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Abstract

We investigate the mechanisms of factual recall in the Mamba state space
model. Our work is inspired by previous findings in autoregressive trans-
former language models suggesting that their knowledge recall is localized
to particular modules at specific token locations; we therefore ask whether
factual recall in Mamba can be similarly localized. To investigate this, we
conduct four lines of experiments on Mamba. First, we apply causal tracing
or interchange interventions to localize key components inside Mamba that
are responsible for recalling facts, revealing that specific components within
middle layers show strong causal effects at the last token of the subject,
while the causal effect of intervening on later layers is most pronounced at
the last token of the prompt, matching previous findings on autoregressive
transformers. Second, we show that rank-one model editing methods can
successfully insert facts at specific locations, again resembling findings
on transformer LMs. Finally we adapt attention-knockout techniques to
Mamba in order to dissect information flow during factual recall. We com-
pare Mamba directly to a similar-sized autoregressive transformer LM and
conclude that despite significant differences in architectures, when it comes
to factual recall, the two architectures share many similarities.

1 Introduction

Studies of autoregressive transformer language models’ (LMs) processing of factual state-
ments such as The Eiffel Tower is located in Paris have identified a localized pattern of internal
computations when recalling facts (Meng et al., 2022a;b; Geva et al., 2023; Hernandez et al.,
2023; Nanda et al., 2023), and have further found that those LMs can be edited by making
single-layer rank-one changes in model parameters to alter a specific fact. Although these
localized phenomena appear to generalize across autoregressive transformer LMs, the extent
to which similar locality might appear in very different architectures—such as recurrent
networks (RNNs)—has not yet been investigated.

In this paper we investigate the internal mechanisms of Mamba (Gu & Dao, 2023), a
recently-proposed state-space language model, a type of RNN that achieves per-parameter
performance that is competitive with transformers. Specifically, we ask whether factual
recall within Mamba exhibits locality similar to the patterns observed in autoregressive
transformer language models.

Our paper is a case study confronting a key methodological challenge that broadly faces
interpretability researchers: as state-of-the-art neural network architectures evolve, we must
ask, can the detailed analytical methods and tools developed for one neural architecture,
such as transformer LMs, be generalized and applied to a different neural architecture, such
as Mamba? In this paper we are able to answer the question with a qualified “yes”: we find
that many of the methods used to analyze transformers can also provide insights on Mamba.
We also discuss mismatches—that is, interpretation methods (such as attention-knockout)
that do not transfer to Mamba as easily due to architectural constraints.

We begin by studying whether activation patching (Wang et al., 2022) can be successfully
applied to Mamba. Known variously as causal mediation analysis (Vig et al., 2020), causal
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tracing (Meng et al., 2022a), and interchange interventions (Geiger et al., 2021), activation
patching techniques can successfully identify specific model components in transformer LMs
that play crucial roles in performing a task. We ask whether Mamba can be productively
studied the same way, even though the architectural components of Mamba are very
different: for example, instead of attention heads and MLP modules, Mamba is composed
of convolutions, gates, and state-space modules. To answer, we adapt activation patching to
Mamba, and ask if any sparsity patterns emerge which provide insights into the respective
roles of its components.

We also study whether rank-one model editing can be applied to Mamba. While studies of
transformers (Meng et al., 2022a;b; Hase et al., 2024) have found that there are a range of
MLP modules within which factual knowledge can be inserted by making a single rank-one
change in parameters, Mamba does not have MLP modules, so we ask if there are any
other modules that can be similarly edited to insert knowledge. As with previous studies
of transformers, the key question is whether factual associations can be edited with both
specificity (without interfering with unrelated facts) and generalization (while remaining
robust to rewordings of the edited fact).

Finally, we apply methods for understanding the overall information flows in Mamba.
Inspired by Geva et al. (2023), we adapt attention-blocking methods to the attention-free
Mamba LMs.

In this work we conduct our experiments on Mamba-2.8b, the largest available LM in
Mamba family, and for comparison we conduct the same experiments on the similarly sized
Pythia-2.8b (Biderman et al., 2023) autoregressive transformer LM.

2 Background on Mamba

Mamba, introduced in Gu & Dao (2023), is a recent family of language models based
on state space models (SSMs). SSMs are designed to model the evolution of a hidden
state across time with a first-order differential equation (Koopman et al., 1999; Durbin &
Koopman, 2012); when they are used as the recurrent state of an RNN, they can enable highly
efficient parallelized training (Gu et al., 2021). To achieve good performance in language
modeling, the Mamba SSM introduces input-dependent parameterization or selective-SSM
instead of the traditional time-invariant SSMs. Mamba uses a special architecture called
MambaBlock1, which is stacked homogeneously, replacing both attention and MLP blocks
used in transformer layers. Here, we focus on the different operations performed inside a
MambaBlock.

Conv + SSM

σ

Wa
ℓ

Wg
ℓ

Wo
ℓ

h i
ℓh i

ℓ-1

a i-1
ℓ

a iℓ s iℓ

g 
i
ℓ

o i
ℓ

Figure 1: Architecture of a MambaBlock. Projection
matrices Wℓ

a and Wℓ
g have the shape 2d× d, while Wℓ

o
has the shape d× 2d. h, a, g, s, and o are intermediate
states of a token representation. σ is SiLU activation and
⊗ is elementwise multiplication. Conv + SSM operation
abstracts the Conv1D and selective-SSM operations.

Formally, Mamba is an autoregressive
language model: M : X → Y over a
vocabulary V that maps a sequence of
tokens x = [x1, x2, . . . , xT ] ∈ X , xi ∈
V to y ∈ Y ⊂ R|V| which is a proba-
bility distribution over the next token
continuations of x. Similar to other
deep LMs, in Mamba, a token xi is
first embedded to a hidden state of
size d as h(0)i = emb(xi). Then h(0)i is
transformed sequentially by a series of
MambaBlocks. The hidden state h(ℓ)i
after the ℓth (1-indexed) MambaBlock
is computed as follows:

h(ℓ)i = h(ℓ−1)
i + o(ℓ)i (1)

where o(ℓ)i is the output of ℓth MambaBlock for the ith token

1In their paper, Gu & Dao (2023) call this component Mamba—the same name as the LM family.
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Figure 2: (a) Activation patching. A state from the clean run G is patched into its corresponding
position in the corrupted run G∗. This has a downstream effect of potentially changing all the

states that depend on the patched state in G∗[← h(ℓ)i ]. (b) Average IE of applying causal tracing on

residual stream states
(
h(ℓ)i in Figure 1

)
across 400 different facts from the RELATIONS dataset (See

Appendix A.2).

o(ℓ)i = MambaBlock(ℓ)
(

h(ℓ−1)
1 , h(ℓ−1)

2 , . . . , h(ℓ−1)
i

)
= W(ℓ)

o

(
s(ℓ)i ⊗ g(ℓ)i

)
(2)

Here, ⊗ represents element-wise multiplication or Hadamard product. s(ℓ)i is calculated as:

a(ℓ)i = W(ℓ)
a h(ℓ)i (3)

c(ℓ)1 , c(ℓ)2 , . . . , c(ℓ)i = SiLU
(

Conv1D
(

a(ℓ)1 , a(ℓ)2 , . . . , a(ℓ)i

))
(4)

s(ℓ)i = selective-SSM
(

c(ℓ)1 , c(ℓ)2 , . . . , c(ℓ)i

)
(5)

We abstract the operations in Equations 4 and 5 as the Conv + SSM operation in Figure 1.
At a high level, Conv + SSM brings information from the past token representations to the
current token representation, similar to the attention blocks in transformer LMs. But, unlike
attention operation, Conv + SSM scales linearly with the context length and thereby enjoys
faster inference speed and longer context limits. See Gu & Dao (2023) for details.

The output of the other path g(ℓ)i (that does not pass through Conv + SSM operation) is a
gating mechanism that regulates the information flow. This gating mechanism resembles
parts of LSTM (Hochreiter & Schmidhuber, 1997) and GRU (Cho et al., 2014) networks,
where similar gates control selective updates of recurrent state.

g(ℓ)i = SiLU
(

W(ℓ)
g h(ℓ−1)

i

)
(6)

In the remainder of the paper, we aim to characterize the role of the components of Mamba
in factual recall by adapting tools that have previously been used to analyze transformers.
In Section 3, we apply activation patching to localize factual recall as in Meng et al. (2022a),
testing the roles of states si, gi, and oi at all layers. In Section 4, following Meng et al. (2022a);
Hase et al. (2024), we test rank-one edits of facts across components Wa, Wg, and Wo at
each layer. And in Section 5 we address the challenge of applying attention patching in
Mamba, as used in Geva et al. (2023) to isolate information flow in GPT LMs. We include
a further investigation of Mamba’s factual recall mechanisms in Appendix E, following
Hernandez et al. (2023) in collecting Jacobians within Mamba to test the linearity of its
relational encodings.

3 Locating Key States for Factual Recall

We begin with activation patching, seeking to understand if there are specific hidden states
which play important roles during factual recall. We select a fact (s, r, o) that the LM knows,
where r is a relation that associates a subject entity s with an object entity o. To estimate
each state’s contribution towards a correct factual prediction (s = Michael Jordan, r =
professionally played, o = basketball), we collect model activations across three different runs:
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Figure 3: Average indirect effect of different states o(ℓ)i , g(ℓ)i , and s(ℓ)i over 400 facts from the RELA-
TIONS dataset (see Appendix A.2). For each layer ℓ, states for a window of 10 layers around ℓ are
restored from the clean run G.

clean run G: In the clean run, we run the model on a prompt specifying the fact we are
interested in. For example, x = (s, r) = Michael Jordan professionally played. We cache all the
hidden states during the clean run to be used later:

{
h(ℓ)i , a(ℓ)i , s(ℓ)i , g(ℓ)i | i ∈ [1, T], ℓ ∈ [1, L]

}
.

corrupted run G∗: In the corrupted run, we swap s with a different subject s∗(Pelé) such
that the LM gives a different answer o∗(soccer) to the modified prompt x∗ = (s∗, r) (i.e.,
o∗ ̸= o).

This subject-swapping approach follows the recommendation of Zhang & Nanda (2023) and
has the advantage of using natural text perturbations to avoid introducing out-of-domain
states to the model’s computation, as may happen when corrupting s embeddings with
Gaussian noise (the method used in Meng et al. (2022a)).

patched run G∗[← h(ℓ)i ]: In the patched run, we run the model on the corrupted prompt

x∗, but intervene on h(ℓ)i by replacing its value with the corresponding state cached from the
clean run G. The remainder of the computation is run normally, meaning that the patched
state can have a downstream effect of potentially changing all the states that depend on it.
See Figure 2a.

Let p(o), p∗(o), and p∗[← h(ℓ)i ](o) denote the probability assigned to the correct answer o in

G, G∗, and G∗[← h(ℓ)i ] respectively. To measure the contribution of h(ℓ)i in recalling the fact
(s, r, o), we define its indirect effect (IE) as:

IE
h(ℓ)i

=
p∗[← h(ℓ)i ](o)− p∗(o)

p(o)− p∗(o)
(7)

In Figure 2b we plot the average indirect effect of restoring the residual states h(ℓ)i across
different layer-token positions over 400 facts from the RELATIONS dataset (Hernandez et al.,
2023). The high IE observed at the late site (later layers at the last token) position is natural,
as restoring a clean h(ℓ)i there will restore most of the model computation from G. However,
Mamba also shows high causality at the early site (early-middle layers at the last subject
token position). This is consistent with what Meng et al. (2022a) observed in GPT LMs.

In Figure 3 we plot the average IE for o(ℓ)i , g(ℓ)i , and s(ℓ)i . The plot for o(ℓ)i (Figure 3a) looks
very similar to Figure 2b, confirming that the output from MambaBlock has strong causal
effects at both early and late sites. Interestingly, Figure 3c shows that the selective-SSM
outputs s(ℓ)i have high IE only at the late site, resembling the behavior of attention modules
in GPT models (Meng et al., 2022a). However, there is no state that appears to do the
opposite; in other words, there is no state with strong effects at the early site and not at the
late site (The gate output g(ℓ)i does have stronger IE at the early site, but these effects are
very weak). To compare with autoregressive transformer LMs, activation patching results
for Pythia-2.8b is shown in Figure 9 in Appendix D. This comparison reveals a key way how
Mamba differs from transformers: while transformer MLP outputs have effects in the early
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Figure 5: Impact of ablating si, gi, and oi on IE
h(ℓ)i

for (a) subject last and (b) prompt last token positions.

Taken together (a) and (b) show a clear separation roles between early-mid and later layers in Mamba-

2.8b. h(ℓ)i up to layer 46 only show strong IE at the subject last token position and have negligible

impact after that. Whereas IE of h(ℓ)i jumps to 1.0 after layer 46. (a) also shows that, at the subject last
token, before layer 27− 28, IE

h(ℓ)i
is significantly reduced by blocking either oi, gi, or si paths

(
sorted

in descending order of damaging IE
h(ℓ)i

)
. (b) At the prompt last token, ablating oi or si paths can

significantly reduce IE
h(ℓ)i

in layers 47− 50.

site and not the late site, in Mamba there is no similar state that specializes only at the early
site, at which factual recall would be expected to occur. This presents the question: which
parameters in Mamba mediate factual recall?
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Figure 4: To probe for path-specific effects, (a) h(ℓ)i
is restored from the clean run G (as in Figure 2a). (b)
Then, to reveal the role of the Conv + SSM contribu-
tions, s∗i states from the corrupted run G∗ are also
patched to block the contributions from si paths.

To investigate this question, we replicate
an experiment from Meng et al. (2022a) to
probe path-specific effects (Pearl, 2022) by sev-
ering a path from the causal graph and mon-
itoring its effect. Here, we are interested
in understanding the effect of the contri-
butions from gi, si, and oi (i.e. states that
are processed by Wg, Conv + SSM, and Wo
respectively) while recalling a fact. First,
in the corrupted run G∗, at token position
i, we cache all the contributions from the
si paths as s∗i = {s∗(ℓ)i | ℓ ∈ [1, L]}. Then

in the patched run G∗[← h(ℓ)i ], we restore

h(ℓ)i that was cached from the clean run G
into its corresponding state (as in Figure 2a),
but with an additional modification: to un-
derstand the contribution from the si paths,
we sever those paths by also patching s∗i
(cached from the corrupted run G∗) to their
corresponding locations (see Figure 4). The same experiment is replicated to understand
the contributions of gi and oi states. We note that severing the o(ℓ)i will sever s(ℓ)i and g(ℓ)i as
well (see Figure 1).

In Figure 5 we plot the average results of this experiment for token positions (a) i =
subject last and (b) i = prompt last over 400 examples randomly sampled from the RELATIONS
dataset. The key findings can be understood by examining the gap between the purple
bars and the red, green, and blue bars: a large gap indicates a strong mediating role for
Conv + SSM, Wg, or Wo parameters, respectively. At the early site at the subject last token,
both the Conv + SSM and Wg have a strong role, but Wo plays an even larger role than
either. Yet the strongest mediator at the late site is also Wo. This experiment highlights
the importance of Wo in both stages of predicting a fact. But it also suggests that Mamba
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does not separate early-site factual recall between these groups of parameters as cleanly
as transformers. However, Figure 5 reveals a clean separation of roles between early to
mid and later layers, analogous to the findings of Hernandez et al. (2023) in transformer
LMs. We also note that this division of responsibilities between layers can be more sharply
noticed in Mamba when compared to transformers LMs (compare Figure 5 with Figure 10).

4 Editing Facts With ROME

Having begun to characterize the locations of important states for factual recall, we now
investigate whether factual recall behavior can be edited. In particular, we apply the
ROME (Rank One Model Editing, Meng et al., 2022a) technique to Mamba. ROME begins
with the observation that any linear transformation can be considered as an associative
memory (Anderson, 1972; Kohonen, 1972), mapping a set of keys K = [k1|k2| . . . ] to their
corresponding values V = [v1|v2| . . . ], and uses this to edit factual associations in trans-
former LMs. Here, we apply the technique to a particular set of linear transformations
within Mamba, and report our editing success on each.2

The input to ROME is a prompt x = (s, r), where s (Emmanuel Macron) is a subject entity
and r (is the President of ) is a relation. ROME also takes a counterfactual object o∗ (England),
meant to replace the correct object o (France) in the model’s output. To effect that change,
ROME generates a rank-one update to W(ℓ)

down, the down-projection matrix of the MLP
module for the last token of the subject at layer ℓ—which plays the role of the associative
memory. In generating the rank-one update, ROME considers the input to W(ℓ)

down as the
key (k∗). Then, with gradient descent ROME calculates a value (v∗) such that, when v∗ is
inserted as the output of W(ℓ)

down, the model will output o∗. Importantly, while optimizing v∗,
ROME attempts to minimize unrelated changes in model outputs (Joe Biden, for example,
should still be mapped to the United States post-edit). Finally, ROME adds a rank-1 matrix ∆
to W(ℓ)

down such that
(
W(ℓ)

down + ∆
)
k∗ ≈ v∗. (See Meng et al. (2022a) for details.)

4.1 Applying ROME in Mamba

We apply ROME on the three different projection matrices of Mamba: W(ℓ)
a which affects

only the Conv + SSM path, W(ℓ)
g which affects only the gating path, and W(ℓ)

o , the final
output of the MambaBlock, which is added to the residual state. We plot ROME performance
on different projection matrices

(
W(ℓ)

a , W(ℓ)
g , and W(ℓ)

o
)

across all the layers in Figure 6a.

To evaluate editing performance, we use the COUNTERFACT dataset from Meng et al. (2022a).
COUNTERFACT contains 20K counterfactual examples in the form (s, r, o → o∗), where o is
the correct answer to the prompt x = (s, r), and o∗ is the object which is to be inserted as the
new answer to the prompt (See Appendix A.1 for details). We select the first 2000 examples
from this dataset for our module-layer sweep. We use the original evaluation matrices in
Meng et al. (2022a) to measure ROME edit performance. The final score (S) in the ROME
evaluation suite is the harmonic mean of three different scores:

1. Efficacy (ES): For an edit request (s, r, o → o∗), we say the edit is effective if, post-edit,
the LM assigns p(o∗) > p(o) in response to the prompt x = (s, r). Efficacy reflects the
portion of the examples where the edit was effective.

2. Generalization (PS): A successful edit should be persistent across different paraphrases
of (s, r). For each of the request instances (s, r, o → o∗), p(o∗) > p(o) is checked post-edit
with a set of different rephrasings xp ∼ Pr(s) of the prompt x = (s, r), where Pr denotes
a set of paraphrased templates for the relation r.

2Further motivating these experiments, previous work has shown that the locations identified by
activation patching techniques are not necessarily those which have the strongest edit performance
(Hase et al., 2024).
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Figure 6: ROME performance in editing facts across different layers (a) by modifying W(ℓ)
a , W(ℓ)

g ,

W(ℓ)
o in Mamba-2.8b, and (b) modifying W(ℓ)

down in Pythia-2.8b. Results are reported on the first 2000
examples in the COUNTERFACT dataset.

3. Specificity (NS): Finally, the edit should be specific to Pr(s) and should not additionally
change the mapping of some nearby subject sn to o∗. To evaluate the specificity of
an edit we measure p(on) > p(o∗) with Pr(sn) for a set of nearby factual associations
{(sn, r, on) | on ̸= o∗}.

Figure 6a shows that ROME can achieve high scores (S) for a range of early to middle layers
by modifying any one of the projection matrices W(ℓ)

a , W(ℓ)
g , or W(ℓ)

o , matching observations
made by Hase et al. (2024) regarding transformer LMs. However, we found that performance
does depend on the location of the edit. For example, in the case of W(ℓ)

g and W(ℓ)
o , the

score (S) and generalization (PS) drops after around layer 43. This is consistent with our
findings from the path-blocking experiment in Figure 5a. We also find that edits to W(ℓ)

a
have poor generalization (PS) in early layers, whereas high PS can be achieved at early
layers by modifying either W(ℓ)

g or W(ℓ)
o , consistent with their higher indirect effects as seen

in Figure 5a.

Where is the right place to apply ROME on Mamba? Figure 3 could suggest W(ℓ)
g , since

the causal effect of gi states is mostly concentrated at the subject last token, similar to
the behavior of MLPs in transformers (Meng et al., 2022a). Consistent with this is the
architectural fact that, just as transformers’ W(ℓ)

down connects to attention modules only

through the residual stream, the output of W(ℓ)
g does not flow through the Conv + SSM

module—a module that other work has suggested might play a role similar to that played
by attention heads in transformers (Grazzi et al., 2024). And, indeed, we find that ROME
can successfully insert facts by modifying W(ℓ)

g . On the other hand Figure 6a reveals sudden

drops in efficacy and generalization at middle layer gates, suggesting that W(ℓ)
g may be an

unreliable mediator at some layers. Our experiments further show that the best performance
for ROME is empirically achieved by modifying W(ℓ)

o . This is consistent with the fact that oi
states show a stronger causal effect at the subject last token than gi states do (see Figures 3a
and 5a). Additionally, ROME achieves better generalization (PS), competitive specificity
(NS), and an overall better score (S) with W(ℓ)

o . We hypothesize that the strong performance
of W(ℓ)

o may be due to the the separation of roles between early-mid and later layers observed
in Figures 2b, 3a, and 5. Also see Appendix C where we isolate the contribution of W(ℓ)

o by
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subtracting IE
s(ℓ)i

+ IE
g(ℓ)i

from IE
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, which reveal a critical role of W(ℓ)
o in early-mid layers

at subject last token position while mediating a fact.

We plot ROME performance for a similar sized Pythia model on Figure 6b for comparison.

5 Attention Knock-out in Mamba?

Attention modules mediate the flow of information across different token positions in trans-
former LMs. In attention “knock-out” experiments the information that flows through a
specific edge (from kth token to qth token) via a certain attention head is blocked to under-
stand if critical information flows through that edge. This is also a form of causal mediation
analysis and it has been effective in understanding the information flow in transformer LMs
(Geva et al., 2023; Wang et al., 2022; Todd et al., 2023). In Mamba, information from past
tokens is retained in the si states, with the Conv + SSM operations (see Figure 1 and Equa-
tions 3–5). We ask, can we perform experiments similar to attention knock-out experiments
in Mamba in order to understand how it moves factual information?

We find that performing similar experiments in Mamba can be difficult. The use of
Conv with a non-linearity in conjunction with selective-SSM make it challenging to remove
the information retained in the qth token from the kth token (see Appendix B for details).
However, it is possible to block the propagation of information from the kth token to all
the future tokens via Conv + SSM with mean-ablation. Specifically, for a layer ℓ, we set
a(ℓ)k := E

[
a(ℓ)

]
, where E

[
a(ℓ)

]
is the mean of a(ℓ) states collected with 10,000 tokens from

WikiText-103 by Merity et al. (2016). We recognize that this intervention may not be as
surgical as cutting a specific edge. However, with some caveats, this experiment suggests
that the factual information flow in Mamba is similar to what Geva et al. (2023) observed in
GPT LMs.

We randomly sample 700 facts across 6 factual relations from the RELATIONS dataset. For
each of those examples we block-out information propagation of the subject, non-subject,
and the prompt-last token positions for a window of 10 layers around a specific layer ℓ. The
effect of blocking out Conv + SSM information flow for certain layer-token (ℓ− k) positions

is measured as the relative change in p(o) with
(

p
(

o | a(ℓ)k :=E
[

a(ℓ)
])
−p(o)

)
/p(o). Figure 7 shows

the averaged result and it leads us to draw the following conclusions about how factual
information flows in Mamba:
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(a) The purple lines show that blocking out non-subject information flow in early middle
layers can bring down p(o) by up to 50%. Non-subject tokens are used to specify the
relation r. This observation leads us to believe that Mamba propagates relation specific
information to future tokens using Conv+SSM operations in early-middle layers.

(b) Interestingly, the green lines (blocking the subject information flow) shows two valleys:

1. The first valley at the early layers is not surprising as Mamba needs to collate in-
formation from all the subject tokens in early layers to recognize a subject entity s
consisting of multiple tokens.

2. However, the valley at layers 43-48 suggest that Mamba uses Conv + SSM paths in
those layers to propagate critical information from the subject to later tokens. This
aligns with Figures 5b and 3c, where si states in those layers show high indirect
effects, indicating their crucial role while recalling a fact.

(c) The blue dashed lines indicate the effect of blocking the information of only the subject
last token. If the ablation is performed in very early layers, later layers can start to
compensate for that. However, the valley around layers 20-21 suggests that Mamba
expects to recognize the full subject entity by then in order to recall relevant associations
(enrichment). Notably, activation patching results for oi and si—states that we hypothesize
take crucial part in the enrichment process—also show strong indirect effect around that
region (Figures 3a, 3b, and 5a). The blue line follows the green line after layer 30. The
weaker effect observed might be because ablating subject last token is not always enough
to remove all the subject information. For example, in Eiffel Tower, Eiffel (tokenized as E,
iff, el) is more informative than the last token Tower.

These findings align with how factual information flows through attention modules in
autoregressive transformer LMs, as observed by Geva et al. (2023) in GPT. However, unlike
Geva et al. (2023), we cannot make strong claims about the unique role of the final token
position (prompt-last) with this experiment. As we block out information flow to all future
tokens, the intermediate states in between the ablated kth token and the last token are
affected as well.

6 Related Works

Mamba. Mamba is a recent family of language models that are based on state space
models (SSMs). Neural SSM-based models have achieved good performance across different
modalities, including vision (Nguyen et al., 2022), audio (Goel et al., 2022), and genomic
sequences (Nguyen et al., 2023). Only recently, however, with Mamba, have they become
competitive with the language modeling performance of transformers (Gu & Dao, 2023).
Like transformers, Mamba contains factual knowledge about real world entities (Grazzi
et al., 2024). However, knowledge representation in Mamba (and other LMs based on SSMs)
has up to now remained unexplored.

There are few works focused on interpreting Mamba. Ali et al. (2024) identify implicit
attention-like matrices formed by Mamba’s selective state space layers. Grazzi et al. (2024),
while not strictly focused on interpreting Mamba’s internals, apply linear probes to Mamba’s
(decoded) intermediate states during in-context regression tasks. They discover substantial
similarities between Mamba and transformer models: both architectures pursue “iterative”
strategies, with the task loss falling more or less monotonically as the layer index increases.
Finally, in concurrent work, Paulo et al. (2024) apply a different set of interpretability
techniques to Mamba, focusing on activation steering and linear probing methods. Like us,
they find that approaches developed for transformer models largely transfer to Mamba.

Locating Factual Knowledge in Language Models. To make factually correct statements
about the world, a LM has to store factual knowledge about real world entities somewhere
in its parameters. Understanding how and where a neural network stores knowledge is
a core problem for interpretability and it has thus been studied from several perspectives
(Ji et al., 2021; Wang et al., 2014). One line of work trains classifiers to probe for properties
encoded in model representations (Ettinger et al., 2016; Shi et al., 2016; Hupkes et al., 2018;
Conneau et al., 2018; Belinkov et al., 2017; Belinkov & Glass, 2019). However, the flexibility
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of these classifiers can lead to overestimating model knowledge and capabilites (Belinkov,
2022). Causal mediation analysis methods (Pearl, 2022) attempt to measure the causal
contribution of intermediate states to task performance. Meng et al. (2022a;b) use activation
patching to identify key MLP modules for factual recall, highlighting the middle layers at
particular token positions as being especially important. Similarly, Geva et al. (2023) apply
causal mediation analysis to attention modules, seeking to understand the mechanism of
cross-token factual information flow inside transformer LMs.

7 Discussion

In this paper we have set out to understand whether the analytical methods and tools
developed for transformer LMs can also be applied on the Mamba LMs based on recurrent
state-space architecture. Although our experiments have been limited to Mamba-2.8b, the
largest available LM of that family, and comparisons to the similarly-sized transformer
Pythia-2.8b, the methods we have investigated are general, and can be used to analyze to
any state-space model.

Our overall comparisons of Mamba and transformers are positive: with activation patching
we have found that, similar to autoregressive transformer LMs, Mamba shows signs of
localization at the last subject token and at specific layer ranges while recalling a fact.
Although, unlike transformers, Mamba has no MLP modules, we find that their Wo weights
can receive rank-one model editing (ROME) edits with good generalization and specificity
at a range of layers, similar to Wdown in Pythia and GPT family of LMs. We have also been
able to partially adapt the tools of attention knock-out in Mamba by blocking outgoing
information from a token, revealing information flows similar to transformer LMs during
factual recall.

The similarity that we have observed between factual recall mechanisms in transformers
and Mamba leads us to speculate that the autoregressive language modeling task itself
induces a pattern of localized factual recall that is independent of modeling architecture.
When constraining a model to process text from beginning to end, the ordering creates
a specific bottleneck in the information flows: the end of a subject becomes a singular
moment at which recognition of the subject is both possible and useful, and we find that
both transformers and Mamba arrange their computations to localize factual recall at that
moment. We hypothesize that other future autoregressive LMs architectures should expect
to see similar locality in factual recall as well.

In summary, we find that many of the tools used to interpret and edit large transformers
can be adapted to work with Mamba, and we are optimistic that those tools will continue to
be useful as architectures continute to evolve.

Ethics

By exploring the factual recall mechanism in Mamba, we potentially improve its trans-
parency, enabling oversight and control. However, the ability to modify facts directly in the
model brings with it the potential for abuse, such as adding malicious misinformation or
bias.

Reproducibility

We ran all experiments on workstations with either 80GB NVIDIA A100 GPUs or 48GB
A6000 GPUs, using the HuggingFace Transformers library (Wolf et al., 2019) and PyTorch
(Paszke et al., 2019). We make use of publicly available datasets COUNTERFACT and
RELATIONS in this work.
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A Datasets

We use two datasets; COUNTERFACT by Meng et al. (2022a) and RELATIONS by Hernandez
et al. (2023) in this work.

A.1 COUNTERFACT

Meng et al. (2022a) developed the COUNTERFACT dataset for evaluating the efficacy of
counterfactual edits in language models. It was prepared by adapting PARAREL (Elazar
et al. (2021)) and scraping Wikidata3. The dataset contains 21, 919 requests {s, r, o, o∗, π∗}
where o is the correct answer to the prompt x = (s, r), o∗ is the counterfactual edit request,
and π∗ ∼ P(s, r) is a paraphrase of the prompt x = (s, r) to test for generalizability (PS).
Each of the records also contain some neighborhood prompts πN to test for specificity (NS)
and some generation prompts πG to test if LM generation post-edit is fluent and consistent
with the edit. Please refer to Meng et al. (2022a) for details on the curation of this dataset.

We evaluate ROME performance in Mamba-2.8b (Figure 6a) and Pythia-2.8b (Figure 6b) on
the first 2000 records from COUNTERFACT.

A.2 RELATIONS

The RELATIONS dataset introduced in Hernandez et al. (2023) consists of 47 relations of 4
types: factual, linguistic, bias, and commonsense. A relation r is an association between two
entities. For example, the relation, r = professionally played the sport connects the subject
s = Michael Jordan with the object o = basketball. The dataset contains a set of (s, o) for each
relation r.

In the scope of this paper, we only utilize the 26 factual relations from this dataset. We
evaluate LRE in Mamba and Pythia for all the 26 factual relations. We also use this dataset
for locating key fact-mediating states in Section 3 and Appendix D. We randomly sample
400 examples (s, r, o) across 6 different factual relations - place in city, country capital city,
person occupation, plays pro sport, company hq, and product by company. For each of these
examples we randomly select another example within the same relation (s∗, r, o∗) such
that s ̸= s∗ and o ̸= o∗. The average indirect effect (IE) of applying activation patching
over these 400 examples is depicted on Figures 2b, 3, 5 for Mamba-2.8b) and on Figure 9
(for Pythia-2.8b). We use the same set of 6 relations in Section 5 where we adapt attention
knock-out to Mamba.

B Challenges in Performing Attention Knock-out in Mamba

Attention heads in autoregressive transformer LMs and Conv + SSM operations in Mamba
play a similar role: bringing/retaining information from the past tokens. Attention “knock-
out” is a type of causal mediation analysis that tries to understand information flow in
transformer LMs by cutting off information propagation from kth token to qth token position.
In transformers, each of the attention heads in an attention module attn(ℓ) calculates an
attention matrix L, where Lq,k quantifies how much attention is being paid to the kth token
by the qth token with this specific attention head (see Vaswani et al. (2017) for details on the
attention operation). We can block the information flow from kth token to qth token via a
specific attention head by simply setting Lq,k := −∞ in the forward pass.

For Mamba, Ali et al. (2024) show that the amount of information retained in the qth token
state s(ℓ)q , from the convolved state at kth token c(ℓ)k (where k < q), after the selective-SSM
operation (see Equations 4 and 5) can be visualized as an attention matrix per channel.
Since the selective-SSM operation is linear, the information retained in s(ℓ)q from c(ℓ)k can

3www.wikidata.org/wiki/Wikidata:Main_Page
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be calculated accurately as α̃
(ℓ)
q,k = C(ℓ)

q

(
∏

q
i=k+1 A(ℓ)

i

)
B(ℓ)

k c(ℓ)k , where A(ℓ)
i , B(ℓ)

i , and C(ℓ)
i are

input-dependent parameters for the ith token. See Gu & Dao (2023) and Ali et al. (2024) for
details on selective-SSM operation. We ask: can we block the information flow from the kth

token to the qth token in Mamba by subtracting out α̃
(ℓ)
q,k from s(ℓ)q ? If so, attention knockout

experiments in Mamba become feasible.

We find that blocking information flow via Conv + SSM operation through this specific edge
from the kth token to the qth token can be challenging in Mamba. Note that, since c(ℓ)k is

a convolved state with a receptive field of size 4 in Mamba-2.8b, the states c(ℓ)k+1, c(ℓ)k+2, and

c(ℓ)k+3 also retain information from a(ℓ)k . Which means that even if we subtract α̃
(ℓ)
q,k from s(ℓ)q ,

these states can “leak” information about a(ℓ)k to s(ℓ)q . To stop this leakage, we would want

to subtract from s(ℓ)q all the information retained from a(ℓ)k via c(ℓ)k+1, c(ℓ)k+2, and c(ℓ)k+3 states as
well. However, accurately calculating this is challenging because of the SiLU non-linearity
after Conv1D (see Equation (4)).

In our initial experiments we tested subtracting only α̃
(ℓ)
q,k from s(ℓ)q . But we found that

Mamba-2.8b could often refer to the kth token from the qth token in copy and factual recall
tasks.

C Isolating The Contribution of W(ℓ)
o

Recall from Figure 1 and Equation (2) that when o(ℓ)i is restored, the s(ℓ)i and g(ℓ)i are restored

as well. To isolate the contribution of only W(ℓ)
o we subtract out IE

s(ℓ)i
+ IE

g(ℓ)i
from IE

o(ℓ)i
and

plot the results on Figure 8. Notice that subtracting IE
s(ℓ)i

cancels out the high indirect effect

at the late site shown by later layers at the last token position. But, together IE
s(ℓ)i

+ IE
g(ℓ)i

cannot cancel out high IE
o(ℓ)i

observed at the early site, that is early-mid layers at the last

subject token. This reconfirms the mediating role of W(ℓ)
o at the early site while recalling a

fact.
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D Locating Key Modules in Pythia-2.8b
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E LINEARITY OF RELATION EMBEDDING (LRE)

With activation patching we can identify where facts are located inside a LM. We are also
interested in understanding how LMs extract this information given x = (s, r). Figures 2b
and 5 show a clear separation of roles in early-mid and later layers in Mamba. We observe a
similar phenomenon in autoregressive transformer LMs (Meng et al., 2022a;b; Geva et al.,
2023). According to Geva et al. (2023), in transformer LMs, the subject entity representation
s, at the subject last token position, goes through an enrichment process, mediated by the
MLP in the early-mid layers, where s is populated with different facts/attributes relevant
to the subject entity s. Then, at the last token position, attention modules perform a query
on the enriched s to extract the answer to the prompt x = (s, r). Hernandez et al. (2023)
approximate the query operation performed on the enriched s for a specific relation r by
taking the first order Taylor series approximation (LRE) of the LM computation F as

F(s, r) ≈ β Jρs + b

where J = Esi ,r

[
∂F
∂s

∣∣∣∣
(si ,r)

]
, b = Esi ,r

[
F(s, r)− ∂F

∂s
s
∣∣∣∣
(si ,r)

]
, (8)

β is a scalar , and ρ is the rank of J

Hernandez et al. (2023) show that for a range of different relations it is possible to achieve a
LRE that is faithful to the model computation F by averaging the approximations of J and b
calculated on just n = 5 examples. We utilize LRE to understand the complexity of decoding
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factual relations in Mamba. We find the hyperparameters β, ρ and the layer ℓ (where to
extract the enriched s from) using grid search. For mathematical and implementation details,
see Hernandez et al. (2023).
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Figure 11: Relation-wise LRE faithfulness to the LM decoding function F for (a) Mamba-2.8b
and (b) Pythia-2.8b. The relations are sorted according to their LRE faithfulness in Mamba-
2.8b. Horizontal red lines per relation indicate random-choice baseline. We only present
results for the factual relations in the RELATIONS dataset.

We plot the faithfulness of LRE with n = 5 samples on Figure 11 for Mamba-2.8b and similar
sized Pythia. The metric faithfulness represents the portion of facts (s, r, o) that can be
correctly retrieved if the LM computation F(s, r) is replaced with LRE(s), a simple affine
transformation.

We only calculate LRE for the factual relations in the RELATIONS dataset. Figure 11a shows
that only for 10 out of 26 factual relations can a linear LRE achieve more than 50% faithfulness.
For comparison, in the same sized Pythia-2.8b LRE achives > 50% faithfulness for 11 factual
relations (see Figure 11b). And, in both Mamba and Pythia, LRE fails to achieve good
faithfulness for the relations where the range (the number of unique answers) is large. These
findings align with what Hernandez et al. (2023) observed on GPT and LLaMA models;
suggesting that, similar to transformer LMs, factual knowledge might be heterogeneously
represented for different relations in Mamba.
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E.1 LRE Performance Across Different Layers

Besides faithfulness Hernandez et al. (2023) introduced another metric causality to measure
the performance of LRE. Since LRE is a linear function, it is invertible. Assume that for a fact
(s, r, o) LRE can faithfully replace LM computation F(s, r). Then given the representation o∗

of another object o, J−1(o∗ − o) should give us a ∆s, such that when added to s, s̃ := s + ∆s,
the model computation F(s̃, r) should generate o∗. See Hernandez et al. (2023) for details on
this.
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Figure 12: For Mamba, we only perform sweep till layer 48, as Figure 5 suggests negligible
activity for later layers at the subject last token
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F Activation Patching results on Mamba-2.8b
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