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Abstract—Scanpath prediction is crucial in the medical domain
as it captures the visual attention patterns of experienced clini-
cians, offering insights into diagnostic processes and enhancing
training programs. Understanding where experts focus can lead
to improved medical imaging interpretation and decision-making.
However, scanpath prediction is extremely challenging due to the
inherent noise in eye-tracking data, individual variability among
clinicians, and the complexity of medical images.

This work introduces a pioneering adaptation of the “Show,
Attend and Tell” (SAT) [1] framework to analyze the gaze
patterns of ophthalmologists on Optical Coherence Tomography
(OCT) reports. Instead of using Convolutional Neural Networks
(CNNs) for visual feature extraction, we integrate self-supervised
learning through a Masked Autoencoder (MAE) [2]. The MAE re-
constructs masked regions of OCT images, enabling the encoder
to generate robust image representations despite limited labeling
in medical imaging datasets. We trained separate LSTM models
for each clinician to account for individual inspection patterns.

The model demonstrated strong evaluation results, with the
best-performing model achieving a ScanMatch score up to 0.5595
and Pearson correlation of up to 0.866 in predicting expert
gaze on OCT reports. We showcase a downstream use-case of
predicting the sequence of expert-fixated regions on an OCT
report and visualizing these for ophthalmic resident education.
Our findings highlight the framework’s potential to enhance the
understanding and emulation of expert-level diagnostic mech-
anisms, aiding in the explanation of AI-based predictions in
the clinic and guiding novice residents in ophthalmic education,
especially in resource-diverse environments with limited access
to expert ophthalmologists or labeled datasets.

Index Terms—Attention, Deep Learning, Scanpath Prediction,
Gaze Prediction, LSTM, Ophthalmology, Optical Coherence
Tomography, Transformer, Vision Transformer

I. INTRODUCTION

IN the realm of medical imaging, particularly Optical Co-
herence Tomography (OCT), the interpretation of complex

visual data plays a crucial role in diagnostic processes. Eye
tracking data has been a great source of information in medical
applications of machine learning including detection [10],
[12] and segmentation [11]. Previous works have successfully

integrated clinician’s gaze information to inform Vision Trans-
former [3] based models for both OCTs [7] and X-ray images
[8], enhancing both detection accuracy and computational
efficiency. Expert sonographers’ gaze during ultrasound image
inspection is used for model compression without significant
loss in performance [9]. These examples show that eye gaze
from seasoned clinicians carries a wealth of information
across different types of medical imaging. However, limited
work has attempted to predict experienced ophthalmologists’
gaze fixation location and order during image inspection for
downstream diagnostic and educational purposes. Scanpath
prediction, which forecasts the sequence of eye movements
during image viewing, has been extensively studied in natural
images [16]–[27]. However, its application to medical imaging
remains underexplored. To the best of our knowledge, we are
the first to develop a method for scanpath prediction in Optical
Coherence Tomography (OCT) reports that is also agnostic to
different types of medical images.

Through years of experience, expert ophthalmologists de-
velop nuanced gaze patterns that guide their image analysis
and diagnoses. However, the scarcity of experienced ophthal-
mologists poses a significant challenge, especially in remote
or under-served areas. This project seeks to bridge this gap
by leveraging the “Show, Attend, and Tell” [1] framework,
traditionally used for image captioning, to predict gaze patterns
on OCT reports using gaze data from experienced ophthalmol-
ogists. Such a predictive model could serve as a virtual advisor
to novice ophthalmologists, guiding their inspection of OCT
reports in the absence of attendings or experienced doctors, or
as a second opinion/corroboration even for expert doctors in
ambiguous cases.

A novel aspect of this project is the replacement of the
conventional Convolutional Neural Network (CNN) encoder
with an encoder derived from a Masked Autoencoder, specif-
ically trained on OCT images. This approach exploits the
advantages of self-supervised learning, which does not rely
on labeled data. This is particularly beneficial in the medical



imaging domain, where acquiring labeled data is not only
challenging but also labor-intensive. Through this innovation,
we aim to harness extensive, unlabeled OCT datasets, thereby
overcoming one of the significant hurdles in medical image
analysis. The integration of self-supervised learning into our
predictive model promises to enhance the accessibility and
accuracy of OCT report interpretations, democratizing expert-
level diagnostic guidance across the medical community.

II. RELATED WORK

A. Masked Autoencoders

In deep learning, the Masked Autoencoder (MAE) repre-
sents a significant step up in the context of self-supervised
learning and representation learning in the computer vision
domain. Originally conceptualized to address the inefficiencies
and data constraints of supervised learning, MAE has rapidly
gained traction across various domains, including medical
imaging [4]. At its core, the MAE solves the pretext task in
the image domain by intentionally obscuring parts of the input
data, compelling the model to predict these missing segments
based solely on the available information. This methodology
not only enhances the model’s feature extraction capabilities
but also its generalization to unseen data, making it particularly
suited for domains where labeled data is scarce or expensive
to obtain.

In medical imaging, specifically in the analysis of Optical
Coherence Tomography (OCT) images, the application of
MAE has opened new vistas. The encoder component of MAE,
adept at capturing intricate details from partial data, has shown
promise in understanding complex visual patterns intrinsic
to medical diagnostics. Studies leveraging MAE for natural
images highlight its superiority in extracting relevant features
without explicit labeling, showcasing its potential to be applied
to medical image interpretation, specifically the prediction of
expert gaze on OCT images.

B. Neural Image Captioning with Visual Attention

The “Show, Attend, and Tell” framework [1], initially
introduced for image captioning tasks, has established itself
as a cornerstone in computer vision and natural language pro-
cessing. Its innovative use of attention enables models to focus
on specific parts of an image while generating corresponding
textual descriptions, mimicking the human ability to correlate
visual elements with linguistic annotations. This approach
has not only enhanced the interpretability of deep learning
models but also has significantly improved their performance
by allowing them to prioritize salient features in images.

Adapting the “Show, Attend, and Tell” methodology to the
domain of scanpath prediction, particularly within medical
imaging, marks an effort to translate visual attention mech-
anisms from textual annotation to the prediction of visual
focus areas. In the context of analyzing Optical Coherence
Tomography (OCT) reports, this adaptation could change how
clinicians engage with medical imagery. By predicting where
an experienced ophthalmologist’s gaze might linger on an
OCT image, this framework offers a tool for training and

assisting less experienced clinicians, while also potentially
providing corroboration/confirmation for the reasoning behind
a diagnosis for experts. This application of “Show, Attend,
and Tell” in scanpath prediction underscores the versatility of
attention mechanisms and highlights the potential of machine
learning to enhance diagnostic practice within ophthalmology.

III. METHODOLOGY

The original “Show, Attend, and Tell” framework utilizes an
LSTM to generate a probability distribution over a vocabulary
through softmax, framing the problem as one of classification.
In this study, we compared two independent approaches to
capture the expert gaze patterns that trained the LSTM to
be an autoregressive model and a classification model. We
used the autoregressive version as a convenient sanity check
to make sure that the model could capture the gaze pattern and
that the attention network (fully connected layers) used during
the training of the LSTM is paying attention to the critical
regions of OCT reports. We then used qualitative results of
the autoregressive model as a premise to re-frame the training
as a classification problem which is the main application of
this study.

This study also examines the robustness of the SAT frame-
work through the substitution of its conventional CNN encoder
with the encoder from a Masked Autoencoder (MAE). While
CNNs have been the standard for extracting image represen-
tations, they are inherently suited for classification tasks that
require labeled data. In the SAT framework, obtaining image
embeddings is an intermediary step that does not necessarily
rely on labels, making the MAE, which can learn from
unlabeled data, an apt choice for medical imaging contexts
where labels may be scarce. This shift not only challenges the
traditional reliance on CNNs but also aligns with the evolving
needs of medical image analysis to learn from extensive,
unlabeled datasets.

More about model training is explained in the sub-section
III-B.

A. Datasets

In this study, two types of internal datasets were utilized,
both centred around Optical Coherence Tomography (OCT)
reports. The first dataset is comprised of approximately 13,000
OCT reports (6,000 labeled as glaucomatous vs. not glau-
comatous and 7000 labeled as acceptable vs. unacceptable,
with some overlap with the 6000-dataset and including poor
scans), which were used to conduct self-supervised learning
on the Masked Autoencoder (MAE). The second dataset in-
cludes gaze patterns from seven experienced ophthalmologists,
collected while each expert examined 20 OCT reports. Each
fixation in each pattern is in normalized coordinates with
respect to computer screen resolution. The 20 OCT reports
(per clinician) were randomly sub-selected from a larger pool
of OCT reports collected between 2010 and 2023 at our insti-
tution (through an IRB-approved study: Protocol AAAU4079
approved by the Columbia University Irving Medical Center
Institutional Review Board). A different set of 20 reports was



Fig. 1: Overall pipeline for capturing gaze pattern. The OCT first goes through the MAE’s encoder to output the encoded
image. This encoding is used along with LSTM’s hidden state for each time step to calculate the attention heatmap. Gaze
information includes x, y as coordinates.

Fig. 2: MAE’s reconstruction results on OCT report. In order from left to right, the first image is the original OCT report.
The second image is the randomly masked version of the OCT report that is used as input during MAE’s training. The third
image is the reconstruction result of both visible and masked patches. The fourth image is the combination between the visible
masks and reconstructed patches that were masked.

used for each clinician; however, due to small dataset size,
there was some overlap in reports viewed by clinicians; on
average, each report was viewed by 3 clinicians. For each
LSTM model corresponding to a clinician, we trained on 15
gaze patterns and tested on 5 gaze patterns. We also performed
4-fold cross-validation on each LSTM to retrieve the 95%
confidence interval to ensure statistical significance.

B. Model
Fig. 1 illustrates the real-time fixation prediction pipeline.

In the inference stage, an OCT report is initially processed
by the MAE encoder to extract the image representation. This
representation, along with the LSTM’s hidden state, is then fed
into the attention network, generating an attention heatmap.
Utilizing this heatmap and gaze information at each timestep,

the model predicts the coordinates of the next gaze. The study
encompasses two primary training phases, outlined below.

1) Training Mask Autoencoder: The MAE is trained on
13,000 OCT reports to learn data representation. Initially, it
randomly masks 75% of the patches from an OCT report.
The remaining visible patches are processed through 12 Vision
Transformer (ViT) [3] blocks during the encoding phase. The
encoder’s output, or image embedding, combined with mask
tokens (place holders for masked patches at the beginning), is
input into a decoder comprising 8 ViT blocks. The decoder’s
output reconstructs the masked OCT report, as depicted in
Fig. 2. A more powerful or deeper decoder is unnecessary
for the MAE, as we only employ its encoder for our primary
application.



(a) Original fixations of the clinician on report A (b) Gaze pattern predicted by the model for report A

Fig. 3: A report with ground truth fixations (left column 3a) by the same clinician and their corresponding predicted gaze
patterns by the auto-regressive version of the model (right column 3b). One can observe a pattern where the inspection begins
at the report’s center and proceeds in an anti-clockwise direction. The autoregressive model could reproduce the low-variance
version of such patterns, as shown on the right.

Fig. 4: First three attention heatmaps used by the model to
predict gaze coordinates at each time step (worded by channel
number) for report 3a. The brighter (yellow) the region, the
more attention is paid by the model to predict the gaze
coordinates.

2) Training LSTM: To train the LSTM within the SAT
framework, encoding the image is essential, a task undertaken
by the MAE as previously mentioned. During each training
timestep, the LSTM’s hidden state is merged with the encoded
image and processed by an attention network to produce an
attention heatmap. This heatmap guides the LSTM to focus
on critical regions for predicting the next gaze’s coordinates.
The heatmap, alongside the previous gaze prediction, is used
to forecast the subsequent gaze information. To avoid error
propagation to later steps and ensure each prediction relies on
accurate historical data, teacher forcing is employed during the
training phase which is akin to language model training. As we
have a limited number of scanpaths per clinician, we employ
early stopping, dropout and gradient clipping as regularization
strategies to prevent overfitting. As proposed in the original
work of Show, Attend, Tell [1], we inherently use doubly
stochastic regularization to make sure the model pays attention
equally to all critical sub-regions of the OCT report during the
generation the next fixation coordinates.

a) Training the LSTM as an autoregressive model:
Framing training the LSTM as a regression problem requires

gaze information (2D normalized coordinates) for both input
and output at each LSTM time step to be continuous. The
normalized coordinates are concatenated with the heatmap to
become the complete input at each time step. During inference,
output at the current time step is used as the input for the next
time step.

b) Training the LSTM as a classification problem: When
training the LSTM as a classification problem, we divided
the OCT report into a 7x7 grid. One-hot encoding is used to
represent the input gaze coordinates. The one-hot encoding
representation of gaze is formed by first multiplying the
normalized coordinates by the grid’s size to arrive at which
grid cell the gaze falls into. The coordinate of a grid cell is
then flattened to form the one-hot representation. Output for
each LSTM step is the logits for 49 cells, and softmax is
applied to retrieve the probability distribution among all cells.
During inference, unlike the autoregressive LSTM where error
propagation is inherent, we used beam search to significantly
remedy this issue which yields a more globally optimal gaze
pattern.

3) Beam Search: Beam search is a heuristic search algo-
rithm used in natural language processing for decoding se-
quences. It explores multiple possible outputs by maintaining
a fixed number of best partial hypotheses (beams) at each
step, enhancing the likelihood of generating the most probable
sequence in tasks like machine translation.

In gaze pattern prediction using LSTM, beam search mit-
igates error propagation by evaluating multiple gaze paths
simultaneously. This approach retains the most promising
trajectories, preventing early mistakes from significantly in-
fluencing future predictions, thereby enhancing the accuracy
and reliability of predicting gaze sequences over time.

4) Consideration and Simplification: During the training
of the MAE, OCT reports were resized to a square aspect
ratio. Gaze coordinates were not affected by this change since



they were originally normalized based on the image resolution
during the data collection phase. During training of the LSTM
on gaze data, we only used the MAE’s encoder to extract
OCT report embeddings. Since the MAE’s decoder is used
to reconstruct masked images, it cannot be utilized in this
application.

C. Evaluation

We conducted both quantitative and qualitative evaluations
of the model’s predictions to ensure its ability to learn and
replicate the gaze patterns of clinicians. To measure the
spatial alignment and consistency between the model’s output
fixations with the regions deemed critical by clinicians during
their inspections, we used the Pearson Correlation on saliency
maps [14]. To assess the similarity between the predicted
and actual scanpaths, various methods are available [15]. We
opted for ScanMatch [13], which effectively captures both the
positional and temporal aspects of scanpaths [15].

1) Saliency maps consistency with Pearson Correlation:
Previous work [5] used Pearson correlation coefficients to
quantitatively evaluate the consistency of the regions of
interest (ROIs) identified during fundus image inspections
for glaucoma diagnosis by different ophthalmologists. They
computed these coefficients between Gaussian-filtered fixation
maps, with each map representing the gaze pattern of an
individual ophthalmologist. We took a similar approach with
a slight modification to evaluate how well the model performs
in learning to capture individual clinician gaze patterns and
their focused regions during the inspection. Detailed steps are
explained below.

The smoothed grid S is retrieved by applying the Gaussian
filter with a standard deviation set to one on the original binary
grid cell I . This is done on both predicted and ground-truth
gaze patterns.

S = I ∗G (1)

After smoothing, the smoothed grid is converted into a
vector format:

s = [S11, S12, . . . , S17, S21, . . . , S77] (2)

The Pearson correlation coefficient between the flattened
ground truth and prediction grids is calculated as:

r =

∑n
i=1(sgt,i − s̄gt)(ŝi − ¯̂s)√∑n

i=1(sgt,i − s̄gt)2
∑n

i=1(ŝi − ¯̂s)2
(3)

where n = 49 (since the grid is 7x7), sgt is the flattened
ground truth grid, and ŝ is the flattened prediction grid.

2) Scanpaths similarity with ScanMatch: ScanMatch is
a method designed to assess the similarity between scan-
paths, utilizing the Needleman-Wunsch algorithm, originally
developed for DNA sequence comparison in bioinformatics
[13]. This approach involves spatially and temporally binning
saccadic eye movement sequences, which are then recoded
into sequences of letters that encapsulate information about

fixation locations and order. The method evaluates the sim-
ilarity between these sequences by maximizing a similarity
score derived from a substitution matrix. This matrix scores all
possible letter pair substitutions and incorporates a penalty for
gaps. Scanpath prediction models widely adopt ScanMatch for
evaluation due to its robustness to inherent noise in saccadic
eye movements [18].

D. Integration into Unity for GUI for Clinical Translation

Given OCT-report patches predicted by our algorithm, we
developed a user interface (UI) using Unity, a versatile cross-
platform game engine, to present a sequence of bounding
boxes on OCT reports. The model’s prediction, a sequence
of coordinates on a 7x7 grid, is translated into corresponding
bounding boxes and overlaid on top of the OCT reports. The
UI facilitates the visualization of annotated regions of interest,
allowing users to interactively explore and analyze spatial
and temporal relationships between regions of interest (ROIs)
within OCT data.

IV. RESULTS & DISCUSSION

Clinician number With Beam Search Without Beam Search

1 0.8659 ± 0.0735 0.4065 ± 0.2040
2 0.8070 ± 0.1180 0.5713 ± 0.3090
3 0.7164 ± 0.0654 0.4605 ± 0.1420
4 0.7041 ± 0.1250 0.5539 ± 0.1680
5 0.6626 ± 0.0939 0.4728 ± 0.1520
6 0.8072 ± 0.0876 0.6870 ± 0.1270
7 0.7626 ± 0.1310 0.5247 ± 0.1570

TABLE I: Pearson correlations with 95% confidence inter-
vals, evaluated by 4-fold cross-validation across all clinicians
engaged in the study. Scanpath prediction post-processed by
beam search quantitatively shows superior results.

Clinician number With Beam Search Without Beam Search

1 0.3269 ± 0.1027 0.2652 ± 0.0367
2 0.3522 ± 0.0658 0.2405 ± 0.0369
3 0.3352 ± 0.0505 0.2665 ± 0.0395
4 0.3269 ± 0.0953 0.2668 ± 0.0514
5 0.3690 ± 0.0729 0.2513 ± 0.0318
6 0.5224 ± 0.0370 0.3172 ± 0.0278
7 0.5595 ± 0.0640 0.3326 ± 0.0306

Mean 0.4032 0.2772

TABLE II: The ScanMatch metric with 95% confidence in-
tervals and evaluated through a 4-fold cross-validation among
all clinicians involved in the study. The gaze pattern, refined
using beam search, shows quantitatively better outcomes in
resembling the clinician’s gaze patterns.

A. Mask Autoencoder on OCT report

Fig. 2 shows the reconstruction result of MAE trained on
OCT reports. The training of the Masked Autoencoder (MAE)
on 13,000 Optical Coherence Tomography (OCT) reports
yielded qualitatively impressive results demonstrating its trans-
ferability from natural images to medical image applications.



(a) Ground Truth Gaze Pattern (b) Predicted Pattern with Beam Search (c) Predicted Pattern without Beam Search

Fig. 5: Qualitative results for LSTM trained as a classification problem on 7x7 grid cells. Testing on the same report, beam
search can significantly reduce error propagation to output the more globally optimal gaze pattern resembling the ground truth
gaze pattern of the experienced ophthalmologist.

This further shows its potential as a viable encoder within the
“Show, Attend, and Tell” framework. By effectively learning
the data representation, the MAE showcases its capability
to capture the intricate details and nuances present in OCT
images. This proficiency not only enhances the model’s under-
standing of the visual content but also significantly improves
the subsequent attention-driven processes.

Fig. 6: Unity interface displaying an OCT report with overlaid
bounding boxes and a heatmap. ViT-generated regions of
interest are highlighted in orange, and our LSTM-predicted
ordering of ROIs are shown by numbers in left corner of each
box.

B. LSTM trained as an autoregressive model

Fig. 3 displays the model’s gaze pattern predictions for two
distinct reports. On closer inspection of the ophthalmologist’s
gaze sequence (3a), one can observe a pattern where the
inspection begins at the report’s center and proceeds in an anti-
clockwise direction. The model successfully captures these
patterns, as depicted to the right (3b). Intriguingly, the model
appears to have learned a regression function tailored to each
report’s gaze points, resulting in a series of discrete points that
follow a smooth, complex curve. While these results affirm

the method’s effectiveness and provide insights into an expert
clinician’s gaze pattern, they exhibit lower variance compared
to the actual collected gaze data. The model’s predictions do
not isolate specific regions within the OCT report that could
potentially assist less experienced ophthalmologists.

In Fig. 4, the attention mechanism’s role in predicting
gaze patterns for report 3a and its associated gaze pattern 3b
is evident. Notably, the LSTM’s attention network identifies
key areas (indicated by brighter regions) in the OCT report,
such as the circumpapillary retinal nerve fiber layer (RNFL)
scan—visible as a grayscale rectangular image in the report’s
upper left. This validates the effectiveness of the MAE in
supplanting traditional CNNs within the conventional SAT
framework. Whereas, in the original SAT framework for image
captioning, the attention is sharply focused—for instance, on
a balloon when predicting the word “balloon”—the adapted
framework for gaze prediction utilizes all relevant areas on
the OCT image to anticipate the next gaze point.

C. LSTM trained as a classification model

1) Saliency maps consistency with Pearson Correlation:
Table I shows promising results on seven different seasoned
ophthalmologists. The Pearson correlation calculated on the
hold-out test set shows a strong correlation between prediction
and ground-truth gaze patterns. Moreover, beam search serves
a critical role which helps retrieve the more globally optimal
gaze pattern. This could be qualitatively visualized in Fig. 5.

Compared to the autoregressive version of the model, more
variance in the pattern is introduced in the LSTM trained as a
classification problem. The predicted pattern post-processed by
beam search showed a clear pattern that resembles the ground
truth gaze pattern of the experienced clinician.

2) Scanpaths similarity with ScanMatch: Table II shows
the results for ScanMatch metric for the same seven clinicians.
Beam search, again, further improves this metric by reducing



Method AiR (VQA) OSIE (free viewing) COCO-Search18 (visual search) MASSVIS
PathGAN [16] 0.210 0.077 0.277 0.232
SaltiNet [17] 0.112 0.169 0.199 0.331

Chen et al. [18] 0.394 0.383 0.554 –
IOR-ROI [19] 0.171 0.267 0.316 –
Itti et al. [20] – 0.211 – –

SGC [21] – 0.211 – –
Wang et al. [22] – 0.151 – –

Le Meur et al. [23] – 0.228 – –
STAR-FC [24] – 0.204 – –

IRL [25] – – 0.403 –
DCSM [26] – – – 0.328
UMSS [27] – – – 0.387

TABLE III: Mean ScanMatch values of different methods across different tasks and datasets. The best performant model for
each dataset is bolded. Compiled results retrieved mainly from [18], [27].

error propagation during LSTM inference and producing scan-
path patterns that more closely resemble those of clinicians.

As we are the first to develop a model for scanpath pre-
diction on medical images, particularly for ophthalmic OCT
reports, there are no standardized metrics to perform direct
benchmarking on this data. However, the ScanMatch score is
used for benchmarking scanpath prediction on natural images
and accounts for both spatial and temporal aspects of gaze.
We therefore compiled Table III with results from previous
works on scanpath predictions on different tasks and datasets
of natural images. Although the comparison does not fully
establish the superiority of our model over others due to
significant differences between natural and medical images,
it demonstrates our model’s strong performance and provides
a baseline for future research.

AiR [28] is a Visual Question Answering dataset consisting
of images and questions, as well as eye-tracking data from 20
participants. OSIE [29] is a free-viewing dataset including 700
images with eye-tracking data from 15 participants. COCO-
Search18 [25] is a visual search dataset including images
annotated with the fixations of people searching for target-
object goals. MASSVIS [30] is a popular dataset covering
various types of visualizations which also provides gaze data
recorded from human viewers.

Our model’s mean ScanMatch metric from Table II shows a
competitive result (0.4032) compared to other models trained
on natural images in Table III. While Chen et al. [18] reaches a
ScanMatch score of 0.554 in the COCO-Search18 dataset, we
argue that scanpaths of experienced clinicians on OCT reports
inherently differ from those of viewers searching for target
objects in natural images. Natural objects are usually concrete
and well-segmented. This is not the case in medical images
(e.g., OCT reports) which may contain ambiguous sub-regions
that are critical for making diagnoses.

D. Integration into Unity for GUI for Clinical Translation

As shown in Fig 6, we used Unity to develop an interactive
UI that overlays a sequence of bounding boxes on OCT
reports. Our model provides temporal information in the form
of a sequence of bounding boxes based on a 7 by 7 grid. This

temporal information is combined with a heatmap generated
by a Vision Transformer (ViT) through attention rollout [7]. By
intersecting the heatmap with the temporal bounding boxes,
we merge the temporal insights from our model with the
attention mechanism of the ViT, enhancing the precision and
informativeness of the annotated regions. Our results indicate
that this approach effectively highlights key areas within the
OCT reports, facilitating detailed analysis. Our preliminary
user studies also show that the guidance can enhance efficiency
of novices during inspection of OCT reports by reducing the
variability of their scanpaths without compromising their diag-
nostic accuracy. This development underscores the potential of
combining temporal and attention mechanisms to enhance the
interpretability of complex medical data, providing a robust
tool for clinical diagnostics and education.

E. Limitations
We observe that some of the predicted bounding boxes

covered less informative white regions. We suspect that this
behavior partially stems from fixations located in white space
that are part of clinician saccades during data collection. In
future work, we plan to perform segmentation on OCT images
and use segmentation masks to eliminate fixation points that
fall into white space.

When clinicians repeatedly check the same region of OCT
scans, it indicates the critical nature of the sub-regions. Our
current LSTM model struggles to capture this recurrent in-
spection behavior effectively. To address this in future work,
we will synthesize a heatmap for each OCT report of each
clinician to indicate the importance of sub-regions based on
the frequency of inspections. This heatmap would then serve
as a supervised signal, allowing the LSTM to predict fixation
coordinates and assign an importance score to each sub-region
at every timestep. This enhancement would be especially
useful for training novices, directing their attention to areas
of significance and enhancing the model’s interpretability.

V. CONCLUSIONS AND FUTURE DIRECTIONS

This project presents a novel translation of the “Show,
Attend, and Tell” (SAT) framework for predicting ophthalmol-
ogist gaze patterns on OCT reports, through the innovative



use of a Masked Autoencoder (MAE) as the encoder. This
adaptation leverages self-supervised learning, allowing for a
more nuanced interpretation of complex OCT images without
the need for extensive labeled data.

Initial testing within the SAT framework, utilizing regres-
sion to anticipate gaze patterns, demonstrates the model’s
proficiency in identifying the sequence of an ophthalmologist’s
examination. The attention network trained along with the
LSTM is also able to identify critical regions in the OCT
report. However, the practical application of the autoregressive
LSTM is constrained byscanpath predictions which do not
adequately reflect the actual variability in human observation.
Higher variance in gaze patterns is introduced by training
the LSTM as a classification problem. Post-processing of
predicted gaze patterns using beam search yields patterns that
better resemble the ground truth and achieve quantitatively
superior Pearson coefficients and ScanMatch metrics. Our
model shows strong correlation between predicted and ground-
truth gaze patterns, offering potential for conducting user
studies with our Unity-based guidance interface to determine
its effectiveness in guiding ophthalmologists during OCT
examination. Future directions include integrating the temporal
aspect of our work into a Vision Language Model (with
clinician speech/dictations) to refer and ground features in
medical images.
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