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Abstract

While being proven to be effective across001
nearly all natural language processing tasks,002
transformer-based models have several obvi-003
ous limitations. Amongst them, arguably the004
most significant one is the quadratic complex-005
ity – both in time and space – of the vanilla006
self-attention mechanism. As a result, most007
existing pre-trained language models, such as008
BERT, have a fixed maximum context window.009
This potentially creates a mismatch between010
the context window size and the data applied011
to fine-tuning it. This gives rise to the study012
of long document classification – the task to013
optimize performance when the length of the014
input document exceeds the model’s maximum015
token. Inspired by retrieval-augmented gener-016
ation techniques used by large language mod-017
els in recent years, we propose a method that018
uses similar techniques to retrieve the most rel-019
evant sections of a long document, which is020
then fed into a traditional transformer-based021
model. By testing on four standard long docu-022
ment classification datasets, we show that our023
proposed method on average outperforms all024
baselines, including both transformer and non-025
transformer based models.026

1 Introduction027

While transformer-based models have demon-028

strated their efficacy across nearly all natural lan-029

guage processing tasks in recent years, they come030

with several caveats. Arguably the most signifi-031

cant limitation is the quadratic complexity inside032

the computation of the vanilla self-attention mech-033

anism in each of the encoder (and decoder if ap-034

plicable) layers of the model. As a result, most035

existing pre-trained language models have a fixed036

maximum context window. For example, BERT037

(Devlin et al., 2019) has a context window of 512,038

whereas encoder-decoder models, such as BART,039

(Lewis et al., 2020) have a window of 1,024. While040

some later models such as T5 (Raffel et al., 2020)041

removed this limit theoretically by using techniques 042

such as relative positional embeddings (Shaw et al., 043

2018), in practice processing arbitrarily long inputs 044

would quickly lead to out-of-memory errors. How- 045

ever, in real-life applications, especially in certain 046

domains such as legal text, it is often desirable for 047

models to be able to handle documents far longer 048

than the supported context window. This gives rise 049

to the study of long document classification, the re- 050

search on optimizing model performance on inputs 051

which exceed the token limit of a model. 052

Existing approaches to long document classifi- 053

cation can be categorized into two directions. The 054

first is to extend the context window of pre-trained 055

language models, through reducing the complex- 056

ity (and hence memory requirement) of the self- 057

attention mechanism. Numerous types of sparse 058

attention have be proposed over the years, result- 059

ing in models such as Longformer (Beltagy et al., 060

2020), which can handle documents up to 4,096- 061

token sequences. However, these models still have 062

a theoretical maximum context window, which in 063

recent years appears dwarfed by large language 064

models’ (LLMs) ability to process up to 1 million 065

tokens at once.1 066

The other direction is to reduce the length of the 067

input document so as to fit onto a smaller window 068

of a pre-trained language model. Work such as 069

CogLTX (Ding et al., 2020) aims to find the “most 070

significant" chunk or section of the long text, and 071

proceeds to fine-tune a model with the shortened 072

text. The challenge of this lies within the fact that 073

there is no well-defined concept of significance, 074

and no labelled data to train on, whence this must 075

be done in an unsupervised or self-supervised man- 076

ner, greatly hampering the efficacy. 077

However, this second approach bores a striking 078

resemblance with retrieval-augmented generation 079

1https://blog.google/technology/ai/google-gemini-next-
generation-model-february-2024/
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(RAG), a commonly used practice by LLMs to com-080

bat hallucination. In real-world applications, LLMs081

are often tasked with answering a query based on082

a database or collection of documents, which can083

easily be hundreds of thousands of pages contain-084

ing company policies, legal or medical advices, etc.085

Thus, one fundamental task of RAG is to retrieve086

the most relevant document(s) within the large col-087

lection, which can then be appended to the query088

and served as the context to the LLM. This is a089

very active area of research, with focuses on meth-090

ods such as directly training a specialized retriever091

model (Trivedi et al., 2023), applying a two-stage092

retrieve-then-rerank framework (Sun et al., 2023a)093

and query rewriting (Gao et al., 2023a) just to name094

a few.095

Drawing inspirations from RAG, we propose a096

method for long document classification by train-097

ing a reranker model which assigns a numerical098

score to every sentence in a long document to rep-099

resent its significance to the classification. The100

model learns from a teacher LLM, by which we101

leverage its naturally longer context window in or-102

der to determine the most significant sections of103

the document. After training, the reranker model104

is applied on the entire dataset to obtain a short-105

ened version of the long document and fine-tune a106

standard pre-trained language model as usual. Our107

contributions are summarized as follows:108

• To the best of our knowledge, this is the first109

work to link long document classification with110

RAG, and the first to apply related techniques111

into long document classification;112

• Testing on four standard long text classifica-113

tion datasets, we empirically show that our114

method outperforms all baselines on three115

datasets, while remaining competitive on the116

remaining one;117

• We provide extensive discussion on the results,118

including ablation studies on the efficacy of119

the individual components.120

The rest of the paper is structured as follows.121

Section 2 presents some background information122

about long-context transformers and RAG. We il-123

lustrate our proposed model architecture in Section124

3, followed by supporting experimental designs in125

Section 4. Empirical results and analysis, as well as126

ablation studies, are documented in Section 5. Lim-127

itations are discussed in Section 6 and we conclude128

our work in Section 7 with some future directions.129

2 Related Work 130

2.1 Transformers for Long Documents 131

Given a long document and a pre-trained language 132

model with a shorter context window, there are two 133

natural approaches to address the problem of long 134

document: either make the context window longer 135

or make the document shorter. 136

Most work, which focuses on making the con- 137

text windows longer, revolved around reducing the 138

computation complexity of the attention mecha- 139

nism. Wang et al. (2020) argued that self-attention 140

matrices were theoretically and empirically low- 141

ranked, and proposed Linformer by using a linear 142

complexity self-attention mechanism. Parameters 143

sharing were explored to further increase the infer- 144

ence speed. Beltagy et al. (2020) introduced Long- 145

former, which is one of the most widely adopted 146

model used for long documents. They replaced 147

the full self-attention with various types of slid- 148

ing window attentions, combining local and global 149

information to achieve state-of-the-art results on 150

various standard long document datasets. However, 151

despite their success, it was suggested in Narang 152

et al. (2021) that most modifications to the vanilla 153

transformer architecture did not meaningfully im- 154

prove performance, and these apparent improve- 155

ments were purely based on implementation de- 156

tails. Intuitively, this is in line with the fact that 157

there should always a trade-off between complexity 158

and performance. 159

Other work such as CogLTX (Ding et al., 2020) 160

chunks a long document and trains a separate BERT 161

model to judge the relevancy of each block and se- 162

lect the most relevant chunks. They overcome the 163

lack of relevancy labels in the input text by infer- 164

ring the information through intervention – remov- 165

ing a block from the entire document and using 166

a separate BERT model to test whether it is indis- 167

pensable. Our work pursues this line of thought and 168

is very similar in principle to CogLTX. However, 169

we propose a different method to obtain relevancy 170

labels, inspired by LLMs and RAG. 171

In more recent years, LLMs, such as the GPT 172

series2, PaLM2/Gemini3, and Llama2/34, have 173

demonstrated superior capabilities across multiple 174

tasks. While their significantly longer context win- 175

dows, ranging from 4,096 up to one million along 176

2https://openai.com/index/gpt-4-research/
3https://blog.google/technology/ai/google-gemini-next-

generation-model-february-2024
4https://llama.meta.com/llama3/
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with unparalleled natural language understanding177

abilities, seem to trivialize the study of long docu-178

ment classification at first glance, various research179

has proven otherwise. Sun et al. (2023b) argued180

that LLMs inherently underperformed a fine-tuned181

model on most text classification tasks, since most182

recent efforts have been made to improve their log-183

ical reasoning abilities while neglecting the ability184

to understand intricate linguistic phenomena in text185

(such as concession, negation etc). It is also hin-186

dered by the token limitation in commonly used187

techniques such as in-context learning (Dong et al.,188

2023). Furthermore, Liu et al. (2023) showed that189

although LLMs handled long contexts, much of the190

information was lost in the middle, and the gen-191

erated outputs were often only based on the start192

and end of the provided context. In real-world ap-193

plications, there are also practical considerations194

when deploying an LLM-based solution, in terms195

of cost (either through acquiring GPUs or by di-196

rectly calling an API), latency, and data security.197

These evidences validate the importance of study-198

ing long document classification; in particular, in199

view of the practical considerations of LLMs, we200

aim to develop a system that is non-reliant of LLMs201

during inference.202

2.2 Retrieval-Augmented Generation for203

Large Language Models204

Despite the immense success of LLMs, all such205

generative models suffer from some degree of hal-206

lucination, misinformation or outdated knowledge207

(Huang et al., 2023), often resulting in some bemus-208

ing results.5,6 Over the years, RAG has become one209

of the standard measures to counter these issues.210

The principle of RAG is simple: given a query,211

instead of relying on the implicit knowledge that212

an LLM obtained during pre-training, one attempts213

to “override” this knowledge by explicitly provid-214

ing the context for the LLM to base its response215

on. This has additional benefits of allowing LLMs216

to answer queries on latest news or proprietary in-217

formation without the need to fine-tune the entire218

model. In practice, however, providing the most219

relevant context can be a challenge per se, espe-220

cially when the knowledge base contains hundreds221

of thousands of documents. Thus, how to select the222

most relevant document(s) from a large knowledge223

base is an important focus of RAG research and224

application.225

5https://www.bbc.com/news/business-64576225
6https://www.bbc.com/news/articles/cv2xx1xe2evo

The standard pipeline for document selection 226

is often two-staged: indexing and retrieval. In- 227

dexing is simply the process of chunking a large 228

database into smaller, digestible chunks; retrieval 229

is the design of the algorithm used to select the 230

top-k chunks given a user query, usually via some 231

similarity scores between vector embeddings of the 232

input and the database. In more advanced setups, 233

indexing can be done alongside extraction of key- 234

words or entities7, which also serves as a first-pass 235

document filter during retrieval. After retrieval, a 236

specialized reranker can also be implemented to re- 237

fine the retrieval results (Zhang et al., 2023). RAG 238

is a vast and rapidly expanding area. While we 239

have barely scratched the surface here, interested 240

readers can refer to Gao et al. (2023b) for a more 241

detailed survey on the topic. 242

Our motivation comes from the similarities be- 243

tween RAG and long document classification. In 244

essence, the aforementioned work such as CogLTX 245

acts as the equivalence of a retriever, operating on 246

the long document itself with the aim to select the 247

most relevant sections or sentences within the doc- 248

ument. Inspired by this connection, we propose a 249

method that leverages both LLMs and reranking 250

models, by applying them to the context of long 251

document classification. 252

3 Problem Statement & Methodology 253

3.1 Problem Statement 254

Long text classification is a special case of general 255

text classification. Given a set of text inputs X 256

and the corresponding labels Y , text classification 257

simply aims to compute a mapping 258

fM : X → Y , 259

using a model M . Assuming that M is a 260

transformer-based model with maximum context 261

window of L tokens, long text classification as- 262

sumes that a non-trivial proportion of the data X 263

contains more than L tokens. If all elements in 264

labels set Y contains only one label, we call this 265

multiclass classification; if the elements is a list 266

of labels (i.e. y = [y1, y2, . . . , yn]), we call this 267

multilabel classification. 268

3.2 Overview 269

Our proposed method is illustrated in Figure 1. Dur- 270

ing training (c.f. Figure 1(a)), we first leverage an 271

7https://docs.llamaindex.ai/en/stable/module_guides/indexing/metadata_extraction/
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Figure 1: Our proposed method. Figure 1(a) depicts the two-staged training pipeline. A reranker model is first
trained on relevancy scores obtained via an LLM; then a classifier model is trained on a shortened version of the
original dataset. Figure 1(b) depicts the inference pipeline, where a long document is passed through the trained
reranker to obtain a shortened representation before passing through the trained classifier.

LLM to obtain relevancy scores for each sentence272

in a long document. A specialized reranker model273

is trained based on these generated labels. Once274

the reranker is trained, it is used to generate a short275

document dataset, which is then used to train a clas-276

sification model in a standard fine-tuning fashion.277

During inference (c.f. Figure 1(b)), the reranker278

takes in a long document and predicts the most279

relevant sentences, which is then concatenated and280

fed into the classifier to obtain the final output, i.e.281

labels.282

We break down each step of our method in more283

details below.284

3.3 Relevancy Scores285

Given a long document x = [x1; . . . ;xn], where286

xi denotes the i-th sentence obtained via any open-287

source tools, and its corresponding labels, we288

leverage a “reverse" chain-of-thought prompt and289

prompt an LLM to generate an explanation for each 290

provided label 291

Reasonx = LLM(prompt, x) . 292

To make the downstream training easier, we further 293

engineer the prompt to explicitly ask the LLM to 294

give references to the original text whenever possi- 295

ble. The exact prompts used for each dataset can 296

be found in the Appendix. 297

Using the output of the LLM, we pass it through 298

a pre-trained cross-encoder CE along with each 299

sentence in the original document, thus obtaining a 300

relevancy score that represents the importance of 301

the sentence to explain the classification labels: 302

Relevancyx = softmax({CE(Reasonx;xi) 303

for xi in x}) 304

Softmax turns the scores into a distribution, the rea- 305

son for which will become immediately apparently 306
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Dataset Label Type Classes Size # BERT Tokens # Sentences
Hyperpartisan Multiclass 2 645 744.18± 677.87 30.51± 28.64

20 News Groups Multiclass 20 18,846 368.83± 783.84 21.01± 36.18
EURLEX Multilabel 4,271 57,000 707.99± 538.69 7.77± 8.344

Book Summaries Multilabel 227 12,788 574.31± 659.56 20.74± 25.15

Table 1: Dataset statistics

in the next section.307

3.4 Reranker Model308

Our reranker model consists of a pre-trained sen-309

tence transformer model, followed by a stack of n310

standard transformers encoder layers (multi-head311

self attention plus a feedforward layer, interlaced312

with skip connections and layer norms), and a final313

regression layer on the top. While this design is314

very similar to a hierarchical transformer used in315

work such as Pappagari et al. (2019) to directly316

predict the labels, here it is trained to perform a317

completely different task.318

Instead, our reranker model is trained to pre-319

dict the distribution Relevancyx. As input to320

the reranking is the entire collection of sentences321

[x1; . . . ;xn], the stack of encoder layers computes322

sentence-level self-attention, allowing the model323

to predict the relevancy of each sentence using sur-324

rounding information. We then compare the output325

of the regression layer with Relevancyx using KL-326

divergence loss:327

Lrerank(x) = KLDiv (Relevancyx,Reranker(x)) .328

After the reranker is trained, we run the entire329

dataset through the reranker, and obtain its short-330

ened version by selecting the top-k sentences with331

the highest relevancy scores. Note that the sentence332

order is especially preserved to improve overall co-333

herence.334

3.5 Classification Model335

Using the obtained short document dataset, a stan-336

dard transformer-based classification model is fine-337

tuned as usual, using either cross-entropy or binary338

cross-entropy depending on the label type.339

3.6 Inference340

During inference, the reranker first selects the top-341

k sentences of a long document, which are then342

concatenated as the input to the classifier. Impor-343

tantly, note that the cross-encoder and LLM used to344

generate the relevancy scores are not needed, thus345

allowing the deployed model to be non-reliant of 346

LLMs during inference. 347

4 Experiments 348

4.1 Data 349

We test our proposed framework on the following 350

four commonly used datasets for long document 351

classification: 352

• Hyperpartisan (Kiesel et al., 2019) is a bi- 353

nary classification dataset with 645 docu- 354

ments, classifying whether the text is hyper- 355

partisan or not; 356

• 20 News Groups (Lang, 1995) is a multiclass 357

dataset with 18,846 documents and 20 bal- 358

anced classes, representing the domain of a 359

news document (such as religion or sports); 360

• EURLEX (Chalkidis et al., 2019) is a multil- 361

abel dataset with 57,000 documents and 4,271 362

classes, where the documents were originated 363

from EU legal documents and the classes 364

ranges from location (e.g. “France") to spe- 365

cialized domain (e.g. “tariff quota"); 366

• Book Summaries (Bamman and Smith, 2013) 367

is a multilabel dataset with 12,788 documents 368

and 227 classes, where the documents are 369

summaries of books extracted from Wikipedia 370

and the classes are broadly speaking the gen- 371

res of the book (e.g. “Science Fiction" or 372

“Novel"). 373

The dataset statistics are illustrated in Table 1. All 374

data can be found on the official implementation 375

of Park et al. (2022)8. We use the same prepro- 376

cessing scripts provided, including train-test splits 377

whenever applicable, for fair comparisons. 378

4.2 Baselines 379

We compare our results with the following base- 380

lines: 381

8https://github.com/amazon-science/efficient-longdoc-
classification/tree/main
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Method Hyperpartisan 20 News Groups EURLEX Book Summaries
BERT (w. Truncation) 92.00 84.79 73.09 58.18
BERT (w. TextRank) 91.15 84.99 72.87 58.94
BERT (w. Random) 89.23 84.65 73.22 59.36

Longformer 95.69 83.39 54.53 56.53
ToBERT 89.54 85.52 67.57 58.16
CogLTX 94.77 84.63 70.13 58.27

H3 94.20 85.90 76.70 60.90
Ours (w. BERT) 95.55 86.47 75.39 60.36

Ours (w. RoBERTa) 97.43 87.24 76.51 61.77

Table 2: Accuracy and Micro F1-Scores for four different datasets. Highest value is bolded. Baseline results are
taken from Park et al. (2022) and Lu et al. (2023).

1. BERT (with Truncation) simply takes the382

first 512 tokens (including the standard383

[CLS] token prepended in front) of the text384

input and ignores the remaining tokens;385

2. BERT (with TextRank (Mihalcea and Ta-386

rau, 2004)) obtains the BERT representation387

of the first 512 input tokens, and concatenate388

it with the representation of up to another 512389

tokens from the top ranked sentences using390

TextRank, an unsupervised sentence ranking391

algorithm. A linear classifier is added on top.392

Sentence tokenization and TextRank is done393

via SpaCy9;394

3. BERT (with Random Choice) is similar to395

BERT with TextRank, but the augmented sen-396

tences are simply selected at random. Inter-397

esting this often seems to perform as well as398

TextRank;399

4. Longformer (Beltagy et al., 2020) is a trans-400

former architecture that replaces full attention401

with a combination of local and global atten-402

tion, thus achieving near linear complexity for403

the attention computation. It has a context404

window of 4,096, which is enough for all the405

aforementioned datasets;406

5. ToBERT (Pappagari et al., 2019) has a hi-407

erarchical transformer architecture that con-408

siders any arbitrary document as chunks of409

200 tokens. Each chunk is passed through a410

vanilla BERT model, before all output repre-411

sentations are fed through another transformer412

layer as the final document representation;413

9https://spacy.io/

6. CogLTX (Ding et al., 2020) aims to select key 414

blocks or sentences from the input document. 415

It trains two BERT models, one for classifi- 416

cation and one to judge the relevancy of the 417

selected blocks. The judge can trained in a su- 418

pervised or unsupervised manner depending 419

on the data and task. 420

7. H3 (Lu et al., 2023) uses state-space models 421

as an alternative to model sequential data to 422

direct bypass the token limit issue faced in 423

transformer-based models. 424

4.3 Setup 425

We detail our models and hyperparameters choices 426

as follows. 427

Sentence tokenization is done with Stanza10. 428

For the choice of cross-encoder, we use 429

ms-marco-MiniLM-L-12-v211, pre-trained 430

on the MS MARCO Passage Retrieval dataset. 431

The model all-mpnet-base-v212 is used as 432

our sentence transformer model. Finally we 433

test using both bert-base-uncased13 and 434

RoBERTa-base14 as our classifier. 435

For the choice of LLM, we use the latest gpt-35- 436

turbo version provided by OpenAI, accessed via 437

Microsoft Azure. Note that a small portion of the 438

data triggers the safety content (usually due to vi- 439

olence or sexual reasons), and is particularly com- 440

mon in the Hyperpartisan and Book Summaries 441

datasets. They are simply discarded during the 442

training of the reranker but kept for training the 443

classifier. 444

10https://stanfordnlp.github.io/stanza/
11https://sbert.net/docs/cross_encoder/pretrained_models.html
12https://sbert.net/docs/sentence_transformer/pretrained_models.html
13https://huggingface.co/google-bert/bert-base-uncased
14https://huggingface.co/FacebookAI/roberta-base
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Dataset # Sentences Top-32 Top-16 Top-8 Top-4
20 News Groups 21.01± 36.18 86.55 86.47 86.04 85.69

EURLEX 7.77± 8.344 74.03 75.28 75.39 64.48

Table 3: Accuracy and Micro F1-Scores for different values of top-k.

We set the number of encoder layers in the445

reranker n to 2 for all cases, and the number of446

sentences top-k to 8 for EURLEX and 16 for the447

remaining three. The reranker model is trained448

with learning rate 3e-5 until convergence, and the449

highest validation score – computed via the average450

relevancy between the top-k sentences and the CoT451

explanation – is kept. For the classifier, we run a452

simple grid search of [1e − 5, 2e − 5, 5e − 5] for453

learning rate, training until convergence and keep-454

ing the model with the highest validation score for455

testing. AdamW is used as the optimizer; batch size456

is effectively set to 16 throughout, using gradient457

accumulation if necessary.458

5 Results & Analysis459

5.1 Overview460

Experimental results are shown in Table 2. Follow-461

ing all previous work, multiclass datasets are eval-462

uated using accuracy, whereas multilabel datasets463

are evaluated using micro F1-score. Our results are464

the average of three runs. Compared with BERT-465

based results, our method (c.f. Ours (w. BERT)) is466

superior on three datasets, and on par on the remain-467

ing one; compared with baseline using state-space468

models, our results (c.f. Ours (w. RoBERTa)) are469

also superior on three datasets, and on par on the470

remaining one.471

5.2 Comparison with Transformer Baselines472

Compared with all previous transformer baselines,473

our method (Ours (w. BERT)) consistently outper-474

forms in three of the four datasets, while remaining475

highly competitive on the Hyperpartisan dataset.476

Taking the best baseline for each dataset (i.e. Long-477

former for Hyperpartisan, ToBERT for 20 News478

Groups etc), our method scores 1.00% higher on479

average, with a maximum of 2.17% gain in EU-480

RLEX.481

In particular, compared with CogLTX – concep-482

tually the most similar method – our method is483

significantly superior, averaging 2.49% across all484

four datasets. This shows the efficacy of using485

RAG-inspired methodologies to select the most486

significant sections of a text for long document 487

classification. 488

5.3 Comparison with Non-Transformer 489

Baselines 490

To create a fair comparison with the best non- 491

transformer baseline H3, we train our models using 492

RoBERTa-base as the underlying language model, 493

which has the same parameters as BERT but gen- 494

erally performs better. Under these choices, again 495

our method is superior on three of the four datasets 496

with EURLEX as the sole exception, where our 497

results are also highly competitive. On average, 498

our method sees an 1.31% gain in performance. 499

5.4 Comparison between Datasets 500

It is interesting to note that there is a significant 501

difference in our performance for multiclass and 502

multilabel datasets. For the two multiclass datasets, 503

we observe an 1.54% increase in performance over 504

the best baseline, whereas for the remaining two 505

multilabel datasets, we only observe a 0.34% in- 506

crease. While the difference of metrics (accuracy 507

versus micro F1-Score) is one possible explana- 508

tion, the underlying nature of our approach is also 509

worth considering. In multiclass environments, se- 510

lecting the most significant 16 sentences is often 511

more than sufficient to predict one correct label, 512

and using as few as four sentences can still gives 513

satisfactory results (see Ablation Studies below). 514

However, when the ground truth contains multiple 515

labels (up to 26 in EURLEX), it naturally becomes 516

much more difficult for a classifier to predict all 517

of them correctly given only eight or 16 sentences. 518

This explanation is also supported by a similarly 519

weaker performance of CogLTX, another chunk 520

selection baseline, in the two multilabel datasets. 521

5.5 Ablation Studies 522

Table 3 shows the effect of varying k, the number 523

of sentences selected by the reranker, in one multi- 524

class and one multilabel dataset. For the 20 News 525

Groups, we see that lowering the value of k has 526

a much less impact on the accuracy, despite hav- 527

ing a much higher number of sentences on average. 528
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Simply selecting the top-4 sentences retains 85.69529

accuracy.530

On the other hand, although EURLEX only has531

8 sentences per document on average, we observe a532

steep dropoff in F1-score when using the top-4 sen-533

tences for classification. This further explains the534

aforementioned performance difference in multi-535

class and multilabel datasets, and thus is important536

to consider in practical application. It may also537

be possible to dynamically select k based on the538

dataset, or even the input document, but we leave539

that as future work.540

6 Limitations541

One major limitation is the reliance on LLMs dur-542

ing the training phase. In particular, acquiring543

a CoT explanation of the text classification, and544

hence the relevancy labels, involves prompting an545

LLM. This implies that the dataset needs high qual-546

ity description of the labels themselves (as opposed547

to a simple numerical representation of each class,548

which would be acceptable inputs to all baselines549

tested in our work). For example, although ECtHR550

is another widely used dataset for long document551

classification, we could not test on it due to the lack552

of correspondence between the numerical labels553

and the meaning. Furthermore, LLMs are known554

to perform best in some selective high-resource555

languages (especially English), which may further556

limit the application of our method to low-resource557

languages.558

7 Conclusion559

Long document classification is important in many560

domains such as legal or biomedical, where texts,561

compounded with domain-specific terminology, are562

often far longer than the standard 512 input tokens563

of most pre-trained language models. To process564

such documents, we propose a long document clas-565

sification method, inspired by recent techniques566

used by LLMs for RAG. By training a reranker,567

we select the most significant sections of a docu-568

ment and train a classifier on the selected text. We569

observe improvements on average for four stan-570

dard datasets, compared with both transformer and571

non-transformer baselines.572

Future work can aim to dynamically to select573

top-k, as discussed above, to tailor for the charac-574

teristics of different datasets. It is also worth con-575

sidering the possibility of combining the reranker576

and classifer into one model, trained end-to-end.577

This could allow the reranker to assign relevancy 578

scores not only based on the teacher LLM, but also 579

the usefulness in downstream classification. 580
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8 Appendix 710

8.1 Prompts Used 711

The following prompts are used for each dataset to 712

obtain relevancy labels: 713

1. Hyperpartisan & 20 News Groups: “The 714

classification of the following paragraph is 715

known to be ‘{label}’. \n\n{text}\n\n Write an 716

response explaining why it is classified as {la- 717

bel}. Give references to phrases or sentences 718

from the original text whenever possible". 719

2. EURLEX & Book Summaries: “The classi- 720

fications of the following paragraph is known 721

to be ‘{labels}’. \n\n{text}\n\n For each la- 722

bel in ‘{labels}’, write an response explaining 723

why it is classified as such. Give references 724

to phrases or sentences from the original text 725

whenever possible". 726
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