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Abstract

The automated analysis of medical time series, such as the electrocardiogram (ECG), elec-
troencephalogram (EEG), pulse oximetry, etc, has the potential to serve as a valuable tool
for diagnostic decisions, allowing for remote monitoring of patients and more efficient use
of expensive and time-consuming medical procedures. Deep neural networks (DNNs) have
been demonstrated to be effective in processing such signals. However, previous research
has largely focused on classifying medical time series rather than attempting to regress the
continuous-valued physiological parameters that are central to diagnosis. One significant
challenge in this regard is the imbalanced nature of the dataset, as a low prevalence of
abnormal conditions can lead to heavily skewed data that results in inaccurate predictions
and a lack of certainty in such predictions when deployed. Addressing this, we propose a
new framework, HypUC, for imbalanced probabilistic regression in medical time series. Our
approach incorporates ideas from probabilistic machine learning for uncertainty estimation.
We also introduce a new calibration method that provides reliable uncertainty estimates
that generalize well to a diverse range of test sets. Additionally, we present a method for
using these calibrated uncertainties to improve decision-making through an ensemble of
gradient-boosted learners. Furthermore, we demonstrate an entropy-based technique to flag
unreliable predictions. We evaluate our approach on a large, real-world dataset of ECGs col-
lected from millions of patients with various medical conditions. Our approach outperforms
several baselines while also providing calibrated uncertainty estimates for many diagnostic
problems indicating its suitability for clinical use and real-world deployment.

1 Introduction

Electrocardiogram (ECG) signals are widely used in the diagnosis and management of cardiovascular
diseases. However, manual analysis of ECG signals can be time-consuming and subject to human er-
ror. Automated analysis of ECG signals using machine learning (ML) techniques has the potential
to improve the accuracy and efficiency of ECG signal analysis. Moreover, it will open up the av-
enue for remote patient monitoring for managing the cardiovascular health of the patients at scale.
Recent advances in ML have led to the development of var-
ious algorithms for the automated analysis of ECG signals.
These include methods for ECG signal classification and
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diagnosis of specific cardiovascular diseases Hannun et al.

/¥A/—/\‘ /‘A/—/\"J\/\ _/\/\ (2019). Convolutional neural networks (CNNs) and recur-
rent neural networks (RNNs) are commonly used for these

oo ol tasks Siontis et al. (2021); Sentiirk et al. (2018). Existing

literature often focuses on classifying the medical time series
(in one of the disease-related classes) Siontis et al. (2021);
Hannun et al. (2019) instead of regressing the continuous-
valued physiological parameter on which the diagnosis is
based Von Bachmann et al. (2022). But often, solving the regression problem is more valuable than classi-

fication; for instance, consider the problem of measuring electrolytes like potassium in the blood. Excess of
potassium (known as Hyperkalemia) can be fatal. Detecting if the patient has Hyperkalemia non-invasively

Figure 1: Severity of the Hyperkalemia Wlll
decide the diagnosis. Therefore binary classi-
fication is not sufficient.
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by analyzing the ECG is desirable and has been studied previously Galloway et al. (2019). However, a binary
classifier does not distinguish between the different severity of Hyperkalemia as shown in Figure 1 that may
decide the final diagnosis for the condition, i.e., severe/mild hyperkalemia require different treatments.
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Figure 2: HypUC: The proposed framework processes the ECG waveform input to predict the parameters
of the distribution (i.e., entire parametric distribution) representing the continuous value. The predicted
distribution is subjected to global and hyperfine uncertainty calibration techniques to get a well-calibrated
predictive distribution and uncertainty estimate as explained in Section 3.

One of the significant challenges in the real world for regressing the continuous-valued physiological parameter
from medical time series is the imbalanced nature of the dataset, i.e., such datasets are often highly skewed if
the prevalence of the abnormal condition is low. A heavily skewed dataset leads to a trained network that is
inaccurate in the prediction and can not quantify uncertainty in predictions at deployment. To address these
limitations, we propose a new framework called HypUC, shown in Figure 2. It leverages ideas from probabilistic
regression and density estimation to tackle uncertainty-aware imbalanced regression with medical time series.
We present a new and effective uncertainty calibration method (named hyperfine uncertainty calibration)
that provides highly calibrated uncertainty estimates generalizing well to a large, diverse test set. Finally,
we offer a new method that demonstrates how these calibrated uncertainties can be used algorithmically to
improve decision-making consistently using an ensemble of gradient-boosted-based learners. We demonstrate
the efficacy of our methods on a large real-world dataset of ECGs (collected using millions of patients with
diverse medical conditions) to predict various physiological parameters such as Left Ventricular Ejection
Fraction, Serum Potassium Level, Age, Survival, etc.

2 Related Work

In recent years, there has been a growing interest in using deep learning techniques for the analysis of
electrocardiogram (ECG) signals. One of the main areas of focus has been the use of convolutional neural
networks (CNNs) for ECG signal classification. A study by Rajpurkar et al. (2017); Hannun et al. (2019);
Murugesan et al. (2018) used a CNN to classify ECG signals into normal and abnormal beats with high
accuracy. Another study by Ebrahimi et al. (2020); Li et al. (2016) proposed a deep learning-based framework
for arrhythmia detection using ECG signals. A study Han et al. (2022); Camps et al. (2018) proposed a
deep learning-based method for predicting QRS complex locations in ECG signals. Another study Xu et al.
(2019); Sentiirk et al. (2018) presented a deep recurrent neural network (RNN) for predicting heart rate
from ECG signals. Furthermore, there have been studies that have used deep learning for the diagnosis
of specific cardiovascular diseases. The study Baloglu et al. (2019); Mahendran et al. (2021) proposed a
deep learning-based method for detecting myocardial infarction (heart attack) using ECG signals. Another
study Martinez-Rios et al. (2021) presented a deep learning-based approach for identifying hypertension
(high blood pressure) using ECG signals. The study Siontis et al. (2021); Feeny et al. (2020) proposed
a deep learning-based model for the identification of atrial fibrillation using ECG signals, achieving high
accuracy in detecting the condition. Another study Ko et al. (2020) used deep learning to identify ECG
patterns associated with sudden cardiac death, demonstrating the potential for using these techniques for the
prediction of cardiac events. Other works proposed deep learning algorithm for ECG-based risk stratification
in patients with heart failure Bos et al. (2021). Previous works have also explored the use of deep learning
in combination with other techniques, such as wavelet transforms. The study Feeny et al. (2020); Pant
et al. (2022) proposed a deep learning-based framework for ECG signal analysis, which incorporated wavelet
transforms for feature extraction and achieved high accuracy for arrhythmia detection. In recent times there
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have also been many works on estimating uncertainties with DNNs Gal (2016); Lakshminarayanan et al.
(2016); Blundell et al. (2015); Kendall & Gal (2017); Upadhyay et al. (2021b;a;c; 2022); Sudarshan et al.
(2021); Daxberger et al. (2021); Laves et al. (2020b;a); Kumar et al. (2019); Kolczynski Jr et al. (2009);
Garaud & Mallet (2011); Kuleshov et al. (2018); Xia et al. (2023); Jahmunah et al. (2023). However, they
do not address imbalanced dataset (and the calibration of uncertainties in such setups).

3 Methodology

We first formulate the problem in Section 3.1. Preliminaries necessary to motivate the design choices for
our framework (HypUC) are presented in Section 3.2.1 (on Imbalanced Regression), Section 3.2.2 (on Kernel
Density Estimation), and Section 3.2.3 (on Uncertainty Estimation). In Section 3.3, we construct HypUC, that
performs uncertainty-aware regression followed by a new calibration technique that significantly improves
the quality of uncertainty estimates and utilizes a simple technique based on gradient-boosted decision trees
to enhance decision-making using the predicted point estimate and well-calibrated uncertainty estimate.

3.1 Problem formulation

Let D = {(x;,y:)}}¥, be the training set with pairs from domain X and Y (ie., x; € X,y; € Y,Vi),
where X, Y lies in R™ and R, respectively. While our proposed solution is valid for data of arbitrary input
dimension, we present the formulation for medical time series (like ECGs) with applications that predict a
desired physiological parameter helpful in making a diagnosis using ECG. Therefore, (x;,y;) represents a
pair of ECG and physiological quantity/parameter. For instance, to aid in diagnosing Hyperkalemia, x; is
ECG signal, and y; is the serum potassium level (indicating the amount of potassium in the blood, which
may be obtained from the blood test that serves as groundtruth labels for training).

We aim to learn a mapping, say ¥(-) : X — P(Y), that learns to map a given input ECG (x) to a probability
density function P(y), indicating the probable values. We use a deep neural network (DNN) to parameterize
¥ with 6 and solve an optimization problem to obtain optimal parameters 6*, as described in Section 3.3.

3.2 Preliminaries
3.2.1 Imbalanced Regresison

Imbalanced regression refers to the problem of training a machine

learning model for regression on a dataset where the target variable

is imbalanced, meaning that certain values appear more often than

others, this is typical for medical datasets where different medical

conditions appear with different prevalence. Figure 3 shows the

density of Serum Potassium Levels and Left Ventricular Ejection

fraction for a real-world dataset. We notice that most of the pa-

IS 8 10 2 tients have serum potassium level in the range of 3.5 to 5.5, however,

Serum Potassium Level Gn mmolL) it is crucial for machine learning models to work well in the rare

14000 high potassium levels (defined above 5.5) that occurs rarely, i.e., the

population density in the region is very low. Similar trend is ob-

served for LVEF, where most of the data is concentrated in healthy

range (between 40-60%) but low-LVEF regions (defined below 40%)

kin which is important for model to identify, are sparsely present in the

2000 BRI \ dataset. Imbalanced datasets can present challenges for training re-

o ;ﬁ“wmﬁmlar‘;"j“ﬁo“ Fraction (in %) » gression models, as the model may be biased towards the densely

populated samples. The work in Yang et al. (2021); Steininger

Figure 3: Imbalanced distribution of et al. (2021) proposes distribution smoothing for both labels and

target values (top) Serum Potassium features, which explicitly acknowledge the effects of nearby targets

Levels and (bottom) Ejection Fraction and calibrate both label and learned feature distributions lead to

in real-world medical datasets. better point estimates in sparsely populated regions, but does not
tackle the problem of uncertainty estimation.
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3.2.2 Kernel Density Estimation

In statistics, kernel density estimation

(KDE) Terrell & Scott (1992); Chen )
(2017) is the application of kernel
smoothing for probability density esti-
mation. Given a set of i.i.d. samples
{y1,y2...yn} drawn from some unknown
density function f. The kernel density es-
timate provides an estimate of the shape
Of f' Thls can be leveraged to train 0 00 25 50 75 10.0 125 150 00 25 50 75 10.0 125 150
deep regression models with imbalanced Data Values Data Values

dataset by estimating the density for each
target value in the training set and use
this density to create a weighting scheme
to be applied with the loss for that sam-
ple. This approach can help to give more
importance to samples with rare target values, which are often more difficult to predict. This is achieved by
first estimating the density as:
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Figure 4: KDE and related weights for imbalanced tar-
gets. (left) Example of imbalanced target datasets with KDE.
(right) Inverse of KDE with exponent used as weights for the loss
term. Higher exponent leads to sharper weigths.
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where /C is the kernel — a non-negative function — and ~ > 0 is a smoothing parameter called the bandwidth.
Scaled kernel K, is defined as, Kp,(y) = +K(¥), and K is often set to standard normal density function.
The weighting scheme can be designed by leveraging the fact that lower density samples must receive higher
weights and vice-versa, a simple technique to achieve the same is to design the weight for target value y to
be w(y) = m. Figure 4-(left) shows an example of imbalanced target distribution and Figure 4-(right)

shows the deéigned weighting scheme, we note that hyperparameter Ay controls the sharpness of the weights.

3.2.3 Uncertainty Estimation

The works in Kendall & Gal (2017); Laves et al. (2020b); Upadhyay et al. (2022) highlight the key tech-
niques to estimate the irreducible (i.e., aleatoric) uncertainty, and reducible (i.e., epistemic) uncertainty. As
highlighted in Kendall & Gal (2017), capturing aleatoric uncertainty becomes crucial in the presence of large
datasets. For an arbitrary DNN, ®(-;¢{) : X — Y, to estimate the aleatoric uncertainty, the model must
estimate the parameters of Py |x which are then used to maximize the likelihood function. That is, for an
input x;, the model produces a set of parameters representing the output given by, {§,,2; ... p;} := ®(x4; (),
that characterizes the distribution Py |x (y; {¥:, % ... pi}), such that y; ~ Py x (y; {¥i, 2% - .. pi}). The likeli-
hood Z((; D) := Hivzl Py x(yi; {¥i> Di - - - pi}) is then maximized to estimate the optimal parameters of the
network. Moreover, the distribution Py |y is often chosen such that uncertainty can be estimated using a
closed form solution .# of estimated parameters from the DNN, i.e.,

N

{yivﬁi . ﬁz} = ‘I’(Xz’;o with ¢* := argmax f(( D) = argznaxHPyp( Yi; {yZ,Vz~ ﬁz}) (2)
i=1

Uncertainty(yi) =F(0;...p;) (3)

It is common to use a heteroscedastic Gaussian distribution for Py |x Kendall & Gal (2017); Laves et al.
(2020Db), in which case ®(-; () is designed to predict the mean and variance of the Gaussian distribution, i.e.,
{9:,62} := ®(x;;¢), and the predicted variance itself can be treated as uncertainty in the prediction. The
optimization problem becomes,

_I3iyil? N |A 2 ~2

; . yi—yil® | log(67)
= argmax 2*! = argmin _ + v 4
a H 27162 B E 77 5 (4)
Uncertainty (y;) = 3 (5)



Under review as submission to TMLR

3.3 Building HypUC

In this section, we explain the building blocks for our framework, which consists of three major steps: (i)
Optimization for improved continuous-value point and uncertainty estimation, (ii) Post-training hyperfine
uncertainty calibration, (iii) Improved decision-making with an ensemble of gradient-boosted learners.

3.3.1 Optimization for Improved Continuous-value Point and Uncertainty Estimation

As described in Section 3.1, we aim to learn the estimation function ¥(-;0). The DNN ¥ takes the medical
time series as the input and predicts the probability density function parameters for the output. That is,
P(x;0) = {y,6} = {[¥(xi;0)]g, [¥(x:;0)]s}. The optimal parameters of the DNN, §*, are obtained by:

e I (20— v | (1205 — i) [ .
’ _arg;mnNZ{/\l ( pr(yi)? )+)\3 ( (@ (x::0))2 +10g([\P(X170)]&>>}' (6)

Where (i) p(y) is the Gaussian kernel density estimate (fit on the training labels) for the target value y, (ii)
[W(x;;0)]y is the ¥, estimate given by the network, (iii) [¥(x;;6)]s is the &; estimate given by the network.
A1, A2, A3, h are the hyperparameters.

[([ (xi30)]5 —yi)l
p(yi)>2
prediction and the groundtruth, where the discrepancy is weighed down if the groundtruth label is present in
abundance, i.e., density p(y) is high. The discrepancy is weighed up if the label density is low, addressing the

imbalanced nature of the dataset. The term, (W + log (W (x;; 0)]§)), in the above optimization
indicates negative-log-likelihood of heteroscedastic Gaussian distribution assumed for each prediction. The
hyperparameters A, A3 control the relative contribution of the density-based discrepancy term and the

heteroscedastic negative-log-likelihood term that learns to estimate the uncertainty.

In the above optimization, the term ( ) computes the discrepancy between the continuous value

3.3.2 Post-training Hyperfine Uncertainty Calibration

Once the DNN is trained, i.e., the optimal parameters 6* have been found as described in the above optimiza-
tion step, the DNN W(; 0*) is capable of estimating both the target continuous-value and the uncertainty in
the prediction. However, the uncertainty estimates obtained are biased and are not well calibrated Laves
et al. (2020a); Bishop & Nasrabadi (2006); Hastie et al. (2009). Therefore, we propose a new technique to
calibrate the uncertainty estimates. We first find a global optimal scaling factor s* by solving the following
optimization problem on the validation set Dyaiia = {(xi,y:)}},, where the parameters of the DNN are
fixed to the optimal obtained above (i.e., 8*) as described in Laves et al. (2020a),

2
* . Xzy —-Y:
s* = argmin (M log(s 252 Z (¥ e® 9*)] )| > (7)

S

We then run the model in inference mode and generate the estimates for all the samples in the validation set,
- ‘dation s , — [x v, . 62IM s
i.e., we get a new augmented validation set, Dyalid—aug = {Xi, ¥i, ¥i, 07 tirq- We then create hyperfine bins of
uniform length spanning the entire range of predicted continuous-values, i.e., we create b = int (M)
bins, where § << Ymaz — Ymin leading to hyperfine bins, where y,q. = maz({y;}i=1.m) and yomin =
min({y;}ti=1.as). The n*" bin being B,, spanning [y,,in + (7 — 1)8, Ymin +nd]. Each sample in the validation
set then belongs to one of the bins. We then find a bin-wise scaling factor for each of the above hyperfine
bins by solving an optimization problem. The bin-wise scaling factor for bin B, ng,, is given by,

len({|y: — yil <ns*6i}y.en,)
( len(By) - ~ f)

7B, = argmin
n

(8)

Where, len(-) is the function that gives the number of elements in the input set and & represents the
minimum acceptable fraction in each bin where the discrepancy between the prediction and the groundtruth
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Figure 5: Gradient-boosted based ensemble of decision trees incorporating calibrated uncertainty (via both
global and hyperfine calibration) and point estimate to help in diagnostic decision making.

(i.e., |§ —y|) is captured by the scaled uncertainty estimates (i.e., ns*4;). The above scaling factors allow
us to compute the well calibrated uncertainty estimates for each prediction. Given input x, the continuous
value prediction (¥) and the calibrated uncertainty (6cq146) are given by,

{3,6} = ¥ (x;07) and Geatib = NBin(g)s 0 9)
Where, Bin(y) is the hyperfine bin to which § belongs 7pg;n(y) is the bin-wise scaling factor of the bin.

3.3.3 Improved Decision-making with an Ensemble of Gradient-boosted Learners

Medical professionals often diagnose the condition based on continuous value lying in a certain standardized
range Galloway et al. (2019); Bachtiger et al. (2022). We propose a technique that utilizes both the predicted
continuous value and calibrated uncertainty estimate to infer the standardized range (that is better than
relying on just the continuous-value point estimate). The proposed technique uses predictions (both y and
Gealip) from the trained DNN (¥) as input features to an ensemble of decision trees that uses a gradient-
boosting technique to learn a random forest (represented by Y with Nyy.ces trees and dyyee as the maximum
possible depth for each tree) on dataset Dipgin U Dyalid, that infers the standardized-range/class in which
the predicted continuous-value belongs, accounting for the uncertainty in the predictions,

Class(x) = Y ([ (x;0")]g, NBin (@ (x;00)]) 5 ¥ (x:09)]5) - (10)
4 Experiments and Results

4.1 Tasks and Datasets

Our dataset is curated at DEIDENTIFIED-MEDICAL-SITE and consists of over 2.5 million patients, with
over 8.9 million 12-lead ECGs coming from different types of hardware, covering a wide range of medical
conditions, age, and demographic variables. The data collection is from year 1980 to 2020. More details
about the dataset and the collecting organization will be revealed post publication.

4.1.1 Estimating Age from ECG

Estimating age from an electrocardiogram (ECG) has gained increasing attention in recent years due to the
potential for non-invasive age estimation to aid in diagnosing and treating age-related conditions. Previous
works Attia et al. (2019) have shown that, using deep learning, it is possible to analyze the ECG signals
such that the neural network can identify patterns in the ECG waveform that change with age, which can
be used to estimate an individual’s cardiovascular age. For our experiments, we curated a diverse dataset of
8.8 million ECGs (along with the patient’s age). We used 6.7/0.75/1.35 million for train/val/test datasets.

4.1.2 Estimating Survival (time-to-death) from ECG

Estimating survival, or time to death, from an electrocardiogram (ECQG) is a relatively new field of study
that has gained momentum in recent years as it may aid in treatment and management of life-threatening
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conditions Diller et al. (2019); Tripoliti et al. (2017). We curate the data to consist only of patients for
which the death has been recorded. The time interval from ECG recording to death for such patients
provide groundtruth for survival (time-to-death). In total there were 3 million ECGs with the corresponding
time-to-death, we used 2.3/0.26,/0.44 million for train/val/test sets.

4.1.3 Estimating Level of Potassium in Blood from ECG: Detecting Hyperkalemia

Serum potassium level is a measure of the amount of potassium in the blood. Potassium is an electrolyte
that is essential for the proper functioning of the body’s cells, tissues, and organs. It helps regulate the
balance of fluids in the body, maintain normal blood pressure, and support proper muscle function, among
other functions. The normal range for serum potassium levels is typically considered to be between 3.5-5.0
millimoles per liter (mmol/L). Levels below 3.5 mmol/L are considered to be low (hypokalemia) and levels
above 5.0 mmol/L are considered to be high (hyperkalemia). Both low and high potassium levels can have
serious health consequences. While a blood test is used to measure the serum potassium level, recent works
have evaluated machine learning techniques to infer the potassium level using ECGs, this can play a critical
role in remote patient monitoring Galloway et al. (2019; 2018); Feeny et al. (2020); Ahn et al. (2022). In
total there are over 4 million ECGs with the corresponding serum potassium level (derived using blood test),
we used 2.1/0.4/1.7 million for train/val/test sets.

4.1.4 Estimating Left Ventricular Ejection Fraction from ECG: Detecting low LVEF

Low left ventricular ejection fraction (LVEF) is a condition in which the left ventricle of the heart is unable
to pump a sufficient amount of blood out of the heart and into the body. The left ventricle is the main
pumping chamber of the heart and is responsible for pumping oxygenated blood to the rest of the body.
LVEF is typically measured as a percentage, with a normal range being between 55 — 70%. A LVEF below
40% is generally considered to be low and may indicate heart failure. LVEF can be evaluated through
various non-invasive tests, including an echocardiogram, a nuclear stress test. But ECG can still provide
valuable information about heart function and can be used in conjunction with other tests to assess LVEF
and diagnose heart conditions Noseworthy et al. (2020); Vaid et al. (2022). In our experiments, we leverage
DNNs to infer the LVEF - this can help reduce the costs associated with overall diagnosis and treatment by
reducing the need for more expensive Echocardiogram. In total there are over 0.6 million ECGs with the
corresponding LVEF (derived using Echo), we used 0.3/0.1/0.2 million for train/val/test sets.

4.2 Compared Methods and Training details

To perform a comparative study with 12-lead ECG time series, we create a backbone DNN architecture
adapting ResNets into a 1D version (with 1D convolutional layers) as discussed in previous works Attia
et al. (2019). The DNN backbone arictecture is used to create class of (i) deterministic regression models,
(ii) class of probabilistic regression models, and (iii) class of classification models for some of the tasks. For
the probabilistic regression we append the backbone architecture with two smaller feed-forward heads to
estimate the parameters of the predictive distribution as described in Kendall & Gal (2017); Upadhyay et al.
(2022). The deterministic regression model is trained with (i) L2 loss, termed as Regres.-L2, (ii) L1 loss
termed as Regres.-L1, (iii) We incorporate the density based weights to modulate the loss terms, we call this
Regres.-L1-KDEw. We train two variants of probabilistic regression models (i) the standard heteroscedastic
Gaussian model that estimates the mean and variance for the prediction and trained to maximize the
likelihood as described in Von Bachmann et al. (2022), called Regres.-w.-U and (ii) Our proposed model
HypUC, that incorporates a novel calibration technique along with gradient-boosted corrections. For serum
potassium level estimation (and LVEF estimation), we also compare with a binary classifier that predicts
whether the given ECG has Hyperkalemia (and low LVEF for LVEF estimation). We train all the models
using Adam optimizer Kingma & Ba (2014), with (81, 82) set to (0.9,0.999). The learning rate used to
train models was le~*. For HypUC, the hyper-parameters {\1, h, Ao, A3} are set to (i) {1,0.7,0.8,1e=3} for
Age estimation. (ii) {1,0.5,0.5,1le~*} for Survival estimation. (iii) {1,1,0.2,1e~%} for Serum potassium
estimation. (iv) {1,1.5,0.1,1e~*} for Left Ventricular Ejection Fraction (LVEF) estimation.
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4.3 Results

Table 1 shows the performance of various methods on different tasks and datasets. For all the regression
tasks, we compute MSE and MAE to measure the discrepancy between the predictions and the groundtruth.
Moreover, spearman and pearson correlation coefficient indicate the positive association between the pre-
dicted point estimates from the network and the groundtruth target variable. High correlation indicate that
the prediction will be able to indicate the severity of the medical condition (which maybe helpful in prescrib-
ing the treatment as explained in Section 1). For probabilistic models, the quality of uncertainty estimates is
measured by UCE and NLL Laves et al. (2020a); Upadhyay et al. (2022). Finally, for the binary classification
tasks, we also report the AUC, Sensitivity, Specificity, Positive/Negative Predictive values (PPV/NPV).

4.3.1 Task Specific Performance

As indicated in Table 1, for Survival Estimation, the regression model trained with L2 loss (Regres.-L2)
has a MSE of 100.12 (MAE of 8.49, Spearman/Pearson correlation of 0.30/0.30), which are worse than
the performance of the model trained with L1 loss (Regres.-L1) (MSE of 73.21, MAE of 7.78, Spear-
man/Pearson correlation of 0.38/0.41), this is inline with previous works. Moreover, we could further improve
the performance of the regression model trained with L1 loss by incorporating kernel density-based weights
(Regres.-L1-KDEw), as described in Section 3.3, that accounts for imbalance in the dataset and leads to a per-
formance with MSE of 67.97 (MAE of 6.30, Spearman/Pearson correlation of 0.51/0.53). Additionaly, we no-
tice that heteroscedastic Gaussian probabilistic regression model (Regres.-w.-U) from Von Bachmann et al.
(2022) performs better than homoscedastic Gaussian model (Regres.-L2) but not as good as (Regres.-L1).
However, Regres. -w.-U estimates the uncertainty in the prediction (with UCE/NLL of 2.37/5.89), but our
proposed HypUC not only improves regression performance (with MSE/MAE of 54.62/5.38) but the quality
of uncertainty as well (with UCE/NLL of 0.58/3.45). We observe a similar trend for the Age Estimation.
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Figure 6: Serum Potassium Estimation model score correlation with groundtruth Serum Potassium levels.
(left) Model scores (pre-activation) for the binary classifier. (middle) Model scores (post-activation) for the
binary classifier. (right) Model scores for the proposed HypUC. The proposed HypUC not only produce better
correlated outputs, but can also quantify the uncertainty estimates.

For Serum Potassium Estimation, we compared with a binary classifier baseline (Binary-Classifier in
Table 1), an approach found in Galloway et al. (2019), which predicts if a given ECG corresponds to Hy-
perkalemia or not, instead of estimating the serum potassium level. While such a binary classifier achieves
a good classification performance as indicated by an AUC of 0.87, it does not gauge the severity of the
condition that may decide the diagnosis. Figure 6 shows the correlation between the ground truth serum
potassium level compared to the scores derived from binary classifier (Figure 6-left and middle), the lack of
high positive correlation (Spearman correlation of 0.39) indicates that scores from the model can not be used
as an indication for the severity of the medical condition (within Hyperkalemia), but can be used to dis-
criminate Hyperkalemia from non-Hyperkalemia cases. We also train different kinds of regression models to
regress the serum potassium level. As indicated in Table 1, we see that regression models generally produce
outputs that are better correlated with the groundtruth (e.g., Regres.L2 has a Spearman correlation coef-
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ficient of 0.51 vs. 0.39 for Binary Classifier). Moreover, we observe that among deterministic regression
models Regres.-L1-KDEw performs the best with MSE of 0.19 (MAE of 0.33). The probabilistic regressor
Regres.-w.-U performs better than Regres.-L2 and provides uncertainty estimates as well (UCE/NLL of
1.83/8.76). But, HypUC provides the best regression performance along with better uncertainty estimates.
Additionally, the outputs from the regression models can be used to classify the ECG into Hyperkalemia or
not (similar to binary classifier), we notice that all the regression models perform comparable classification
to classifier. In particular, HypUC has AUC of 0.89 which is higher than the binary classifier (AUC of 0.87).

Tasks Methods MSE MAE %’:ﬁr féej‘rrrs_' UCE NLL | AUC Sensiti. Specifi. PPV NPV
Regres.-L2 10012 849 | 030 030 | NA NA | NA  NA NA NA NA

3 § Regres.-L1 7321 778 | 038 041 | NA NA | NA  NA NA NA NA
S £ | Regres.-Li-KDEw | 67.97 630 | 051 053 | NA NA | NA  NA NA NA NA
@ g Regres.-w.-U | 8462 813 | 035 038 | 237 580 | NA  NA NA NA NA
HypUC 54.62 5.38 | 0.56 0.61 | 0.58 3.45| NA  NA NA NA NA

Regres.-L2 151.69 947 | 058 060 | NA NA | NA  NA NA NA NA

8 Regres.-L1 11652 793 | 073 075 | NA NA | NA  NA NA NA NA
» g Regres.-L1-KDEw | 99.77 7.64 | 0.78 081 | NA NA | NA  NA NA NA NA
% | Regres.-w.-U | 13627 822 | 0.68 072 | 1332 7.84 | NA  NA NA NA NA
HypUC 749 6.70 | 0.84 0.88 | 1.06 3.70| NA  NA NA NA NA

£ Binary-Classifier | NA NA 0.39 0.41 NA NA | 087 0.74 0.85 0.10  0.99
2 5 Regres.-L2 026 052 | 051 054 | NA NA | 084 070 0.86  0.10 0.9
g% Regres.-L1 019 034 | 052 054 | NA NA | 08  0.70 0.87  0.09 0.99
"E* E Regres.-L1-KDEw | 0.19 033 | 052 055 | NA NA | 0.86  0.72 0.85 0.1 0.99
£ | Regres.-w.—U 023 038 | 051 055 | 1.83 876 | 086  0.71 0.86 010 0.99
@ HypUC 020 0.32 | 052 055 | 0.41 3.12| 0.89 0.77 086 010 0.99
- Binary-Classifier | NA NA 0.28 0.32 NA NA | 091 0.77 0.87 0.09 0.98
'% 5 Regres.-L2 171.37 1356 | 037 039 | NA  NA | 090  0.75 0.84  0.09 0.98
£ Regres.-L1 153.66 1178 | 041 042 | NA NA | 091  0.76 0.86 010 0.98
E £ | Regres.-Li-KDEw | 141.62 1071 | 041 043 | NA NA | 091  0.75 0.87  0.09 0.99
g @ | Regres.-w.-U | 16581 1224 | 041 044 |10.56 9.83 | 0.90  0.74 0.85 010 0.99
a HypUC 133.26 10.21| 0.43 0.45 | 1.68 4.28 | 0.93 0.77  0.87 0.10 0.99

Table 1: Quantitative results on 4 different tasks (Survival, Age, Serum Potassium, and Left Ventricular
Ejection Fraction Estimation) showing the performance of various deterministic and probabilistic regression
and classification models in terms of Mean Squared Error (MSE), Mean Absolute Error (MAE), Spearman
Correlation (Spear. Corr.), Pearson Correlation (Pear. Corr.), Uncertainty Calibration Error (UCE), Nega-
tive Log-likelihood (NLL), AUC, Sensitivity, Specificity, Positive/Negative Predictive Values PPV /NPV. If
for a task/method certain metric is not applicable we show NA.

A similar trend is observed for Left Ventricular Ejection Fraction (LVEF) Estimation where the proposed
HypUC performs well in regression along with better calibrated uncertainty estimates. Moreover, when used
as a classifier, it also yields a better performance than the binary classifier trained from scratch, emphasizing
the benefits of tackling this problem with the proposed probabilistic regression framework, HypUC.

4.3.2 Calibration of Uncertainty Estimates on the Test-set

Figure 7 shows the groundtruth and the predicted distribution for Age/Survival/Serum Potassium/LVEF
estimation tasks on the test dataset. The x-axis in the plot indicates the predicted point estimates from the
HypUC. For a given point on x-axis: (i) Red bold curve shows the peak of the groundtruth distribution (i.e.,
the distribution of groundtruth values that correspond to predicted value given by the x-axis). (ii) Shaded
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Figure 7: Groundtruth and predicted distributions for 4 different tasks (Age/Survival/Serum Potas-
sium/LVEF estimation). Predicted distribution from HypUC tightly encompasses groundtruth distribution
(compared to predicted distribution from Regres.-w.-U) indicating predictions are well-calibrated.

red region indicate the spread of the groundtruth distribution (i.e., 2 and 98 percentile of the groundtruth
distribution). (iii) Blue bold curve shows the peak of the HypUC-predicted distribution. (iv) Blue shaded
region indicate the spread of the groundtruth distribution (i.e., 2 and 98 percentile of the groundtruth
distribution). We notice that predicted distribution from HypUC tightly encompasses groundtruth distribution
(compared to predicted distribution from Regres.-w.-U) indicating predictions are well-calibrated. We
calibrate HypUC using small validation sets but it generalizes well to much larger test sets.

4.3.3 Entropy-based Filtering to Trigger Human Expert Intervention

As the proposed HypUC produces well calibrated predictive distribution, we 1750
propose a technique to use the predicted distribution to flag the unreli-
able predictions. For a given input sample x, the trained DNN produces
{y,6} = ¥(x;0%). We then apply the post-hoc calibration techniques to
obtain {¥, 6cariv}- We then compute the entropy of the predicted distribu-
tion, i.e., N(¥,62,,,,) given by H(z), i.e., -

1000

Prediction with
high-entropy, i.e.
predictions not
reliable

Number of Samples

20 O3S 5.0

calib
(11)

(12)

H(z) = [ ~pla)logp(a)  where 3 ~ (5 5%)

H(Z) = —E(lOgN(y, 6-galib)) = log \/ 27Tea.(2:alib

At the test time, if for the sample x the entropy log \/2me62, ., > Tq.val
then the prediction is flagged as unreliable. The threshold 74 yq is com-

Entropy

Figure 8: Distribution of en-
tropy for LVEF validation set
with a threshold of 10%-tile.

puted using the validation set as the ¢—%tile value from the distribution of entropy values as shown in
Figure 8 for LVEF estimation using HypUC. Figure 9 evaluates the regression performance of HypUC (in terms

10
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Figure 9: Evaluating HypUC on test-set by removing the unreliable (i.e., high entropy) predictions. We see
consistent improvement as we decrease the entropy threshold based on quantile as described in Section 4.3.3

of MAE) on the test-sets for various tasks by removing the unreliable predictions based on different thresh-
olds derived from the validation set. We observe that as we remove the higher fraction of unreliable samples
(i.e., decreasing the threshold 74 ,q; by lowering the value of ¢) the performance improves. This phenomena
demonstrates that we could enhance the predictions made by model by only showing reliable predictions
and flagging the unreliable predictions (based on entropy measure) to be evaluated by human experts which
may be critical for deploying machine learning models for healthcare applications in real-world.

5 Discussion and Conclusion

Automated analysis of medical time series (like ECG) using machine learning (ML) techniques open several
avenues in large scale remote healthcare assistance while making more efficient use of existing procedures.
Previous research in this domain has largely focused on classifying medical time series into one of the several
disease classes rather than attempting to regress the continuous-valued physiological parameters that are
central to diagnosis of many medical conditions. This is often because imbalanced dataset present in these
domains make it challenging for ML models to be accurate and certain when deployed. In this work, we
build a new method, HypUC, in an attempt to solve the imbalanced regression problems with medical time
series. HypUC incorporates ideas from probabilistic machine learning to also perform uncertainty estimation.
We also introduced a new hyperfine uncertainty calibration technique that provides reliable uncertainty
estimates for a diverse range of test sets. Additionally, we present a method for using these calibrated
uncertainties to improve decision-making through an ensemble of gradient-boosted learners. In our studies,
we use the well-calibrated predictive distribution derived from HypUC in an entropy-based technique to flag
the unreliable predictions at the inference time for human expert evaluation and improve the performance
of the ML model. Our approach is demonstrated on a large, real-world dataset of ECGs collected from
millions of patients with various medical conditions, and is shown to outperform several baselines while also
providing calibrated uncertainty estimates suitable for clinical use and real-world deployment.
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