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Abstract

We present a new scientific document similar-001
ity model based on matching fine-grained as-002
pects of texts. To train our model, we exploit a003
naturally-occurring source of supervision: sen-004
tences in the full-text of papers that cite mul-005
tiple papers together (co-citations). Such co-006
citations not only reflect close paper related-007
ness, but also provide textual descriptions of008
how the co-cited papers are related. This novel009
form of textual supervision is used for learn-010
ing to match aspects across papers. We de-011
velop multi-vector representations where vec-012
tors correspond to sentence-level aspects of013
documents, and present two methods for as-014
pect matching: (1) A fast method that only015
matches single aspects, and (2) a method that016
makes sparse multiple matches with an Op-017
timal Transport mechanism that computes an018
Earth Mover’s Distance between aspects. Our019
approach improves performance on document020
similarity tasks in four datasets. Further, our021
fast single-match method achieves competi-022
tive results, paving the way for applying fine-023
grained similarity to large scientific corpora.1024

1 Introduction025

The ability to identify similarity across documents026

in large scientific corpora is fundamental for many027

applications, including recommendation (Bhagavat-028

ula et al., 2018), exploratory or analogical search029

(Hope et al., 2017, 2021b; Lissandrini et al., 2019),030

paper-reviewer matching (Mimno and McCallum,031

2007; Berger et al., 2020) and many more uses.032

Scientific papers often describe multifaceted ar-033

guments and ideas (Hope et al., 2021a; Lahav et al.,034

2021), suggesting that models capable of matching035

specific aspects can better capture overall docu-036

ment relatedness, too. For example, sentences in037

research abstracts can often be categorized as de-038

scriptions of objectives, methods, or findings (Kim039

1Code available at: https://anonymous.4open.
science/r/aspire-F570

et al., 2011; Chan et al., 2018), centrally important 040

discourse structures of scientific texts. 041

In this paper, we propose a new model for doc- 042

ument similarity that makes aspect-level matches 043

across papers and aggregates them into a document- 044

level similarity. We focus on sentence-level aspects 045

of paper abstracts, and train multi-vector repre- 046

sentations of papers in terms of their contextual- 047

ized sentence embeddings. To train our models, 048

we leverage a readily available data source: sen- 049

tences that co-cite multiple papers. Unlike recent 050

work that used citation links for learning scientific 051

document similarity (Cohan et al., 2020), we ob- 052

serve that papers cited in close proximity provide 053

a more precise indication of relatedness. Further- 054

more, the citing sentences typically describe how 055

the co-cited papers are related, in terms of shared 056

aspects (e.g., similar methods or findings, related 057

challenges or directions, etc.). Building on this ob- 058

servation, we leverage these textual descriptions as 059

a novel source of textual supervision, using them 060

to guide our model to learn which sentence-aspects 061

match without any direct sentence-level supervi- 062

sion. Guidance for the document similarity model 063

is obtained via an auxiliary sentence encoder model 064

that is used for aligning abstract sentences by find- 065

ing pairs most similar to the citing sentence text. 066

Our document similarity objective is modeled 067

as a function of similarity between sentence-level 068

matches. We explore two strategies to aggregate 069

over sentence-level distances between documents. 070

First, a single-match method with minimum L2 dis- 071

tances between document aspect vectors. This ap- 072

proach readily supports approximate nearest neigh- 073

bor search methods for large-scale retrieval. Sec- 074

ond, a multi-match method that computes an Earth 075

Mover’s Distance between documents’ aspect vec- 076

tors by solving an Optimal Transport problem. This 077

yields a soft sparse matching of aspect vectors, 078

which when combined with their L2 distances gives 079

a document-level distance. 080

1

https://anonymous.4open.science/r/aspire-F570
https://anonymous.4open.science/r/aspire-F570


Finally, as an additional benefit of our repre-081

sentation, our models also support a finer aspect-082

conditional retrieval task (Hope et al., 2017, 2021a;083

Chan et al., 2018; Mysore et al., 2021) where as-084

pects can be specified by selecting abstract sen-085

tences — for example, selecting sentences describ-086

ing methods and retrieving papers using similar087

methods. As we show, naively encoding sentences088

without their context leads to subpar results in this089

task, and our representation that does take context090

into account dramatically improves results.091

Extensive empirical evaluation on four English092

scientific text datasets and seven similarity tasks093

at the level of documents and sentences demon-094

strates the effectiveness of our models. These in-095

clude biomedical document retrieval tasks and a re-096

cent faceted query-by-example corpus of computer097

science papers (Mysore et al., 2021). This latter098

dataset is used for evaluating retrieval conditioned099

on specific aspects in context (e.g., for finding pa-100

pers with similar methods to a query document),101

demonstrating that our model can be used in this102

challenging and important setting. In summary, we103

make the following main contributions:104

1. Multi-Vector Document Similarity Model:105

We present ASPIRE2, a multi-vector document106

similarity model that flexibly aggregates over107

fine-grained sentence-level aspect matches.108

2. Co-Citation Context Supervision: We ex-109

ploit widely-available co-citation sentences as110

a new source of training data for document111

similarity and provide a method using a novel112

form of textual supervision to guide represen-113

tation learning for aspect matching.114

3. State of the Art Results: Our ASPIRE mod-115

els outperforms strong baseline methods116

across four datasets for the abstract and aspect-117

conditional similarity tasks.118

2 Problem Setup119

Given query document Q and a candidate amongst120

a set of documents C ∈ C, where documents con-121

sists of N sentences 〈S1, S2, . . . SN 〉 we aim to122

leverage fine-grained document similarity in two123

problem settings. An abstract level retrieval task124

(Brown et al., 2019; Cohan et al., 2020) and an125

aspect-level retrieval task (Mysore et al., 2021):126

Def 1. Retrieval by abstracts: Given query and127

candidate documents – Q and C a system must128

output the ranking over C.129

2ASPIRE: Aspectual Scientific Paper Relations.

Def 2. Aspect-level retrieval by sentences: Given 130

query and candidate documents – Q and C, and a 131

subset of sentences SQ ⊆ Q conditional on which 132

to retrieve documents, a system must output the 133

ranking over C. 134

Modeling Desiderata: Next, we also outline 135

key desired properties we require from models de- 136

veloped for task definitions 1 and 2. We follow 137

these desiderata when building our methods (§3.1). 138

1. Allowing specification of optional fine-grained 139

aspects: We would like models to allow the ability 140

to specify fine-grained query aspects in a query doc- 141

ument based on which retrievals should be made. 142

These may be obtained automatically (e.g., with a 143

discourse tagging method) or via user specification. 144

2. Scalable to large corpora and efficient inference: 145

State of the art retrieval systems often rely on ex- 146

pensive cross-attention mechanisms on query-docu- 147

ment pairs making training and inference expensive 148

(Zamani et al., 2018; Lin et al., 2021). This is ex- 149

acerbated for longer scientific documents requiring 150

specific transformer models (Caciularu et al., 2021). 151

We require our methods to leverage large training 152

corpora and allow efficient inference at scale. 153

3 Proposed Approach: ASPIRE 154

In this section we describe our approach to docu- 155

ment similarity – ASPIRE. We model finer-grained 156

matches between documents at the level of sen- 157

tences via contextual representations and aggre- 158

gating over matches to obtain similarities between 159

whole documents. We leverage co-citation sen- 160

tences as a source of document similarity and also 161

as implicit textual supervision describing related 162

aspects of co-cited documents. We formulate our 163

multi-vector models (Luan et al., 2021; Humeau 164

et al., 2020) that can support scalable inference as 165

novel multiple-instance learning (MIL) models. 166

3.1 Fine-grained Document Similarity 167

We assume to be given a training set consisting 168

of sets of documents P which are weakly-labeled 169

for similarity. We leverage widely-available sets 170

of papers co-cited together in the same sentence 171

as similar (see Figure 1). This builds on the obser- 172

vation that co-citations in close proximity (e.g., in 173

the same sentence) are strong indicators for paper 174

relatedness (Gipp and Beel, 2009). 175

We follow the contrastive learning framework, 176

commonly used for learning semantic similarity 177

(Reimers and Gurevych, 2019; Cohan et al., 2020). 178
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Parser Adaptation and 
Projection with Quasi-
Synchronous Grammar 

Features 
[…] On the more difficult 
problem of cross-lingual 
parser projection, we learn a 
dependency parser for a 
target language by using 
bilingual text, an English 
parser, and automatic word 
alignments […]

(Smith and Eisner, 2009)

Dependency Grammar 
Induction via Bitext 

Projection Constraints 
[…] We consider generative 
and discriminative models 
for dependency grammar 
induction that use word-
level al ignments and a 
source language parser 
(English) to constrain the 
space of possible target 
trees. […]

(Ganchev et al., 2009)

a

b

c
Co-Cited Abstract

Most previous work in cross-language 
adaptation has used parallel corpora to 
project dependency structures across 
translations using word alignments (Smith 
and Eisner, 2009; Ganchev et al., 2009)

Co-Citation Context

Figure 1: Example illustrating the signal in co-citations. Of all the sentences in co-cited abstracts a and c the
sentences shown are each individually aligned to co-citation context b as per embeddings from BERTE (§3.2.2).
Consequently these sentences in a and c are treated as sharing aspects between the co-cited papers to supervise
our fine-grained similarity model for single matching.

We train models on triples of the form (p, p′, n)179

where p, p′ ∈ P and n /∈ P is a randomly se-180

lected negative, using the triple margin ranking181

loss Lf (p, p′, n) = max[f(p, p′)−f(p, n)+m, 0],182

where f(·, ·) is a distance between documents. All183

pairwise-combinations p, p′ ∈ P are treated as pos-184

itive pairs in-turn. In this work, we parameterize f185

based on the distances between finer-grained doc-186

ument aspects A. Given documents p and p′, we187

focus on a family of functions f of the form:188

f(p, p′) =
∑

(i,i′)∈Ap×Ap′

wi,i′ · di,i′ . (1)189

Here, Ap ×A′p represents the space of alignments190

between aspects of document p and p′, di,i′ denotes191

a distance between two aspects i, i′, and wi,i′ rep-192

resents a weight indicating the contribution of the193

aspect similarity to the overall document similar-194

ity. Unlike previous work (Neves et al., 2019; Jain195

et al., 2018; Hope et al., 2017), we make no as-196

sumption on specific aspect semantics in deriving197

a model architecture, and focus on aspects in the198

form of general subsets of document sentences.199

For learning, we only assume to be given200

document-level supervision (sets of documents P),201

and no supervision on aspect-level similarity. Our202

task thus consists of learning wi,i′ and di,i′ via in-203

direct supervision. We cast this problem setting as204

a novel type of multi-instance learning (MIL) (Ilse205

et al., 2018) problem. Prior work in MIL broadly206

aims to learn instance level classifiers given labels207

for a bag of instances, this bears resemblance to208

our setting, where instances are aspects A. How-209

ever, unlike prior MIL work we focus on learning210

similarity rather than classification. We formulate211

two variants of f in Equation 1:212

(1) A single match model (§3.2.2) which con- 213

siders documents similar based on the single most 214

similar alignment îp, îp′ ∈ Ap×A
′
p. This assumes 215

w = 1 for the best alignment and w = 0 elsewhere. 216

(2) A multi match model (§3.2.3) which makes 217

multiple alignments between documents. We find 218

aspect importance weights wi,i′ , by solving an Op- 219

timal Transport (OT) problem (Peyré et al., 2019). 220

In both variants, during training we learn con- 221

textualized aspect embeddings that minimize the 222

contrastive loss paramertized with f . 223

Co-citation Contexts as Supervision: Finally, 224

we present a method for incorporating implicit natu- 225

ral language supervision during training, presented 226

by co-citation sentences which describe specific 227

relations between co-cited documents. For exam- 228

ple, Figure 1 shows a case explaining the similarity 229

between the co-cited papers’ methods. We leverage 230

this textual supervision to find a “best” alignment 231

îp, îp′ in the single-alignment variant (1), and for 232

guiding the optimal transport plan in variant (2). 233

We describe the specific model components next. 234

3.2 Model Description 235

3.2.1 Document Encoder 236

We leverage a pre-trained BERT-based language 237

model as a document encoder as the base of all our 238

methods. Our encoder is mainly intended to output 239

contextualized sentence representations. Given a 240

document title and abstract, this is achieved as: 241

S = BERTθ([CLS] Title [SEP] Abstract) (2) 242

where S ∈ RN×d represents contextualized sen- 243

tences s1 . . . sN stacked into a matrix. Here, each 244

s is obtained by mean-pooling word-piece embed- 245

dings from the final layer of BERTθ for the sen- 246

tence tokens. Pairwise distances between sentences 247
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Co-citation context

Transport plan, P̂L2 distances for , p, p′ D

Co-citation context

(a) Learning fine-grained document similarity using co-
citations.

Co-citation context

Transport plan, P̂L2 distances for , p, p′ D

Co-citation context

(b) The single best match, îp, îp′ , is computed from
textual supervision in the co-citation context.

Co-citation context

Transport plan, P̂L2 distances for , p, p′ D

Co-citation context

(c) Multi-aspect matches via a sparse transport plan.

Figure 2: Approach overview. (a) We train fine-grained similarity models using papers co-cited in the the same
sentence in research papers. (b) Single-match models are learned from implicit supervision in co-citation contexts.
(c) Multi-match models are learned by aligning aspect representations by solving an Optimal Transport problem.

di,i′ in Eq 1 for p, p′, are represented as a matrix248

D ∈ RN×N ′ of L2 distances between Sp and Sp′ .249

3.2.2 Single Match & Textual Supervision250

Our single match model makes the assumption that251

document similarity is explained by a single best252

match, giving fTS(p, p′) = D[̂ip, îp′ ]. Here, we253

leverage weak supervision from co-citation con-254

texts for training. This is done by using an auxiliary255

sentence encoder to compute a maximally aligned256

sentence îp in co-cited paper p to the co-citation257

context, similarly îp′ aligns a sentence in p′ to the258

co-cotation context. Then the two context aligned259

sentences are treated as aligned to each other, for260

training. In practice, the same papers P can be261

co-cited in multiple different papers (in ∼ 30%262

of co-cited papers) giving us a set of co-citation263

sentences, e ∈ E and training data of the form264

(E ,P). Alignments of the sentences in p and p′ to265

the co-citation contexts e ∈ E are computed as:266

îp, k̂p = argmax
i=1...N,k=1...N ′

RpR
T
E

îp′ , k̂p′ = argmax
i=1...N,k=1...N ′

Rp′R
T
E

(3)267

Here Rp, Rp′ , and RT
E are independent sentence268

representations for p, p
′

and e, respectively, ob-269

tained from a auxiliary sentence encoder BERTE270

(details below), and îp, îp′ represent the single best 271

alignment of sentences across p, p′ “anchored” on 272

textual supervision sentences E . Importantly, this 273

supervision is only used during training time to 274

guide learning. This procedure is depicted in Fig- 275

ure 2b with Figure 1 showing an example. 276

Co-citation Context Encoder The encoder 277

BERTE represents a SCIBERT based sentence en- 278

coder pre-trained for scientific text similarity. We 279

train BERTE on sets of co-citation contexts referenc- 280

ing the same set of papers (i.e. E) in a contrastive 281

learning setup. This set, E , can be considered as 282

paraphrases since co-citation sentences citing the 283

same papers often describe similar relations be- 284

tween the papers This model is similar to Sentence- 285

BERT (Reimers and Gurevych, 2019) and we refer 286

to it as CoSentBert. In training document en- 287

coder BERTθ, we keep BERTE frozen. Appendix C 288

presents more detail on BERTE design. 289

3.2.3 Multiple Matches & Optimal Transport 290

While a single best sentence alignment îp, îp′ may 291

sufficiently explain document similarity for some 292

documents and applications, documents often have 293

a stronger and weaker alignments. So, in comput- 294

ing sentence alignments between documents we 295

would like a sparse matching that aptly weights 296

alignments while ignoring non-alignments — cor- 297
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responding to learning weights wi,i′ in Eq 1. To298

model this intuition we leverage optimal transport.299

Optimal Transport The OT problem is consti-300

tuted by two sets of points, Sp and Sp′ as in our301

case, and distributions xp and xp′ according to302

which the set of points is distributed. The OT prob-303

lem involves computation of a transport plan P̂,304

which converts xp into xp′ by transporting prob-305

ability mass while minimizing an aggregate cost306

computed from the pairwise costs D of aligning307

the points in Sp and Sp′ . P̂ is constrained such308

that its columns and rows marginalize respectively309

to xp and xp′ (so that all mass is accounted for).310

Specifically, the computation of P̂ takes the form311

of a constrained linear optimization problem:312

W = min
P∈S
〈D,P〉 (4)313

= min
P∈S

N∑
i=1

N ′∑
j=1

D[i, j]P[i, j] (5)314

S = {P ∈RN×N′

+ |P1N′ = xp,P
T1N′ = xp′} (6)315

whereW refers to the Wasserstein or Earth Movers316

Distance and P̂ is the minimizer resulting from317

solving Eq 5. Of interest here is an established318

result which shows P̂ to be sparse withO(N+N ′)319

non-zero entries (Swanson et al., 2020). Therefore,320

P̂ represents a soft sparse alignment of sentences321

and can be used as weights wi,i′ in Eq 1, with doc-322

ument distances computed as fOT(p, p′) = 〈D, P̂〉.323

Fig 2c presents a schematic for this approach.324

Note that xp and xp′ allow control over impor-325

tance of sentences in p and p′ in the form of relative326

probability mass. We compute these distributions327

using pairwise distances as x = softmax(−s/τ)328

where sp = mini D and sp′ = minj D, and τ is a329

softmax temperature hyper-parameter.330

For our neural network models trained with auto-331

matic differentiation, we leverage an entropy regu-332

larized version of the Wasserstein distance in Eq 5333

(Cuturi, 2013). Here computation of P̂, is achieved334

via Sinkhorn iterations, a set of iterative linear335

updates allowing training with autodiff libraries336

and leveraging GPU computation. Finally, Cuturi337

(2013) show that computingW with Sinkhorn it-338

erations shows an empirical quadratic complexity,339

i.e. O(N2) — similar to that of attention as in a340

model for late interaction (Humeau et al., 2020).341

Multi-task model: To leverage training signals342

used in both the single and multi-match models, we343

train a multi match model supervised with textual344

supervision in a multi-task setup: LfTS + LfOT .345

3.3 Inference 346

As outlined in §2, we are interested in a whole- 347

abstract based retrieval (Def 1) and an aspect level 348

retrieval (Def 2). In both setups given a query Q 349

and candidate C documents we denote sentence 350

representations from a trained model by SQ and 351

SC . For both tasks, we compute distances for rank- 352

ing while controlling the aspects AQ (i.e Ap) over 353

which the weighted sum of Eq 1 is performed. 354

Whole abstract retrieval: This corresponds to 355

a setup where all aspects of the query document 356

Ap are used in computing distances between docu- 357

ments. In the single-alignment models, candidates 358

C are ranked based on their maximally aligned sen- 359

tence with Q using distances from a trained model: 360

îp, îp′ = argmini,j D. The multi match model 361

ranks candidates using the distance 〈D, P̂〉, where 362

P̂ is the solution to transport problem of Eq 5. 363

Aspect level retrieval: In aspect-level retrieval, 364

a subset of sentences Aq ⊂ AQ is used for query 365

document Q; for candidate documents C, we do 366

not assume to be given specific aspects, and match- 367

ing is done across all sentences in each C. In 368

the single alignment models, we only consider a 369

subset of the pairwise sentence distances to de- 370

termine the maximally aligned sentences, giving 371

DA = D[Aq, :]. This corresponds to finding 372

the maximally aligned candidate sentence to the 373

query sentences in Aq. Similarly, in the multiple- 374

alignment model we compute the plan P̂Aq based 375

on the subset of sentences corresponding toAq and 376

generate rankings by 〈DAq , P̂Aq〉. Note that SQ 377

in Q is still contextualized, capturing document 378

context of sentences not explicitly used in Aq. 379

Scaling Inference: Our multi-vector model for 380

single matching performs retrievals via minimum 381

L2 distance. Therefore, this method is amenable 382

to approximate nearest neighbour (ANN) search 383

methods for large-scale retrieval (Andoni et al., 384

2018; Luan et al., 2021). Retrieval with our single- 385

match model would involve |AQ| and |Aq| calls 386

to an ANN structure for the whole abstract and 387

aspect-level tasks respectively. 388

On the other hand, as stated earlier our multi- 389

match model using Sinkhorn iterations involves 390

a O(N2) computation (Cuturi, 2013), which is 391

similar to late interaction methods. Humeau et al. 392

(2020) show late interaction models to be signifi- 393

cantly cheaper than cross-encoders while retaining 394

most of their performance in ad-hoc search setups. 395

While quadratic, OT computation in practice can 396
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be time-consuming, however, recent work of Back-397

urs et al. (2020) has seen development of fast ANN398

methods for Wasserstein distances with practical399

run-times significantly smaller than quadratic ones.400

This promises the use of ANN methods in large-401

scale retrieval with our multi-match model402

In our results we refer to our text supervised sin-403

gle match method as TSASPIRE, optimal transport404

multi match method as OTASPIRE, and the multi-405

task trained multi aspect method as TS+OTASPIRE.406

4 Experiments and Results407

Evaluation data: We evaluate the proposed meth-408

ods on datasets for whole abstract document sim-409

ilarity and fine-grained document similarity. We410

overview these below. Appendix B provides detail.411

1. RELISH: An expert annotated dataset of412

biomedical abstract similarity (Brown et al., 2019).413

2. TRECCOVIDRF: The original TRECCOVID414

dataset is labelled for ad-hoc search by experts415

(Voorhees et al., 2021). We reformulate the dataset416

for abstract similarity, treating all abstracts relevant417

to one ad-hoc query as similar to each other and418

dissimilar from abstracts relevant to other queries.419

3. SCIDOCS: A benchmark suite of tasks intended420

for evaluating abstract-level scientific document421

representations (Cohan et al., 2020).422

4. CSFCUBE: Fine-grained retrieval is evaluated423

using the recent dataset of Mysore et al. (2021), an424

expert-annotated dataset of machine learning and425

NLP abstracts labelled against candidates for rele-426

vance to one of 3 broad aspects capturing the main427

components of methodological research: back-428

ground/objective, method, result. Rel-429

evance is labelled for query sentences correspond-430

ing to those aspects, while considering the broader431

relevance of the sentences’ abstract context.432

Baselines: We compare the proposed ap-433

proaches to three classes of methods. We434

overview these classes and associated models be-435

low, with Appendix D presenting further detail:436

1. Sentence models: Sentence embedding mod-437

els present reasonable baselines since we consider438

fine-grained matches at the sentence level. These439

are represented by MPNET-1B, a sentence model440

trained on over 1 billion text pairs3, Sentence-Bert441

(SENTBERT) (Reimers and Gurevych, 2019), SIM-442

CSE (Gao et al., 2021), cosentbert of §3.2.2,443

and ICTSENTBERT (Lee et al., 2019).444

2. Abstract models: The abstract level model445

3MPNET-1B: https://bit.ly/2Zbm2Iq

SPECTER (Cohan et al., 2020), represents a SOTA 446

model for scientific document similarity trained on 447

cited abstract pairs. We also train a variant of this 448

model on co-cited papers: SPECTER-COCITE. 449

3. Sentence level models modified for whole 450

abstract similarity: Here we combine the SOTA 451

sentence encoder MPNET-1B with the optimal 452

transport (§3.2.3) for aggregating sentence level 453

matches giving OTMPNET-1B. 454

Sentence models use the same inference proce- 455

dure as our single match method, abstract mod- 456

els rank using L2 distances between papers em- 457

beddings, and the modified sentence model uses 458

the multi match inference procedure. All re- 459

ported model hyper-parameters are tuned, trained 460

on 1.3M co-citation triples, and initialized with 461

SPECTER unless noted otherwise.4 Appendices 462

A, E, and F detail training data, algorithms, and 463

hyper-parameters. Next, we present our main re- 464

sults comparing proposed approaches to baselines. 465

4.1 Results 466

Fine-grained similarity: Table 1 presents results 467

on CSFCUBE. We report performance on the three 468

facets background, method, and result an- 469

notated in the dataset, and aggregated across all 470

facets. We first make some observations about base- 471

line methods: 1. MPNET-1B outperforms all other 472

sentence level models and a SOTA abstract repre- 473

sentation, SPECTER, indicating the value of sen- 474

tence-level information for capturing fine-grained 475

similarities. With OTMPNET-1B indicating the 476

value of modeling multiple matches. 2. SPECTER– 477

COCITEScib, which is identical to SPECTER but 478

trained on co-citations outperforms it, showing the 479

value of co-citations for fine-grained similarity. 480

Next, we examine performance of the proposed 481

methods: 1. First we note that all of the pro- 482

posed approaches consistently outperform perfor- 483

mant prior work, OT/MPNET-1B and SPECTER, by 484

about 5-6 points aggregated across queries. 2. Next, 485

we note that the proposed approaches outperform 486

SPECTER-COCITESpec, trained on co-citations by 487

2-3 points aggregated across queries. 3. Our 488

single match model trained with textual super- 489

vision, TSASPIRE consistently outperforms base- 490

lines. 4. Finally, our multi-match model OTASPIRE, 491

while outperforming baselines sees aggregate per- 492

formance similar to single match methods. This is 493

reasonable given the aspect-specific annotation of 494

4Initialization indicated via subscript in tables.
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CSFCUBE facets→ Aggregated Background Method Result

Models MAP NDCG%20 MAP NDCG%20 MAP NDCG%20 MAP NDCG%20

MPNET-1B 34.64 54.94 41.06 65.86 27.21 42.48 36.07 54.94
SENTBERT-PP 26.77 48.57 35.43 60.80 16.19 33.40 29.16 48.57
SENTBERT-NLI 25.23 45.39 30.78 54.23 15.02 31.10 30.27 45.39
UNSIMCSE-BERT 24.45 42.59 30.03 51.59 14.82 31.23 28.76 42.59
SUSIMCSE-BERT 23.24 43.45 30.52 55.22 13.99 30.88 25.58 43.45
CoSentBert 28.95 50.68 35.78 61.27 19.27 38.77 32.15 50.68
ICTSENTBERT 28.61 48.13 35.93 59.80 15.62 35.91 34.42 48.13

OTMPNET-1B 36.41 56.91 43.23 67.60 28.69 43.49 37.76 60.30
SPECTER 34.23 53.28 43.95 66.70 22.44 37.41 36.79 56.67
SPECTER-COCITEScib 37.90 58.16 48.40 68.71 26.95 46.79 38.93 59.68
SPECTER-COCITESpec 37.39 58.38 49.99 70.03 25.60 45.99 37.33 59.95

TSASPIRESpec 40.26 60.71 49.58 70.22 28.86 48.20 42.92 64.39
OTASPIRESpec 40.79 61.41 50.56 71.04 27.64 46.46 44.75 67.38
TS+OTASPIRESpec 40.26 60.86 51.79 70.99 26.68 47.60 43.06 64.82

Table 1: Test set results for baseline and proposed methods on CSFCUBE, an expert annotated fine-grained
similarity dataset of computer science papers. Our approaches outperform strong prior models OT/MPNET-1B
and SPECTER, by 5-6 points aggregated across queries. Metrics (MAP, NDCG%20) are computed based on a 2-
fold cross-validation and averaged over three re-runs of models. Here, TSASPIRE: Text supervised single-match
method, OTASPIRE: Optimal Transport multi-match method and TS+OTASPIRE: Multi-task multi aspect method.

CSFCUBE where we expect gains from modeling495

single fine-grained (contextualized) matches rather496

than aggregating multiple matches.497

Now, we examine facet-specific performance:498

1. Performance on background sees higher per-499

formance in general and the smallest gains for500

the proposed approaches. This may be attributed501

to background similarity being captured in502

coarse-grained topical similarity, a trait largely cap-503

tured in existing baselines. 2. method similarity in504

CSFCUBE presents significant challenges (Mysore505

et al., 2021, Sec 6) since it relies upon procedural506

similarities across steps of a method and on domain507

knowledge based similarities - this is often captured508

in co-citation data (Fig 1 presents one such com-509

plex paraphrase example). We see strongest perfor-510

mance for TSASPIRE here. 3. Finally, given that511

paper results interpretations are often dependent512

on all aspects of a given paper, result similar-513

ity often depends on similarity across the whole514

abstract. This leads OTASPIRE which models mul-515

tiple matches to see strong performance.516

Whole-abstract similarity: Table 2 presents re-517

sults on TRECCOVIDRF and RELISH. At the out-518

set, we note that while being annotated for whole-519

abstract relevance, these datasets present differ-520

ent characteristics. While TRECCOVIDRF presents521

queries centered on a very specific topic, RELISH522

presents a much more diverse set of queries. Fur-523

ther, TRECCOVIDRF pairs queries with pools of524

about 9000 candidates while RELISH has about 60525

Models
TRECCOVIDRF RELISH

MAP NDCG%20 MAP NDCG%20

MPNET-1B 17.35 43.87 52.92 69.69
SENTBERT-PP 11.12 34.85 50.80 67.35
SENTBERT-NLI 13.43 40.78 47.02 63.56
UNSIMCSE-BERT 9.85 34.27 45.79 62.02
SUSIMCSE-BERT 11.50 37.17 47.29 63.93
CoSentBert 12.80 38.07 50.04 66.35
ICTSENTBERT 9.80 33.62 47.72 63.71

OTMPNET-1B 27.46 58.70 57.46 74.64
SPECTER 28.24 59.28 60.62 77.20
SPECTER-COCITEScib 30.60 62.07 61.43 78.01
SPECTER-COCITESpec 28.59 60.07 61.43 77.96

TSASPIRESpec 26.24 56.55 61.29 77.89
OTASPIRESpec 30.92 62.23 62.57 78.95
TS+OTASPIRESpec 30.90 62.18 62.71 79.18

Table 2: Test set results for baseline and proposed meth-
ods on TRECCOVIDRF and RELISH, expert annotated ab-
stract similarity datasets of biomedical papers. Our ap-
proaches outperform a strong prior model, SPECTER,
by 2-3 points across metrics (MAP, NDCG%20). These
are computed as averages over three model re-runs.
Method names map similarly to Table 1.

candidates per query. Next, we examine baselines. 526

1. In contrast to fine-grained similarity datasets 527

the best sentence level model MPNET-1B, sig- 528

nificantly underperforms an abstract level model, 529

SPECTER, indicating the need for whole abstract 530

representations for these datasets. Aggregating sen- 531

tence matches as in OTMPNET-1B, drastically im- 532

proves MPNET-1B. 2. Next, similar to results in 533

Table 1, a model identical to SPECTER, but trained 534

on co-citations, SPECTER-COCITESpec, outper- 535
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forms SPECTER indicating the value of co-citation536

signal for whole-abstract similarity too.537

In examining performance of our proposed meth-538

ods, we note the following: 1. Across datasets,539

our method for single matches, TSASPIRE, out-540

performs context-independent sentence baselines541

by several points indicating the value of contex-542

tualization. However, this method still under-543

performs abstract-level baselines. 2. However,544

methods modeling multiple matches, OTASPIRE545

and TS+OTASPIRE, substantially outperform546

TSASPIRE as well as baseline prior work SPECTER547

and OTMPNET-1B. This performance indicates the548

strength of OT based aggregation of fine-grained549

matches for abstract level similarity.550

We present results demonstrating the value of551

the proposed approach on the SCIDOCS benchmark552

in Appendix G. Further, we also present a set of553

ablations in Appendix H. These ablations establish554

the value of textual supervision over the encoder555

(BERTE ) used for encoding the text, the value of556

optimal transport compared to attention alterna-557

tives, and alternative single-match models trained558

without co-citation contexts.559

5 Related Work560

Aspect-based paper representations: A large body561

of work learns structured representations of scien-562

tific papers. Jain et al. (2018) present an approach563

which learns pre-defined aspect (PICO) encoders564

for biomedical papers. Similarly work of Neves565

et al. (2019), Chan et al. (2018), and Kobayashi566

et al. (2018) each label paper texts and then com-567

pute aspect-specific embeddings for document clas-568

sification or ranking using existing methods. This569

line of work often relies on pre-defined aspects570

and building aspect-specific methods. Our work571

leverages co-citation contexts to supervise free-text572

aspects with a new model, that is also not tied to a573

specific schema of labels.574

Fine-grained document representations: An-575

other similar line of work is modeling fine-grained576

document-document similarity at the level of words577

or latent topics. Examples include early work El-578

Arini and Guestrin (2011) presenting paper recom-579

mendation methods with unigram-level similarity580

between papers using authorship and citation links581

or using latent document topics (Gong et al., 2018;582

Yurochkin et al., 2019; Dieng et al., 2020).583

Our approach represents documents via sen-584

tences, a common and intuitive structure for reason-585

ing about scientific document facets (Chan et al., 586

2018; Zhou et al., 2020). Ginzburg et al. (2021) 587

present a self-supervised model for contextual sen- 588

tence representations in long documents similar to 589

our ICT baseline (Lee et al., 2019). 590

Ad-hoc Search: A range of recent work in in- 591

formation retrieval presents multi-vector models 592

intended to capture different aspects of candidate 593

documents with score aggregation relying on sum- 594

mations, max, or attention functions (Khattab and 595

Zaharia, 2020; Luan et al., 2021; Humeau et al., 596

2020), these however focusing on short-text queries 597

seen in search or question answering (QA). Mitra 598

et al. (2017) explore an approach to model term- 599

level fine-grained similarities with neural networks, 600

Liu et al. (2018) model fine-grained matches at the 601

level of entity spans, and Akkalyoncu Yilmaz et al. 602

(2019) model document relevance by aggregating 603

sentence relevance. Similarly, recent work of Lee 604

et al. (2021) models fine-grained matches for QA at 605

the phrase level. Importantly, these methods rely on 606

supervision from knowledge bases or QA datasets, 607

limiting applicability to specific span definitions 608

and areas with these resources, often not present in 609

the scientific domain (Hope et al., 2021a). 610

A range of modeling approaches in the context 611

of other tasks resemble elements of our approach. 612

We describe these in Appendix J. 613

6 Conclusions 614

We presented ASPIRE, a scientific document simi- 615

larity model that is trained by leveraging co-citation 616

contexts for learning fine-grained similarity. We 617

use co-citation contexts as a novel form of tex- 618

tual supervision to guide the learning of multi- 619

vector document representations. Our model out- 620

performed strong baselines on seven document 621

similarity tasks across four English scientific text 622

datasets. Moreover, we showed that a fast single- 623

match method achieves competitive results, en- 624

abling fine-grained document similarity in large- 625

scale scientific corpora. A future direction is the 626

interactive use of our methods, with a system allow- 627

ing users to highlight specific aspects of papers and 628

retrieve contextually-relevant matches. Another 629

promising application is for finding analogies — 630

structural matches between texts describing ideas, 631

as in scientific papers, to boost discovery (Hope 632

et al., 2017, 2021b; Chan et al., 2018). 633
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for CSFCUBE, and a 60/40 mix of biomedicine965

and CS for SCIDOCS. Each dataset contains 1.3M966

training triples.967

Next we describe construction of our co-citation968

data given 8.1 million English full text articles in969

the S2ORC corpus which have been parsed for970

citation mentions and linked to cited papers in the971

corpus using automatic tools (Lo et al., 2020):972

• Domain definition: We define our biomedical973

articles to be those tagged either “Medicine”974

or “Biology” in S2ORC. “Computer Science”975

tagged papers are treated as CS papers.976

• Co-citation contexts: To obtain co-cotation977

contexts - we first obtain sentence bound-978

aries for co-citation contexts using the979

en_core_sci_sm pipeline included in980

spacy.6.981

• Filtering abstracts: In selecting abstracts for982

our dataset we retain those that have a mini-983

mum of 3 sentences, and a maximum of 20984

sentences. Further, abstracts where all the985

sentences are too small (3 tokens) are ex-986

cluded. Similarly, abstracts with sentences987

greater than 80 tokens are excluded.988

• Selecting training co-citated abstract data989

{P}: Given contexts with qualifying abstracts990

as described above, we only retain co-citation991

contexts with 2 or 3 co-cited papers. A man-992

ual examination revealed that larger co-cited993

sets tended to be more loosely related.994

• Selecting co-citation sentence training data995

for BERTE : Note that this represents a sen-996

tence encoder trained by treating co-citation997

contexts referencing the same paper as para-998

phrases. Here, we select co-citation contexts999

containing 2 or more co-cited papers as para-1000

phrase sets E .1001

Abstract level training triples for the biomedical1002

and computer science sets are built by treating all1003

unique pairs of papers as positives. 1.3 million1004

triples were used for each domain - these were1005

sampled from larger sets at random.1006

B Evaluation Dataset Details1007

Here we provide further detail on the evaluation1008

datasets overviewed in §4.1009

RELISH: An annotated dataset of biomedical1010

abstract queries labelled by experts (Brown et al.,1011

2019). In a number of cases expert annotators are1012

the authors of query papers. Per query candidate1013

6https://allenai.github.io/scispacy/

pools are of size 60, with 1638 queries in develop- 1014

ment and test sets each. Dataset is released under 1015

a Creative Commons Attribution 4.0 International 1016

License. 1017

TRECCOVIDRF: While the original TRECCOVID 1018

dataset of Voorhees et al. (2021) is labelled for ad- 1019

hoc search by experts, we reformulate the dataset 1020

for abstract similarity, treating all documents rel- 1021

evant to one ad-hoc query as similar to each 1022

other. From each original query and its respec- 1023

tive relevance-labeled documents, we sample an 1024

abstract from relevant documents (relevance of 2) 1025

and use that as our query document. We treat all 1026

other relevant documents as positive examples for 1027

the query. Documents relevant for other queries 1028

are treated as irrelevant for the sampled query. This 1029

results in about 9000 candidates per query abstract 1030

in TRECCOVIDRF. TRECCOVIDRF consists of about 1031

1200 queries in the development and test splits each. 1032

This dataset builds on the CORD-19 dataset (Wang 1033

et al., 2020) released under a Apache License 2.0, 1034

the license of TRECCOVID however isn’t clear from 1035

the dataset release. 1036

SCIDOCS: A benchmark suite of tasks intended 1037

for abstract-level scientific document representa- 1038

tions (Cohan et al., 2020). We evaluate our methods 1039

on the tasks of predicting: citations, co-citations, 1040

co-views, and co-reads. Per query candidate pools 1041

are of size 30 about 1000 queries per task and devel- 1042

opment and test split. We exclude classification and 1043

recommendation sub-tasks relying on additional in- 1044

ference components. Dataset is released under a 1045

GNU General Public License v3.0 license. 1046

CSFCUBE: The dataset consists of 50 queries 1047

labelled for relevance against about 120 candidates 1048

per query. Dataset is released under a Creative 1049

Commons Attribution-NonCommercial 4.0 Inter- 1050

national license. 1051

C Co-citation Context Encoder 1052

Here we present details of alternative design 1053

choices for our co-citation context encoder. In 1054

the use of BERTE , we note in §3.2.2 that this en- 1055

coder is kept frozen during the course of training 1056

BERTθ. Fine-tuning BERTE via a straight-through 1057

estimator (Bengio et al., 2013) under-performed 1058

freezing it. Using other encoders for scientific 1059

text such as SPECTER as BERTE under-performed 1060

CoSentBert. A recent strong model for sen- 1061

tence representation MPNet-1B7 lead to similar 1062

7MPNet-1B: https://bit.ly/2Zbm2Iq
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performance on abstract and aspect-conditional1063

tasks as CoSentBert, indicating that a minimum1064

requisite sentence encoder is all that is needed for1065

BERTE .1066

D Baselines1067

Here we provide further detail on the baselines1068

overviewed in §4.1069

MPNET-1B & OTMPNET-1B: A sentence level1070

baseline of a MPNet (Song et al., 2020) base1071

model, fine-tuned on 1.17 billion similar text1072

pairs in a contrastive learning setup.8 This1073

training data broadly represents web and sci-1074

entific texts. Further we combine MPNET-1B1075

with an OT based aggregation scheme similar1076

to our multi-match model to yield, OTMPNET-1077

1B a baseline using optimal transport with a1078

performant sentence encoder.1079

SimCSE: A recent sentence representation model1080

(Gao et al., 2021). We compare to two model1081

variants: an unsupervised model UNSIMCSE-1082

BERT, and a variant supervised with NLI1083

data, SUSIMCSE-BERT.1084

Sentence-Bert: A sentence level transformer1085

model fine-tuned on similar sentence pairs1086

(Reimers and Gurevych, 2019). We com-1087

pare performance to two variants, SENTBERT-1088

PP and SENTBERT-NLI, fine-tuned on para-1089

phrases and natural language inference (NLI)1090

data respectively.1091

CoSentBert: The sentence-level model we de-1092

scribe in §3.2.2: A SCIBERT model fine-1093

tuned on co-citation sentence contexts refer-1094

encing the same set of co-cited papers.1095

ICTSENTBERT: A SCIBERT sentence model1096

trained using the self-supervised inverse close1097

task (Lee et al., 2019). Here we train abstract1098

sentence representations to capture the seman-1099

tics of their paragraph contexts.1100

SPECTER: A state of the art abstract level repre-1101

sentation (Cohan et al., 2020). Here a SCIB-1102

ERT model is fine-tuned to maximize simi-1103

larity between representations of cited papers.1104

We also train a variant of this model on co-1105

cited papers: SPECTER-COCITE.1106

For the baselines described above specific model1107

names from the Hugging Face9 and Sentence Trans-1108

formers10 libraries are as follows:1109

8MPNet-1B: https://bit.ly/2Zbm2Iq
9https://huggingface.co/

10https://www.sbert.net/docs/
pretrained_models.html

MPNet-1B: HF; sentence-transformers/all-mpnet- 1110

base-v2. 1111

SimCSE: HF; princeton-nlp/sup-simcse-bert-base- 1112

uncased, princeton-nlp/unsup-simcse-bert- 1113

base-uncased. 1114

Sentence-Bert: ST; Paraphrases: paraphrase- 1115

TinyBERT-L6-v2. NLI: nli-roberta-base-v2 1116

from the Sentence-Transformers library. 1117

E Training 1118

All our approaches are trained using the Adam opti- 1119

mizer with an initial linear warm-up for 2000 steps 1120

followed by a linear decay using gradient accumi- 1121

lation for a batch size of 30. The margin m in the 1122

triplet loss is set to 1. We implement all methods 1123

using PyTorch, HuggingFace, and GeomLoss li- 1124

braries. Training convergence is established based 1125

on the loss on a held out set of co-citation data 1126

ensuring that training does not rely on a labelled 1127

dataset for convergence checks. 1128

All experiments were run with data parallelism 1129

over servers nodes with the following GPU config- 1130

urations: 8×12GB NVIDIA GeForce GTX 1080 1131

Ti GPUs, 4×24GB NVIDIA Tesla M40 GPUs, 1132

or 2×48GB NVIDIA Quadro RTX 8000 GPUs. 1133

Servers had 12-24 CPUs per node and 256-385GB 1134

RAM. The training time per experiment varied 1135

from 5-20 hours, and the experiments in this paper 1136

represent about 4746 GPU hours of training. 1137

F Model Hyper-Parameters 1138

Here we report the best performing model hyper- 1139

parameters. This is done per training dataset. For 1140

computer science trained models evaluated on CS- 1141

FCUBE: 1142

• Specter-CoCiteScib: LR 2e-5. 1143

• Specter-CoCiteSpec: LR 2e-5. 1144

• TSASPIRESpec: LR 2e-5. 1145

• OTASPIRESpec: LR 2e-5. τ 0.5. 1146

• TS+OTASPIRESpec: LR 1e-5. τ 0.5. 1147

For biomedical trained models evaluated on 1148

TRECCOVID and RELISH: 1149

• Specter-CoCiteScib: LR 2e-5. 1150

• Specter-CoCiteSpec: LR 2e-5. 1151

• TSASPIRESpec: LR 2e-5. 1152

• OTASPIRESpec: LR 2e-5. τ 5000. 1153

• TS+OTASPIRESpec: LR 2e-5. τ 5000. 1154

For biomedical+computer science trained mod- 1155

els evaluated on TRECCOVID and RELISH: 1156
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SciDocs tasks → Citations Co-Citations Co-Reads Co-Views

Models MAP NDCG MAP NDCG MAP NDCG MAP NDCG

MPNET-1B 86.76 92.63 85.68 92.16 83.45 90.47 82.51 89.29

SPECTER 92.39 95.90 88.32 93.88 86.42 92.39 84.65 90.70
SPECTER-COCITEScib 89.16

±0.33
93.97
±0.28

90.21
±0.18

94.76
±0.14

86.85
±0.22

92.51
±0.18

85.70
±0.16

91.37
±0.09

SPECTER-COCITESpec 89.85
±0.10

94.26
±0.08

90.82
±0.17

95.11
±0.11

87.14
±0.14

92.65
±0.13

85.81
±0.10

91.35
±0.05

TSASPIRESpec 90.99
±0.26

95.04
±0.17

90.92
±0.06

95.26
±0.05

87.51
±0.07

92.97
±0.06

85.87
±0.20

91.46
±0.14

OTASPIRESpec 91.13
±0.28

95.08
±0.20

90.88
±0.13

95.25
±0.02

87.50
±0.14

92.90
±0.12

85.70
±0.20

91.30
±0.11

TS+OTASPIRESpec 91.09
±0.33

95.03
±0.17

90.83
±0.08

95.22
±0.05

87.60
±0.05

92.98
±0.01

85.81
±0.25

91.42
±0.15

Table 3: Test set results for baseline and proposed methods on sub-tasks included in the SCIDOCS benchmark.
Our approaches outperform a prior strong model, SPECTER, by 1-1.5 points on 3 of 4 sub-tasks. Metrics (MAP,
NDCG) are computed based on averages over three re-runs of models. SPECTER uses model parameters as part of
the Huggingface library. Here, TSASPIRE: Text supervised single-match method, OTASPIRE: Optimal Transport
multi-match method and TS+OTASPIRE: Multi-task multi aspect method.

• Specter-CoCiteScib: LR 2e-5.1157

• Specter-CoCiteSpec: LR 2e-5.1158

• TSASPIRESpec: LR 1e-5.1159

• OTASPIRESpec: LR 1e-5. τ 5000.1160

• TS+OTASPIRESpec: LR 1e-5. τ 5000.1161

We found it beneficial to use a low temperature τ1162

in computing distributions x for OT computation1163

for CSFCUBE - a fine-grained similarity dataset.1164

On the other hand we found it beneficial to use a1165

high temperature τ in computing distributions x,1166

causing it to be effectively uniform, for OT com-1167

putation in whole-abstract datasets SCIDOCS, REL-1168

ISH, and TRECCOVIDRF. This is reasonable given1169

the nature of similarity captured in these datasets.1170

Hyper-parameters of the underlying encoders were1171

not changed from their default values – other hyper-1172

parameters are common to methods and desribed1173

in §4.1174

Finally, in computing OT transport plans,1175

we optimize a entropy regularized objective:1176

min
P∈S
〈D,P〉 − 1

λh(P). Our experiments use a fixed1177

value of λ = 20.1178

Hyper-parameter tuning: We tune the hyper-1179

parameters of all the ablated and proposed methods1180

across the different datasets on development set per-1181

formance. For CSFCUBE the Aggregated dev set1182

performance was used for computer science train-1183

ing data models, TRECCOVIDRF and RELISH dev1184

sets were used for biomedical data models with ties1185

between the two broken by the more challenging1186

TRECCOVIDRF performance, and computer science1187

+biomedical data models were tuned on average1188

task performance of SCIDOCS tasks. Given the1189

expense of training models (about 20h for the pro-1190

posed models) we first tune softmax temperatures 1191

then tuned learning rates. Large changes across 1192

learning rates weren’t observed for the models. All 1193

learning rates are tuned over the range {1e-5, 2e- 1194

5, 3e-5}, OT sentence softmax temperatures τ are 1195

tuned over {0.5, 1, 5, 5000}, and softmax tempera- 1196

tures for ablation A3 was tuned over {0.5, 1, 5}. 1197

G SCIDOCS Benchmark Result 1198

SciDocs Benchmark: Table 3 indicates perfor- 1199

mance on the abstract level document similarity 1200

benchmark SCIDOCS of Cohan et al. (2020). First 1201

we note that the strong performance of SPECTER 1202

indicates a smaller gap to be closed. Here, although 1203

our proposed methods see similar performance to 1204

each other they consistently outperform SPECTER 1205

on 3 of 4 tasks establishing state of the art perfor- 1206

mance. Given SPECTER’s citation training signal 1207

and our co-citation signal, we see better perfor- 1208

mance on the Citations and Co-Citation 1209

tasks respectively. Finally, note that our co-citation 1210

trained approaches broadly see better performance 1211

(1-1.5 points) on extrinsic tasks of Co-Reads and 1212

Co-Views indicating the value of this signal. 1213

H Ablations 1214

Here we ablate a range of model components in 1215

establishing factors which contribute performance. 1216

In ablations we only report performance on CS- 1217

FCUBE, TRECCOVIDRF, and RELISH. 1218

A1. Does TSASPIRE gain from textual super- 1219

vision over the encoder used to compute align- 1220

ment? TSASPIRE relies upon a sentence alignment 1221

encoder, BERTE in §3.2.2, to compute alignments, 1222

14



CSFCUBE Agg. MAP NDCG%20

ABSASPIRESpec 37.03
±1.39

59.57
±0.76

TSASPIRESpec 40.26
±0.93

60.71
±0.67

TRECCOVIDRF RELISH

MAP NDCG%20 MAP NDCG%20

ABSASPIRESpec 25.42
±0.9

55.34
±0.55

58.78
±0.69

75.80
±0.57

TSASPIRESpec 26.24
±0.45

56.55
±0.65

61.29
±0.51

77.89
±0.42

Table 4: Results for Ablation A1. Performance of
TSASPIRE trained with textual supervision from co-
citation contexts ablated for the effect of the text vs. in-
fluence of the text encoder (BERTE=CoSentBert; in
§3.2.2) used to compute alignments to the co-citation
contexts. Standard deviation across 3 model re-runs
under mean performance.

CSFCUBE Agg. MAP NDCG%20

ATTASPIRESpec 41.85
±1.52

61.67
±0.82

OTASPIRESpec 40.79
±0.53

61.41
±0.52

TRECCOVIDRF RELISH

MAP NDCG%20 MAP NDCG%20

ATTASPIRESpec 29.51
±0.78

60.96
±0.51

61.92
±0.52

78.54
±0.50

OTASPIRESpec 30.92
±0.53

62.23
±0.67

62.57
±0.29

78.95
±0.26

Table 5: Results for Ablation A2. Performance for an
alternative method, ATTASPIRE, for modeling multiple
matches with an attention mechanism instead of opti-
mal transport in the proposed method. Standard devia-
tion across 3 model re-runs under mean performance.

îp, îp′ , from the co-citation context to the co-cited1223

abstracts. Here we investigate if improvements in1224

TSASPIRE are attributable to BERTE or to the co-1225

citation contexts themselves. We investigate this1226

by comparing the performance of TSASPIRE to a1227

model trained to maximize the alignment between1228

abstract sentences directly computed using BERTE ,1229

we refer to this as ABSASPIRE. This may be viewed1230

as a form of knowledge distillation where align-1231

ments from a more local sentence encoder model,1232

BERTE , are distilled into the contextual sentence en-1233

coder of TSASPIRE. As Table 4 shows, TSASPIRE1234

consistently outperforms ABSASPIRE, indicating1235

the value added by natural language supervision1236

from the co-citation contexts.1237

A2. Can multi-aspect matching use attention1238

aggregation instead of optimal transport? Since1239

our multi-aspect match model uses a soft sparse1240

CSFCUBE Aggregated MAP NDCG%20

MAXASPIRESciB 36.66
±1.37

57.68
±0.86

MAXASPIRESpec 39.42
±1.38

60.63
±1.53

TSASPIRESciB 40.10
±0.76

60.92
±0.61

TSASPIRESpec 40.26
±0.93

60.71
±0.67

TRECCOVIDRF RELISH

MAP NDCG%20 MAP NDCG%20

MAXASPIRESciB 24.87
±1.15

54.33
±1.49

61.36
±0.31

78.10
±0.24

MAXASPIRESpec 25.84
±0.85

56.52
±1.21

61.20
±0.97

78.00
±0.36

TSASPIRESciB 27.68
±0.71

58.42
±0.75

61.45
±0.31

78.12
±0.33

TSASPIRESpec 26.24
±0.45

56.55
±0.65

61.29
±0.51

77.89
±0.42

Table 6: Results for Ablation A3. Performance of a
simpler single-match model, MAXASPIRE, trained us-
ing only BERTθ representations while also varying en-
coder initialization between SPECTER and SCIBERT
(indicated as subscripts for models). Standard devia-
tion across 3 model re-runs under mean performance.

matching with optimal transport we examine con- 1241

tributions of this component by comparing perfor- 1242

mance of a model (ATTASPIRE) trained with soft- 1243

alignment using an attention mask, A – attention is 1244

also a popular choice in prior work Humeau et al. 1245

(2020); Zhou et al. (2020). Here, fAtt(p, p′) = 1246

〈D,A〉 with, A = softmax(−D/τ). Note that 1247

OT imposes specific inductive bias via the structure 1248

of the trasport plan in ensuring it to be a permu- 1249

tation matrix - a desirable property in computing 1250

multiple alignments between a set of points. Table 1251

5 examines performance of these model variants. 1252

Broadly, ATTASPIRE sees performance compara- 1253

ble or worse than OTASPIRE. While ATTASPIRE 1254

sees improved performance in CSFCUBE it sees 1255

much larger variation across runs. In our abstract 1256

retrieval datasets, where we expect gains from mod- 1257

eling multiple matches, we see better or similar 1258

performance from OTASPIRE over ATTASPIRE. 1259

A3. Can single-match models be learned 1260

without co-citation contexts? While our model 1261

for single matches leverages weak textual super- 1262

vision from co-citation contexts, we ask if these 1263

models can be learned in the absence of this su- 1264

pervision. We answer this by training a sim- 1265

pler model, MAXASPIRE, which finds the maxi- 1266

mally aligned aspects between documents using 1267

the representations from BERTθ alone, giving us 1268

fMax(p, p
′) = maxi,jD. To examine the role of 1269
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BERTθ we compare performance with different1270

initializations, with SPECTER presenting a initial1271

model fine-tuned for similarity vs SCIBERT which1272

isnt fine-tuned for text similarity.1273

We note the following from the results in Ta-1274

ble 6: MAXASPIRE sees a dependence on the un-1275

derlying encoder, a SCIBERT initialization nearly1276

always sees poorer performance – only seeing per-1277

formance competitive with TSASPIRE when initial-1278

ized with SPECTER. This is reasonable given that1279

this model must bootstrap fine-grained similarity1280

while only relying on the encoder induced similar-1281

ity. In cases where MAXASPIRE matches perfor-1282

mance of TSASPIRE it sees larger performance dif-1283

ferences across runs which may also be explained1284

by the dependence on the initialization. Finally,1285

TSASPIRE consistently sees similar or better per-1286

formance with varying initialization, indicating the1287

value of our text supervised method.1288

I Extended Results1289

Tables 1, 2 in §4.1 omit presentation of standard1290

deviations across runs for the proposed approaches1291

for brevity. We include these in Tables 7 and 8.1292

J Extended Related Work1293

A range of modeling approaches in multi-instance1294

learning, models leveraging textual supervision,1295

and optimal transport resemble elements of our1296

approach. We describe these next.1297

Multi-instance Learning: Our work applies MIL1298

for learning fine-grained similarity, while prior1299

work has most often been applied to classification1300

or regression tasks (Hope and Shahaf, 2016, 2018;1301

Ilse et al., 2018; Angelidis and Lapata, 2018). Our1302

work bears resemblance to an application of MIL in1303

content based image retrieval (Song and Soleymani,1304

2019), where MIL is applied to learn alignments1305

between image and text aspects.1306

Textual Supervision: Our use of co-citation text1307

as a source of textual supervision draws on other1308

work leveraging textual justifications of labels as a1309

source of supervision for classification tasks (Han-1310

cock et al., 2018; Murty et al., 2020) - co-citation1311

contexts may be considered justifications for simi-1312

larity of co-cited papers. Nie et al. (2020) presents1313

work in a biomedical literature recommendation1314

task, where human justifications of a relevance la-1315

bel are used to identify unigram features indicative1316

of the label and train a recommendation model.1317

Optimal Transport: Our use of optimal transport1318

draws on other recent work in learning sparse align- 1319

ments between texts (Swanson et al., 2020; Tam 1320

et al., 2019). Work of Swanson et al. (2020) learns 1321

sparse binary alignments for sentence and docu- 1322

ment similarity tasks to rationalize decisions and 1323

Tam et al. (2019) leverage sparse soft alignments 1324

between characters for string similarity. Kusner 1325

et al. (2015) uses alignment based on word em- 1326

beddings for document classification tasks using 1327

a K-nearest neighbors method. However, apply- 1328

ing OT at the word level in scientific documents 1329

would lead to a large increase in computational 1330

complexity. 1331
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CSFCUBE facets→ Aggregated background method result

MAP NDCG%20 MAP NDCG%20 MAP NDCG%20 MAP NDCG%20

MPNET-1B 34.64 54.94 41.06 65.86 27.21 42.48 36.07 54.94
SENTBERT-PP 26.77 48.57 35.43 60.80 16.19 33.40 29.16 48.57
SENTBERT-NLI 25.23 45.39 30.78 54.23 15.02 31.10 30.27 45.39
UNSIMCSE-BERT 24.45 42.59 30.03 51.59 14.82 31.23 28.76 42.59
SUSIMCSE-BERT 23.24 43.45 30.52 55.22 13.99 30.88 25.58 43.45
CoSentBert 28.95 50.68 35.78 61.27 19.27 38.77 32.15 50.68
ICTSENTBERT 28.61 48.13 35.93 59.80 15.62 35.91 34.42 48.13

OTMPNET-1B 36.41 56.91 43.23 67.60 28.69 43.49 37.76 60.30
SPECTER 34.23 53.28 43.95 66.70 22.44 37.41 36.79 56.67
SPECTER-COCITEScib 37.90

±1.48
58.16
±1.9

48.40
±2.51

68.71
±2.71

26.95
±0.96

46.79
±0.74

38.93
±2.17

59.68
±3.58

SPECTER-COCITESpec 37.39
±0.73

58.38
±0.86

49.99
±1.2

70.03
±1.16

25.60
±0.53

45.99
±1.35

37.33
±0.86

59.95
±1.02

TSASPIRESpec 40.26
±0.93

60.71
±0.67

49.58
±1.59

70.22
±1.74

28.86
±1.71

48.20
±1.72

42.92
±0.54

64.39
±0.28

OTASPIRESpec 40.79
±0.53

61.41
±0.52

50.56
±1.52

71.04
±1.42

27.64
±0.92

46.46
±0.1

44.75
±1.57

67.38
±0.99

TS+OTASPIRESpec 40.26
±0.71

60.86
±0.58

51.79
±1.18

70.99
±1.28

26.68
±3.21

47.60
±2.45

43.06
±0.21

64.82
±0.19

Table 7: Test set results for baseline and proposed methods on CSFCUBE, an expert annotated fine-grained
similarity dataset of computer science papers. Our approaches outperform strong prior models OT/MPNET-1B
and SPECTER, by 5-6 points aggregated across queries. Metrics (MAP, NDCG%20) are computed based on a
2-fold cross-validation and averaged over three re-runs of models. Standard deviations are below run averages.
Here, TSASPIRE: Text supervised single-match method, OTASPIRE: Optimal Transport multi-match method and
TS+OTASPIRE: Multi-task multi aspect method.

TRECCOVIDRF RELISH

MAP NDCG%20 MAP NDCG%20

MPNET-1B 17.35 43.87 52.92 69.69

SENTBERT-PP 11.12 34.85 50.80 67.35
SENTBERT-NLI 13.43 40.78 47.02 63.56
UNSIMCSE-BERT 9.85 34.27 45.79 62.02
SUSIMCSE-BERT 11.50 37.17 47.29 63.93
CoSentBert 12.80 38.07 50.04 66.35
ICTSENTBERT 9.80 33.62 47.72 63.71

OTMPNET-1B 27.46 58.70 57.46 74.64
SPECTER 28.24 59.28 60.62 77.20
SPECTER-COCITEScib 30.60

±0.87
62.07
±0.95

61.43
±0.32

78.01
±0.1

SPECTER-COCITESpec 28.59
±0.25

60.07
±0.36

61.43
±0.24

77.96
±0.23

TSASPIRESpec 26.24
±0.45

56.55
±0.65

61.29
±0.51

77.89
±0.42

OTASPIRESpec 30.92
±0.53

62.23
±0.67

62.57
±0.29

78.95
±0.26

TS+OTASPIRESpec 30.90
±0.71

62.18
±0.7

62.71
±0.16

79.18
±0.15

Table 8: Test set results for baseline and proposed meth-
ods on TRECCOVIDRF and RELISH, expert annotated ab-
stract similarity datasets of biomedical papers. Our ap-
proaches outperform a strong prior model, SPECTER,
by 2-3 points across metrics (MAP, NDCG%20). These
are computed as averages over three model re-runs.
Standard deviations are below run averages. Method
names map similarly to Table 7.
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