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Abstract
In this paper, we propose a novel 3D registra-
tion paradigm, Generative Point Cloud Registra-
tion, which bridges advanced 2D generative mod-
els with 3D matching tasks to enhance registra-
tion performance. Our key idea is to generate
cross-view consistent image pairs that are well-
aligned with the source and target point clouds,
enabling geometry-color feature fusion to facil-
itate robust matching. To ensure high-quality
matching, the generated image pair should fea-
ture both 2D-3D geometric consistency and cross-
view texture consistency. To achieve this, we in-
troduce Match-ControlNet, a matching-specific,
controllable 2D generative model. Specifically,
it leverages the depth-conditioned generation ca-
pability of ControlNet to produce images that
are geometrically aligned with depth maps de-
rived from point clouds, ensuring 2D-3D geomet-
ric consistency. Additionally, by incorporating a
coupled conditional denoising scheme and cou-
pled prompt guidance, Match-ControlNet further
promotes cross-view feature interaction, guiding
texture consistency generation. Our generative
3D registration paradigm is general and could
be seamlessly integrated into various registration
methods to enhance their performance. Extensive
experiments on 3DMatch and ScanNet datasets
verify the effectiveness of our approach. [Code]

1. Introduction
Point cloud registration is a problem of finding the optimal
rigid transformation, comprising a 3D rotation and a 3D
translation, which aligns the source and target point clouds
precisely. It plays an important role in various downstream
computer vision applications, such as 3D reconstruction, Li-
DAR SLAM, and object localization. However, real-world
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Figure 1. Paradigm comparison of our generative point cloud
registration with conventional methods. Unlike geometry-only
matching in previous methods, our approach introduces Match-
ControlNet, a matching-specific 2D generative model that gener-
ates cross-view images pairs from point cloud data, providing rich
color cues for enhanced geometric matching and pose estimation.

challenges like low overlap and noisy points still hinder its
adoption in broader real-world scenarios.

Existing 3D registration methods can be roughly catego-
rized into traditional approaches and data-driven deep meth-
ods. The traditional approaches include optimization-based
fine alignment methods (Besl & McKay, 1992; Yang et al.,
2013), which iteratively perform least-squares pose opti-
mization for precise alignment, and handcrafted descriptor-
based coarse alignment methods (Rusu et al., 2008; 2009),
which capture local geometry to establish correspondences
for hypothesize-and-verify registration. Deep registration
methods, whether end-to-end (Yew & Lee, 2020; 2022) or
descriptor-based (Huang et al., 2021; Qin et al., 2022; Jiang
et al., 2023a), exploit the power of deep neural networks to
learn discriminative deep 3D features for robust matching.
These deep methods significantly enhance the quality of es-
timated correspondences and improve registration accuracy.

Despite the impressive performance achieved by current
point cloud registration methods, their robustness remains
limited in challenging scenarios that contain low overlap,
repetitive patterns, or noisy points. Recent RGB-D registra-
tion studies (Yuan et al., 2023; Mu et al., 2024) have shown
that incorporating rich texture and semantic cues from RGB
images would significantly enhance the distinctiveness of
point cloud descriptors, leading to improved matching accu-
racy. However, in geometry-only point cloud registration,
the RGB images corresponding to the point clouds are un-
available, and existing methods rely solely on 3D geometric
information for correspondence estimation and pose calcu-
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lation. This raises an interesting question: “Can we still
leverage color information to enhance geometry-only point
descriptors for enhanced 3D registration?”

Motivated by this question and inspired by the recent suc-
cesses of generative AI models (Ho et al., 2020; Song et al.,
2020; Yang et al., 2023; Li et al., 2025; Rombach et al.,
2022; Zhang et al., 2023; Jiang et al., 2023b; Wang et al.,
2024), we introduce Generative Point Cloud Registration,
a new 3D matching paradigm that bridges the task gap be-
tween the 2D generative models and 3D matching tasks to
enhance registration performance. Our key idea is to gen-
erate cross-view image pairs that are well-aligned with the
corresponding source and target point clouds. These images
provide rich color information to complement geometric
features, enabling more robust matching (see Fig. 1). Un-
like prevalent 2D generative models that focus on single
image generation, our matching-specific image generation
is pairwise. Importantly, to ensure high matching quality,
the generated cross-view image pair should feature two key
properties: 2D-3D geometric consistency and cross-view
texture consistency. To achieve this, we introduce Match-
ControlNet, a matching-specific, controllable 2D generative
model. Match-ControlNet leverages ControlNet’s depth-
conditioned generation capabilities to produce images geo-
metrically aligned with depth maps (derived from the point
cloud pairs), ensuring 2D-3D geometric consistency. Ad-
ditionally, by incorporating coupled conditional denoising
and coupled prompt guidance, Match-ControlNet enables
effective cross-view image feature interaction, achieving mu-
tual texture message passing and thereby enhancing cross-
view texture consistency. Finally, we propose a zero-shot
geometric-color fusion mechanism that leverages pretrained
large vision models (e.g., DINOv2 (Oquab et al., 2023) and
Stable Diffusion (Rombach et al., 2022)) to extract discrimi-
native zero-shot features of generated images for enhancing
geometric descriptors via weighted concatenation.

It should be pointed out that our Generative Point Cloud
Registration framework can operate in both zero-shot and
few-shot settings (with minimal fine-tuning samples), each
providing valuable color information to enhance preci-
sion. Moreover, our framework is general and can be inte-
grated with various 3D registration methods to enhance their
matching accuracy. Experiments on 3DMatch and ScanNet
datasets validate the effectiveness of our proposed method.
To summarize, our contributions are as follows:

• We propose a new Generative Point Cloud Registration
paradigm, aimed at generating cross-view image pairs
for both source and target point clouds, thereby provid-
ing rich color information for effective geometric-color
feature fusion and improved matching quality.

• Unlike conventional single-image generation, we de-
velop an effective Match-ControlNet for matching-

specific, pairwise image generation. It incorporates
depth-conditioned generation, coupled conditional de-
noising, and coupled prompt guidance to ensure that
the generated image pairs maintain 2D-3D geometric
consistency and cross-view texture consistency.

• Our Generative Point Cloud Registration framework
is general and plug-and-play. Benefiting from our ef-
fective zero-shot geometric-color feature fusion and
XYZ-RGB fusion schemes, it can be integrated with var-
ious 3D registration approaches to provide free-lunch
color information, enhancing their performance.

2. Related Work
Traditional 3D Registration Methods. Traditional point
cloud registration methods are typically categorized into
coarse and fine registration approaches. Iterative Closest
Point (ICP) (Besl & McKay, 1992), a prominent fine regis-
tration method, iteratively computes nearest-neighbor cor-
respondences and performs least-squares optimization for
pose estimation. Go-ICP (Yang et al., 2013) enhances ICP’s
robustness to initialization errors through a branch-and-
bound (BnB) global search. Trimmed ICP (Chetverikov
et al., 2002) further improves robustness by optimizing over
minimal subsets to handle outliers. Additional variants
like (Sharp et al., 2002; Fitzgibbon, 2003; Bae & Lichti,
2008; Gressin et al., 2013; Deng et al., 2018) also demon-
strate promising precision in fine alignment. Coarse regis-
tration methods generally combine handcrafted geometric
descriptors with robust pose estimators, such as RANSAC.
(Johnson & Hebert, 1999) develops the spin image-based
shape descriptors for surface matching and object recog-
nition. USC (Tombari et al., 2010) improves the feature
descriptors using an shape context-aware unique local ref-
erence frame to improve matching accuracy. SHOT (Salti
et al., 2014) introduces a 3D histogram-based feature us-
ing normal vectors to describe surface. PFH (Rusu et al.,
2008) and FPFH (Rusu et al., 2009) constructs a discrimi-
native and efficient local descriptor based on the oriented
histogram with pairwise 3D representations. Other notable
coarse methods, including (Mohamad et al., 2014; 2015;
Xu et al., 2019; Huang et al., 2017; Ge, 2017), have also
achieved impressive registration precision.

Learning-based Deep Registration Methods. Deep regis-
tration methods primarily consist of end-to-end approaches
and deep descriptor-based methods. For end-to-end ap-
proaches, DCP (Wang & Solomon, 2019) introduces dif-
ferentiable soft correspondences for SVD-based pose es-
timation. RPM-Net (Yew & Lee, 2020) incorporates the
Sinkhorn layer and an annealing strategy to mitigate outlier
inference. CEMNet and LatentCEM (Jiang et al., 2021a;b)
formulate the 3D registration task as a Markov decision pro-
cess, and introduce a reinforcement learning-driven learning
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Figure 2. Pipeline of Generative Point Cloud Registration. Given
a source and a target point cloud, we first apply Match-ControlNet
to generate their corresponding images. Next, we employ either
zero-shot geometric-color feature fusion or XYZ-RGB fusion to
create color-enhanced geometric descriptors, enabling high-quality
correspondence estimation and robust pose estimation.

framework for planning-based trial-and-error pose search-
ing (Liu et al., 2024; 2023; Jiang et al., 2021c; 2022).
RegTR (Yew & Lee, 2022) designs an effective transformer-
based correspondence regression module, addressing large-
scale indoor scene registration in an end-to-end manner. For
deep descriptor-based methods, 3DMatch (Zeng et al., 2017)
employs a Siamese 3D CNN to extract local geometric fea-
tures for patchwise matching. FCGF (Choy et al., 2019)
develops a fully convolutional network to learn dense 3D fea-
tures for pointwise matching. Predator (Huang et al., 2021)
introduces a cross-attention transformer between point cloud
pairs for overlap perception and robust registration. Geo-
Transformer (Qin et al., 2022) integrates geometric embed-
dings into the transformer, enhancing feature discrimination.
RoITr (Yu et al., 2023) designs a rotation-invariant trans-
formation to further improve the rotational robustness of
geometric descriptors. Other methods (Wang et al., 2023;
Bai et al., 2020; Li & Harada, 2022; Li et al., 2020; Choy
et al., 2020; Chen et al., 2023; Fu et al., 2021; Ao et al.,
2023) also demonstrate impressive performance in 3D regis-
tration. Beyond traditional and learning-based frameworks,
this work introduces a new paradigm: Generative Point
Cloud Registration. By integrating advanced 2D generative
models with the 3D registration domain, our approach gener-
ates complementary color information for input point cloud
pairs, producing color-enhanced geometric descriptors to
improve precision.

3. Approach
Problem Setting. Given a pair of source and target point
clouds P = {pi ∈ R3 | i = 1, . . . , N} and Q = {qi ∈
R3 | i = 1, . . . ,M}, point cloud registration seeks to re-
cover their rigid transformation T = {R, t} ∈ SE(3),

comprising a rotation R ∈ SO(3) and a translation t ∈ R3,
to align them precisely. The optimal rigid transformation is
typically computed by solving:

min
R,t

∑
(p∗,q∗)∈C∗

∥R · p∗ + t− q∗∥22 , (1)

where C∗ denotes the ground-truth correspondences between
source and target point clouds. However, C∗ is generally
unknown in practical usage, and we need estimate a set of
putative correspondences through finding feature nearest
neighbor among the pointwise geometric descriptors.

3.1. Motivation

Recent RGB-D point cloud registration methods (Yuan et al.,
2023; Mu et al., 2024) have demonstrated that RGB im-
ages can significantly enhance geometry-only descriptors
by providing rich color and semantic information. This
enhancement facilitates the construction of higher-quality
correspondences, leading to more robust registration.

However, in the context of 3D matching tasks, we focus
on geometry-only registration using pure point clouds, as
the relevant RGB data is unavailable. To overcome this
limitation, we introduce Generative Point Cloud Registra-
tion, a general framework designed to generate high-quality
RGB data for both point clouds, enabling geometric-color
feature fusion for enhanced matching. Notably, unlike the
conventional single-image generation focused by prevalent
2D generative models (Rombach et al., 2022; Zhang et al.,
2023), our matching-specific image generation is pairwise,
which should satisfy two key criteria:

(i) 2D-3D Geometric Consistency: The generated images
should preserve the geometric structure and spatial layout
of their respective point clouds to ensure accurate pixel-to-
point correspondences and avoid introducing noise;

(ii) Cross-view Texture Consistency: The generated image
pair should maintain consistent textures for correspondences.
Otherwise, inconsistent textures would reduce feature simi-
larity of correspondences, leading to mismatches.

3.2. Zero-Shot Geometric Consistency Generation

In this section, we first address the 2D-3D geometric consis-
tency generation through ControlNet (Zhang et al., 2023),
a variant of Stable Diffusion (Rombach et al., 2022) with
spatially localized image conditions (e.g. Canny edge maps
and depth maps).

Stable Diffusion. Stable Diffusion is a widely used latent
diffusion model for text-to-image generation. It operates
within the latent space of a pretrained autoencoder, where
a denoiser ϵθ(xt; t, c) (conditioned on the timstamp t and
tokenized text prompt c) gradually refines the noisy latent
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Figure 3. Instead of independently performing ControlNet to gen-
erate source and target images, our Match-ControlNet integrates
their denoising generation processes into a unified framework, fa-
cilitating feature interaction (i.e., mutual texture message passing)
and enhancing their cross-view texture consistency.

feature xt to clean one for image decoding. The denoiser fol-
lows a UNet architecture with an encoder, middle block, and
skip-connected decoder, incorporating stacked transformer
and residual modules. Each transformer module utilizes
intra-image self-attention for contextual understanding and
prompt-to-image cross-attention to guide generation.

ControlNet-driven 2D-3D Geometric Consistency. Con-
trolNet further equips the denoiser of Stable Diffusion with
a learnable encoder copy for encoding the conditional image
cI , forming a conditional denoiser: ϵ̃θ(xt; t, c, cI). Conse-
quently, the encoded condition features is concatenated with
the original encodings of noisy latent representations xt for
conditional feature decoding via skip connections. Notably,
ControlNet allows the use of depth maps as conditional
inputs to generate RGB images that preserve geometric
structures well-aligned with the provided depth prior. This
capability perfectly aligns with our objective and motivates
us to convert the source and target point clouds into their
corresponding depth maps, DP and DQ ∈ RH×W×1, via
the intrinsic matrix. Then, each produced depth map can be
independently used to condition ControlNet to produce the
geometrically consistent image.

3.3. Zero-Shot Texture Consistency Generation

Although the original ControlNet can generate source and
target image pairs that are geometrically well-aligned with
the given point cloud pair, the texture details of the corre-
sponding regions between the generated image pair often
differ as shown in Fig. 3 (left). This texture inconsistency
primarily arises because the denoising processes for the
source and target images operate independently as follows:

ϵ̃θ(x
P
t ; t, c,dP) → xP

t−1,

ϵ̃θ(x
Q
t ; t, c,dQ) → xQ

t−1,
(2)

with each unaware of the colors produced by the other.
Here, xP

t ,x
Q
t ∈ RH′×W ′×d denote the noisy latent rep-

resentations corresponding to source and target images;
dP ,dQ ∈ RH′×W ′×d represent the encoded features of
depth maps DP and DQ via optimized zero convolutions
of ControlNet. This insight motivates us to combine source

and target image denoising generation processes into a joint
denoising pass, thereby enabling mutual texture message
passing and promoting texture consistency (see Fig. 3).

Based on this motivation, we establish Match-ControlNet,
an improved ControlNet variant for matching-specific, con-
ditional image generation. Following Sec. 3.2, we still take
depth maps derived by point clouds as conditional images
so as to inherit ControlNet’s 2D-3D geometric consistency
generation capability. Additionally, we introduce two key
designs: coupled conditional denoising and coupled prompt
guidance to achieve the cross-view texture consistency gen-
eration. The details of these two designs are as follows:

Coupled Conditional Denoising. To achieve mutual tex-
ture message passing, a straightforward approach is to build
two denoisers and incorporate an additional cross-denoiser
attention module to facilitate their message passing. How-
ever, running two denoisers simultaneously is inefficient,
and such significant architectural changes would require
extensive model fine-tuning.

To enable effective cross-view message passing without any
finetuning (i.e., zero-shot), we propose an efficient coupled
conditional denoising scheme for joint, interactive source
and target image generations. Specifically, we expand the
noisy latent representation x

P(Q)
t with shape [H ′,W ′, d] to

a coupled one xPQ
t with the extended shape [2H ′,W ′, d].

Also, we vertically concatenate the source and target depth
maps into a coupled one DPQ ∈ R2H×W×1, and further
emply the ControlNet’s zero convolutions to encode it into
the condition features dPQ ∈ R2H′×W ′×d. Consequently,
without any architectural modifications or parameter fine-
tuning, the original conditional denoiser can be directly
employed for our coupled conditional denoising:

ϵ̃θ
(
xPQ
t ; t, c,dPQ

)
→ xPQ

t−1, (3)

forming the denoising Markov chain: xPQ
T → · · ·xPQ

1 →
xPQ
0 . Here, the initial coupled latent representation xPQ

T

is sampled from a standard Gaussian distribution N (0, I).
To further clarify the cross-view texture message passing
during our coupled denoising process, we formulate the self-
attention mechanism within the denoiser as SA(xPQ

t ) =

softmax(
(xPQ

t Wq)(xPQ
t Wk)⊤√
d

)(xPQ
t Wv), (4)

where Wq, Wk and Wv ∈ Rd×d denote the projection
matrices for queries, keys and values, respectively. Eq. 4
illustrates that by coupling the source and target noisy latent
representations, each feature element can establish long-
range dependencies with all feature elements from both the
source and target feature maps, allowing effective cross-
view feature interaction and texture-aware message passing
for promoting texture consistency generation.
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Coupled Prompt Guidance. Although the aforementioned
coupled denoising generative mechanism has provided the
essential components for texture consistency generation, the
denoiser still fails to produce the image pair with expected
cross-view texture consistency. The core reason is that the
denoiser does not know what kind of image the user expects
to generate, and we need to tell it what to do. Our impor-
tant finding is that when we use a specific prompt (named
coupled prompt) as below to tell our Match-ControlNet to
produce the vertically stacked images with consistent layout
and elements:

“Generate two vertically stacked images that are captured
from the different viewpoints in a same scene. The images
should feature the same environment—whether indoor or
outdoor, like a living room, office, street, or natural land-
scape—with very subtle differences between them. Overall,
the layout and key elements remain the same.”,

the denoiser can naturally be guided to recover consistent
textures without any model fine-tuning. To the best of our
knowledge, we are the first to uncover and utilize this inher-
ent capability of the pre-trained ControlNet for zero-shot
pairwise image generation enjoying both 2D-3D geometric
consistency and cross-view texture consistency.

3.4. Few-Shot Consistency Fine-tuning

Although our zero-shot Match-ControlNet above has demon-
strated promising pairwise consistency generation capabili-
ties, Fig. 4 shows that some corresponding regions may still
exhibit geometric or texture inconsistency issues. To miti-
gate it, we further propose a few-shot finetuning mechanism
to improve the consistency generation quality of our Match-
ControlNet. It’s noted that we only finetune the learnable
encoder copy of Match-ControlNet rather than the all param-
eters to preserve the powerful generation ability of Stable
Diffusion. Specifically, we first collect a set of RGB-depth
pairs, {((IP ,DP), (IQ,DQ))j} (j denotes the sample in-
dex), as the training data. For each sample pair, we then
concatenate its depth maps and RGB images into coupled
ones {(IPQ,DPQ)j}. Finally, we use the loss function
below to finetune the denoiser:

L = ExPQ
t ,t,c̃,dPQ,ϵ∼N (0,1)

[∥∥ϵ− ϵ̃θ(x
PQ
t , t, c̃,dPQ)

∥∥2
2

]
,

(5)
where xPQ

t represents the diffused latent representation of
the coupled image IPQ; c̃ denotes the token sequence of
our coupled prompt. Our experiments show that even with a
limited number of samples (∼3K), few-shot finetuning can
effectively improves the quality of consistency generation.

3.5. Geometric-Color Fused Point Descriptor

In this section, we focus on how to enhance the geometric
representations of point clouds with the free-lunch color
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Figure 4. Compared to the zero-shot Match-ControlNet (top), the
finetuned Match-ControlNet can tend to achieve higher 2D-3D
geometric consistency and the cross-view texture consistency.
information from generated source and target images, ĨP
and ĨQ. We provide two geometric-color fusion schemes:

Zero-Shot Geometric-Color Feature Fusion. Inspired
by the powerful RGB representations of large vision mod-
els, we utilize them to directly extract zero-shot seman-
tic features from the generated images. Specifically, we
employ two widely-used vision foundation models: DI-
NOv2 (Oquab et al., 2023) and Stable Diffusion (Rombach
et al., 2022) for image encoding, achieving corresponding
feature maps. These feature maps are then projected into the
point cloud space using the camera intrinsic matrix, yield-
ing pointwise color descriptors: {frgbpi

} and {frgbqi
} for both

source and target point clouds. Finally, we apply a sim-
ple weighted concatenation to combine the RGB descriptors
with the geometric descriptors, resulting in fused descriptors
as follows:

f̃pi = [ω · fgeopi
; (1− ω) · PCA(frgbpi

)] ∈ Rdgeo+drgb , (6)

where [·; ·] denotes the feature concatenation operator; ω
is the fusion weight and fgeopi

represents the geometric de-
scriptors; PCA(·) denotes the principal component analysis
function to compress the feature dimension of the color de-
scriptor to fit that of the geometric descriptor. The same
fusion scheme is also applied to the target point clouds.
Notably, this zero-shot geometric-color fusion approach is
general and can be applied to a variety of geometric descrip-
tors, whether traditional or deep descriptors.

XYZ-RGB Fusion. This fusion scheme directly projects the
generated source and target RGB images into the point cloud
space. The resulting RGB values are then concatenated
with the point coordinates of the point clouds, forming 6D
color source and target point clouds, as shown in Fig. 5
(left). These color point clouds are subsequently used as
inputs to the color point cloud registration method, like
ColorPCR (Mu et al., 2024), for 3D registration.

4. Experiments
4.1. Experimental Setting

Implementation Details. During the few-shot fine-tuning
stage, we randomly select 3,000 sample pairs from the Scan-
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Table 1. Comparison of the methods on rotation, translation, and Chamfer distance on ScanNet (Dai et al., 2017) benchmark dataset.
Rotation (deg) Translation (cm) Chamfer (mm)

Accuracy ↑ Error↓ Accuracy ↑ Error↓ Accuracy ↑ Error↓
Methods 5 10 45 Mean Med. 5 10 25 Mean Med. 1 5 10 Mean Med.

FPFH (Rusu et al., 2009) 41.4 56.7 73.3 39.2 7.1 17.5 35.1 50.9 79.5 23.5 32.3 48.0 53.0 159.6 6.5
Lepard (Li & Harada, 2022) 63.3 75.5 84.1 24.9 3.3 31.3 56.4 72.3 48.4 8.1 51.6 69.1 73.0 89.2 0.9
RegTR (Yew & Lee, 2022) 72.5 83.8 94.1 10.2 2.3 44.3 65.6 80.0 27.7 5.8 61.0 76.6 80.9 54.0 0.5
RoITr (Yu et al., 2023) 70.0 77.5 83.7 24.1 2.3 40.3 62.3 75.1 45.6 6.5 58.8 72.4 75.4 94.1 0.6

FCGF (Choy et al., 2019) 78.9 84.2 87.5 19.4 1.5 55.3 70.7 79.7 37.8 4.3 67.3 78.2 80.3 100.7 0.4
Generative FCGFDINOv2 81.0 86.2 89.4 16.5 1.4 57.3 72.6 80.9 33.9 4.0 68.9 79.5 81.5 97.4 0.3
Generative FCGFSD 82.9 90.0 94.4 8.4 1.6 56.4 73.0 82.7 21.7 4.1 67.7 80.9 83.7 66.0 0.4
Improvement ↑ 4.0 5.8 6.9 11.0 0.1 2.0 2.3 3.0 16.1 0.3 1.6 2.7 3.4 34.7 0.1

Predator (Huang et al., 2021) 64.3 75.2 82.6 26.3 3.2 30.1 54.8 69.2 48.7 8.4 50.8 66.9 70.6 93.2 1.0
Generative PredatorDINOv2 67.0 78.0 87.2 19.0 3.0 30.7 56.0 70.3 41.4 8.1 52.0 67.8 71.3 79.2 0.9
Generative PredatorSD 70.7 81.3 88.7 17.0 2.8 33.0 59.4 73.3 36.6 7.5 54.7 70.8 74.2 72.5 0.8
Improvement ↑ 6.4 6.1 6.1 9.3 0.4 2.9 4.6 4.1 12.1 0.9 3.9 3.9 3.6 20.7 0.2

GeoTrans (Qin et al., 2022) 71.5 78.0 83.4 26.2 2.0 48.4 65.2 74.6 51.9 5.2 62.0 72.5 75.0 97.3 0.5
Generative GeoTransDINOv2 74.3 81.0 87.6 19.7 1.9 50.8 67.4 76.0 41.8 4.9 63.7 73.9 76.2 86.2 0.4
Generative GeoTransSD 77.2 84.0 89.9 16.5 1.8 51.3 68.7 78.4 35.6 4.8 65.2 76.1 78.7 71.0 0.4
Improvement ↑ 5.7 6.0 6.5 9.7 0.2 2.9 3.5 3.8 16.3 0.4 3.2 3.6 3.7 26.3 0.1
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Figure 5. Left: The visualization of the generated RGB image pairs and the formed color source and target point clouds; Right: In
low-overlap cases, the original Predator struggles with registration. By contrast, the Generative Predator, enhanced with generated color
information, successfully align them well.

Net training set (Dai et al., 2017) for model fine-tuning.
Following the default fine-tuning configuration of Con-
trolNet (Zhang et al., 2023), we adopt the AdamW opti-
mizer (Loshchilov, 2017) with a learning rate of 1e-5 and
set the training epoch to 10. The code for this project is
implemented in PyTorch, and all experiments are conducted
on a server equipped with an Intel i5 2.2 GHz CPU and
a TITAN RTX GPU. In our experiments, we integrate our
zero-shot geometric-color fusion (Sec. 3.5) with three preva-
lent deep geometric descriptors: FCGF (Choy et al., 2019),
Predator (Huang et al., 2021), and GeoTransformer (Qin
et al., 2022), resulting in corresponding color-enhanced
variants: Generative FCGF, Generative Predator, and
Generative GeoTrans for method evaluation. Additionally,
to validate our XYZ-RGB fusion scheme, we replace the
real color point clouds (with actual RGB values) used by
ColorPCR (Mu et al., 2024) with our generated color point
clouds (with synthesized RGB values), forming Generative
ColorPCR for 3D matching.

Evaluation Metric. Following (El Banani et al., 2021; Yuan
et al., 2023), we use rotation error, translation error, and

Chamfer error, including the accuracy across varying thresh-
olds and mean/median errors, for performance evaluation.

4.2. Comparison with Existing Methods

Evaluation on ScanNet. We first perform model evaluation
on a widely-used, large-scale indoor benchmark dataset,
ScanNet (Dai et al., 2017). We follow the official data split
to divide this dataset into the training, validation, and test-
ing subsets, and construct view pairs by sampling image
pairs that are 50 frames apart. Compared to the 20-frame
separation used in (El Banani et al., 2021; Yuan et al., 2023),
our approach with a 50-frame separation further reduces
the overlap ratio (i.e., lower overlap), thereby increasing
the registration difficulty. We compare our method against
with one representative traditional descriptor: FPFH (Rusu
et al., 2009), one scene-level end-to-end registration net-
work: RegTR (Yew & Lee, 2022), and five deep descriptors:
FCGF (Choy et al., 2019), Predator (Huang et al., 2021),
GeoTrans (Qin et al., 2022), Lepard (Li & Harada, 2022),
and RoITr (Yu et al., 2023). We adopt RANSAC-50k as
the pose estimator for FPFH, Lepard and RoITr, and select
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Table 2. Comparison of the methods on rotation, translation, and Chamfer distance on 3DMatch (Zeng et al., 2017) benchmark dataset.
Rotation (deg) Translation (cm) Chamfer (mm)

Accuracy ↑ Error↓ Accuracy ↑ Error↓ Accuracy ↑ Error↓
Methods 5 10 45 Mean Med. 5 10 25 Mean Med. 1 5 10 Mean Med.

FPFH (Rusu et al., 2009) 69.1 82.9 91.2 15.0 3.1 25.8 53.9 75.1 37.4 9.1 52.5 74.2 79.2 57.6 0.9
Lepard (Li & Harada, 2022) 84.3 91.0 94.1 11.1 2.1 43.1 75.2 88.9 21.8 5.8 72.1 88.3 90.5 45.3 0.4
RegTR (Yew & Lee, 2022) 86.2 92.1 97.2 5.7 1.6 55.0 77.6 88.9 18.8 4.6 75.4 88.2 91.3 40.0 0.3
RoITr (Yu et al., 2023) 86.3 91.1 93.8 11.1 1.6 51.2 77.4 89.1 20.5 4.9 75.2 88.5 90.6 50.1 0.4

FCGF (Choy et al., 2019) 90.4 93.7 94.8 9.4 1.4 53.4 79.3 91.0 19.2 4.7 76.7 90.8 92.4 40.3 0.4
Generative FCGFDINOv2 91.5 94.3 95.3 8.5 1.4 53.6 79.3 91.5 18.1 4.6 77.5 91.1 92.7 41.1 0.4
Generative FCGFSD 94.3 96.7 98.1 4.5 1.4 54.3 81.5 93.1 12.5 4.7 78.2 92.9 94.6 37.7 0.4
Improvement ↑ 3.9 3.0 3.3 4.9 0.0 0.9 2.2 2.1 6.7 0.0 1.5 2.1 2.2 2.6 0.0

Predator (Huang et al., 2021) 85.0 91.5 94.2 10.5 2.0 42.1 72.5 87.1 22.6 5.8 71.2 85.8 88.6 45.0 0.5
Generative PredatorDINOv2 88.1 94.8 96.9 6.2 1.8 44.7 73.9 88.4 15.5 5.6 72.4 87.7 90.8 33.1 0.4
Generative PredatorSD 88.6 94.6 97.0 5.9 1.9 45.7 74.5 89.1 15.7 5.5 73.3 88.3 90.9 40.4 0.4
Improvement ↑ 3.6 3.1 2.8 4.6 0.2 3.6 2.0 2.0 7.1 0.3 2.1 2.5 2.3 11.9 0.1

GeoTrans (Qin et al., 2022) 88.9 91.8 93.3 12.0 1.4 59.8 81.0 90.1 24.6 4.0 79.2 89.0 90.6 53.3 0.3
Generative GeoTransDINOv2 90.2 93.2 95.2 8.9 1.4 61.0 83.1 90.4 16.9 3.9 80.4 89.7 91.7 36.9 0.3
Generative GeoTransSD 91.5 94.3 96.2 7.6 1.4 61.3 82.9 90.9 17.2 3.9 81.5 90.1 92.3 37.3 0.3
Improvement ↑ 2.6 2.5 2.9 4.4 0.0 1.5 2.1 0.8 7.7 0.1 2.3 1.1 1.7 16.4 0.0

SC2PCR (Chen et al., 2022), RANSAC-50k and LGR for
(Generative) FCGF, (Generative) Predator, and (Generative)
GeoTrans (Qin et al., 2022), to validate the robustness of
our generative 3D registration paradigm across different
pose estimators. Table 1 demonstrates that enhanced by
the free-lunch color information generated by our Match-
ControlNet, all generative versions of FCGF, Predator, and
GeoTrans achieve significant performance improvements,
such as 6.9% ↑ of Generative FCGF on 45◦@Rotation met-
ric. These confirm the generality and effectiveness of our
proposed generative point cloud registration paradigm. Ad-
ditionally, we find that compared to the DINOv2 image
encoding, Stable Diffusion can capture more discriminative
representations and achieve higher precisions.

Evaluation on 3DMatch. We next evaluate our method on
3DMatch (Zeng et al., 2017), another widely-used bench-
mark dataset for 3D registration. We follow (El Banani et al.,
2021; Yuan et al., 2023) as in ScanNet to produce the pair-
wise samples. Also, we increase the view separation from
20 to 40, resulting in point cloud pairs with lower overlap
to increase the registration challenge. Table. 2 demonstrates
that by incorporating FCGF, Predator, and GeoTrans into
our generative point cloud registration framework, their gen-
erative variants also consistently achieve the performance
gain, validating the effectiveness of our proposed paradigm.

4.3. Ablation Studies and Analysis

Effectiveness of Match-ControlNet. We first evaluate
the performance contribution of our developed Match-
ControlNet: (i) The top block of Table 3 demonstrates that,
compared to using generated image pairs with only 2D-
3D geometric consistency (geo), incorporating both 2D-3D

geometric consistency and cross-view texture consistency
(geo+tex) through our Match-ControlNet results in higher
registration accuracy. This improvement is due to the addi-
tional benefit of consistent textures and colors, which further
facilitate accurate correspondence identification. Addition-
ally, we observe that the generated images with only 2D-3D
geometric consistency can also bring performance gain in
some criteria. We attribute it to that DINOv2 and Stable Dif-
fusion can extract powerful semantic representations, miti-
gating the feature inconsistency of correspondences caused
by the texture difference and thereby aiding correspondence
identification. Furthermore, we visualize the generated im-
age pair for given source and target point clouds in Fig. 5
(left). It shows that our Match-ControlNet is capable of
producing high-quality image pairs with consistent 2D-3D
geometry and cross-view texture.

Zero-Shot vs Finetuning. We further investigate the perfor-
mance of Match-ControlNet in both zero-shot and finetuned
settings. As shown in the second block of Table 3, both ap-
proaches yield substantial improvements over FCGF. More-
over, because the finetuned Match-ControlNet benefits from
task-specific training, it consistently achieves higher regis-
tration accuracy than the zero-shot version. Notably, even
few-shot finetuning with as few as 1K samples yields clear
performance gains. Increasing the number of finetuning
samples (e.g., to 3K or 5K) provides additional improve-
ments; however, models trained on 3K or 5K samples show
comparable registration accuracy in practice. Hence, we
adopt 3K samples as our default finetuning configuration.

Zero-Shot Geometric-Color Feature Fusion. We next
conduct ablation studies on the zero-shot geometric-color
feature fusion described in Eq. 6. As shown in the fourth
block of Table 3, Generative GeoTrans exhibits varying
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Table 3. Ablation studies on 3DMatch (Zeng et al., 2017) dataset. (*) denotes the default configuration.
Rotation (deg) Translation (cm) Chamfer (mm)

Accuracy ↑ Error↓ Accuracy ↑ Error↓ Accuracy ↑ Error↓
Methods 5 10 45 Mean Med. 5 10 25 Mean Med. 1 5 10 Mean Med.

FCGF 90.4 93.7 94.8 9.4 1.4 53.4 79.3 91.0 19.2 4.7 76.7 90.8 92.4 40.3 0.4
Generative FCGFSD (geo) 92.4 96.1 97.8 5.2 1.5 53.3 79.2 91.7 13.5 4.8 75.6 91.1 93.1 35.8 0.4
Generative FCGFSD (geo + tex) 94.3 96.7 98.1 4.5 1.4 54.3 81.5 93.1 12.5 4.7 78.2 92.9 94.6 37.7 0.4

Generative FCGFSD (zero-shot) 92.4 96.1 97.3 5.4 1.5 54.3 80.3 92.4 13.0 4.6 77.3 92.1 94.0 33.7 0.4
Generative FCGFSD (finetuning) 94.3 96.7 98.1 4.5 1.4 54.3 81.5 93.1 12.5 4.7 78.2 92.9 94.6 37.7 0.4
Finetune (#samples=1000) 93.5 96.8 98.1 4.6 1.4 54.2 80.5 92.5 12.4 4.7 78.2 92.5 94.7 32.8 0.4
Finetune (#samples=3000)* 94.3 96.7 98.1 4.5 1.4 54.3 81.5 93.1 12.5 4.7 78.2 92.9 94.6 37.7 0.4
Finetune (#samples=5000) 93.6 97.2 98.0 4.4 1.5 54.0 80.8 92.7 11.9 4.5 77.7 92.9 94.2 32.3 0.4

ColorPCR (Mu et al., 2024) 79.9 84.6 88.9 16.5 1.8 48.3 69.6 82.2 41.8 5.2 66.6 80.6 83.3 81.1 0.5
Generative ColorPCR 83.6 89.8 93.2 12.0 1.9 47.3 73.3 86.7 28.3 5.3 70.3 85.7 88.2 59.1 0.4
Improvement ↑ 3.7 5.2 4.3 4.5 0.1 1.0 3.7 4.5 13.5 0.1 3.7 5.1 4.9 22.0 0.1

Color feat. dim. drgb = 16 90.8 93.9 96.3 7.6 1.4 62.2 83.4 90.7 18.1 3.9 81.5 89.7 91.7 41.8 0.3
Color feat. dim. drgb = 32 91.5 94.3 96.2 7.6 1.4 61.3 82.9 90.9 17.2 3.9 81.5 90.1 92.3 37.3 0.3
Color feat. dim. drgb = 64* 91.5 94.3 96.2 7.6 1.4 61.3 82.9 90.9 17.2 3.9 81.5 90.1 92.3 37.3 0.3
Color feat. dim. drgb = 128 91.0 94.3 96.0 8.1 1.4 62.0 83.4 91.6 18.1 3.8 81.5 90.4 92.4 41.2 0.3

Fusion weight ω = 0.0 88.3 93.3 96.6 6.9 1.6 53.7 77.0 86.5 20.8 4.7 74.6 85.9 88.5 50.5 0.4
Fusion weight ω = 0.25 90.7 95.5 97.2 6.1 1.5 57.9 81.5 89.8 16.5 4.2 78.6 89.2 92.0 40.4 0.3
Fusion weight ω = 0.50* 91.5 94.3 96.2 7.6 1.4 61.3 82.9 90.9 17.2 3.9 81.5 90.1 92.3 37.3 0.3
Fusion weight ω = 0.75 89.2 92.7 93.9 10.9 1.4 60.5 81.7 90.6 22.6 4.0 79.5 89.3 91.4 49.5 0.3
Fusion weight ω = 1.0 89.0 91.8 93.3 12.0 1.4 59.9 81.1 90.2 24.6 4.0 79.3 89.1 90.8 53.3 0.3

Real Color PC Generated Color PC Real RGB Image Generated RGB Image

Mitigate Lighting 
Challenges

Mitigate 
Calibration Errors

Mitigate 
Calibration Errors

Figure 6. Our Match-ControlNet effectively mitigates calibration
errors and lighting challenges commonly encountered in real-world
RGB-D data, thereby improving the matching precision of color
point cloud registration methods.

registration performance under different color feature di-
mensions, drgb ∈ {16, 32, 64, 128}. We observe that a very
small color feature dimension (e.g., drgb = 16) degrades
performance due to limited semantic representational capac-
ity, while excessively large dimensions do not yield signif-
icant performance gains. Therefore, to balance inference
efficiency with registration precision, we set drgb = 64 as
our default setting. Additionally, in the fifth block of Table 3,
we investigate performance variations with different fusion
weights ω ∈ {0.0, 0.25, 0.50, 0.75, 1.0}, where a larger ω
places more emphasis on the geometric descriptors (see
Eq. 6). Our results indicate that both overly high ω (which
overemphasizes geometry) and overly low ω (which overem-
phasizes color) lead to degraded registration accuracy. By
contrast, a balanced weight (e.g., ω = 0.50) achieves higher
performance. As a result, we adopt ω = 0.50 as our default
hyperparameter configuration.

XYZ-RGB Fusion. We finally evaluate the effectiveness
of the XYZ-RGB fusion (see Sec. 3.5). The third block in
Table 3 demonstrates that, on the 3DMatch dataset, Genera-

tive ColorPCR with the synthesized color even outperforms
the original ColorPCR with the real color. This advantage
is attributed not only to the high-quality pairwise image
generation provided by our Match-ControlNet, but also to
several key benefits of our generated XYZ-RGB data over
real XYZ-RGB data: (i) Mitigating calibration errors: As
shown in Fig. 6 (left), some real RGB-D data would suffer
from calibration errors, which may lead to misalignment
in the colored point clouds. By contrast, our framework,
benefiting from the powerful 2D-3D consistency generation
ability, effectively reduces such calibration errors, producing
higher-quality colored point clouds and enabling more ac-
curate matching. (ii) Mitigating lighting challenges: Fig. 6
(right) shows that RGB data from real-world conditions can
degrade under poor lighting, negatively impacting RGB-D
matching performance. Our generative point cloud registra-
tion framework, however, can generate images with consis-
tent lighting conditions, independent of real-world lighting
issues, thus enhancing the overall lighting robustness.

5. Conclusion
We have introduced a novel 3D registration paradigm, gen-
erative point cloud registration, which effectively lever-
ages advanced 2D generative models to augment geometry-
only 3D registration. To this end, we developed Match-
ControlNet, a matching-specific variant of ControlNet de-
signed to synthesize paired RGB images for both source
and target point clouds. By integrating depth-conditioned
generation from ControlNet, coupled conditional denoising,
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and coupled prompt guidance, these generated RGB image
pairs preserve both 2D-3D geometric consistency and cross-
view texture consistency, thereby facilitating high-quality
3D matching. Notably, our generative framework is general
and can be incorporated into a variety of registration meth-
ods to improve their performance. Extensive experiments
demonstrate the effectiveness of the proposed paradigm.
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Generative Point Cloud Registration

A. More Quantitative Analysis
To further validate the effectiveness of our Generative Point Cloud Registration paradigm, we integrate the handcrafted
geometric descriptor, FPFH, into our framework, forming Generative FPFH. As shown in Table 4, this generative variant
achieves a significant performance improvement over the baseline FPFH on the 3DMatch benchmark dataset, regardless of
whether DINOv2 encoding or Stable-Diffusion encoding is used.

Table 4. Comparison of the methods on rotation, translation, and Chamfer distance on 3DMatch (Zeng et al., 2017) benchmark dataset.

Rotation (deg) Translation (cm) Chamfer (mm)

Accuracy ↑ Error↓ Accuracy ↑ Error↓ Accuracy ↑ Error↓
Methods 5 10 45 Mean Med. 5 10 25 Mean Med. 1 5 10 Mean Med.

FPFH (Rusu et al., 2009) 69.1 82.9 91.2 15.0 3.1 25.8 53.9 75.1 37.4 9.1 52.5 74.2 79.2 57.6 0.9
Generative FPFHDINOv2 83.7 91.4 95.9 7.9 2.1 33.9 64.0 80.5 24.7 6.9 62.7 80.6 83.2 50.0 0.6
Generative FPFHSD 88.2 94.7 96.9 6.1 2.0 37.6 68.9 85.5 18.5 6.6 66.9 85.7 88.8 41.2 0.6
Improvement ↑ 19.1 11.8 5.7 8.9 1.1 11.8 15.0 10.4 18.9 2.5 14.4 11.5 9.6 16.4 0.3

B. More Visualization Results of Match-ControlNet
In Fig.7, we present additional visualization results of the RGB image pairs generated by our Match-ControlNet, along with
the corresponding colorized source and target point clouds. Furthermore, Fig.8 visualizes the image pairs generated by our
zero-shot Match-ControlNet, while Fig. 9 showcases image pairs produced by the finetuned Match-ControlNet.
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Figure 7. More visualization results of the generated RGB image pairs and the formed color source and target point clouds.
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Generative Point Cloud Registration

Zero-Shot Match-ControlNet Generation

Finetuned Match-ControlNet Generation

Figure 8. Source and target image generation via zero-shot Match-ControlNet without any finetuning.
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Generative Point Cloud Registration

Finetuned Match-ControlNet Generation

Figure 9. Source and target image generation via finetuned Match-ControlNet.
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