame (4 channels), the latent noise
(4 channels), and the cloth-agnostic mask (1 channel). To enhance
guidance on the movements of the generated video and further
improve its fidelity, the pose maps are encoded by a pose encoder
comprising several convolutions and added to the concatenated
9-channel tensor in the latent space.

Adaption for videos. To adapt the image try-on model for videos,
we insert motion modules after each stage of the Main U-Net.
Specifically, we employ Temporal-Attention, which conducts self-
attention on features of the same spatial position across different
frames to ensure smooth transitions between frames. The Main
U-Net’s feature maps are extended with the temporal dimension of
𝑓 (frames), changing the input shape to 𝐵 × 9 × 𝑓 × 𝐻 ×𝑊 . There-
fore, the feature maps from the Ref U-Net are repeated 𝑓 times and

further concatenated along the spatial dimension after the Main
U-Net. These concatenated features are then flattened along the
spatial dimension and input into the self-attention module, with
the output retaining only the original denoising feature map.

Novel designs of Tunnel Try-on. We excavate a Focus Tunnel in
the input video and zoom in on the region to emphasize the cloth-
ing. To enhance the video consistency, we leverage the Kalman
filter to smooth the tunnel and inject the tunnel embedding into
the temporal attention layers. Simultaneously, we design an envi-
ronment encoder (Env Encoder in Figure 2) to capture the global
context information in each video frame as complementary cues. In
this way, the Main U-Net primarily utilizes three types of attention
modules to integrate control conditions at various levels, enhanc-
ing the spatio-temporal consistency of the generated video. These
modules are depicted in the bottom colored box in Figure 2 and will
be detailed in the following sections.

3.3 Focus Tunnel Extraction
In typical image virtual try-on datasets, the target person is typically
centered and occupies a large portion of the image. However, in
video virtual try-on, due to the movement of the person and camera
panning, the person in video frames may appear at the edges or
occupy a smaller portion. This can lead to a decrease in the quality of
video generation results and reduce the model’s ability to maintain
clothing identity. To enhance the model’s ability to preserve details
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and better utilize the training weights learned from image try-on
data, we propose the "focus tunnel" strategy, as shown Figure 2.

Specifically, depending on the type of try-on clothing, we utilize
the pose map to identify the minimum bounding box for the upper
or lower body. We then expand the coordinates of the obtained
bounding box according to predefined rules to ensure coverage of
all clothing. Since the expanded bounding box sequence resembles
an information tunnel focused on the person, we refer to it as the
"focus tunnel" of the input video. Next, we zoom in on the tunnel. In
other words, the video frames within the focus tunnel are cropped,
padded, and resized to the input resolution. Then they are combined
to form a new sequence input for the Main U-Net. The generated
video output from the Main U-Net is then blended with the original
video using Gaussian blur to achieve natural integration.

3.4 Focus Tunnel Enhancement
Since the process of focus tunnel extraction is computed only within
individual frames without considering inter-frame relationships,
slight jitters or jumps in bounding box sequences can occur in
videos due to movement of people and the camera. These jitters
and jumps can result in unnatural focus tunnels compared to videos
captured naturally, increasing the difficulty of temporal attention
convergence and leading to decreased temporal consistency in the
generated videos. Dealing with this challenge, we propose tunnel
smoothing and inject tunnel embedding into the attention layers.

Tunnel smoothing. To smooth the focus tunnel and achieve a
variation effect similar to natural camera movements, we propose
the focus tunnel smoothing strategy. Specifically, we use Kalman
filtering to correct the focus tunnel as Algorithm 1.

Algorithm 1: Kalman Filter.
Input: Raw tunnel coordinate x, tunnel length 𝑓 .
Result: Smoothed tunnel coordinate x̂.

1 Initialize 𝑃0 = x1, x̂0 = x1, 𝑄 = 0.001, 𝑅 = 0.0015, 𝑡 = 1.
2 repeat
3 Project the state ahead x̂−𝑡 = x̂𝑡−1.
4 Project the error covariance ahead 𝑃−𝑡 = 𝑃𝑡−1 +𝑄 .
5 Compute the Kalman Gain 𝐾𝑡 = 𝑃−𝑡 (𝑃−𝑡 + 𝑅)−1

6 Update the estimate x̂𝑡 = x̂−𝑡 + 𝐾𝑡 (x𝑡 − x̂−𝑡 )
7 Update the error covariance 𝑃𝑡 = 𝑃−𝑡 (1 − 𝐾𝑡 )−1

8 𝑡 ← 𝑡 + 1.
9 until 𝑡 > 𝑓 ;
Output: x̂

x̂𝑡 represents the smoothed coordinate of the focus tunnel at time
𝑡 , calculated using the Kalman filter’s prediction equation. x𝑡 is the
observed position of the tunnel at time 𝑡 , i.e., the coordinate before
smoothing. After the Kalman filter, we filter out the high-frequency
jitter caused by exceptional cases using a low-pass filter.

Tunnel embedding. The input form of the focus tunnel has in-
creased the magnitude of the camera movement. To mitigate the
challenge faced by the Temporal-Attention module in smoothing
out such significant camera movements, we introduce the Tun-
nel Embedding. Tunnel Embedding accepts a three-tuple input,

comprising the original image size, tunnel center coordinates, and
tunnel size. Inspired by the design of resolution embedding in
SDXL [31], Tunnel Embedding first encodes the three-tuple into
1D absolute position encoding, and then obtains the correspond-
ing embedding through linear mapping and activation functions.
Subsequently, the focus tunnel embedding is added to the temporal
attention as position encoding. With Tunnel embedding, temporal
attention integrates details about the size and position of the fo-
cus tunnel, aiding in preventing misalignment with focus tunnels
affected by excessively large camera movements. This enhance-
ment contributes to improving the temporal consistency of video
generation within the focus tunnel.

3.5 Environment Feature Encoding
Applying the focus tunnel strategy can result in losing context,
making it difficult to generate a reasonable background within the
masked area. To address this, we propose the Environment Encoder,
which consists of a frozen CLIP image encoder and a learnable
linear mapping layer. The masked original image is encoded by the
CLIP image encoder to capture overall environmental information,
and the output features are fine-tuned through the linear projection
layer. As shown in the Env-Attention of Figure 2, the output features
of Environment Encoder, serving as keys and values, are injected
into the denoising process through cross-attention. These features
are then injected into the denoising process through cross-attention,
as shown in Env-Attention in Figure 2.

3.6 Train and Test Pipeline
Training process. The training phase has two stages. In the first

stage, we exclude temporal attention, the Environment Encoder,
and Tunnel Embedding. We freeze the weights of the VAE en-
coder/decoder(omitted in Fig 2 for simplicity) and the CLIP image
encoder, updating only the Main U-Net, Ref U-Net, and pose guider.
In this stage, the model is trained on paired image try-on data.
The objective of this stage is to learn the extraction and preser-
vation of clothing features using larger, higher-quality, and more
diverse paired image data compared to the video data, aiming to
achieve high-fidelity image-level try-on generation results as a solid
foundation.

In the second stage, all strategies and modules are incorporated,
and the model is trained on video try-on datasets. Only the pa-
rameters of the temporal attention, Global Environment Encoder,
and Focus Tunnel Position Embedding are updated in this stage.
The goal of this stage is to leverage the image-level try-on capa-
bility learned in the first stage while enabling the model to learn
temporally related information, resulting in high spatio-temporal
consistency in try-on videos.

Test process. During the testing phase, the input video undergoes
Tunnel Extraction to obtain the Focus Tunnel. The input video,
along with the conditional videos, is then zoomed in on the focus
tunnel and fed into the Main U-Net. Guided by the outputs of
the Ref U-Net, CLIP Encoder, Global Environment Encoder, and
Focus Tunnel Position Embedding, the Main U-Net progressively
recovers the try-on video from the noise. Finally, the generated
try-on video undergoes Tunnel-Blend post-processing to obtain the
desired complete try-on video.



MM ’24, October 28-November 1, 2024, Melbourne, VIC, Australia Zhengze Xu et al.

(c
) P

B
A

FN
(e

) S
ta

bl
eV

IT
O

N

(b
) F

W
-G

A
N

(d
) C

lo
th

Fo
rm

er
(f

) O
ur

s

(a
) I

np
ut

Figure 3: Qualitative comparison with existing alternatives on the VVT dataset. The clothing and target person is shown in (a).
The results of (b) FW-GAN, (c) PBAFN, (d) ClothFormer, (e) StableVITON, and (f) Tunnel Try-on are represented respectively.

4 Experiments
4.1 Datasets
We evaluate Tunnel Try-on on two video try-on datasets: the
VVT [8] dataset and our collected dataset. The VVT dataset in-
cludes 791 paired person videos and clothing images, with 192×256
resolution. The models in the videos have similar and simple poses
and movements on pure white backgrounds, while the clothes are
all fitted tops. Due to these limitations, it fails to reflect real-world
application scenarios of virtual video try-on. Therefore, we collected
a dataset from real e-commerce application scenarios, featuring
complex backgrounds, diverse movements and body poses, and
various types of clothing. The dataset consists of 5,350 video-image
pairs. We divided it into 4,280 training videos and 1,070 testing
videos, each containing 776,536 and 192,923 frames, respectively.

4.2 Implement Details
Model configurations. In our implementation, the Main U-Net is

initialized with the inpainting model weight of Stable Diffusion-
1.5 [33]. The Ref U-Net is initialized with a standard text-to-image
SD-1.5. The Temporal-Attention is initialized from the motion mod-
ule of AnimateDiff [12].

Training and testing protocols. The training phase is structured
in two stages. In both stages, we resize and pad the inputs to a
uniform resolution of 512×512, and we adopt an initial learning
rate of 1e-5. The models are trained on 8x A100 GPUs. In the first
stage, we utilized image try-on pairs extracted from video data, and
merged them with existing image try-on datasets VITON-HD [7]
for training. Then, we sample a clip consisting of 24 frames in the
videos as the input for training in stage 2. In the testing phase, we
use the temporal aggregation technique [38] to combine different
video clips, producing a longer video output.

4.3 Comparisons with Existing Alternatives
We conducted a comprehensive comparison with other virtual try-
on methods on the VVT dataset, including qualitative, quantitative
comparisons and user studies. We collected several virtual try-on
methods, covering both GAN-based methods like FW-GAN [8],
PBAFN [10] and ClothFormer [21], and diffusion-based methods
like Anydoor [5] and StableVITON [23]. To ensure a fair compari-
son, we utilized the VITON-HD [7] dataset for the first-stage train-
ing and conducted second-stage training on the VVT [8] dataset
without using our own dataset.

Figure 3 displays the qualitative results of variousmethods on the
VVT dataset. From Figure 3, it is evident that GAN-based methods
like FW-GAN and PBAFN, which utilize warping modules, struggle
to adapt effectively to variations in the sizes of individuals in the
video. Satisfactory results are achieved only in close-up shots, with
the warping of clothing producing acceptable outcomes. However,
when the model moves farther away and becomes smaller, the warp-
ing module produces inaccurately wrapped clothing, resulting in
unsatisfactory single-frame try-on results. ClothFormer can handle
situations where the person’s proportion is relatively small, but its
generated results are blurry, with significant color deviation.

We also extend some diffusion-based image try-onmethods (Any-
Door and StableVITON) to videos by per-frame generation. We ob-
serve that they can generate relatively accurate single-frame results.
However, due to the lack of consideration for temporal coherence,
there are discrepancies between consecutive frames. As shown in
Figure 3(e), the letters on the clothing change in different frames.
Additionally, there are lots of jitters between adjacent frames in
these methods, which can be observed more intuitively in videos.

Comparedwith those existing solutions, our Tunnel Try-on seam-
lessly integrates diffusion-based models and video generation mod-
els, enabling the generation of accurate single-frame try-on videos
with high inter-frame consistency. As depicted in Figure 3(f), the
letters on the chest of the clothing remain consistent and correct
as the person moves closer.
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Figure 4: Qualitative results of Tunnel Try-on on our dataset. We present the try-on results of pants and skirts, as well as
cross-category try-on results.

Table 1: Comparison on the VVT dataset: ↑ denotes higher is
better, while ↓ indicates lower is better.

Method SSIM↑ LPIPS↓ 𝑉𝐹𝐼𝐷𝐼3𝐷 ↓ 𝑉𝐹𝐼𝐷𝑅𝑒𝑠𝑁𝑒𝑋𝑡 ↓
CP-VTON [39] 0.459 0.535 6.361 12.10
FW-GAN [8] 0.675 0.283 8.019 12.15
PBAFN [10] 0.870 0.157 4.516 8.690
ClothFormer [21] 0.921 0.081 3.967 5.048
AnyDoor [5] 0.800 0.127 4.535 5.990
StableVITON[23] 0.876 0.076 4.021 5.076
Tunnel Try-on 0.913 0.054 3.345 4.614

Table 2: User study for the preference rate on the VVT test
dataset. * indicates testing was conducted only on examples
shown in ClothFormer demonstrations.

Method Quality% Fidelity% Smoothness%

FW-GAN [8] 0 0 5.62
PBAFN [10] 6.77 8.77 6.31
AnyDoor [5] 7.85 7.08 0
StableVITON[23] 15.46 16.54 0
Tunnel Try-on 69.92 67.62 88.07

ClothFormer* [21] 30.8 26.0 39.6
Tunnel Try-on* 69.2 74.0 60.4

In Table 1, we conduct quantitative experiments with both image-
based and video-based metrics. For image-based evaluation, we
utilize structural similarity (SSIM) [41] and learned perceptual im-
age patch similarity (LPIPS) [48]. These two metrics are used to
evaluate the quality of single-image generation under the paired
setting. The higher the SSIM and the lower the LPIPS, the greater
the similarity between the generated image and the original image.

For video-based evaluation, we employ the Video Frechet Incep-
tion Distance (VFID) [8] to evaluate visual quality and temporal
consistency. The FID [15] measures the diversity of generated sam-
ples. Furthermore, VFID employs 3D convolution to extract features
in both temporal and spatial dimensions for better measures. Two

CNN backbone models, namely I3D [2] and 3D-ResNeXt101 [14],
are adopted as feature extractors for VFID.

Table 1 demonstrates that on the VVT dataset, our Tunnel Try-
on outperforms others in terms of SSIM, LPIPS, and VFID metrics,
further confirming the superiority of our model in image visual
quality (similarity and diversity) and temporal continuity compared
to other methods. It’s worth noting that we have a substantial
advantage in LPIPS compared to other methods. Considering that
LPIPS is more in line with human visual perception compared to
SSIM, this highlights the superior visual quality of our approach.

Considering that the quantitative metrics could not perfectly
align with the human preference for generation tasks, we con-
ducted a user study to provide more comprehensive comparisons.
We organized a group of 10 annotators to make comparisons on
the 130 samples of VVT test set. We let different methods gener-
ate videos for the same input, and let the annotators pick the best
one. The evaluation criteria included three aspects: quality, fidelity,
and smoothness. "Quality" denotes the image quality, encompass-
ing aspects like artifacts, noise levels, and distortion. "Fidelity"
measures the ability to preserve details compared to the reference
clothing image. "Smoothness" evaluates the temporal consistency
of the generated videos. Note that ClothFormer is not open-sourced
but it provides 25 generation results. We conduct an individual
comparison in the bottom block of Table 1 for the 25 provided re-
sults between ClothFormer and our method. Results show that our
method demonstrates significant superiority over the others.

4.4 Qualitative Analysis
Due to the limited diversity and simplicity of samples in the VVT
dataset, it fails to represent the scenarios encountered in actual
video try-on applications. Therefore, we provide additional qual-
itative results on our own dataset to highlight the robust try-on
capabilities and practicality of Tunnel Try-on. Figure 1 illustrates
various results generated by Tunnel Try-on, including scenarios
such as changes in the size of individuals due to person-to-camera
distance variation, the parallel motion relative to the camera, and
alterations in background and perspective induced by camera angle
changes. By integrating the focus tunnel strategy and focus tunnel
enhancement, our method demonstrates the ability to effectively
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(c) w/ tunnel(b) w/o tunnel(a) input

Figure 5: Qualitative ablations for the focus tunnel. This
zoom-in strategy brings notable improvements for preserv-
ing the fine details of the clothing.

adapt to different types of humanmovements and camera variations,
resulting in high-detail preservation and temporal consistency in
the generated try-on videos.

Moreover, unlike previous video try-onmethods limited to fitting
tight-fitting tops, our model can perform try-on tasks for different
types of tops and bottoms based on the user’s choices. Figure 4
presents some try-on examples of different types of bottoms.

4.5 Ablation Study
We conducted ablation experiments for Tunnel Try-on to explore
the impact of focus tunnel extraction (Section 3.3), focus tunnel
enhancement (Section 3.4), and environment encoding (Section
3.5). We conduct both qualitative and quantitative ablations on our
collected dataset to assess their performance.

In Table 3, we provide quantitative metrics related to the ablation
experiments. The Focus Tunnel strategy significantly improves the
model’s SSIM and LPIPS metrics, but it leads to a certain degree of
decrease in the VFID metric. This indicates that the Focus Tunnel
can effectively enhance the quality of frame generation but may
introduce more flickering, reducing the temporal consistency of
the video. However, with the tunnel enhancement, the network’s
VFID shows a significant improvement, while the SSIM also in-
creases. Lastly, although the environment encoder does not exert a
significant impact on quantitative metrics, we observed that it con-
tributes to the generation of the background environments around
the clothing, as demonstrated in Figure 7. We conduct a detailed
analysis of each component in the following paragraphs.

As shown in Figure 5, the impact of the Focus Tunnel Strategy is
evident. Without the focus tunnel, there exists obvious distortion in
the details of the logos. However, after zooming in on the tunnel re-
gions with a close-up shot of the clothing. The detailed information
of the garments could be significantly better preserved.

In Figure 6, we investigate the effectiveness of the tunnel en-
hancement. As depicted in the red box area, when the tunnel en-
hancement is not employed (first row), the clothing textures exhibit
variations and flickering over time, leading to decreased temporal
consistency in the generated video.

Figure 7 illustrates the impact of the environment encoder on
the generation results. Since the environment encoder can extract
overall context information outside the focus tunnel, it can enhance
the quality of the background around the garment, making it more
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Figure 6: Qualitative ablations for the tunnel enhancement.
It assists in generating more stable and continuous textures.

(a) w/o Env (b) w/ Env (c) w/o Env (d) w/ Env

Figure 7: Qualitative ablations for the environment encoder.
The global context contributes to the recovery of the back-
ground around the clothing regions.

Table 3: Quantities ablations for the core components. “Tun-
nel”, “Enhance”, and “Env” denote the focus tunnel, the tun-
nel enhancement, and the environment encoder respectively.

Tunnel Enhance Env SSIM↑ LPIPS↓ 𝑉𝐹𝐼𝐷𝐼3𝐷↓ 𝑉𝐹𝐼𝐷𝑅𝑒𝑠𝑁𝑒𝑋𝑡 ↓
0.801 0.061 6.103 8.751

✓ 0.877 0.052 6.759 9.034
✓ ✓ 0.914 0.049 5.997 8.356
✓ ✓ ✓ 0.909 0.042 5.901 8.348

consistent with high-level semantic information about the envi-
ronment. As shown in Figure 7, when the environment encoder is
added, the generation errors in the textures of the walls and zebra
crossings near the human are corrected.

5 Conclusion
We propose the first diffusion-based video virtual try-on model,
Tunnel Try-on. It outperforms existing alternatives in both quali-
tative and quantitative comparisons. Leveraging the focus tunnel,
tunnel enhancement, and environment encoding, it can adapt to di-
verse camera movements and human motions in videos. Trained on
real datasets, our model could handle virtual try-on in videos with
complex backgrounds and high-quality clothing textures. Serving
as a practical tool for the fashion industry, Tunnel Try-on provides
new insights for future research in virtual try-on applications.
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