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ABSTRACT

We propose a new method for novelty detection that can tolerate high corruption of
the training points, whereas previous works assumed either no or very low corruption.
Our method trains a robust variational autoencoder (VAE), which aims to generate
a model for the uncorrupted training points. To gain robustness to high corruption,
we incorporate the following four changes to the common VAE: 1. Extracting
crucial features of the latent code by a carefully designed dimension reduction
component for distributions; 2. Modeling the latent distribution as a mixture of
Gaussian low-rank inliers and full-rank outliers, where the testing only uses the
inlier model; 3. Applying the Wasserstein-1 metric for regularization, instead of the
Kullback-Leibler (KL) divergence; and 4. Using a least absolute deviation error for
reconstruction. We establish both robustness to outliers and suitability to low-rank
modeling of the Wasserstein metric as opposed to the KL divergence. We illustrate
state-of-the-art results on standard benchmarks for novelty detection.

1 INTRODUCTION

Novelty detection refers to the task of detecting testing data points that deviate from the underlying
structure of a given training dataset (Chandola et al., 2009; Pimentel et al., 2014; Chalapathy & Chawla,
2019). It finds crucial applications, in areas such as insurance and credit fraud (Zhou et al., 2018), mobile
robots (Neto & Nehmzow, 2007) and medical diagnosis (Wei et al., 2018). Ideally, novelty detection
requires learning the underlying distribution of the training data, where sometimes it is sufficient to learn
a significant feature, geometric structure or another property of the training data. One can then apply
the learned distribution (or property) to detect deviating points in the test data. This is different from
outlier detection (Chandola et al., 2009), in which one does not have training data and has to determine
the deviating points in a sufficiently large dataset assuming that the majority of points share the same
structure or properties. We note that novelty detection is equivalent to the well-known one-class
classification problem (Moya & Hush, 1996). In this problem, one needs to identify members of a class
in a test dataset, and consequently distinguish them from “novel” data points, given training points from
this class. The points of the main class are commonly referred to as inliers and the novel ones as outliers.

Novelty detection is also commonly referred to as semi-supervised anomaly detection. In this
terminology, the notion of being “semi-supervised” is different than usual. It emphasizes that only
the inliers are trained, where there is no restriction on the fraction of training points. On the other hand,
the unsupervised case has no training (we referred to this setting above as “outlier detection”) and
in the supervised case there are training datasets for both the inliers and outliers. We remark that some
authors refer to semi-supervised anomaly detection as the setting where a small amount of labeled
data is provided for both the inliers and outliers (Ruff et al., 2020).

There are a myriad of solutions to novelty detection. Nevertheless, such solutions often assume that the
training set is purely sampled from a single class or that it has a very low fraction of corrupted samples.
This assumption is only valid when the area of investigation has been carefully studied and there
are sufficiently precise tools to collect data. However, there are different important scenarios, where
this assumption does not hold. One scenario includes new areas of studies, where it is unclear how
to distinguish between normal and abnormal points. For example, in the beginning of the COVID-19
pandemic it was hard to diagnose COVID-19 patients and distinguish them from other patients with
pneumonia. Another scenario occurs when it is very hard to make precise measurements, for example,
when working with the highly corrupted images obtained in cryogenic electron microscopy (cryo-EM).

Therefore, we study a robust version of novelty detection that allows a nontrivial fraction of corrupted
samples, namely outliers, within the training set. We solve this problem by using a special variational
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autoencoder (VAE) (Kingma & Welling, 2014). Our VAE is able to model the underlying distribution
of the uncorrupted data, despite nontrivial corruption. We refer to our new method as “Mixture
Autoencoding with Wasserstein penalty”, or “MAW”. In order to clarify it, we first review previous
works and then explain our contributions in view of these works.

1.1 PREVIOUS WORK

Solutions to one-class classification and novelty detection either estimate the density of the inlier
distribution (Bengio & Monperrus, 2005; Ilonen et al., 2006) or determine a geometric property
of the inliers, such as their boundary set (Breunig et al., 2000; Schölkopf et al., 2000; Xiao et al.,
2016; Wang & Lan, 2020; Jiang et al., 2019). When the inlier distribution is nicely approximated by
a low-dimensional linear subspace, Shyu et al. (2003) proposes to distinguish between inliers and
outliers via Principal Component Analysis (PCA). In order to consider more general cases of nonlinear
low-dimensional structures, one may use autoencoders (or restricted Boltzmann machines), which
nonlinearly generalize PCA (Goodfellow et al., 2016, Ch. 2) and whose reconstruction error naturally
provides a score for membership in the inlier class. Instances of this strategy with various architectures
include Zhai et al. (2016); Zong et al. (2018); Sabokrou et al. (2018); Perera et al. (2019); Pidhorskyi
et al. (2018). In all of these works, but Zong et al. (2018), the training set is assumed to solely represent
the inlier class. In fact, Perera et al. (2019) observed that interpolation of a latent space, which was
trained using digit images of a complex shape, can lead to digit representation of a simple shape. If
there are also outliers (with a simple shape) among the inliers (with a complex shape), encoding the
inlier distribution becomes even more difficult. Nevertheless, some previous works already explored
the possibility of corrupted training set (Xiao et al., 2016; Wang & Lan, 2020; Zong et al., 2018). In
particular, Xiao et al. (2016); Zong et al. (2018) test artificial instances with at most 5% corruption
of the training set and Wang & Lan (2020) considers ratios of 10%, but with very small numbers
of training points. In this work we consider corruption ratios up to 30%, with a method that tries to
estimate the distribution of the training set, and not just a geometric property.

VAEs (Kingma & Welling, 2014) have been commonly used for generating distributions with
reconstruction scores and are thus natural for novelty detection without corruption. They determine
the latent code of an autoencoder via variational inference (Jordan et al., 1999; Blei et al., 2017).
Alternatively, they can be viewed as autoencoders for distributions that penalize the Kullback-Leibler
(KL) divergence of the latent distribution from the prior distribution. The first VAE-based method for
novelty detection was suggested by An & Cho (2015). It was recently extended by Daniel et al. (2019)
who modified the training objective. A variety of VAE models were also proposed for special anomaly
detection problems, which are different than novelty detection (Xu et al., 2018; Zhang et al., 2019; Pol
et al., 2019). Current VAE-based methods for novelty detection do not perform well when the training
data is corrupted. Indeed, the learned distribution of any such method also represents the corruption,
that is, the outlier component. To the best of our knowledge, no effective solutions were proposed
for collapsing the outlier mode so that the trained VAE would only represent the inlier distribution.

An adversarial autoencoder (AAE) (Makhzani et al., 2016) and a Wasserstein autoencoder (WAE)
(Tolstikhin et al., 2018) can be considered as variants of VAE. The penalty term of AAE takes the form
of a generative adversarial network (GAN) (Goodfellow et al., 2016), where its generator is the encoder.
A Wasserstein autoencoder (WAE) (Tolstikhin et al., 2018) generalizes AAE with a framework that
minimizes the Wasserstein metric between the sample distribution and the inference distribution. It
reformulates the corresponding objective function so that it can be implemented in the form of an AAE.

There are two relevant lines of works on robustness to outliers in linear modeling that can be used
in nonlinear settings via autoencoders or VAEs. Robust PCA aims to deal with sparse elementwise
corruption of a data matrix (Candès et al., 2011; De La Torre & Black, 2003; Wright et al., 2009; Vaswani
& Narayanamurthy, 2018). Robust subspace recovery (RSR) aims to address general corruption of
selected data points and thus better fits the framework of outliers (Watson, 2001; De La Torre & Black,
2003; Ding et al., 2006; Zhang et al., 2009; McCoy & Tropp, 2011; Xu et al., 2012; Lerman & Zhang,
2014; Zhang & Lerman, 2014; Lerman et al., 2015; Lerman & Maunu, 2017; Maunu et al., 2019; Lerman
& Maunu, 2018; Maunu & Lerman, 2019). Autoencoders that use robust PCA for anomaly detection
tasks were proposed in Chalapathy et al. (2017); Zhou & Paffenroth (2017). Dai et al. (2018) show that a
VAE can be interpreted as a nonlinear robust PCA problem. Nevertheless, explicit regularization is often
required to improve robustness to sparse corruption in VAEs (Akrami et al., 2019; Eduardo et al., 2020).
RSR was successfully applied to outlier detection by Lai et al. (2020). One can apply their work to the
different setting of novelty detection; however, our proposed VAE formulation seems to work better.
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1.2 THIS WORK

We propose a robust novelty detection procedure, MAW, that aims to model the distribution of the
training data in the presence of nontrivial fraction of outliers. We highlight its following four features:

• MAW models the latent distribution by a Gaussian mixture of low-rank inliers and full-rank outliers,
and applies the inlier distribution for testing. Previous applications of mixture models for novelty de-
tection were designed for multiple modes of inliers and used more complicated tools such as construct-
ing another network (Zong et al., 2018) or applying clustering (Aytekin et al., 2018; Lee et al., 2018).

• MAW applies a novel dimension reduction component, which extracts lower-dimensional features
of the latent distribution. The reduced small dimension allows using full covariances for both the
outliers (with full rank) and inliers (with deficient rank); whereas previous VAE-based methods for
novelty detection used diagonal covariances in their models (An & Cho, 2015; Daniel et al., 2019).
The new component is inspired by the RSR layer in Lai et al. (2020); however, they are essentially
different since the RSR layer is only applicable for data points and not for probability distributions.

• For the latent code penalty, MAW uses the Wasserstein-1 (W1) metric. Under a special setting,
we prove that the Wasserstein metric gives rise to outliers-robust estimation and is suitable to the
low-rank modeling of inliers by MAW. We also show that these properties do not hold for the KL
divergence, which is used by VAE, AAE and WAE. We remark that the use of the Wasserstein metric
in WAE is different than that of MAW. Indeed, in WAE it measures the distance between the data
distribution and the generated distribution and it does not appear in the latent code. Our use ofW1

can be viewed as a variant of AAE, which replaces GAN with Wasserstein GAN (WGAN) (Arjovsky
et al., 2017). That is, it replaces the minimization of the KL divergence by that of theW1 distance.

• MAW achieves state-of-the-art results on popular anomaly detection datasets.

Additional two features are as follows. First, for reconstruction, MAW replaces the common least
squares formulation with a least absolute deviations formulation. This can be justified by the use of either
a robust estimator (Lopuhaa & Rousseeuw, 1991) or a likelihood function with a heavier tail. Second,
MAW is attractive for practitioners. It is simple to implement in any standard deep learning library,
and is easily adaptable to other choices of network architecture, energy functions and similarity scores.

We remark that since we do not have labels for the training set, we cannot supervisedly learn the
Gaussian component with low-rank covariance by the inliers and Gaussian component with the
full-rank covariance by the outliers. However, the use of two robust losses (least absolute deviation
and the W1 distance) helps obtain a careful model for the inliers, which is robust to outliers. Note
that in our testing, we only use the model for the inliers.

We explain MAW in §2. We establish the advantage of its use of the Wasserstein metric in §3. We
carefully test MAW in §4. At last, we conclude this work in §5.

2 DESCRIPTION OF MAW

We motivate and overview the underlying model and assumptions of MAW in §2.1. We describe the
simple implementation details of its components in §2.2. Fig. 1 illustrates the general idea of MAW
and can assist in reading this section.

2.1 THE MODEL AND ASSUMPTIONS OF MAW

MAW aims to robustly estimate a mixture inlier-outlier distribution for the training data and then use
its inlier component to detect outliers in the testing data. For this purpose, it designs a novel variational
autoencoder with an underlying mixture model and a robust loss function in the latent space. We find
the variational framework natural for novelty detection. Indeed, it learns a distribution that describes
the inlier training examples and generalizes to the inlier test data. Moreover, the variational formulation
allows a direct modeling of a Gaussian mixture model in the latent space, unlike a standard autoencoder.

We assume L training points in RD, which we designate by {x(i)}Li=1. Let x be a random variable
on RD with the unknown training data distribution that we estimate by the empirical distribution of the
training points. We assume a latent random variable z of low and even dimension 2 ≤ d ≤ D, where our
default choice isd = 2. We further assume a standardized Gaussian prior, p(z), so that z ∼ N (0, Id×d).
The posterior distribution p(z|x) is unknown. However, we assume an approximation to it, which
we denote by q(z|x), such that z|x is a mixture of two Gaussian distributions representing the inlier
and outlier components. More specifically, z|x ∼ ηN (µ1,Σ1) + (1 − η)N (µ2,Σ2), where we
explain next its parameters. We assume that η > 0.5, where our default value is η = 5/6, so that the
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Figure 1: Demonstration of the architecture of MAW for novelty detection.

first mode of z represents the inliers and the second one represents the outliers. The other parameters
are generated by the encoder network and a following dimension reduction component.We remark
that unlike previous works which adopted Gaussian mixtures to model the clusters of inliers (Reddy
et al., 2017; Zong et al., 2018), the Gaussian mixture model in MAW aims to separate between inliers
and outliers. The dimension reduction component involves a mapping from a higher-dimensional
space onto the latent space. It is analogous to the RSR layer in Lai et al. (2020) that projects encoded
points onto the latent space, but requires a more careful design since we consider a distribution rather
than sample points. Due to this reduction, we assume that the mapped covariance matrices of z|x are
full, unlike common single-mode VAE models that assume a diagonal covariance (Kingma & Welling,
2014; An & Cho, 2015). Our underlying assumption is that the inliers lie on a low-dimensional
structure and we thus enforce the lower rank d/2 for Σ1, but allow Σ2 to have full rank d. Nevertheless,
we later describe a necessary regularization of both matrices by the identity.

Following the VAE framework, we approximate the unknown posterior distribution p(z|x) within
the variational family Q = {q(z|x)}, which is indexed by µ1, Σ1, µ2 and Σ2. Unlike a standard
VAE, which maximizes the evidence lower bound (ELBO), MAW maximizes the following
ELBO-Wasserstein, or ELBOW, function, which uses theW1 distance (see also §A.1):

ELBOW(q) = Ep(x)Eq(z|x) log p(x|z)−W1(q(z), p(z)) . (1)

Following the VAE framework, we use a Monte-Carlo approximation to estimate Eq(z|x) log p(x|z)

with i.i.d. samples, {z(t)}Tt=1, from q(z|x) as follows:

Eq(z|x) log p(x|z) ≈ 1

T

T∑
t=1

log p(x|z(t)). (2)

To improve the robustness of our model, we choose the negative log likelihood function− log p(x|z(t))
to be a constant multiple of the `2 norm of the difference of the random variable x and a mapping of
the sample z(t) from Rd to RD by the decoder,D, that is,

− log p(x|z(t)) ∝
∥∥∥x−D(z(t))

∥∥∥
2
. (3)

Note that we deviate from the common choice of the squared `2 norm, which corresponds to an
underlying Gaussian likelihood and assume instead a likelihood with a heavier tail.

MAW trains its networks by minimizing –ELBOW(q). For any 1 ≤ i ≤ L, it samples {z(i,t)
gen }Tt=1

from q(z|x(i)), where all samples are independent. Using the aggregation formula: q(z) =

L−1
∑L
i=1 q(z|x(i)), which is also used by an AAE, the approximation of p(x) by the empirical dis-

tribution of the training data, and (1)-(3), MAW applies the following approximation of –ELBOW(q):

− 1

LT

L∑
i=1

T∑
t=1

∥∥∥x(i) −D(z(i,t)
gen )

∥∥∥
2

+W1

(
1

L

L∑
i=1

q(z|x(i)), p(z)

)
. (4)

Details of minimizing (4) are described in §2.2. We remark that the procedure described in §2.2 is
independent of the multiplicative constant in (3) and therefore this constant is ignored in (4).
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During testing, MAW identifies inliers and outliers according to high or low similarity scores computed
between each given test point and points generated from the learned inlier component of z|x.

2.2 DETAILS OF IMPLEMENTING MAW

MAW has a VAE-type structure with additional WGAN-type structure for minimizing theW1 loss
in (4). We provide here details of implementing these structures. Some specific choices of the networks
are described in §4 since they may depend on the type of datasets.

The VAE-type structure of MAW contains three ingredients: encoder, dimension reduction component
and decoder. The encoder forms a neural network E that maps the training sample x(i) ∈ RD

to µ(i)
0,1,µ

(i)
0,2, s

(i)
0,1, s

(i)
0,2 in RD′ , where our default choice is D′ = 128. The dimension reduction

component then computes the following statistical quantities of the Gaussian mixture z|x(i): means
µ

(i)
1 andµ(i)

2 in Rd and covariance matrices Σ
(i)
1 and Σ

(i)
2 in Rd×d. First, a linear layer, represented by

A ∈ RD′×d, maps (viaAT) the featuresµ(i)
0,1 andµ(i)

0,2 inRD′ to the following respective vectors inRd:

µ
(i)
1 = ATµ

(i)
0,1 andµ(i)

2 = ATµ
(i)
0,2. For j = 1, 2, formM (i)

j = ATdiag(s
(i)
0,j)A. For j = 2, compute

Σ
(i)
2 = M

(i)
2 M

(i)T
2 . For j = 1, we first need to reduce the rank ofM (i)

1 . For this purpose, we form

M
(i)
1 = U

(i)
1 diag(σ

(i)
1 )U

(i)T
1 , (5)

the spectral decomposition ofM (i)
1 , and then truncate its bottom d/2 eigenvalues. That is, let σ̃(i)

1

∈ Rd have the same entries as the largest d/2 entries ofσ(i)
1 and zero entries otherwise. Then, compute

M̃
(i)
1 = U

(i)T
1 diag(σ̃

(i)
1 )U

(i)
1 (6)

and Σ
(i)
1 = M̃

(i)
1 M̃

(i)T
1 . Since the TensorFlow package requires numerically-significant positive

definiteness of covariance matrices, we add an identity matrix to both Σ
(i)
1 and Σ

(i)
2 . Despite this, the

low-rank structure of Σ
(i)
1 is still evident. Note that the dimension reduction component only trainsA.

The decoder,D : Rd → RD, maps independent samples, {z(i,t)
gen }Tt=1, generated for each 1 ≤ i ≤ L

by the distribution ηN (µ
(i)
1 ,Σ

(i)
1 ) + (1− η)N (µ

(i)
2 ,Σ

(i)
2 ), into the reconstructed data space.

The loss function associated with the VAE structure is the first term in (4). We can write it as

LVAE(E ,A,D) =
1

LT

L∑
i=1

T∑
t=1

∥∥∥x(i) −D(z(i,t)
gen )

∥∥∥
2
. (7)

The dependence of this loss on E andA is implicit, but follows from the fact that the parameters of
the sampling distribution of each z

(i,t)
gen were obtained by E andA.

The WGAN-type structure seeks to minimize the second term in (4) using the dual formulation

W1

(
1

L

L∑
i=1

q(z|x(i)), p(z)

)
= sup
‖f‖Lip≤1

Ezhyp∼p(z)f(zhyp)− Ezgen∼ 1
L

∑L
i=1 q(z|x(i))f(zgen). (8)

The generator of this WGAN-type structure is composed of the encoder E and the dimension reduction
component, which we represent byA. It generates the samples {z(i,t)

gen }L,Ti=1,t=1 described above. The
discriminator,Dis, of the WGAN-type structure plays the role of the Lipschitz function f in (8). It
compares the latter samples with the i.i.d. samples {z(i,t)

hyp }Tt=1 from the prior distribution. In order
to makeDis Lipschitz, its weights are clipped to [−1, 1] during training. In the MinMax game of this
WGAN-type structure, the discriminator minimizes and the generator (E andA) maximizes

LW1
(Dis) =

1

LT

L∑
i=1

T∑
t=1

(
Dis(z(i,t)

gen )−Dis(z(i,t)
hyp )

)
. (9)

We note that maximization of (9) by the generator is equivalent to minimization of the loss function

LGEN(E ,A) = − 1

LT

L∑
i=1

T∑
t=1

Dis(z(i,t)
gen ) . (10)

During the training phase, MAW alternatively minimizes the losses (7)-(10) instead of minimizing
a weighted sum. Therefore, any multiplicative constant in front of either term of (4) will not effect
the optimization. In particular, it was okay to omit the multiplicative constant of (3) when deriving (4).
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For each testing point y(j), we sample {z(j,t)
in }Tt=1 from the inlier mode of the learned latent Gaussian

mixture and decode them as {ỹ(j,t)}Tt=1 = {D(z
(j,t)
in )}Tt=1. Using a similarity measure S(·, ·) (our

default is the cosine similarity), we computeS(j) =
∑T
t=1 S(y(j), ỹ(j,t)). IfS(j) is larger than a chosen

threshold, then y(j) is classified normal, and otherwise, novel. Additional details of MAW are in §A.

3 THEORETICAL GUARANTEES FOR THE W1 MINIMIZATION

Here and in §D we theoretically establish the superiority of using the W1 distance over the KL
divergence. We formulate a simplified setting that aims to isolate the minimization of the WGAN-type
structure introduced in §2.2, while ignoring unnecessary complex components of MAW. We assume
a mixture parameter η > 1/2, a separation parameter ε > 0 and denote byR the regularizing function,
which can be either the KL divergence or W1, and by SK+ and SK++ the sets of K × K positive
semidefinite and positive definite matrices, respectively. For µ0 ∈ RK and Σ0 ∈ SK++, we consider
the minimization problem

min
µ1,µ2∈RK ;Σ1,Σ2∈SK+

s.t. ‖µ1−µ2‖2≥ε

ηR (N (µ1,Σ1),N (µ0,Σ0)) + (1− η)R (N (µ2,Σ2),N (µ0,Σ0)) . (11)

We further motivate it in §D.1. For MAW,µ0 = 0 and Σ0 = I , but our generalization helps clarify
things. This minimization aims to approximate the “prior” distributionN (µ0,Σ0) with a Gaussian
mixture distribution. The constraint ‖µ1 − µ2‖2≥ε distinguishes between the inlier and outlier
modes and it is a realistic assumption as long as ε is sufficiently small.

Our cleanest result is when Σ0, Σ1 and Σ2 coincide. It demonstrates robustness to the outlier com-
ponent by theW1 (orWp, p ≥ 1) minimization and not by the KL minimization (its proof is in §D.2).

Proposition 3.1. If µ0 ∈ RK , Σ0 ∈ SK++, ε > 0 and 1 > η > 1/2, then the minimizer of (11) with
R = Wp, p ≥ 1 and the additional constraint: Σ0 = Σ1 = Σ2, satisfies µ1 = µ0, and thus the
recovered inlier distribution coincides with the “prior distribution”. However, the minimizer of (11)
withR = KL and the same constraint satisfiesµ0 = ηµ1 + (1− η)µ2.

In §D.3, we analyze the case where Σ1 is low rank and Σ2 ∈ SK++. We show that (11) is ill-defined
whenR = KL. TheR = W1 case is hard to analyze, but we can fully analyze theR = W2 case
and demonstrate exact recovery of the prior distribution by the inlier distribution when η approaches 1.

4 EXPERIMENTS

We describe the competing methods and experimental choices in §4.1. We report on the comparison with
the competing methods in §4.2. We demonstrate the importance of the novel features of MAW in §4.3.

4.1 COMPETING METHODS AND EXPERIMENTAL CHOICES

We compared MAW with the following methods (descriptions and code links are in §E): Deep
Autoencoding Gaussian Mixture Model (DAGMM) (Zong et al., 2018), Deep Structured Energy-Based
Models (DSEBMs) (Zhai et al., 2016), Isolation Forest (IF) (Liu et al., 2008), Local Outlier Factor
(LOF) (Breunig et al., 2000), One-class Novelty Detection Using GANs (OCGAN) (Perera et al., 2019),
One-Class SVM (OCSVM) (Heller et al., 2003) and RSR Autoencoder (RSRAE) (Lai et al., 2020).
DAGMM, DSEBMs, OCGAN and OCSVM were proposed for novelty detection. IF, LOF and RSRAE
were originally proposed for outlier detection and we thus apply their trained model for the test data.

For MAW and the above four reconstruction-based methods, that is, DAGMM, DSEBMs, OCGAN
and RSRAE, we use the following structure of encoders and decoders, which vary with the type of data
(images or non-images). For non-images, which are mapped to feature vectors of dimensionD, the
encoder is a fully connected network with output channels (32, 64, 128, 128×4). The decoder is a fully
connected network with output channels (128, 64, 32, D), followed by a normalization layer at the
end. For image datasets, the encoder has three convolutional layers with output channels (32, 64, 128),
kernel sizes (5 × 5, 5 × 5, 3 × 3) and strides (2, 2, 2). Its output is flattened to lie in R128 and then
mapped into a 128× 4 dimensional vector using a dense layer (with output channels 128× 4). The
decoder of image datasets first applies a dense layer from R2 to R128 and then three deconvolutional
layers with output channels (64, 32, 3), kernel sizes (3× 3, 5× 5, 5× 5) and strides (2, 2, 2).
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For MAW we set the following parameters, where additional details are in §A. Intrinsic dimension: d =
2; mixture parameter: η = 5/6, sampling number: T = 5, and size ofA (used for dimension reduction):
128× 2. For all experiments, the discriminator is a fully connected network with size (32, 64, 128, 1).

4.2 COMPARISON OF MAW WITH STATE-OF-THE-ART METHODS

We use five datasets for novelty detection: KDDCUP-99 (Dua & Graff, 2017), Reuters-21578 (Lewis,
1997), COVID-19 Radiography database (Chowdhury et al., 2020), Caltech101 (Fei-Fei et al.,
2004) and Fashion MNIST (Xiao et al., 2017). We distinguish between image datasets (COVID-19,
Catlech101 and Fashion MNIST) and non-image datasets (KDDCUP-99 and Reuters-21578). We de-
scribe each dataset, common preprocessing procedures and choices of their largest clusters in §F. Each
dataset contains several clusters (2 for KDDCUP-99, 5 largest ones for Reuters-21578, 3 for COVID-19,
11 largest ones for Caltech101 and 10 for Fashion MNIST). We arbitrarily fix a class and uniformly sam-
pleN training inliers andNtest testing inliers from that class. We letN = 6000, 350, 160, 100 , 300 and
Ntest = 1200, 140, 60, 100 , 60 for KDDCUP-99, Reuters-21578, COVID-19, Caltech101 and Fashion
MNIST, respectively. We then fix c in {0.1, 0.2, 0.3, 0.4, 0.5}, and uniformly sample c percentage
of outliers from the rest of the clusters for the training data. We also fix ctest in {0.1, 0.3, 0.5, 0.7, 0.9}
and uniformly sample ctest percentage of outliers from the rest of the clusters for the testing data.

Using all possible thresholds for the finite datasets, we compute the AUC (area under curve) and AP
(average precision) scores, while considering the outliers as “positive”. For each fixed c = 0.1, 0.2, 0.3,
0.4, 0.5 we average these results over the values of ctest, the different choices of inlier clusters (among
all possible clusters), and three runs with different random initializations for each of these choices. We
also compute the corresponding standard deviations. We report these results in Figs. 2 and 3 and further
specify numerical values in §H.1. We observe state-of-the-art performance of MAW in all of these
datasets. In Reuters-21578, DSEBMs performs slightly better than MAW and OCSVM has comparable
performance. However, these two methods are not competitive in the rest of the datasets. In §G, we
report results for a different scenario where the outliers of the training and test sets have different char-
acteristics. In this setting, we show that MAW performs even better when compared to other methods.

Figure 2: AUC (on left) and AP (on right) scores with training outlier ratios c = 0.1, 0.2, 0.3, 0.4 and
0.5 for the two non-image datasets: KDDCUP-99 and Reuters-21578.
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Figure 3: AUC (on left) and AP (on right) scores with training outlier ratios c = 0.1, 0.2, 0.3, 0.4 and
0.5 for the three image datasets: COVID-19, Caltech101 and Fashion MNIST.

4.3 TESTING THE EFFECT OF THE NOVEL FEATURES OF MAW

We experimentally validate the effect of the following five new features of MAW: the least absolute
deviation for reconstruction, theW1 metric for the regularization of the latent distribution, the Gaussian
mixture model assumption, full covariance matrices resulting from dimension reduction component
and the lower rank constraint for the inlier mode. The following methods respectively replace each of
the above component of MAW with a traditional one: MAW-MSE, MAW-KL divergence, MAW-same
rank, MAW-single Gaussian and MAW-diagonal cov., respectively. In addition, we consider a standard
variational autoencoder (VAE). Additional details for the latter six methods are in §B.

We compared the above six methods with MAW using two datasets: KDDCUP-99 and COVID-19
with training outlier ratio c = 0.1, 0.2 and 0.3. We followed the experimental setting described in
§4.1. Fig. 4 reports the averages and standard deviations of the computed AUC and AP scores, where
the corresponding numerical values are further recorded in §H.2. The results indicate a clear decrease
of accuracy when missing any of the novel components of MAW or using a standard VAE.
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Figure 4: AUC (on left) and AP (on right) scores for variants of MAW (missing a novel component)
with training outlier ratios c = 0.1, 0.2, 0.3 using the KDDCUP-99 and COVID-19 datasets.

5 CONCLUSION AND FUTURE WORK

We introduced MAW, a robust VAE-type framework for novelty detection that can tolerate high
corruption of the training data. We proved that the Wasserstein regularization used in MAW has
better robustness to outliers and is more suitable to a low-dimensional inlier component than the KL
divergence. We demonstrated state-of-the-art performance of MAW with a variety of datasets and
experimentally validated that omitting any of the new ideas results in a significant decrease of accuracy.

We hope to further extend our proposal in the following ways. First of all, we plan to extend and test some
of our ideas for the different problem of robust generation, in particular, for building generative networks
which are robust against adversarial training data. Second of all, we would like to carefully study the
virtue of our idea of modeling the most significant mode in a training data. In particular, when extending
the work to generation, one has to verify that this idea does not lead to mode collapse. Furthermore, we
would like to explore any tradeoff of this idea, as well as our setting of robust novelty detection, with fair-
ness. At last, we hope to further extend our theoretical guarantees. For example, two problems that cur-
rently seem intractable are the study of theW1 version of Proposition D.1 and of the minimizer of (14).

9
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A ADDITIONAL EXPLANATIONS AND IMPLEMENTATION DETAILS OF MAW

In §A.1 we review the ELBO function and explain how ELBOW is obtained from ELBO. Additional
implementation details of MAW are in §A.2. At last, §A.3 provides algorithmic boxes for training
MAW and applying it for novelty detection.

A.1 REVIEW OF ELBO AND ITS RELATIONSHIP WITH ELBOW

A standard VAE framework would minimize the expected KL-divergence from p(z|x) to q(z|x) inQ,
where the expectation is taken over p(x). By Bayes’ rule this is equivalent to maximizing the evidence
lower bound (ELBO):

ELBO(q) = Ep(x)Eq(z|x) log p(x|z)− Ep(x)KL(q(z|x)‖p(z)) .
The first term of ELBO is the reconstruction likelihood. Its second term restricts the deviation of q(z|x)
from p(z) and can be viewed as a regularization term. ELBOW is a more robust version of ELBO
with a different regularization. That is, it replaces Ep(x)KL(q(z|x)‖p(z)) withW1(q(z), p(z)). We
remark that theW1 distance cannot be computed between q(z|x) and p(z) and ELBOW thus practically
replaces q(z|x) with its expected distribution, q(z) = Ep(x)q(z|x) (or a discrete approximation of this).

A.2 ADDITIONAL IMPLEMENTATION DETAILS OF MAW

The matrixA and the network parameters for encoders, decoders and discriminators are initialized
by the Glorot uniform initializer (Glorot & Bengio, 2010).

The neural networks within MAW are implemented with TensorFlow (Abadi et al., 2015) and trained
for 100 epochs with batch size 128. We apply batch normalization to each layer of any neural network.
The neural networks were optimized by Adam (Kingma & Ba, 2015) with learning rate 0.00005. For
the VAE-structure of MAW, we use Adam with learning rate 0.00005. For the WGAN-type structure
discriminator of MAW, we perform RMSprop (Bengio & Monperrus, 2005) with learning rate 0.0005,
following the recommendation of Arjovsky et al. (2017) for WGAN.

A.3 ALGORITHMIC BOXES FOR MAW

Algorithms 1 and 2 describe training MAW and applying MAW for novelty detection, respectively.
In these descriptions, we denote by θ, ϕ and δ the trainable parameters of the encoder E , decoder
D and discriminatorDis, respectively. Recall thatA includes the trained parameters of the dimension
reduction component.

Algorithm 1 Training MAW

Input: Training data {x(i)}Li=1; initialized parameters θ, ϕ and δ of E , D and Dis, respectively;
initializedA; weight η; number of epochs; batch size I; sampling number T ; learning rate α

Output: Trained parameters θ,ϕ andA
1: for each epoch do
2: for each batch {x(i)}i∈I do
3: µ

(i)
0,1,µ

(i)
0,2, s

(i)
0,1, s

(i)
0,2 ← E(x(i))

4: µ
(i)
j ← ATµ

(i)
0,j , M

(i)
j ← ATdiag(s

(i)
0,j)A, j = 1, 2

5: Compute M̃ (i)
1 according to (5) and (6)

6: Σ
(i)
1 ← M̃

(i)
1 M̃

(i)T
1 , Σ

(i)
2 ←M

(i)
2 M

(i)T
2

7: for t = 1, · · · , T do
8: sample a batch {z(i,t)

gen }i∈I ∼ ηN (µ
(i)
1 ,Σ

(i)
1 ) + (1− η)N (µ

(i)
2 ,Σ

(i)
2 )

9: sample a batch {z(i,t)
hyp }i∈I ∼ N (0, I)

10: end for
11: (θ,A,ϕ)← (θ,A,ϕ)− α∇(θ,A,ϕ)LVAE(θ,A,ϕ) according to (7)
12: δ ← δ − α∇δLW1(δ) according to (9)
13: δ ← clip(δ, [−1, 1])
14: (θ,A)← (θ,A)− α∇(θ,A)LGEN(θ,A) according to (10)
15: end for
16: end for
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B MORE DETAILS ON TESTING THE EFFECT OF THE NOVEL FEATURES OF MAW

In §4.3 we experimentally validated the essential components of MAW by implementing variants
of MAW that replace each novel component of MAW with a standard one. We notice that the AUC
and AP scores in Figs. 2 and 3 consistently decrease when the outlier ratios increase, and thus the
chosen training outlier ratios (c = 0.1, 0.2 and 0.3) are sufficient to demonstrate the effectiveness
of MAW over its variants. We provide additional details on each of these variants of MAW.

• MAW-MSE replaces the least absolute deviation lossLVAE with the common mean squared error

(MSE). That is, it replaces
∥∥∥x(i) −D(z

(i,t)
gen )

∥∥∥
2

in (7) with
∥∥∥x(i) −D(z

(i,t)
gen )

∥∥∥2

2
.

• MAW-KL divergence replaces the Wasserstein regularizationLW1
with the KL-divergence. This

is implemented by replacing the WGAN-type structure of the discriminator with a standard GAN.
• MAW-same rank uses the same rank d for both the covariance matrices Σ

(i)
1 and Σ

(i)
2 , instead of

forcing Σ
(i)
1 to have lower rank d/2.

• MAW-single Gaussian replaces the Gaussian mixture model for the latent distribution with a single
Gaussian distribution with a full covariance matrix.

• MAW-diagonal cov. replaces the full covariance matrices resulting from the dimension reduction
component by diagonal covariances. Its encoder directly produces 2-dimensional means and
diagonal covariances (one of rank 1 for the inlier mode and one of rank 2 for the outlier mode).

• VAE has the same encoder and decoder structures as MAW. Instead of a dimension reduction compo-
nent, it uses a dense layer which maps the output of the encoder to a 4-dimensional vector composed of
a 2-dimensional mean and 2-dimensional diagonal covariance. This is common for a traditional VAE.

C SENSITIVITY OF HYPERPARAMETERS

We examine the sensitivity of some of the reported results to changes of some hyperparameters. In
§C.1, we report the sensitivity to choices of the intrinsic dimension. In §C.2, we report the sensitivity
to choices of the mixture parameter.

Algorithm 2 Applying MAW to novelty detection

Input: Test data {y(j)}Nj=1; sampling number T ; trained MAW model; threshold εT; similarity S(·, ·)
Output: Binary labels for novelty for each j = 1, . . . , N

1: for j = 1, . . . , N do
2: µ

(j)
0,1, s

(j)
0,1 ← E(y(j))

3: µ
(j)
1 ← ATµ

(j)
0,1, M

(j)
1 ← ATdiag(s

(j)
0,1)A

4: Compute M̃ (j)
1 according to (5) and (6)

5: Σ
(j)
1 ← M̃

(j)
1 M̃

(j)T
1

6: for t = 1, · · · , T do
7: sample z

(j,t)
in ∼ N (µ

(j)
1 ,Σ

(j)
1 )

8: ỹ(j,t) ← D
(
z

(j,t)
in

)
9: compute S(y(j), ỹ(j,t))

10: end for
11: S(j) ← T−1

∑T
t=1 S(y(j), ỹ(j,t))

12: if S(j) ≥ εT then
13: y(j) is a normal example
14: else
15: y(j) is a novelty
16: end if
17: end for
18: return Normality labels for j = 1, . . . , N
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C.1 SENSITIVITY TO DIFFERENT INTRINSIC DIMENSIONS

In all of the other experiments in this paper the default value of the intrinsic dimension is d = 2. Here
we study the sensitivity of our numerical results to the following choices intrinsic dimensions: d = 2,
4, 8, 16, 32 and 64, while using the KDDCUP-99 and COVID-19 datasets. We fix the intermediate
training outlier ratio c = 0.3 for demonstration purpose. We compute the AUC and AP scores averaged
over testing outlier ratios ctest = 0.1, 0.3, 0.5, 0.7 and 0.9 with three runs per setting. Fig. 5 reports
the averaged results and their standard deviations, which are indicated by error bars.

Figure 5: AUC and AP scores with intrinsic dimensions d = 2, 4, 8, 16, 32 and 64 for KDDCUP-99
(on the left) and COVID-19 (on the right), where c = 0.3.

We can see from Fig. 5 that our default choice of intrinsic dimension d = 2 results in the best
performance. For COVID-19 we see a clear decrease of accuracy with the increase of the intrinsic
dimension. For KDDCUP-99 we still see a preference for d = 2, but the decrease with higher
dimensions is not so noticeable as in COVID-19. These experiments confirm our default choice and
indicate that the accuracy may decrease when the intrinsic dimension is not sufficiently small.

C.2 SENSITIVITY TO MIXTURE PARAMETERS

In the rest of our experiments the default value of the mixture parameter η is 5/6. Namely, we assume
that the inlier mode has larger weight among the Gaussian mixture. In this section, we study the sen-
sitivity of the accuracy of MAW to the mixture parameters: {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 5/6, 0.9}.
We use 5/6 ≈ 0.83, instead of the nearby value 0.8, since it was already tested for MAW. The training
outlier ratios are 0.1, 0.2 and 0.3. We report results on both KDDCUP-99 and COVID-19 in Fig. 6.

We notice that the AUC and AP scores mildly increase as the mixture parameter η increases (though
they may slightly decrease at 0.9). It seems that MAW seems to learn the inlier mode better with larger
weight for the inlier mode and consequently gain more robustness. Nevertheless, the variation in the
accuracy as a function of η is not large in general.

D ADDITIONAL THEORETICAL GUARANTEES FOR THE W1 MINIMIZATION

In §D.1 we fully motivate our focus on studying (11) in order to understand the advantage of the use
of the Wasserstein distance over the KL divergence in the framework of MAW. In §D.2 we prove
Proposition 3.1. Additional and more technical proposition that involves low-rank inliers is stated
and proved in §D.2.
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Figure 6: AUC and AP scores with mixture parameters η = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 5/6 and
0.9 for KDDCUP-99 (on the left) and COVID-19 (on the right). From the top to the bottom row, the
training outlier ratio are c = 0.1, 0.2 and 0.3, respectively.

D.1 MOTIVATION OF STUDYING (11)

The implementation of any VAE or its variants, such as AAE, WAE and MAW, requires the optimization
of a regularization penaltyR, which measures the discrepancy between the latent distribution and
the prior distribution. This penalty is typically the KL divergence, though one may use appropriate
metrics such asW2 orW1. Therefore, one needs to minimize

R

(
1

L

L∑
i=1

q(z|x(i)), p(z)

)
(12)

over the observed variational familyQ = {q(z|x)}, which indexed by some parameters of q. Here,
L is the batch size of the input data and

∑L
i=1 q(z|x(i)) is its observed aggregated distribution.

Since the explicit expressions of the regularization measurements between aggregated distributions
are unknown, it is not feasible to study the minimizer of (12). We thus consider the following
approximation of (12):

L∑
i=1

1

L
R
(
q(z|x(i)), p(z)

)
. (13)

We can minimize one term of this sum at a time, that, is minimize R (q(z|x), p(z)) over Q. This
minimization strategy is common in the study of the Wasserstein barycenter problem (Agueh & Carlier,
2011; Peyré et al., 2019; Chen et al., 2018).
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One of the underlying assumptions of MAW is that the prior distribution p(z) is Gaussian and q(z|x)
is a Gaussian mixture. That is, p(z) ∼ N (µ0,Σ0) and q(z|x) ∼ ηN (µ1,Σ1) + (1− η)N (µ2,Σ2).
This gives rise to the following minimization problem

min
µ1,µ2∈RK ;Σ1,Σ2∈SK+

R (ηN (µ1,Σ1) + (1− η)N (µ2,Σ2),N (µ0,Σ0)) . (14)

Similarly to approximating (12) by (13), we approximate (14) by the following minimization problem:
min

µ1,µ2∈RK ;Σ1,Σ2∈SK+
ηR (N (µ1,Σ1),N (µ0,Σ0)) + (1− η)R (N (µ2,Σ2),N (µ0,Σ0)) .

Recall that in MAWN (µ1,Σ1) andN (µ2,Σ2) are associated with the inlier and outlier distribution of
MAW. We further assume that there is a sufficiently small threshold ε > 0 for which ‖µ1 − µ2‖2 ≥ ε.
This is a reasonable assumption since, in practice, ifµ1 andµ2 are very close, the reconstruction loss
will be large. These assumptions lead to the optimization problem (11) proposed in §3.

D.2 PROOF OF PROPOSITION 3.1

Recall that µ0 ∈ RK is the mean of the prior Gaussian, ε > 0 is the fixed separation parameter for
the means of the two modes and η > 1/2 is the fixed mixture parameter. For i = 0, 1, 2, we denote
the Gaussian probability distribution byN (µi,Σi). Since in our setting Σ0 = Σ1 = Σ2, we denote
the common covariance matrix in SK++ by Σ. That is, Σ = Σi for i = 0, 1, 2.

We first analyze the solution of (11) withR = Wp, where p ≥ 1, and then analyze the solution of
(11) withR = KL.

The caseR = Wp, p ≥ 1: We follow the next three steps to prove that the minimizer of (11) satisfies
µ1 = µ0.

Step I: We prove that
Wp(νi, ν0) ≡Wp(N (µi,Σ),N (µ0,Σ)) = ‖µi − µ0‖2 for p ≥ 1 and i = 1, 2 . (15)

First, we note that using the definition of Wp, p ≥ 1 and the common notation Π(νi, ν0) for the
distribution on RK × RK with marginals νi and ν0

W p
p (νi, ν0) = inf

π∈Π(νi,ν0)
E(x,y)∼π ‖x− y‖p2

≥ inf
π∈Π(νi,ν0)

∥∥E(x,y)∼πx− E(x,y)∼πy
∥∥p

2

= ‖µi − µ0‖p2 ,

(16)

where the inequality follows the fact that ‖.‖p2 is convex and from Jensen’s inequality.

On the other hand, for i = 1 or i = 2, let x∗ be an arbitrary random vector with distribution νi, and
let y∗ = x∗ − µi + µ0. The distribution of y∗ is Gaussian with mean µ0 and covariance Σi, that
is, this distribution is ν0. Let π∗ be the joint distribution of the random variables x∗ and y∗. We note
that π∗ is in Π(νi, ν0) and that

E(x,y)∼π∗ ‖x− y‖p2 = E(x,y)∼π∗ ‖µi − µ0‖p2 = ‖µi − µ0‖p2 .
Therefore,

W p
p (νi, ν0) = inf

π∈Π(νi,ν0)
E(x,y)∼π ‖x− y‖p2 ≤ E(x,y)∼π∗ ‖x− y‖p2 = ‖µi − µ0‖p2 . (17)

The combination of (16) and (17) immediately yields (15).

Step II: We prove that (11) withR = Wp, p ≥ 1, is equivalent to
min

µ1,µ2∈RK ;
s.t. µ0,µ1,µ2:colinear

&‖µ1−µ2‖2≥ε

η ‖µ1 − µ0‖2 + (1− η) ‖µ2 − µ0‖2 .
(18)

We first note that (11) withR = Wp, p ≥ 1 is equivalent to
min

µ1,µ2∈RK
s.t. ‖µ1−µ2‖2≥ε

η ‖µ1 − µ0‖2 + (1− η) ‖µ2 − µ0‖2 . (19)

Indeed, this is a direct consequence of the expression derived in step I forR in this case. It is thus left to
show that ifµ′1,µ′2 ∈ RK minimize (19), then we can construct µ̃′1, µ̃′2 ∈ RK that are colinear with
µ0 and also minimize (19).

For any µ1 and µ2 in RK with ‖µ1 − µ2‖2≥ε and for the given µ0 ∈ RK , we define µ̃0, µ̃1 and
µ̃2 ∈ RK and demonstrate them in Fig. 7. The point µ̃0 is the projection of µ0 onto µ1 − µ2 and
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µ̃i := µi + µ0 − µ̃0 for i = 1, 2. We observe the following properties, which can be proved by direct
calculation, though Fig. 7 also clarifies them:

‖µi − µ0‖2 ≥ ‖µ̃i − µ0‖2 for i = 1, 2,
and consequently,

η ‖µ1 − µ0‖2 + (1− η) ‖µ2 − µ0‖2 ≥ η ‖µ̃1 − µ0‖2 + (1− η) ‖µ̃2 − µ0‖2 ; (20)

‖µ̃1 − µ̃2‖2 = ‖µ1 − µ2‖2 ≥ ε; (21)
and

µ̃1, µ̃2, andµ0 are colinear. (22)
Clearly, the combination of (20), (21) and (22) concludes the proof of step II. That is, it implies that ifµ′1,
µ′2 ∈ RK minimize (19), then µ̃′1 and µ̃′2 defined above are colinear withµ0 and also minimize (19).

Figure 7: Illustration of the points µ̃0, µ̃1 and µ̃2 and their properties.

Step III: We directly solve (18) and consequently (11) withR = Wp, p ≥ 1. Due to the colinearity
constraint in (11), we can write

µ0 = (1 + t)µ1 − tµ2 for t ∈ R. (23)
The objective function in (18) can then be written as

‖µ1 − µ2‖2 (η|t|+ (1− η)|1 + t|)≥ε (η|t|+ (1− η)|1 + t|) ,
where equality is achieved if and only if ‖µ1 − µ2‖2 = ε. We thus define r(t) = η|t|+ (1− η)|1 + t|
and note that

r(t) =


t+ (1− η), t ≥ 0

(1− 2η)t+ (1− η), 0 ≥ t ≥ −1

−t+ (η − 1), −1 ≥ t
and its derivative is

r′(t) =


1, t > 0

1− 2η, 0 > t > −1

−1, −1 > t.

The above expressions for r and r′ and the assumption that η > 1/2 imply that r(t) is increasing when
t > 0, decreasing when t < 0 and r(0) = 1− η < η = r(1). Thus r has a global minimum at t = 0.
Hence, it follows from (23) that the minimizer of (11), and equivalently (11) withR = Wp, p ≥ 1
satisfiesµ1 = µ0.

The caseR = KL: We prove that the solution of (11) withR = KL satisfiesµ0 = ηµ1 +(1−η)µ2.
We practically follow similar steps as the proof above.

Step I: We derive an expression forKL(νi||ν0), where i = 1, 2. We use the following general formula,
which holds for the case where Σ0, Σ1 and Σ2 are general covariance matrices in SK++ (see e.g., (2) in
Hershey & Olsen (2007)):

KL(νi||ν0) =
1

2

(
log

det Σ0

det Σi
−K + tr(Σ−1

0 Σi) + (µi − µ0)TΣ−1
0 (µi − µ0)

)
. (24)

Since in our setting Σ1 = Σ2 = Σ, this expression has the simpler form:

KL(νi||ν0) =
1

2
(µi − µ0)TΣ−1(µi − µ0).

20



Under review as a conference paper at ICLR 2021

Step II: We reformulate the optimization problem. The above step imples that (11) withR = KL can
be written as

min
‖µ1−µ2‖2≥ε

η(µ1 − µ0)TΣ−1(µ1 − µ0) + (1− η)(µ2 − µ0)TΣ−1(µ2 − µ0),

or equivalently,

min
‖µ1−µ2‖2≥ε

η
∥∥∥Σ− 1

2 (µ1 − µ0)
∥∥∥2

2
+ (1− η)

∥∥∥Σ− 1
2 (µ2 − µ0)

∥∥∥2

2
. (25)

We express the eigenvalue decomposition of Σ−1 as Σ−1 = UΛUT, where Λ ∈ SK+ , andU is an
orthogonal matrix. Applying the change of variablesµ

′

i = Λ
1
2UTµi for i = 0, 1, 2, we rewrite (25) as

min∥∥∥µ′1−µ′2∥∥∥
2
≥ε

η
∥∥∥µ′1 − µ′0∥∥∥2

2
+ (1− η)

∥∥∥µ′2 − µ′0∥∥∥2

2
. (26)

At last, applying the same colinearity argument as above (supported by Fig. 7) we conclude the
following equivalent formulation of (26):

min
µ
′
0,µ
′
1,µ
′
2 are colinear

&
∥∥∥µ′1−µ′2∥∥∥

2
≥ε

η
∥∥∥µ′1 − µ′0∥∥∥2

2
+ (1− η)

∥∥∥µ′2 − µ′0∥∥∥2

2 (27)

Step III: We directly solve (27). Due to the colinearity constraint, we can write
µ
′

0 = (1 + t)µ
′

1 − tµ
′

2 for t ∈ R (28)
and express the objective function of (27) as∥∥∥µ′1 − µ′2∥∥∥2

2

(
ηt2 + (1− η)(1 + t)2

)
≥ε2

(
ηt2 + (1− η)(1 + t)2

)
,

where equality is achieved if and only if ‖µ′1 − µ′2‖2 = ε. We thus define r(t) = ηt2 +(1−η)(1+ t)2

and note that r′(t) = 2(t + (1 − η)) and r′′(t) = 2, and thus conclude that r(t) obtains its global
minimum at t = η − 1. This observation and (28) imply that the minimizersµ1 andµ2 of (11) with
R = KL satisfyµ0 = ηµ1 + (1− η)µ2.

D.3 THEORETICAL GUARANTEES FOR (11) WITH LOW-RANK Σ1

We study the minimization problem (11) when Σ1 has low rank and Σ2 ∈ SK++, and also when
R = W2 orR = KL. Unfortunately, the case whereR = W1 is hard to analyze and compute. We
first formulate our result forR = W2. In this case we assume that the prior distribution is a standard
Gaussian distribution on RK . That is, it has meanµ0 = 0K and covariance Σ0 = IK×K . We further
denote by 1K the vector (1, · · · , 1) ∈ RK . Similarly, we may define for any n ∈ N, 0n, 1n, In×n.
When it is clear from the context we only use 0, 1 and I . For vectors a ∈ Rn and b ∈ Rm, we denote
the concatenated vector in Rn+m by (a; b).

Proposition D.1. Ifκ,K ∈ N,K > κ ≥ 1, ε > 0, 1 > η > η? := K−κ+ε2

K−κ+2ε2 ,u? :=
(

(K−κ)(1−η)
ε2(2η−1)

) 1
3

,

where one can note that η? > 1
2 and u? ∈ (0, 1), then the minimizer of (11) withR = W2 and with

the constraint that Σ1 is of rank κ and Σ2 is of rankK, or equivalently, the minimizer of
min

µ1,µ2∈RK ;Σ1∈SK+ ,Σ2∈SK++

s.t. ‖µ1−µ2‖2≥ε
& rank(Σ1)=κ, rank(Σ2)=K

ηW2(N (µ1,Σ1),N (0, I)) + (1− η)W2(N (µ2,Σ2),N (0, I)) (29)

satisfies 0K = u?µ2 + (1 − u?)µ1, Σ1 = diag(1κ; 0K−κ) and Σ2 = diag(1κ; (u?)
−2

1K−κ).
Moreover, ‖µ1‖2 = u?ε and ‖µ2‖2 = (1− u?)ε.

We next formulate our simple result on the ill-posedness of (11) withR = W2 and with the same
constraint as in Proposition D.1.

Proposition D.2. If κ,K ∈ N,K > κ ≥ 1, ε > 0, η > 0,µ0,µ1 ∈ RK , Σ0 ∈ SK++ and Σ1 ∈ SK+
with rank(Σ) = κ, then

KL(N (µ1,Σ1)||N (µ0,Σ0)) =∞.
Therefore, the solution of (11) withR = KLwith the additional constraint that Σ1 is of rank κ and
Σ0 = I is ill-posed.

Next we clarify the implications of both propositions. Note that Proposition D.1 implies that as
η → 1, u? → 0. Hence for the inlier componentµ1 → 0K as η → 1 and Σ1 = diag(1κ; 0K−κ), so
in the limit the inlier distribution has the same mean as the prior distribution and, independently of
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η, its covariance is obtained by an appropriate projection of the covariance Σ0 onto a κ-dimensional
subspace. We similarly note that as η → 1, Σ2 → diag(1κ;∞K−k), so that the outliers will disperse.

We further note that Proposition D.2 implies that the KL divergence fails is unsuitable for low-rank
covariance modeling as it leads to an infinite value in the optimization problem.

At last, we note that the inlier and outlier covariances, Σ1 and Σ2, obtained by Proposition D.1, are
diagonal. Furthermore, the proof of Proposition D.1 clarifies that the underlying minimization problem
of this proposition may assume without loss of generality that the inlier and outlier covariances are
diagonal (see e.g., (32), which is formulated below). On the other hand, the numerical results in §4.3
support the use of full covariances, instead of diagonal covariance. Nonetheless, we claim that the full
covariances matrices of MAW comes naturally from the dimension reduction component of MAW. This
component also contains trainable parameters for the covariances and they will effect the weights of
the encoder, that is, will effect both theW1 minimization and the reconstruction loss. Thus the analysis
of the W1 minimization component is not sufficient for inferring the whole behavior of MAW. For
tractability purposes, the minimization in (11) ignores the dimension reduction component. For com-
pleteness we remark that there are two other differences between the use of (11) in Proposition D.1 and
the way it arises in MAW that may possibly also result in the advantage of using full covariance in MAW.
First of all, the minimization in Proposition D.1 usesR = W2, whereas MAW usesR = W1, which
we find intractable when using the rest of the setting of Proposition D.1. Second of all, the optimization
problem (11) withR = W1 is an approximation of the minimization ofW1

(
1
L

∑L
i=1 q(z|x(i)), p(z)

)
(see §D.1 for explanation), which is also intractable (even if one usesR = W2).

In §D.4 we prove Proposition D.1 and in §D.5 we prove Proposition D.2.

D.4 PROOF OF PROPOSITION D.1

We follow the same steps of the proof of Proposition 3.1

Step I: We immediately verify the formula

W2(N (µi,Σi),N (0, I)) =

√
‖µi‖22 +

∥∥∥Σ 1
2
i − I

∥∥∥2

F
for i = 1, 2. (30)

We use the following general formula, which holds for the case where Σ0, Σ1 and Σ2 are general
covariance matrices in SK+ (see e.g., (4) in Panaretos & Zemel (2019)):

W 2
2 (N (µi,Σi),N (µ0,Σ0)) = ‖µi − µ0‖22 + tr(Σi + Σ0 − 2(Σ

1
2
i Σ0Σ

1
2
i )

1
2 ), i = 1, 2 . (31)

Indeed, (30) is obtained as a direct consequence of (31) using the identity

tr
(
Σi + I − 2Σ

1
2
i

)
= tr

((
Σ

1
2
i − I

)2
)

=
∥∥∥Σ 1

2
i − I

∥∥∥2

F
.

Step II: We reformulate the underlying minimization problem in two different stages. We first claim
that the minimizer of (11) withR = W2 and the constraint that Σ1 is of rank κ and Σ2 is of rankK
can be expressed as the minimizer of

min
µ1,µ2∈RKs.t. ‖µ1−µ2‖2=ε,

Σ1,Σ2 diagonal in RK×K
& rank(Σ1)=κ, rank(Σ2)=K

η

√
‖µ1‖22 +

∥∥∥Σ 1
2
1 − I

∥∥∥2

F
+ (1− η)

√
‖µ2‖22 +

∥∥∥Σ 1
2
2 − I

∥∥∥2

F
. (32)

In view of (11) and (30) we only need to prove that the minimizer of (32) is the same if one removes
the constraint that Σ1 and Σ2 are both diagonal matrices and require instead that they are in ∈ SK+ .
This is easy to show. Indeed, if for i = 1 or i = 2, Σi ∈ SK+ , then it can be diagonalized as follows:

Σi = UT
i ΛiUi, where Λi ∈ SK+ is diagonal and Ui is orthogonal. Hence, Σ

1
2
i = UT

i Λ
1
2
i Ui and∥∥∥Σ 1

2
i − I

∥∥∥2

F
=
∥∥∥UT

i Λ
1
2
i Ui − I

∥∥∥2

F
=
∥∥∥UT

i (Λ
1
2
i − I)Ui

∥∥∥2

F
=
∥∥∥Λ 1

2
i − I

∥∥∥2

F
. Consequently,

W2(N (µi,Σi),N (0, I)) = W2(N (µi,Λi),N (0, I)) for i = 1, 2 ,
and the above claim is concluded.

Next, we vectorize the minimization problem in (32) as follows. We denote byR+ the set of positive real
numbers. Let b be a general vector in RK+ , a′ be a general vector in Rκ+ and a := (a′; 0K−κ) ∈ RK .

Given, the constraints on Σ1 and Σ2, we can parametrize the diagonal elements of Σ
1
2
1 and Σ

1
2
2 bya and
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b, that is, we set Σ
1
2
1 = diag(a) and Σ

1
2
2 = diag(b). The objective function of (32) can then be written as

η

√
‖µ1‖22 + ‖a− 1K‖22 + (1− η)

√
‖µ2‖22 + ‖b− 1K‖22.

Combining this last expression and the same colinearity argument as in §D.2 (supported by Fig. 7),
(32) is equivalent to

min
µ1,µ2∈RK , b∈RK+ , a

′∈Rκ+, a=(a′;0K−κ),

(µ1;a),(µ2;b),(0K ;1K) are colinear
&‖µ1−µ2‖2=ε

η ‖(µ1;a)− (0K ; 1K)‖2+(1−η) ‖(µ2; b)− (0K ; 1K)‖2 .

(33)

Step III: We solve (33). By the colinearity constraint, we can write (0K ; 1K) = u(µ2; b) − (u −
1)(µ1;a), where u ∈ R. We thus obtain that

(µ2; b)− (0K ; 1K) = (u− 1) ((µ1;a)− (µ2; b))

(µ1;a)− (0K ; 1K) = u ((µ1;a)− (µ2; b)) .
(34)

Furthermore, denoting the coordinates of a′ and b by {ai}κi=1 and {bi}Ki=1, we similarly obtain that
0K = uµ2 − (u− 1)µ1

1 = ubi − (u− 1)ai, 1 ≤ i ≤ κ
1 = ubi, d+ 1 ≤ i ≤ K

(35)

The last two of equations imply that
κ∑
i=1

(ai − bi)2 =
‖1κ − a′‖22

u2

and
K∑

i=κ+1

b2i =
K − κ
u2

.

Combining (30), (34) and the above two equations, we rewrite the objective function of (33) as follows:

(η|u|+ |u− 1|(1− η)) ‖(µ1;a)− (µ2; b)‖2

= (η|u|+ |u− 1|(1− η))

√√√√‖µ1 − µ2‖22 +

κ∑
i=1

(ai − bi)2 +

K∑
i=κ+1

b2i

≥ (η|u|+ |u− 1|(1− η))

√
ε2 +

‖1κ − a′‖22
u2

+
K − κ
u2

=

{
(K − κ)

(
(1− η)

∣∣∣∣u− 1

u

∣∣∣∣+ η

)2

+ ε2 (η|u|+ |u− 1|(1− η))
2

+ ‖1κ − a′‖
2
2

(
(1− η)

∣∣∣∣u− 1

u

∣∣∣∣+ η

)2}1/2

,

(36)

where equality is achieved if and only if ‖µ1 − µ2‖2 = ε. One can make the following two obser-
vations: u = 0 does not yield a minimizer of (33), and for any u 6= 0, (36) obtains its minimum at
a′ = 1κ. In view of these observations and the derivation above, we define

f(u) := (K − κ)

(
(1− η)

∣∣∣∣u− 1

u

∣∣∣∣+ η

)2

+ ε2 (η|u|+ |u− 1|(1− η))
2
, (37)

and note that (33) is equivalent to
min
u6=0

√
f(u). (38)

We rewrite f(u) as

f(u) =


(K − κ)

(
u−1
u (1− η) + η

)2
+ ε2 (ηu+ (1− η)(u− 1))

2
, u ≥ 1

(K − κ)
(

1−u
u (1− η) + η

)2
+ ε2 (ηu+ (1− η)(1− u))

2
, 1 ≥ u > 0

(K − κ)
(
u−1
u (1− η) + η

)2
+ ε2 (ηu+ (1− η)(u− 1))

2
, 0 > u

We denote

r1(u) := (K − κ)

(
u− 1

u
(1− η) + η

)2

+ ε2 (ηu+ (1− η)(u− 1))
2
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and

r2(u) := (K − κ)

(
1− u
u

(1− η) + η

)2

+ ε2 (ηu+ (1− η)(1− u))
2
.

Their derivatives are

r′1(u) =
2

u3
(u− (1− η))

(
ε2u3 + (K − κ)(1− η)

)
and

r′2(u) =
2

u3
((2η − 1)u+ (1− η))

(
ε2(2η − 1)u3 − (K − κ)(1− η)

)
.

These expressions for r′1 and r′2 imply that the critical points for r1 are

u(1)
r1 = 1− η and u(2)

r1 = −
(

(K − κ)(1− η)

ε2

) 1
3

and the critical points for r2 are

u(1)
r2 = −

(
1− η
2η − 1

)
and u(2)

r2 =

(
(K − κ)(1− η)

ε2(2η − 1)

) 1
3

.

We note that r1 is increasing on (u
(2)
r1 , 0) ∪ (u

(1)
r1 ,∞) and decreasing on (−∞, u(2)

r1 ) ∪ (0, u
(1)
r1 ). On

the other hand, r2 is increasing on (u
(1)
r2 , 0) ∪ (u

(2)
r2 ,∞) and decreasing on (−∞, u(1)

r2 ) ∪ (0, u
(2)
r2 ).

Since η > η? = K−κ+ε2

K−κ+2ε2 , u(2)
r2 ∈ (0, 1). The derivative of f with respect to u is

f ′u(u) =


r′1(u), u > 0

r′2(u), 1 > u > 0

r′1(u), 0 > u.

So f(·) is increasing on (u
(2)
r1 , 0) ∪ (u

(2)
r2 ,∞) and decreasing on (−∞, u(2)

r1 ) ∪ (0, u
(2)
r2 ). The values

of f at u(2)
r2 and u(2)

r1 are

f(u(2)
r2 ) =

((
(K − κ)(1− η)(2η − 1)2

ε2

) 1
3

+ (1− η)

)2(
(K − κ)

1
3

(
ε2(2η − 1)

(1− η)

) 2
3

+ ε2

)
,

f(u(2)
r1 ) =

((
(K − κ)(1− η)

ε2

) 1
3

+ (1− η)

)2(
(K − κ)

1
3

(
ε2

(1− η)

) 2
3

+ ε2

)
.

Consequently, the minimum of f is obtained at u? := u
(2)
r2 . By (34) and (35), the means µ1, µ2

and the covariance matrices Σ1, Σ2 satisfy: 0K = u?µ2 + (1− u?)µ1, Σ1 = diag(1κ; 0K−κ) and
Σ2 = diag(1κ; (u?)

−2
1K−κ). Moreover, the norms ofµ1 andµ2 can be computed from (35) as u?ε

and (1− u?)ε, respectively.

D.5 PROOF OF PROPOSITION D.2

Notice that since Σ0 ∈ SK++, det(Σ0) > 0. On the other hand, since Σ1 ∈ SK+ with
rank(Σ1) = κ < K, det(Σ1) = 0. Therefore,

log
det(Σ0)

det(Σ1)
= log det(Σ0)− log det(Σ1) =∞

and this observation and (24) imply thatKL(N (µ1,Σ1)||N (µ0,Σ0)) =∞.

E ADDITIONAL DETAILS ON THE BENCHMARK METHODS

We overview the benchmark methods compared with MAW, where we present them according to
alphabetical order of names. We will include all tested codes in a supplemental webpage.

For completeness, we mention the following links (or papers with links) we used for the different
codes. For DSEBMs and DAGMM we used the codes of Golan & El-Yaniv (2018). For LOF, OCSVM
and IF we used the scikit-learn (Buitinck et al., 2013) packages for novelty detection. For OCGAN we
used its TensorFlow implementation from https://pypi.org/project/ocgan. For RSRAE,
we adapted the code of Lai et al. (2020) to novelty detection.

All experiments were executed on a Linux machine with 64GB RAM and four GTX1080Ti GPUs.
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We remark that for the neural networks based methods (DAGMM, DSEBMs, OCGAN and RSRAE),
we followed similar implementation details as the one described in §A.2 for MAW.

Deep Autoencoding Gaussian Mixture Model (DAGMM) Zong et al. (2018) is a deep autoencoder
model. It optimizes an end-to-end structure that contains both an autoencoder and an estimator for
a Gaussian mixture model. Anomalies are detected using this Gaussian mixture model. We remark
that this mixture model is proposed for the inliers.

Deep Structured Energy-Based Models (DSEBMs) Zhai et al. (2016) makes decision based on an en-
ergy function which is the negative log probability that a sample follows the data distribution. The energy
based model is connected to an autoencoder in order to avoid the need of complex sampling methods.

Isolation Forest (IF) Liu et al. (2008) iteratively constructs special binary trees for the training set
and identifies anomalies in the test set as the ones with short average path lengths in the trees.

Local Outlier Factor (LOF) Breunig et al. (2000) measures how isolated a data point is from its
surrounding neighborhood. This measure is based on an estimation of the local density of a data point
using its k nearest neighbors. In the novelty detection setting, it identifies novelties according to low
density regions learned from the training data.

One-class Novelty Detection Using GANs (OCGAN) Perera et al. (2019) is composed of four
neural networks: a denoising autoencoder, two adversarial discriminators, and a classifier. It aims
to adversarially push the autoencoder to learn only the inlier features.

One-Class SVM (OCSVM) Heller et al. (2003) estimates the margin of the training set, which is used
as the decision boundary for the test set. Usually it utilizes a radial basis function kernel to obtain
flexibility.

Robust Subspace Recovery Autoencoder (RSRAE) Lai et al. (2020) uses an autoencoder structure
together with a linear RSR layer imposed with a penalty based on the `2,1 energy. The RSR layer
extracts features of inliers in the latent code while helping to reject outliers. The instances with higher
reconstruction errors are viewed as outliers. RSRAE trains a model using the training data. We then
apply this model for detecting novelties in the test data.

F ADDITIONAL DETAILS ON THE DIFFERENT DATASETS

Below we provide additional details on the five datasets used in our experiments. We remark that each
dataset contains several clusters (2 for KDDCUP-99, 5 for Reuters-21578, 3 for COVID-19, 11 largest
ones for Caltech101 and 10 for Fashion MNIST). We summarize the number of inliers and outliers
per dataset (for both training and testing) in Table 1.

KDDCUP-99 is a classic dataset for intrusion detection. It contains feature vectors of connections
between internet protocols and a binary label for each feature vector identifying normal vs. abnormal
ones. The abnormal ones are associated with an “attack” or “intrusion”.

Reuters-21578 contains 21,578 documents with 90 text categories having multi-labels. Following
Lai et al. (2020), we consider the five largest classes with single labels. We utilize the scikit-learn
packages: TFIDF and Hashing Vectorizer (Rajaraman & Ullman, 2011) to preprocess the documents
into 26,147 dimensional vectors.

COVID-19 (Radiography) contains chest X-ray RGB images, which are labeled according to the
following three categories: COVID-19 positive, normal and bacterial Pneumonia cases. We resize
the images to size 64× 64 and rescale the pixel intensities to lie in [−1, 1].

Caltech101 contains RGB images of objects from 101 categories with identifying labels. Following
Lai et al. (2020) we use the largest 11 classes and preprocess their images to have size 32 × 32 and
rescale the pixel intensities to lie in [−1, 1].

Fashion MNIST is an image dataset containing 10 categories of grayscale images of clothing and
accessories items. Each image is of size 28× 28 and we rescale the pixel intensities to lie in [−1, 1]

We remark that COVID-19, Caltech101 and Reuters-21578 separate between training and testing
datapoints. For KDDCUP-99, we randomly split it into training and testing datasets of equal sizes.
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Table 1: Numbers of inliers and outliers for training and testing used in the five datasets.
Training Testing

Datasets #Inliers #Outliers #Inliers #Outliers
(N ) (N × c ) (Ntest) (Ntest × ctest)

KDDCUP-99 6000 6000×c 1200 1200×ctest
Reuters-21578 350 350×c 140 140×ctest
COVID-19 (Radiography) 160 160×c 60 60×ctest
Caltech101 100 100×c 100 100×ctest
Fashion MNIST 300 300×c 60 60×ctest

G EXPERIMENTS WITH DIFFERENT OUTLIER TYPES

In this section, we test the performance of MAW and the benchmark methods when the training
and test sets are corrupted by outliers with different structures. We generate a dataset, which we
call “Mix Caltech101”, in the following way. We fix the largest class of Caltech101 (containing
airplane images) as the inlier class and randomly split it into the training inlier class (68.75 %) and
testing inlier class (31.25 %). We form the training set by corrupting the training inlier class with
random samples from the ten classes of CIFAR10 (Krizhevsky et al., 2009) with training outlier ratio
c ∈ {0.1, 0.2, 0.3, 0.4, 0.5}. For the test set, we corrupt the testing inlier class by “tile images” from
MVTech dataset (Bergmann et al., 2019) with testing outlier ratio ctest in {0.1, 0.3, 0.5, 0.7, 0.9}. The
rest of the settings of the experiments are identical to the description in §4.2. We present the AUC
and AP scores and their standard deviations in Fig. 8.

Figure 8: AUC and AP scores with training outlier ratio c ∈ {0.1, 0.2, 0.3, 0.4, 0.5} for the Mix
Caltech101 dataset.

The competitive advantage of MAW in comparison to the rest of the methods is also noticeable in this
setting. We note that OCSVM, the traditional distance-based method, and IF, the traditional density-
based method, perform poorly in this scenario, whereas they performed well in our original setting.

H NUMERICAL RESULTS OF EXPERIMENTS

We present as tables the numerical values depicted in Figs. 2 and 3 in §H.1 and those in Fig. 4 in §H.2.
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H.1 TABLE REPRESENTATION FOR FIGS. 2 AND 3

Tables 2-11 report the averaged AUC and AP scores with training outlier ratios
c ∈ {0.1, 0.2, 0.3, 0.4, 0.5} that were depicted in Figs. 2 and 3. Each table describes one of
the averaged scores (AUC or AP) for one of the five datasets (KDDCUP-99, Reuters-21578,
COVID-19, Caltech101 and Fashion MNIST) and also indicates the standard deviation of each value.
The outperforming methods are marked in bold.

Table 2: AUC scores of KDDCUP-99.
Training outlier ratios c

Methods 0.1 0.2 0.3 0.4 0.5

MAW 0.935± 0.028 0.888± 0.026 0.832± 0.016 0.764± 0.023 0.724± 0.012
DAGMM 0.614± 0.083 0.660± 0.109 0.584± 0.133 0.457± 0.099 0.521± 0.089
DSEBMs 0.514± 0.000 0.499± 0.000 0.497± 0.000 0.496± 0.000 0.496± 0.000
IF 0.811 0.527 0.516 0.750 0.706
LOF 0.480 0.527 0.516 0.527 0.530
OCGAN 0.651± 0.157 0.552± 0.157 0.617± 0.191 0.517± 0.146 0.628± 0.155
OCSVM 0.502 0.568 0.567 0.555 0.534
RSRAE 0.815± 0.031 0.839± 0.059 0.778± 0.086 0.735± 0.066 0.740± 0.056

Table 3: AP scores of KDDCUP-99.
Training outlier ratios c

Methods 0.1 0.2 0.3 0.4 0.5

MAW 0.740± 0.025 0.698± 0.033 0.647± 0.012 0.594± 0.014 0.556± 0.008
DAGMM 0.446± 0.047 0.506± 0.064 0.459± 0.087 0.373± 0.109 0.464± 0.998
DSEBMs 0.450± 0.000 0.447± 0.000 0.446± 0.000 0.444± 0.000 0.444± 0.000
IF 0.636 0.6331 0.562 0.493 0.457
LOF 0.391 0.407 0.392 0.394 0.391
OCGAN 0.582± 0.132 0.472± 0.163 0.525± 0.133 0.418± 0.136 0.535± 0.133
OCSVM 0.543 0.598 0.595 0.438 0.426
RSRAE 0.704± 0.048 0.698± 0.050 0.606± 0.065 0.584± 0.034 0.574± 0.046

Table 4: AUC scores of Reuters-21578.
Training outlier ratios c

Methods 0.1 0.2 0.3 0.4 0.5

MAW 0.885± 0.028 0.830± 0.013 0.770± 0.017 0.700± 0.002 0.648± 0.016
DAGMM 0.500± 0.000 0.511± 0.027 0.566± 0.110 0.559± 0.087 0.570± 0.091
DSEBMs 0.887± 0.012 0.825± 0.012 0.790± 0.015 0.690± 0.002 0.648± 0.010
IF 0.544 0.535 0.520 0.453 0.452
LOF 0.757 0.612 0.579 0.631 0.616
OCGAN 0.648± 0.127 0.477± 0.129 0.498± 0.140 0.519± 0.132 0.502± 0.099
OCSVM 0.882 0.817 0.785 0.673 0.640
RSRAE 0.786± 0.042 0.755± 0.034 0.716± 0.033 0.605± 0.001 0.494± 0.004
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Table 5: AP scores of Reuters-21578.
Training outlier ratios c

Methods 0.1 0.2 0.3 0.4 0.5

MAW 0.755± 0.041 0.677± 0.026 0.627± 0.029 0.518± 0.004 0.474± 0.013
DAGMM 0.316± 0.000 0.316± 0.013 0.365± 0.020 0.362± 0.015 0.372± 0.012
DSEBMs 0.763± 0.012 0.697± 0.011 0.666± 0.007 0.515± 0.003 0.473± 0.003
IF 0.368 0.372 0.365 0.301 0.298
LOF 0.580 0.438 0.421 0.498 0.486
OCGAN 0.408± 0.045 0.334± 0.098 0.365± 0.106 0.504± 0.083 0.497± 0.094
OCSVM 0.746 0.681 0.637 0.467 0.438
RSRAE 0.593± 0.051 0.563± 0.035 0.488± 0.036 0.403± 0.001 0.415± 0.003

Table 6: AUC scores of COVID-19.
Training outlier ratios c

Methods 0.1 0.2 0.3 0.4 0.5

MAW 0.682± 0.021 0.639± 0.018 0.606± 0.020 0.551± 0.030 0.534± 0.010
DAGMM 0.547± 0.068 0.565± 0.051 0.538± 0.062 0.524± 0.060 0.523± 0.057
DSEBMs 0.471± 0.000 0.471± 0.000 0.471± 0.000 0.471± 0.000 0.471± 0.000
IF 0.604 0.571 0.555 0.523 0.499
LOF 0.672 0.618 0.572 0.580 0.589
OCGAN 0.492± 0.000 0.492± 0.000 0.492± 0.000 0.485± 0.000 0.491± 0.000
OCSVM 0.528 0.528 0.528 0.535 0.521
RSRAE 0.565± 0.031 0.527± 0.028 0.476± 0.023 0.454± 0.018 0.427± 0.011

Table 7: AP scores of COVID-19.
Training outlier ratios c

Methods 0.1 0.2 0.3 0.4 0.5

MAW 0.455± 0.014 0.442± 0.011 0.424± 0.018 0.368± 0.015 0.376± 0.008
DAGMM 0.354± 0.053 0.390± 0.057 0.316± 0.052 0.357± 0.050 0.368± 0.047
DSEBMs 0.372± 0.000 0.372± 0.000 0.372± 0.000 0.372± 0.000 0.372± 0.000
IF 0.425 0.404 0.392 0.380 0.373
LOF 0.463 0.422 0.402 0.397 0.393
OCGAN 0.381± 0.000 0.381± 0.000 0.381± 0.000 0.383± 0.000 0.376± 0.000
OCSVM 0.315 0.315 0.315 0.372 0.365
RSRAE 0.388± 0.018 0.377± 0.016 0.355± 0.011 0.352± 0.010 0.340± 0.009

Table 8: AUC scores of Caltech101.
Training outlier ratios c

Methods 0.1 0.2 0.3 0.4 0.5

MAW 0.801± 0.017 0.760± 0.028 0.700± 0.038 0.608± 0.031 0.570± 0.021
DAGMM 0.684± 0.100 0.588± 0.115 0.500± 0.100 0.509± 0.101 0.514± 0.095
DSEBMs 0.536± 0.011 0.612± 0.025 0.577± 0.030 0.564± 0.021 0.536± 0.021
IF 0.755 0.694 0.626 0.575 0.540
LOF 0.674 0.593 0.495 0.436 0.411
OCGAN 0.494± 0.000 0.494± 0.000 0.494± 0.000 0.500± 0.000 0.500± 0.000
OCSVM 0.682 0.618 0.577 0.538 0.516
RSRAE 0.774± 0.027 0.722± 0.041 0.664± 0.082 0.579± 0.047 0.568± 0.036
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Table 9: AP scores of Caltech101.
Training outlier ratios c

Methods 0.1 0.2 0.3 0.4 0.5

MAW 0.634± 0.027 0.572± 0.039 0.531± 0.064 0.412± 0.029 0.414± 0.021
DAGMM 0.574± 0.088 0.422± 0.112 0.308± 0.102 0.351± 0.074 0.363± 0.076
DSEBMs 0.385± 0.003 0.472± 0.051 0.398±0.019 0.383± 0.023 0.365± 0.028
IF 0.545 0.486 0.430 0.304 0.371
LOF 0.460 0.400 0.337 0.304 0.290
OCGAN 0.362± 0.000 0.362± 0.000 0.362± 0.000 0.362± 0.000 0.362± 0.000
OCSVM 0.472 0.419 0.380 0.352 0.339
RSRAE 0.595± 0.038 0.551± 0.045 0.495±0.073 0.425± 0.040 0.443± 0.027

Table 10: AUC scores of Fashion MNIST
Training outlier ratios c

Methods 0.1 0.2 0.3 0.4 0.5

MAW 0.897± 0.013 0.879± 0.011 0.852± 0.022 0.830± 0.017 0.801± 0.016
DAGMM 0.607± 0.093 0.376± 0.070 0.427± 0.090 0.401± 0.078 0.411± 0.081
DSEBMs 0.730± 0.092 0.729± 0.105 0.739± 0.086 0.723± 0.106 0.687± 0.096
IF 0.893 0.875 0.843 0.834 0.827
LOF 0.569 0.507 0.476 0.468 0.458
OCGAN 0.542± 0.006 0.538± 0.004 0.544± 0.014 0.531± 0.003 0.525± 0.004
OCSVM 0.895 0.874 0.848 0.831 0.814
RSRAE 0.860± 0.022 0.848± 0.022 0.829± 0.042 0.831± 0.028 0.808± 0.028

Table 11: AP scores of Fashion MNIST
Training outlier ratios c

Methods 0.1 0.2 0.3 0.4 0.5

MAW 0.788±0.013 0.754± 0.014 0.723±0.029 0.686± 0.025 0.672±0.021
DAGMM 0.482±0.051 0.303±0.057 0.334±0.113 0.318±0.056 0.330± 0.038
DSEBMs 0.600± 0.045 0.609± 0.120 0.613±0.089 0.605±0.086 0.565± 0.072
IF 0.768 0.724 0.693 0.665 0.642
LOF 0.382 0.331 0.308 0.301 0.294
OCGAN 0.504± 0.002 0.503± 0.003 0.500± 0.059 0.495± 0.001 0.493± 0.001
OCSVM 0.801 0.768 0.735 0.696 0.664
RSRAE 0.749± 0.029 0.736± 0.032 0.716± 0.048 0.683± 0.036 0.680± 0.042

H.2 TABLE REPRESENTATION FOR FIG. 4

Tables 12-15 record the averaged AUC and AP scores with training outlier ratios c = 0.1, 0.2, 0.3 that
were depicted in Fig. 4. Each table describes one of the averaged scores (AUC or AP) for one of the
two representative datasets (KDDCUP-99 and COVID-19) and also indicates the standard deviation
of each value. The outperforming methods are marked in bold.
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Table 12: AUC scores of KDD-99 for variations of MAW
Training outlier ratios c

Methods 0.1 0.2 0.3

MAW 0.936± 0.028 0.888± 0.030 0.832±0.016
MAW-MSE 0.844± 0.039 0.812±0.032 0.746± 0.044
MAW-KL divergence 0.905± 0.026 0.863± 0.028 0.801±0.029
MAW-same rank 0.912± 0.023 0.868± 0.011 0.797± 0.022
MAW-single Gaussian 0.914± 0.016 0.862± 0.021 0.796± 0.013
MAW-diagonal cov. 0.918± 0.023 0.858± 0.020 0.801± 0.044
VAE 0.821± 0.048 0.785± 0.027 0.732± 0.046

Table 13: AP scores of KDDCUP-99 for variations of MAW
Training outlier ratios c

Methods 0.1 0.2 0.3

MAW 0.740± 0.025 0.698± 0.033 0.647± 0.012
MAW-MSE 0.715± 0.079 0.589± 0.058 0.524± 0.053
MAW-KL divergence 0.735± 0.028 0.676± 0.028 0.618± 0.024
MAW-same rank 0.725± 0.028 0.681±0.015 0.622± 0.024
MAW-single Gaussian 0.737± 0.018 0.675±0.023 0.620± 0.025
MAW-diagonal cov. 0.724± 0.021 0.678± 0.035 0.589± 0.064
VAE 0.642± 0.030 0.555± 0.043 0.524± 0.028

Table 14: AUC scores of COVID-19 for variations of MAW
Training outlier ratios c

Methods 0.1 0.2 0.3

MAW 0.682± 0.021 0.639± 0.018 0.606± 0.029
MAW-MSE 0.642± 0.022 0.584±0.063 0.548± 0.041
MAW-KL divergence 0.654± 0.025 0.610± 0.026 0.528± 0.064
MAW-same rank 0.654± 0.031 0.604± 0.048 0.557± 0.044
MAW-single Gaussian 0.651± 0.027 0.616±0.029 0.537± 0.047
MAW-diagonal cov. 0.630± 0.029 0.606± 0.030 0.545± 0.035
VAE 0.629± 0.073 0.585±0.065 0.532± 0.049

Table 15: AP scores of COVID-19 for variations of MAW
Training outlier ratios c

Methods 0.1 0.2 0.3

MAW 0.459± 0.014 0.442 ± 0.011 0.424± 0.018
MAW-MSE 0.421± 0.015 0.395± 0.025 0.377± 0.012
MAW-KL divergence 0.427± 0.016 0.403± 0.012 0.370± 0.021
MAW-same rank 0.422± 0.021 0.413±0.026 0.375± 0.019
MAW-single Gaussian 0.425± 0.019 0.409± 0.012 0.374± 0.016
MAW-diagonal cov. 0.412± 0.016 0.397± 0.018 0.369± 0.012
VAE 0.412± 0.030 0.411± 0.043 0.379± 0.028
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