
Learning Realistic Traffic Agents in Closed-loop

Chris Zhang James Tu Lunjun Zhang Kelvin Wong Simon Suo∗ Raquel Urtasun

Waabi University of Toronto
{czhang,jtu,lzhang,kwong,urtasun}@waabi.ai

Abstract: Realistic traffic simulation is crucial for developing self-driving soft-
ware in a safe and scalable manner prior to real-world deployment. Typically,
imitation learning (IL) is used to learn human-like traffic agents directly from
real-world observations collected offline, but without explicit specification of traf-
fic rules, agents trained from IL alone frequently display unrealistic infractions
like collisions and driving off the road. This problem is exacerbated in out-of-
distribution and long-tail scenarios. On the other hand, reinforcement learning
(RL) can train traffic agents to avoid infractions, but using RL alone results in
unhuman-like driving behaviors. We propose Reinforcing Traffic Rules (RTR),
a holistic closed-loop learning objective to match expert demonstrations under a
traffic compliance constraint, which naturally gives rise to a joint IL + RL ap-
proach, obtaining the best of both worlds. Our method learns in closed-loop sim-
ulations of both nominal scenarios from real-world datasets as well as procedu-
rally generated long-tail scenarios. Our experiments show that RTR learns more
realistic and generalizable traffic simulation policies, achieving significantly bet-
ter tradeoffs between human-like driving and traffic compliance in both nominal
and long-tail scenarios. Moreover, when used as a data generation tool for train-
ing prediction models, our learned traffic policy leads to considerably improved
downstream prediction metrics compared to baseline traffic agents.

Keywords: Traffic simulation, Imitation learning, Reinforcement learning

1 Introduction
Simulation is a critical component to safely developing autonomous vehicles. Designing realistic
traffic agents is fundamental in building high-fidelity simulation systems that have a low domain
gap to the real world. However, this can be challenging as we need to both capture the idiosyncratic
nature of human-like driving and avoid unrealistic traffic infractions like collisions or driving off-
road. Existing approaches used in the self-driving industry lack realism: they either replay logged
trajectories in a non-reactive manner [1, 2] or use heuristic policies which yield rigid, unhuman-like
behaviors. Using data-driven approaches to learn more realistic policies is a promising alternative.

The dominant data-driven approach has been imitation learning (IL), where nominal human driving
data is used as expert supervision to train the agents. However, while expert demonstrations provide
supervision for human-like driving, pure IL methods lack explicit knowledge of traffic rules and in-
fractions which can result in unrealistic policies. Furthermore, the reliance on expert demonstrations
can be a disadvantage, as long-tail scenarios with rich interactions are very rare, and thus learning is
overwhelmingly dominated by more common scenarios with a much weaker learning signal.

Reinforcement learning (RL) approaches encode explicit knowledge of traffic rules through hand-
designed rewards that penalize infractions [3, 4, 5, 6, 7]. These approaches do not rely on expert
demonstrations and instead learn to maximize traffic-compliance rewards through trial and error. In
the context of autonomy, this allows training on synthetic scenarios that do not have expert demon-
strations in order to improve the robustness of learned policies [5]. However, traffic rules alone
cannot describe all the nuances of human-like driving, and it is still an open question if one can
manually design a reward that can completely capture those intricacies.

∗Work done at Waabi.

7th Conference on Robot Learning (CoRL 2023), Atlanta, USA.

// policy definition
if is_close(ego):
 do cut_in(speed)
 …

 E𝜋 [– R (𝜏)]

E𝜋 [– log P E (𝜏)]

Figure 1: Our multi-agent policy is trained in closed-loop to match expert demonstrations under a
traffic compliance constraint using both nominal offline data and simulated long-tail scenarios as
a rich learning environment. This gives rise to an IL objective which supervises the policy using
real-world expert demonstrations and an RL objective which explicitly penalizes infractions.

Towards learning human-like and traffic-compliant agents, we propose Reinforcing Traffic Rules
(RTR), a holistic closed-loop learning method to match expert demonstrations under a traffic-
compliance constraint using both nominal offline data and additional simulated long-tail scenarios
(Figure 1). We show our formulation naturally gives rise to a unified closed-loop IL + RL objective,
which we efficiently optimize by exploiting differentiable dynamics and a per-agent factorization.
In contrast to prior works that combine IL and RL [1], our closed-loop approach allows the model
to understand the effects of its actions and suffers significantly less from compounding error. Fur-
thermore, exploiting simulated long-tail scenarios improves learning by exposing the policy to more
interesting interactions that would be difficult and possibly dangerous to collect from the real world
at scale. Our experiments show that unlike a wide range of baselines, RTR learns realistic policies
that better generalize to both nominal and long-tail scenarios unseen during training. The benefits
carry forward to downstream tasks such as simulating scenarios to train autonomy models; predic-
tion models trained on data simulated with RTR have the strongest prediction metrics on real data,
serving as further evidence that RTR has learned more realistic traffic simulation. We believe this
serves as a crucial step towards more effective applications of traffic simulation for self-driving.

2 Related Work
Traditional traffic simulation: To generate general traffic flow, simulators [8, 9, 10, 11] typically
use heuristic models [12, 13, 14] as models of human driving. While these heuristic models are use-
ful in capturing high-level traffic characteristics like flow and density, they are lacking in capturing
the lower-level nuances of human driving, thus limiting their applicability in self-driving. For more
realistic traffic models, we explore using machine learning as a more promising approach.

Imitation learning: IL methods learn a control policy from expert demonstrations. In the context
of autonomous vehicles, [15] pioneered the use of behavior cloning (BC) to learn a driving policy
in open-loop. Since then, open-loop methods have been explored for both autonomy [16, 17, 18]
and traffic simulation [19, 20, 21]. Open-loop methods primarily suffer from distribution shift due
to compounding error [22], and so various techniques like data augmentation [23, 16], uncertainty-
based regularization [24, 25], and augmentation with a rules-based planner [21] have been proposed
to alleviate the problem. Closed-loop imitation learning approaches [26, 27, 28, 29], which address
distribution shift by exposing the policy to a self-induced state distribution during training, have
also been explored in traffic simulation [30, 31, 32, 33]. While IL exploits expert demonstrations,
there is a lack of explicit knowledge on safety-critical aspects like avoiding infractions. Methods
like differentiable common-sense penalties [30, 23], additional finetuning [34], and test-time guided
sampling [35] have been proposed to complement the standard IL approach. In this work, we use
reinforcement learning to explicitly encode general non-differentiable traffic rules.

Reinforcement learning: RL methods [36, 37, 38] do not require expert demonstrations and instead
learn through interacting with the environment and a reward function. In self-driving, knowledge
of infractions can be encoded in the reward [3, 4, 5, 6, 7]. Because RL does not require expert
demonstrations, it is possible to train on procedurally generated scenarios for improved infraction
avoidance [5]. However, it is difficult to learn realistic driving behavior using reward alone. RL

2

methods can be sample inefficient [3, 4], and specifying human-like driving with a scalar reward
is difficult. In this work, we supplement RL with IL to learn more human-like driving while still
enjoying the explicit learning signal provided from the reward.

Combined IL + RL: Pretrained IL policies can be used as initialization to guide exploration [39, 40]
or regularize learning [41, 42, 43, 44], and offline data can be used to bootstrap learning and help
with sparse rewards [45, 46]. Offline RL methods also use IL for out-of-distribution generalization
and overestimation [47, 48]. In self-driving, IL has been used as a pre-training phase improve
sample efficiency [49]. Recent work augments open-loop IL with RL [1, 50, 51] to learn more robust
models. While promising, the open-loop nature of BC leaves the policy susceptible to distribution
shift. In this work, we explore a holistic closed-loop IL + RL method for traffic simulation.

Long-tail Scenarios: Real data can be curated [1, 52, 53] for more interesting scenarios, but col-
lecting these at scale can be unsafe and expensive. Alternatively, scenarios can be generated by
maximizing an adversarial objective w.r.t. to the ego [54, 55, 56], but incorporating factors like
diversity for training scenarios is still an open problem. In this work, we use knowledge-based
approaches [57, 58] to guide generation towards a large variety of difficult but realistic scenarios.

3 Learning Infraction-free Human-like Traffic Agents

To learn realistic infraction-free agents, we propose a unified learning objective to match expert
demonstrations under an infraction-based constraint. We show how our formulation naturally gives
rise to a joint closed-loop IL + RL approach which allows learning from both offline collected human
driving data when possible, and additional simulated long-tail scenarios containing rich interactions
that would otherwise be difficult or impossible to collect in the real world.

3.1 Preliminaries

We model multi-agent traffic simulation as a Markov Decision ProcessM = (S,A, R, P, γ) with
state space, action space, reward function, transition dynamics, and discount factor respectively. As
our focus is traffic simulation where we have access to all ground truth states, we opt for a fully
observable and centralized multi-agent formulation where a single model jointly controls all agents.
This enables efficient inference by sharing computation 2, and easier interaction modeling.

State, action and policy: We define the state s = {s(1), . . . , s(N),m} ∈ S to be the joint states of
N agents whereN may vary across different scenarios, as well as an HD map m which captures the
road and lane topology. We parameterize the state of the i-th agent s(i) with its position, heading,
and velocity over the past H history timesteps. The state also captures 2D bounding boxes for each
agent. Likewise, a = {a(1), . . . , a(N)} ∈ A is the joint action which contains the actions taken by
all the agents. The i-th agent’s action a(i) is parameterized by its acceleration and steering angle.
Agents are controlled by a single centralized policy π(a|s) which maps the joint state to joint action.

Trajectories and dynamics: We define a trajectory τ0:T = (s0,a0, . . . , sT−1,aT−1, sT) as a se-
quence of state action transitions of length T for all agents. We use the kinematic bicycle model [59]
as a simple but realistic model of transition dynamics P (st+1|st,at) for each agent. Trajectories
can be sampled by first sampling from some initial state distribution ρ0 before unrolling a policy π
through the transition dynamics, i.e. Pπ (τ) = ρ0(s0)

∏T−1
t=0 π(at|st)P (st+1|st,at).

Reward: Let R(i)(s, a(i)) be a per-agent reward which is specific for the i-th agent, but dependent
on the state of all agents, to model interactions such as collision. The joint reward is then R(s,a) =∑N
i R

(i)(s, a(i)), with R(τ) =
∑T−1
t=0 γtR(st,at) as the γ-discounted return of a trajectory.

Policy learning: Both imitation learning (IL) and reinforcement learning (RL) can be described
in this framework. IL can be described as an f -divergence minimization problem: π∗ =
arg minπDf

(
Pπ(τ) ‖ PE(τ)

)
where PE is the expert-induced distribution. RL on the other hand

aims to find the policy which maximizes the expected reward π∗ = arg maxπ EPπ [R(τ)].
2In our experiments, our model easily scales to 50 agents and a map ROI of 1000m×400m per simulation.

3

3.2 Learning

To learn a multiagent traffic policy that is as human-like as possible while avoiding infractions, we
consider the reverse KL divergence to the expert distribution with an infraction-based constraint

arg min
π

DKL
(
Pπ(τ) ‖ PE(τ)

)
s.t. EPπ [R(τ)] ≥ 0

(1) R(i)(s, a(i)) =

{
−1 if infraction
0 otherwise,

(2)

where R(i) is a per-agent reward function that penalizes any infractions (collision and off-road
events). For a rich learning environment, we consider both a dataset D of nominal expert trajec-
tories τE ∼ PE collected by driving in the real world, and additional simulated long-tail scenarios.
Unlike real world logs, these scenarios contain what we denote as hero agents, which induce in-
teresting interactions like sudden cut-ins, etc. (details in Section 3.4). More precisely, let πθ be
our learner policy. Let sS0 ∼ ρS0 be the initial state sampled from the long-tail distribution and πSs0

represent the policy of the hero agent. The overall multiagent policy is given as

π(ai,t|st) =

{
πSs0

(a
(i)
t |st) if agent i is hero

πθ(a
(i)
t |st) otherwise.

(3)

The overall initial state distribution is then given as ρ0 = (1− α)ρD0 + αρS0 , where ρD0 corresponds
to the offline nominal distribution, and α ∈ [0, 1] is a hyperparameter that balances the mixture.

Taking the Lagrangian of Equation 8 decomposes the objective into an IL and RL component,

L = EPπ

− logPE(τ)︸ ︷︷ ︸
IL

−λR(τ)︸ ︷︷ ︸
RL

−H(π) = LIL + λLRL −H(π) (4)

where λ is a hyperparameter balancing the two terms, and H(π) is an additional entropy regulariza-
tion term 3 [26]. Notably, we optimize IL and RL jointly in a closed-loop manner, as the expectation
is taken with respect to the on-policy distribution Pπ(τ). Compared to open-loop behavior cloning,
the closed-loop IL component allows the model to experience states induced by its own policy rather
than only the expert distribution, increasing its robustness to distribution shift. Furthermore, while
the additional reward constraint may not change the optimal solution of the unconstrained problem
(the expert distribution may be infraction-free), it can provide additional learning signal through RL.

The RL component EPπ [R(τ)] can be optimized using standard RL techniques and exploits both
offline-collected nominal scenarios and simulated long-tail scenarios containing rich interactions.
However, the imitation component LIL is only well-defined when expert demonstrations are avail-
able and thus only applied to nominal data. We start from an initial state sE0 ∼ ρD0 and have the
policy πθ control all agents in closed-loop simulation. The loss is the distance between the ground
truth and policy-induced trajectory 4.

LIL = EτE∼D
[
Eτ∼Pπ(·|sE0)

[
D(τE , τ)

]]
. (5)

It is difficult to obtain accurate action labels for human driving data in practice, so we only consider
states in our loss, i.e. D(τE , τ) =

∑T
t=1 d(sEt , st) where d is a distance function (e.g. Huber).

Optimization: To optimize Equation 4, we first note that the LIL component is differentiable by
using the reparameterization trick [60] when sampling from the policy5 and differentiating through
the transition dynamics (kinematic bicycle model). We refer the reader to the appendix for more
details. To optimize the LRL component, we design a centralized and fully observable variant
of PPO [36]. While it is possible to directly optimize the policy with the overall scene reward

3The causal entropy term is included as an entropy regularizer in some learning algorithms such as PPO [36].
In our setting, we empirically found that it was not necessary to include.

4As we do not have access to PE directly to query log-likelihood, using a distance is essentially making the
assumption that PE(τ) ∝ exp

[
−D(τE , τ)

]
.

5We found that directly using the mean action provides good results without the need for sampling.

4

R(s,a) =
∑N
i=1R

(i)(s, a(i)), we instead optimize each agent individually with their respective
individual reward Ri(s, ai). While this factorized approach may ignore second-order interaction
effects, it considerably simplifies the credit assignment problem leading to more efficient learning.
More precisely, we compute factorized value targets V (i) =

∑T
t=0 γ

tR
(i)
t (st, a

(i)
t), and the factor-

ized PPO policy loss is given as Lpolicy =
∑N
i=1 min(r(i)A(i), clip(r(i), 1 − ε, 1 + ε)A(i)) where

the probability ratio is factorized, i.e. r(i) = π(a(i)|s,m)/πold(a(i)|s,m) and A(i) is a factorized
GAE [61] estimate. More details can be found in the appendix.

3.3 Model Architecture

Agent States
History

Encoder

Lane Graph
Encoder

Interaction
Encoder

Lane Graph

Agent actions

Figure 2: Our multiagent policy architecture.
The value network architecture is the same but
regresses value targets instead.

Our traffic model πθ architecture uses common
ideas from SOTA traffic agent motion forecasting
literature in order to extract context and map fea-
tures and predict agent actions (Figure 2). Recall
that a state s = {s(1), . . . , s(N),m} consists of
each individual agent’s states s(i) that contain the
agent’s kinematic state over a history horizon H ,
and an HD map m. From each agent’s state his-
tory, a shared 1D CNN and GRU are used to ex-
tract agent history context features h(i)a = f(s(i)).
At the same time, a GNN is used to extract map
features from a lane graph representation of the
map input hm = g(m). A HeteroGNN [62] then jointly fuses all agent context features and map
features before a shared MLP decodes actions for each agent independently.

{h(1), . . . h(N)} = HeteroGNN({h(1)a , . . . , h(N)
a }, hm) (6)

(µ(i), σ(i)) = MLP(h(i)). (7)

We use independent normal distributions to represent the joint agent policy, i.e. π(a(i)|s) =

N (µ(i), σ(i)), and thus π(a|s) =
∏N
i=1 π(a(i)|s). Note that agents are only independent condi-

tional on their shared past context, and thus important interactive reasoning is still captured. Our
value model uses the same architecture but does not share parameters with the policy; we compute
{hv0, . . . , hvN} in a similar fashion, and decode per-agent value estimates V̂ (i) = MLPv(h(i)).

3.4 Simulated Long-tail Scenarios

Nominal driving logs can be monotonous and provide weak learning signal when repeatedly used for
training. In reality, most traffic infractions can be attributed to rare and long-tail scenarios belonging
to a handful of scenario families [63] which can be difficult and dangerous to collect from the real
world at scale. In this work, we procedurally generate long-tail scenarios to supplement nominal logs
for training and testing. Following the self-driving industry standard, we use logical scenarios [64,
57] which vary in the behavioral patterns of particular hero agents with respect to an ego agent
(e.g. cut-in, hard-braking, merging, etc.). Designed by expert safety engineers, each logical scenario
is parameterized by θ ∈ Θ which controls lower-level aspects of the scenario such as behavioral
characteristics of the hero agent (e.g. time-to-collision or distance triggers, aggressiveness, etc.),
exact initial placement and kinematic states, and geolocation. A concrete scenario can then be
procedurally generated in an automated fashion by sampling a logical scenario and corresponding
parameters θ. While these scenarios cannot be used for imitation as they are simulated and do not
have associated human demonstrations, they provide a rich reinforcement learning signal due to the
interesting and rare interactions induced by the hero agents.

4 Experiments
Scenario sets: Our experiments use two datasets that represent nominal and long-tail scenarios
respectively. The NOMINAL dataset consists of a set of highway logs which capture varying traffic
densities and road topologies while containing expert demonstrations. The dataset consists of 465

5

5 10 20 40
FDE (m)

0.01

0.10
Co

llis
io

n
(%

)

Nominal

0.2 0.4 0.6
Accel JSD (nats)

0.01

0.10

Nominal

5 10 20 40
FDE (m)

0.04

0.06

0.10

Long-tail

0.2 0.4 0.6
Accel JSD (nats)

0.04

0.06

0.10

Long-tail

BC IL RL RL-Shaped BC+RL RTR (ours)

Figure 3: Metrics (lower is better) on held-out nominal and long-tail scenarios. Pareto frontier of
baselines is shaded; RTR achieves the best tradeoff between infraction and other realism metrics.

Figure 4: Qualitative examples comparing the baseline IL model (left) and RTR (right). Scenarios
with hero agents (blue) are from the long-tail set. All other agents are controlled; pink is used for
visual emphasis. RTR avoids infractions while maintaining diverse, human-like driving behavior.

snippets for training and 115 for testing, where each snippet lasts for 20 seconds. We use LONGTAIL
to denote the scenario set generated using the process outlined in Section 3.4 which contain rare
actor maneuvers like sudden cut-ins. We use 25 logical scenarios to generate a total of 333 concrete
scenarios, where 167 concrete scenarios are used for training and 166 are held-out for evaluation.
This evaluation set is held-out on the parameter level and measures in-distribution generalization.
We also evaluate on an additional set of held out logical scenarios to measure out-of-distribution
generalization, with more details in Section 4.1.

Metrics: We evaluate our traffic models’ ability to 1) match human-like driving and 2) avoid in-
fractions. For the former, we measure similarity to the demonstration data by computing the final
displacement error (FDE) [33, 30], which measures the L2 distance between the agent’s simulated
and ground truth (GT) position after 5 seconds. Furthermore, we use Jensen-Shannon Divergence
(JSD) [33, 31] between histograms of scenario features (agent acceleration) in order to measure dis-
tributional realism. Finally, to measure infraction rates, we consider collision and driving off-road.
We use a bootstrap resampling over evaluation snippets to compute uncertainty estimates. Results
with more extensive metrics (and their definitions) can be found in the appendix.

4.1 Benchmarking Traffic Models

Comparison to state-of-the-art: We evaluate RTR and several baselines on both nominal and
long-tail scenarios. For comparability, we use the same input representation and model architecture
as described in Section 3.3 for all methods. Our first two baselines are representative of state-of-
the-art imitation learning approaches for traffic simulation. BC is our single-step behavior cloning
baseline following [19]. The IL baseline is trained using closed-loop policy unrolling [30, 31]. Next,
RL is trained using our proposed factorized version of PPO [36] with the reward in Equation 20.
The RL-Shaped baseline includes an additional reward for driving at the speed-limit to encourage
more human-like driving. Finally, BC+RL is an RL augmented BC baseline following [1].

6

Figure 6: IL (top), RTR (bottom) on an out-of-distribution scenario
where a hero agent (blue) comes to a complete stop on the highway.

Meth. Col. (%) Off. (%)

IL 11.8 ± 2.1 1.0 ± 0.1
RTR 5.0 ± 1.4 0.3 ± 0.1

Table 1: Results on out-of-
distribution long-tail set.

4 2 0 2 4
Acceleration (m/s^2)

0.0

0.1

0.2

0.3
Demonstration
RL Policy

4 2 0 2 4
Acceleration (m/s^2)

0.0

0.1

0.2

0.3
Demonstration
RTR (ours)

Figure 5: RL policy naively decelerates to
avoid infractions. RTR learns to avoid col-
lision more naturally without slowing down.

Figures 3 and 4 show the results; a full table can
be found in the appendix. Firstly, the BC model
achieves poor realism because it suffers from distri-
bution shift during closed-loop evaluation as it en-
counters states unseen during training due to com-
pounding error. Next, we see RL achieves low in-
fraction rates but results in unhuman-like driving
(Figure 5). This is because it is difficult for reward
alone to capture realistic driving. Efforts in reward
shaping result in improvements but are ultimately
still insufficient. We see BC+RL improves upon BC
infractions but still lacks realism. This is because BC is an open-loop objective and only provides
signal in expert states, while only the RL signal is present in non-expert states. Thus, the policy
still suffers from compounding error with respect to imitation. On the other hand, closed-loop IL
performs better as it is more robust to compounding error, but still struggles on the long-tail scenario
set without explicit supervision. Finally, the holistic closed-loop IL and RL approach of RTR im-
proves infraction rates while maintaining reconstruction and JSD metrics. We see RTR outperforms
even pure RL in terms of infraction rate on long-tail scenarios, suggesting that including long-tail
scenarios during training can help the model generalize to held-out evaluation long-tail scenarios.

Out-of-distribution generalization: Recall from Section 3.4 that logical scenarios define a fam-
ily of scenarios and concrete scenarios define variations within a family. While we have evaluated
in-distribution generalization by using held-out concrete scenarios, we further evaluate on held-out
logical scenarios. We use 11 held-out logical scenarios with new map topologies and behavioral
patterns to procedurally generate an additional out-of-distribution set consisting of 84 concrete sce-
narios. Our results show that RTR generalizes to this set better than baselines (Figure 6, Table 1).

4.2 Downstream Evaluation

Method FDE (m) CTE (m)

BC 2.44 ± 0.05 0.90 ± 0.04
IL 1.75 ± 0.06 0.28 ± 0.01
RL 15.42 ± 1.21 0.32 ± 0.02
RL-Shp 6.66 ± 0.26 0.33 ± 0.01
BC+RL 9.06 ± 0.50 0.42 ± 0.03
RTR 1.58 ± 0.05 0.27 ± 0.03

Table 2: Prediction model trained
on synthetic, evaluated on real.

One downstream application of traffic simulation is generating
synthetic data for training autonomy models. We evaluate if
the improved realism of RTR transfers in this context. Each
model is used to generate a synthetic dataset of 589 scenarios
which we use to train a SOTA prediction model [62] before
evaluating its performance on held-out real data. Besides FDE,
the cross-track error (CTE) of predicted trajectories projected
onto the GT are used as prediction metrics. More experiment
details can be found in the appendix. Table 2 shows that using
RTR to generate training data results in the best prediction
model. This provides evidence that RTR has learned more
realistic behavior and has a lower domain gap compared to baselines, showing that our approach can
improve the application of traffic simulation in developing autonomous vehicles.

4.3 Additional Analysis

Long-tail scenarios: We evaluate our approach of using procedurally generated scenarios against
the alternative of mining hard scenarios from data [1, 53] by curating a set of logs from NOMINAL
that the IL model commits an infraction on. Figure 7 shows that using only curated scenarios does
not transfer well to the long-tail set, and in fact introduces a regression in the nominal scenarios, sug-

7

0.004 0.005
Nominal Col. (%)

0.04

0.06

0.08

Lo
ng

-ta
il

Co
l.

(%
)

5.0 5.5 6.0
FDE (m)

0.15 0.16
Accel. JSD (nats)

Nom Cur LT Nom+Cur Nom+LT (ours)

Figure 7: Using both nominal and long-tail yields
the best tradeoff compared to baselines.

0 1000 2000 3000
Step

0.0

2.0

4.0

6.0

Co
llis

io
n

(%
)

Factorized (ours)
Unfactorized

0 1000 2000 3000
Step

0.0

0.5

1.0

1.5

2.0

2.5

Of
fro

ad
 (%

)

Factorized (ours)
Unfactorized

Figure 8: Our factorized PPO vs. standard PPO
which uses a single scene-level reward.

gesting the model is overfitting to the curated scenarios. Up-sampling curated scenarios (Nom+Cur)
also fails – relying purely on offline data may require prohibitively larger scale data collection.

Factorized multiagent RL: To ablate our factorized per-agent approach to multiagent PPO, we
compare to a standard PPO implementation where the scene-level reward R(s,a) is used as super-
vision for the joint policy rather than each individual agent reward R(i)(s, a(i)). Figure 8 shows that
the factorized loss outperforms the alternative, likely due to the fact that multiagent credit assign-
ment is extremely difficult when using the scene-level reward, leading to poor sample efficiency.

Nominal Long-tail
λ α Col. (%) FDE (m) Col. (%)

0.0 0.0 0.89± 0.39 4.50± 0.24 12.13± 2.44
1.0 0.5 0.38± 0.20 5.50± 0.24 3.61± 1.35
5.0 0.5 0.38± 0.20 5.16± 0.28 3.61± 1.35
10 0.5 0.52± 0.17 5.10± 0.20 3.82± 1.12
5.0 0.3 0.35± 0.18 5.20± 0.21 4.12± 0.90
5.0 0.7 0.56± 0.21 6.10± 0.23 3.51± 1.32

Table 3: Balancing realism and infrac-
tion avoidance.

Nominal Long-tail
Method Col. (%) FDE (m) Col. (%)

KL-L 0.42± 0.20 25.68± 1.14 5.08± 1.21
KL-R 0.38± 0.22 15.19± 0.99 4.97± 1.29
RTR 0.38± 0.20 5.16± 0.28 3.61± 1.35

Table 4: Comparing different alterna-
tives to our proposed IL loss.

Balancing the trade-off: Recall from Section 3.2 that
RTR balances human-like driving and avoiding infrac-
tions by weighting the IL vs. RL loss with λ and nomi-
nal vs. long-tail training with α (e.g. λ = α = 0 is the
IL baseline). We found increasing the relative weight of
RL and long-tail scenarios generally improves infraction
avoidance while increasing the relative weight of IL and
nominal training generally improves other realism met-
rics as expected (Table 3). However, RTR is not particu-
larly sensitive; many configurations are within noise and
all configurations dominate the baseline Pareto frontier.

Imitation learning signal: We consider the alternative of
using a frozen pretrained IL policy as regularization [44]
instead of our approach of using offline data. A frozen
policy potentially provides more accurate closed-loop su-
pervision, as a Euclidian-based distance loss with demon-
stration data may be inaccurate if the rollout has diverged.
We evaluate two baselines: KL Reward and KL Loss,
where the KL between the current and frozen policy is
added to the reward or loss respectively. Our results in Table 4 show that using demonstration data
is still the most performant, suggesting that the inaccuracy from an imperfect IL policy is larger than
that of using a distance-based loss.

5 Conclusion and Limitations

We have presented RTR, a method for learning realistic traffic agents with closed-loop IL+RL using
both real-world logs and procedurally generated long-tail scenarios. While we have shown substan-
tial improvements over baselines in simulation realism and downstream tasks, we recognize some
existing limitations. Firstly, while using logical scenarios as a framework for procedural generation
exploits human prior knowledge and is currently an industry standard, manually designing scenar-
ios can be a difficult process, and ensuring an adequate coverage of all possible scenarios is an open
problem. Exploring automated alternatives like adversarial approaches to scenario generation would
be an interesting future direction. Secondly, while we have explored the downstream task of gen-
erating an offline dataset to train prediction models, other applications like training and testing the
entire autonomy stack end-to-end in closed-loop is a promising future direction.

8

Acknowledgments

The authors would like to thank Wenyuan Zeng for their insightful discussions throughout the
project. The authors would also like to thank the anonymous reviewers for their helpful comments
and suggestions to improve the paper.

References
[1] Y. Lu, J. Fu, G. Tucker, X. Pan, E. Bronstein, B. Roelofs, B. Sapp, B. White, A. Faust, S. White-

son, et al. Imitation is not enough: Robustifying imitation with reinforcement learning for
challenging driving scenarios. arXiv preprint arXiv:2212.11419, 2022.

[2] E. Vinitsky, N. Lichtlé, X. Yang, B. Amos, and J. Foerster. Nocturne: a scalable driving
benchmark for bringing multi-agent learning one step closer to the real world. arXiv preprint
arXiv:2206.09889, 2022.

[3] D. Chen, V. Koltun, and P. Krähenbühl. Learning to drive from a world on rails. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pages 15590–15599, 2021.

[4] M. Toromanoff, E. Wirbel, and F. Moutarde. End-to-end model-free reinforcement learning
for urban driving using implicit affordances. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 7153–7162, 2020.

[5] C. Zhang, R. Guo, W. Zeng, Y. Xiong, B. Dai, R. Hu, M. Ren, and R. Urtasun. Rethinking
closed-loop training for autonomous driving. In Computer Vision–ECCV 2022: 17th European
Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXXIX, pages 264–282.
Springer, 2022.

[6] X. Pan, Y. You, Z. Wang, and C. Lu. Virtual to real reinforcement learning for autonomous
driving. arXiv preprint arXiv:1704.03952, 2017.

[7] S. Shalev-Shwartz, S. Shammah, and A. Shashua. Safe, multi-agent, reinforcement learning
for autonomous driving. arXiv preprint arXiv:1610.03295, 2016.

[8] P. A. Lopez, M. Behrisch, L. Bieker-Walz, J. Erdmann, Y.-P. Flötteröd, R. Hilbrich, L. Lücken,
J. Rummel, P. Wagner, and E. Wießner. Microscopic traffic simulation using sumo. In 2018
21st international conference on intelligent transportation systems (ITSC), pages 2575–2582.
IEEE, 2018.

[9] M. Balmer, M. Rieser, K. Meister, D. Charypar, N. Lefebvre, and K. Nagel. Matsim-t: Archi-
tecture and simulation times. In Multi-agent systems for traffic and transportation engineering,
pages 57–78. IGI Global, 2009.

[10] J. Casas, J. L. Ferrer, D. Garcia, J. Perarnau, and A. Torday. Traffic simulation with aimsun.
Fundamentals of traffic simulation, pages 173–232, 2010.

[11] M. Ben-Akiva, H. N. Koutsopoulos, T. Toledo, Q. Yang, C. F. Choudhury, C. Antoniou, and
R. Balakrishna. Traffic simulation with mitsimlab. Fundamentals of traffic simulation, pages
233–268, 2010.

[12] M. Treiber, A. Hennecke, and D. Helbing. Congested traffic states in empirical observations
and microscopic simulations. Physical Review E, 62(2):1805–1824, aug 2000. doi:10.1103/
physreve.62.1805. URL https://doi.org/10.1103%2Fphysreve.62.1805.

[13] K. Kreutz and J. Eggert. Analysis of the generalized intelligent driver model (gidm) for un-
controlled intersections. In 2021 IEEE International Intelligent Transportation Systems Con-
ference (ITSC), pages 3223–3230, 2021. doi:10.1109/ITSC48978.2021.9564423.

[14] A. Kesting. Mobil : General lane-changing model for car-following models. 2007.

9

http://dx.doi.org/10.1103/physreve.62.1805
http://dx.doi.org/10.1103/physreve.62.1805
https://doi.org/10.1103%2Fphysreve.62.1805
http://dx.doi.org/10.1109/ITSC48978.2021.9564423

[15] D. A. Pomerleau. Alvinn: An autonomous land vehicle in a neural network. Advances in
neural information processing systems, 1, 1988.

[16] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. D. Jackel,
M. Monfort, U. Muller, J. Zhang, et al. End to end learning for self-driving cars. arXiv
preprint arXiv:1604.07316, 2016.

[17] F. Codevilla, M. Müller, A. López, V. Koltun, and A. Dosovitskiy. End-to-end driving via con-
ditional imitation learning. In 2018 IEEE international conference on robotics and automation
(ICRA), pages 4693–4700. IEEE, 2018.

[18] A. Prakash, K. Chitta, and A. Geiger. Multi-modal fusion transformer for end-to-end au-
tonomous driving. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 7077–7087, 2021.

[19] L. Bergamini, Y. Ye, O. Scheel, L. Chen, C. Hu, L. Del Pero, B. Osiński, H. Grimmett, and
P. Ondruska. Simnet: Learning reactive self-driving simulations from real-world observations.
In 2021 IEEE International Conference on Robotics and Automation (ICRA), pages 5119–
5125. IEEE, 2021.

[20] L. Feng, Q. Li, Z. Peng, S. Tan, and B. Zhou. Trafficgen: Learning to generate diverse and
realistic traffic scenarios. In 2023 IEEE International Conference on Robotics and Automation
(ICRA), pages 3567–3575. IEEE, 2023.

[21] D. Xu, Y. Chen, B. Ivanovic, and M. Pavone. Bits: Bi-level imitation for traffic simulation. In
2023 IEEE International Conference on Robotics and Automation (ICRA), pages 2929–2936.
IEEE, 2023.

[22] S. Ross, G. Gordon, and D. Bagnell. A reduction of imitation learning and structured predic-
tion to no-regret online learning. In Proceedings of the fourteenth international conference
on artificial intelligence and statistics, pages 627–635. JMLR Workshop and Conference Pro-
ceedings, 2011.

[23] M. Bansal, A. Krizhevsky, and A. Ogale. Chauffeurnet: Learning to drive by imitating the best
and synthesizing the worst. arXiv preprint arXiv:1812.03079, 2018.

[24] K. Brantley, W. Sun, and M. Henaff. Disagreement-regularized imitation learning. In Interna-
tional Conference on Learning Representations, 2020.

[25] M. Henaff, A. Canziani, and Y. LeCun. Model-predictive policy learning with uncertainty
regularization for driving in dense traffic. arXiv preprint arXiv:1901.02705, 2019.

[26] J. Ho and S. Ermon. Generative adversarial imitation learning. Advances in neural information
processing systems, 29, 2016.

[27] J. Fu, K. Luo, and S. Levine. Learning robust rewards with adversarial inverse reinforcement
learning. arXiv preprint arXiv:1710.11248, 2017.

[28] S. K. S. Ghasemipour, R. Zemel, and S. Gu. A divergence minimization perspective on imita-
tion learning methods. In Conference on Robot Learning, pages 1259–1277. PMLR, 2020.

[29] L. Ke, S. Choudhury, M. Barnes, W. Sun, G. Lee, and S. Srinivasa. Imitation learning as
f-divergence minimization. In Algorithmic Foundations of Robotics XIV: Proceedings of the
Fourteenth Workshop on the Algorithmic Foundations of Robotics 14, pages 313–329. Springer,
2021.

[30] S. Suo, S. Regalado, S. Casas, and R. Urtasun. Trafficsim: Learning to simulate realistic multi-
agent behaviors. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 10400–10409, June 2021.

10

[31] M. Igl, D. Kim, A. Kuefler, P. Mougin, P. Shah, K. Shiarlis, D. Anguelov, M. Palatucci,
B. White, and S. Whiteson. Symphony: Learning realistic and diverse agents for autonomous
driving simulation, 2022. URL https://arxiv.org/abs/2205.03195.

[32] A. Ścibior, V. Lioutas, D. Reda, P. Bateni, and F. Wood. Imagining the road ahead: Multi-
agent trajectory prediction via differentiable simulation. In 2021 IEEE International Intelligent
Transportation Systems Conference (ITSC), pages 720–725. IEEE, 2021.

[33] S. Suo, K. Wong, J. Xu, J. Tu, A. Cui, S. Casas, and R. Urtasun. Mixsim: A hierarchical
framework for mixed reality traffic simulation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages 9622–9631, June 2023.

[34] V. Lioutas, A. Scibior, and F. Wood. Titrated: Learned human driving behavior without infrac-
tions via amortized inference. Transactions on Machine Learning Research, 2022.

[35] Z. Zhong, D. Rempe, D. Xu, Y. Chen, S. Veer, T. Che, B. Ray, and M. Pavone. Guided condi-
tional diffusion for controllable traffic simulation. In 2023 IEEE International Conference on
Robotics and Automation (ICRA), pages 3560–3566. IEEE, 2023.

[36] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

[37] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan, V. Kumar, H. Zhu, A. Gupta,
P. Abbeel, et al. Soft actor-critic algorithms and applications. arXiv preprint arXiv:1812.05905,
2018.

[38] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra.
Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971, 2015.

[39] I. Uchendu, T. Xiao, Y. Lu, B. Zhu, M. Yan, J. Simon, M. Bennice, C. Fu, C. Ma, J. Jiao, et al.
Jump-start reinforcement learning. arXiv preprint arXiv:2204.02372, 2022.

[40] A. Nair, A. Gupta, M. Dalal, and S. Levine. Awac: Accelerating online reinforcement learning
with offline datasets. arXiv preprint arXiv:2006.09359, 2020.

[41] N. Stiennon, L. Ouyang, J. Wu, D. Ziegler, R. Lowe, C. Voss, A. Radford, D. Amodei, and
P. F. Christiano. Learning to summarize with human feedback. Advances in Neural Information
Processing Systems, 33:3008–3021, 2020.

[42] Y. Lu, K. Hausman, Y. Chebotar, M. Yan, E. Jang, A. Herzog, T. Xiao, A. Irpan, M. Khansari,
D. Kalashnikov, et al. Aw-opt: Learning robotic skills with imitation and reinforcement at
scale. In Conference on Robot Learning, pages 1078–1088. PMLR, 2022.

[43] Y. Zhu, Z. Wang, J. Merel, A. Rusu, T. Erez, S. Cabi, S. Tunyasuvunakool, J. Kramár, R. Had-
sell, N. de Freitas, et al. Reinforcement and imitation learning for diverse visuomotor skills.
arXiv preprint arXiv:1802.09564, 2018.

[44] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. L. Wainwright, P. Mishkin, C. Zhang, S. Agarwal,
K. Slama, A. Ray, et al. Training language models to follow instructions with human feedback.
arXiv preprint arXiv:2203.02155, 2022.

[45] T. Hester, M. Vecerik, O. Pietquin, M. Lanctot, T. Schaul, B. Piot, D. Horgan, J. Quan,
A. Sendonaris, I. Osband, et al. Deep q-learning from demonstrations. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 32, 2018.

[46] M. Vecerik, T. Hester, J. Scholz, F. Wang, O. Pietquin, B. Piot, N. Heess, T. Rothörl, T. Lampe,
and M. Riedmiller. Leveraging demonstrations for deep reinforcement learning on robotics
problems with sparse rewards. arXiv preprint arXiv:1707.08817, 2017.

11

https://arxiv.org/abs/2205.03195

[47] A. Kumar, A. Zhou, G. Tucker, and S. Levine. Conservative q-learning for offline reinforce-
ment learning. Advances in Neural Information Processing Systems, 33:1179–1191, 2020.

[48] S. Fujimoto and S. S. Gu. A minimalist approach to offline reinforcement learning. Advances
in neural information processing systems, 34:20132–20145, 2021.

[49] X. Liang, T. Wang, L. Yang, and E. Xing. Cirl: Controllable imitative reinforcement learning
for vision-based self-driving. In Proceedings of the European conference on computer vision
(ECCV), pages 584–599, 2018.

[50] A. Kamenev, L. Wang, O. B. Bohan, I. Kulkarni, B. Kartal, A. Molchanov, S. Birchfield,
D. Nistér, and N. Smolyanskiy. Predictionnet: Real-time joint probabilistic traffic prediction
for planning, control, and simulation. In 2022 International Conference on Robotics and Au-
tomation (ICRA), pages 8936–8942. IEEE, 2022.

[51] Q. Zhang, Y. Gao, Y. Zhang, Y. Guo, D. Ding, Y. Wang, P. Sun, and D. Zhao. Trajgen: Generat-
ing realistic and diverse trajectories with reactive and feasible agent behaviors for autonomous
driving. IEEE Transactions on Intelligent Transportation Systems, 23(12):24474–24487, 2022.

[52] N. Webb, D. Smith, C. Ludwick, T. Victor, Q. Hommes, F. Favaro, G. Ivanov, and
T. Daniel. Waymo’s safety methodologies and safety readiness determinations. arXiv preprint
arXiv:2011.00054, 2020.

[53] E. Bronstein, S. Srinivasan, S. Paul, A. Sinha, M. O’Kelly, P. Nikdel, and S. Whiteson. Em-
bedding synthetic off-policy experience for autonomous driving via zero-shot curricula. arXiv
preprint arXiv:2212.01375, 2022.

[54] D. Rempe, J. Philion, L. J. Guibas, S. Fidler, and O. Litany. Generating useful accident-prone
driving scenarios via a learned traffic prior. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 17305–17315, 2022.

[55] N. Hanselmann, K. Renz, K. Chitta, A. Bhattacharyya, and A. Geiger. King: Generating
safety-critical driving scenarios for robust imitation via kinematics gradients. In European
Conference on Computer Vision, pages 335–352. Springer, 2022.

[56] J. Wang, A. Pun, J. Tu, S. Manivasagam, A. Sadat, S. Casas, M. Ren, and R. Urtasun. Advsim:
Generating safety-critical scenarios for self-driving vehicles. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 9909–9918, 2021.

[57] H. Weber, J. Bock, J. Klimke, C. Roesener, J. Hiller, R. Krajewski, A. Zlocki, and L. Eckstein.
A framework for definition of logical scenarios for safety assurance of automated driving.
Traffic injury prevention, 20(sup1):S65–S70, 2019.

[58] T. Menzel, G. Bagschik, and M. Maurer. Scenarios for development, test and validation of
automated vehicles. In 2018 IEEE Intelligent Vehicles Symposium (IV), pages 1821–1827.
IEEE, 2018.

[59] S. M. LaValle. Planning algorithms. Cambridge university press, 2006.

[60] D. P. Kingma and M. Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

[61] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel. High-dimensional continuous
control using generalized advantage estimation. arXiv preprint arXiv:1506.02438, 2015.

[62] A. Cui, S. Casas, K. Wong, S. Suo, and R. Urtasun. Gorela: Go relative for viewpoint-invariant
motion forecasting. arXiv preprint arXiv:2211.02545, 2022.

12

[63] W. G. Najm, J. D. Smith, M. Yanagisawa, et al. Pre-crash scenario typology for crash avoidance
research. Technical report, United States. National Highway Traffic Safety Administration,
2007.

[64] T. Menzel, G. Bagschik, and M. Maurer. Scenarios for development, test and validation of
automated vehicles. In 2018 IEEE Intelligent Vehicles Symposium (IV), pages 1821–1827.
IEEE, 2018.

[65] S. Casas, C. Gulino, S. Suo, K. Luo, R. Liao, and R. Urtasun. Implicit latent variable model
for scene-consistent motion forecasting. In Computer Vision–ECCV 2020: 16th European
Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXIII 16, pages 624–641.
Springer, 2020.

[66] M. Liang, B. Yang, R. Hu, Y. Chen, R. Liao, S. Feng, and R. Urtasun. Learning lane graph
representations for motion forecasting. In A. Vedaldi, H. Bischof, T. Brox, and J. Frahm,
editors, Computer Vision - ECCV 2020 - 16th European Conference, Glasgow, UK, August
23-28, 2020, Proceedings, Part II, volume 12347 of Lecture Notes in Computer Science, pages
541–556. Springer, 2020. doi:10.1007/978-3-030-58536-5 32. URL https://doi.org/10.

1007/978-3-030-58536-5_32.

[67] I. Loshchilov and F. Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

13

http://dx.doi.org/10.1007/978-3-030-58536-5_32
https://doi.org/10.1007/978-3-030-58536-5_32
https://doi.org/10.1007/978-3-030-58536-5_32

A Additional Results

Metrics: In order to measure the realism of our traffic models, we use a set of metrics which
evaluate both the traffic models’ ability to match human demonstration data in the nominal scenarios
and avoid infractions in both nominal and simulated long-tail scenarios.

• Reconstruction: In nominal scenarios where expert demonstrations exist, we consider a set of
metrics which evaluate how close a traffic model’s simulation is to the real world conditioned
on the same initial condition. We measure the final displacement error (FDE) [65], defined as
the L2 distance between an agent’s position in a simulated scenario vs the ground truth scenario
after 5s. We also measure the along-track error (ATE) and cross-track error (CTE) of an agent’s
simulated position projected onto the ground truth trajectory. This decomposition disentangles
speed variability and lateral deviations respectively.

• Distributional: While reconstruction metrics compare pairs of real and simulated logs, we can
compute distributional similarity metrics as an additional method to gauge realism. We compute
the Jensen-Shannon Divergence (JSD) [31] between histograms of scenario features to compute
their distributional similarity. Features include agent kinematics like acceleration and speed, pair-
wise agent interactions like distance to lead vehicle, and map interactions like lateral deviation
from lane centerline.

• Infraction Rate: Finally, we measure the rate of traffic infractions made by agents controlled by a
traffic model. Similar to prior work [30], we measure percentage of agents that end up in collision
or drive off-road. As this metric does not require ground truth scenarios for pairing or computing
statistics, it can be used in simulated long-tail scenarios that do not have ground truth.

Comparison to state-of-the-art: In our main paper, we presented select results from our com-
parison to state-of-the-art traffic models on both nominal and long-tail scenarios. Here, we include
additional tradeoff plots for all metrics in Figure 9. We also include a table of detailed metrics for all
methods in Table 5. Building on our observations in the main paper, we see that RTR outperforms
and expands the existing Pareto frontier on all metrics and scenario sets. IL methods achieve strong
reconstruction/distributional realism metrics but suffer from high infraction rates, while RL meth-
ods attain the opposite. RTR achieves the best of both worlds—a testament to its ability to learn
human-like driving while avoiding unrealistic traffic infractions.

Long-Tail Scenarios: In our main paper, we evaluated our approach of using procedurally gener-
ated long-tail scenarios against the alternative of mining hard scenarios from data. Here, we include
additional tradeoff plots for all metrics in Figure 10, with the detailed metrics in Table 6. We see
that training on both nominal and long-tail scenarios outperforms the alternatives in most cases.

In addition, we present a slightly different view of Figure 3 of the main paper where the y-axis is in
the same scale in Figure 11. This view highlights the difference in difficulty between the different
scenario sets.

Downstream Experiment: We provide additional details for our downstream experiment in Sec-
tion 4.2. The evaluation data used is an additional 118 snippets held out from the nominal dataset.
The hyperparameters for training the prediction model (model size, number of epochs, learning rate
schedule) were tuned on the training split of the nominal dataset and kept fixed and constant when
training on the datasets generated by the methods in Table 2 in order to be fair. The synthetic dataset
for each method is also generated using the same 589 initial conditions to be fair. We report the min-
imum over modes for our multimodal prediction model. We use 4 separate checkpoints to compute
the uncertainty estimates.

Distributional Realism: In Figure 12, we include additional plots showing the histograms used
to compute JSD distributional realism metrics on the nominal scenario set. We can see that RL
methods (RL, RL-Shaped, and BC + RL) struggle to capture human-like driving, particularly in

14

10 2

10 1

Co
llis

io
n

(%
)

10 2

10 1

Of
fro

ad
 (%

),

101

FDE (m)

10 1

4 × 10 2

6 × 10 2

Lo
ng

-ta
il

Co
l.

(%
)

101

ATE (m)
1006 × 10 1

CTE (m)
0.2 0.4 0.6

Accel JSD (nats)
0.2 0.4

Speed JSD(nats)
0.3 0.4 0.5

Lat dev. JSD (nats)
0.10 0.15 0.20

Lead dist. JSD (nats)

BC IL RL RL-Shaped BC+RL RTR (ours)

Figure 9: Additional plots comparing infraction / realism tradeoff of RTR compared to baseline
models. We see that RTR outperforms and expands the existing Pareto frontier for all metrics.

Infraction (%) Reconstruction (m) JSD (nats) LT-Inf. (%)
Method Col. Off Rd. FDE ATE CTE Acc. Spd. Lat. Ld. Col.

BC 22.13± 1.32 58.68± 2.18 4.50± 0.24 3.60± 0.20 1.84± 0.17 0.34 0.54 0.14 0.20 17.00± 2.91
IL 0.89± 0.39 2.48± 0.36 4.98± 0.23 4.75± 0.23 0.66± 0.05 0.15 0.23 0.14 0.07 12.13± 2.44
RL 0.23± 0.17 0.20± 0.13 56.92± 0.87 56.91± 1.91 0.75± 0.08 0.60 0.46 0.54 0.12 4.26± 1.30
RL-Shp. 1.50± 0.36 1.01± 0.29 21.29± 1.13 21.17± 1.12 0.97± 0.05 0.43 0.43 0.48 0.13 6.95± 1.81
BC+RL 3.08± 0.49 1.88± 0.32 47.30± 0.49 47.26± 0.50 1.05± 0.09 0.62 0.53 0.49 0.15 4.46± 1.31
RTR 0.38± 0.20 0.20± 0.10 5.16± 0.28 4.97± 0.28 0.61± 0.04 0.16 0.33 0.14 0.07 3.61± 1.35

Table 5: Detailed breakdown of metrics. Metrics on the left (resp. right) are computed on nominal
scenarios (resp. long-tail scenarios). IL methods achieve strong reconstruction/distributional realism
metrics but suffer from high infraction rates, while RL methods attain the opposite. RTR achieves
the best of both worlds, with high reconstruction/distributional realism and low infraction rates.

speed and acceleration JSD where the RL methods tend to brake more often than humans. BC
exhibits slightly better results overall, but it has worse map interaction reasoning due to distribution
shift from compounding errors. In contrast, RTR captures human-like driving significantly better,
closely matching IL in distributional realism while also improving on its infraction rate as seen in
other results.

Qualitative Results: We include qualitative results comparing RTR against the baselines Fig-
ures 13, 14, 15, and 16. Across fork, merge, and long-tail scenarios, we see that RTR exhibits the
greatest realism of the competing methods.

B Learning

B.1 Loss Derivation

In this section, we will provide more details on the loss derivation using the Lagrangian. Recall that
we begin with the following optimization problem

arg min
π

DKL
(
Pπ(τ) ‖ PE(τ)

)
s.t. EPπ [R(τ)] ≥ 0

(8)

15

0.00400.00450.00500.0055
Nominal Col. (%)

0.04

0.05

0.06

0.07

0.08

0.09

Lo
ng

-ta
il.

 C
ol

. (
%

)

0.002 0.003 0.004 0.005
Nominal Off Road. (%)

5.0 5.5 6.0
FDE (m)

5.0 5.5 6.0
ATE (m)

0.55 0.60 0.65 0.70 0.75
CTE (m)

0.137 0.138 0.139 0.140 0.141
Speed JSD(nats)

0.04

0.05

0.06

0.07

0.08

0.09

Lo
ng

-ta
il.

 C
ol

. (
%

)

0.145 0.150 0.155 0.160
Accel JSD (nats)

0.26 0.28 0.30 0.32 0.34
Lat dev. JSD (nats)

0.072 0.073 0.074 0.075
Lead dist. JSD (nats)

Nom
Cur
LT
Nom+Cur
Nom+LT (ours)

Figure 10: Additional plots showing the tradeoff between infraction rate on the long-tail set and
other realism metrics on the nominal set, for models trained on different scenario sets. We see that
for most metrics, training on both nominal and long-tail scenarios obtain the best tradeoff.

Infraction (%) Reconstruction (m) JSD (nats) LT-Inf. (%)
Train Col. Off Rd. FDE ATE CTE Acc. Spd. Lat. Ld. Col.

Nominal 0.38± 0.20 0.49± 0.17 5.05± 0.25 4.86± 0.24 0.65± 0.04 0.14 0.14 0.33 0.07 9.60± 2.17
Curated 0.45± 0.21 0.14± 0.08 5.34± 0.23 5.11± 0.23 0.76± 0.05 0.15 0.14 0.29 0.08 9.42± 2.17
Long-tail 0.58± 0.23 0.48± 0.16 6.26± 0.38 6.10± 0.38 0.56± 0.04 0.16 0.14 0.25 0.07 4.00± 1.37
Nom. + Cur 0.38± 0.20 0.30± 0.11 5.27± 0.24 5.06± 0.30 0.67± 0.05 0.15 0.14 0.34 0.08 9.04± 2.14
Nom. + LT 0.38± 0.20 0.20± 0.10 5.16± 0.28 4.97± 0.28 0.61± 0.04 0.16 0.14 0.33 0.07 3.61± 1.35

Table 6: Detailed breakdown of realism and infraction metrics for training on different scenario sets.

We form the Lagrangian of the optimization problem

L(π, λ) = DKL
(
Pπ(τ) ‖ PE(τ)

)
+ λEPπ [R(τ)] (9)

= EPπ
[
log

Pπ(τ)

PE(τ)
− λR(τ)

]
(10)

= EPπ
[
− logPE(τ)− λR(τ)

]
−H(π). (11)

where λ is a Lagrangian multiplier and

H(π) = −EPπ [logPπ(τ)] (12)

= −EPπ
[
ρ0(s0)

T−1∑
t=0

log π(at|st)

]
. (13)

under deterministic dynamics is the causal entropy [26]. Using the Lagragian, the optimization
problem is converted to an unconstrained problem

π? = arg min
π

max
λ
L(π, λ). (14)

Equation 14 can be optimized in a number of ways, such as iteratively solving the inner maximiza-
tion over λ and outer minimization over π. We take a simplified approximate approach where we
simply set λfixed ≥ 0 as a hyperparameter, leading to what is ultimately a relaxed constraint or
penalty method.

π∗ ≈ arg min
π

EPπ
[
− logPE(τ)− λfixedR(τ)

]
−H(π) (15)

The causal entropy term is included as an entropy regularization term in some learning algorithms
such as PPO [36]. In practice, we found that it was not necessary to include.

16

5 10 20 40
FDE (m)

0.0025

0.0050

0.0100

0.0200

0.0400

0.0800

0.1600

0.3200

Co
llis

io
n

(%
)

Nominal

0.2 0.3 0.4 0.5 0.6
Accel JSD (nats)

Nominal

5 10 20 40
FDE (m)

Long-tail

0.2 0.3 0.4 0.5 0.6
Accel JSD (nats)

Long-tail

BC IL RL RL-Shaped BC+RL RTR (ours)

Figure 11: Alternative view of Figure 3, where now the y-axis is on the same scale across the
different scenario sets. We see that in the Long-tail scenario set is significantly harder than the
nominal set.

B.2 Imitation Learning Loss

Recall that the imitation learning component of the loss is given as

LIL = EτE∼D
[
Eτ∼Pπ(·|sE0)

[
D(τE , τ)

]]
(16)

= E(sE0 ,...,s
E
T)∼D

[
T∑
t=1

d(sEt , s̃t)

]
(17)

where

ãt ∼ π(a|s̃t) (18)
s̃t+1 = s̃t + f(s̃t, ãt)dt. (19)

Because the dynamics function f as described in Section B.7 is differentiable, Equation 17 com-
pletely differentiable using the reparameterization trick [60] when sampling from the policy. To
compute the inner expectation in Equation 16, we simply sample a single rollout. In practice, we
found that directly using the mean without sampling is also sufficient.

B.3 Reward Function

Sparse reward: Recall that we use the following reward function

R(i)(s, a(i)) =

{
−1 if an infraction occurs
0 otherwise.

(20)

In our experiments, we consider collisions events and driving off-road as infractions. Collisions are
computed by checking for overlap between the bounding boxes of agents. Off-road is computed by
checking if an agent’s bounding box still intersects with the road polygon.

Early Termination: Note that when optimizing the reward, we apply early termination of the
scenario in the event of an infraction. We treat infractions as terminal states in the MDP for a few
reasons. Regarding collision, it is unclear what the optimal behavior (or recovery) looks like after a
collision. Similarly, for driving off-road, the actor is likely in a state that it is physically impossible
to recover from the real world, as an off-road event would imply the actor has driven off the shoulder
into a divider. Finally, in early experiments, we found that continuing simulation for off-road events
(and not modeling any shoulders or dividers, physics of off-road driving, etc.) would slow down
training since in early phases the policy would drive off-road very early and very severely with no
hope of recovering. Resetting in this case prevents wasted simulation in very out-of-distribution
states where the policy is completely off the map, etc.

17

Shaped reward: For the RL-Shaped baseline, use the same reward in Equation 20 with an addi-
tional term which encourages driving at the speed limit.

R
(i)
shaped(s, a

(i)) = R(i)(s, a(i)) + 0.5(C − δ)/C (21)

where δ = abs(velocity−speed limit) andC = 30. For the shaped reward, we additionally terminate
the episode if δ ≥ C.

B.4 Reinforcement Learning Loss

We describe our factorized approach to multiagent PPO [36] in more detail. Starting off we compute
a per-agent probability ratio.

r(i) =
π(a(i)|s)

πold(a(i)|s)
. (22)

Our centralized value-function uses the same architecture as our policy, and computes per-agent
value estimates V̂ (i)(s). Details of the architecture are found in Section B.6. The value model
is trained using per-agent value targets, which are computed with per-agent rewards R(i)

t =

R(i)(st, a
(i)
t)

Lvalue =

N∑
i

(V̂ (i) − V (i))2 (23)

V (i) =

T∑
t=0

γtR
(i)
t (24)

We can obtain a per-agent GAE using the value model as well,

A(i) = GAE(R
(i)
0 , . . . , R

(i)
T−1, V̂

(i)(sT)) (25)

The PPO policy loss is simply the sum of per-agent PPO loss,

Lpolicy =

N∑
i=1

min(r(i)A(i), clip(r(i), 1− ε, 1 + ε)A(i)) (26)

Finally, the overall loss is the sum of the policy and value learning loss.

LRL = Lpolicy + Lvalue (27)

B.5 Input Parameterization

Agent history: Following [62], we adopt an viewpoint invariant representation of an agent’s past
trajectory. We encode the past trajectory as a sequence of pair-wise relative positional encodings
between the past waypoints and the current pose. Each relative positional encoding consists of the
sine and cosine of distance and heading difference of a pair of poses. See [62] for details.

Lane graph: To construct our lane graph representation G = (V,E), We first obtain the lane
graph nodes by discretizing centerlines in the high-definition (HD) map into lane segments every
10m. We use length, width, curvature, speed limit, and lane boundary type (e.g., solid, dashed) as
node features. Following [66], we then connect nodes with 4 different relationships: successors,
predecessors, left and right neighbors.

B.6 Model Architecture

Briefly, the RTR model architecture is composed of three main building blocks: (1) context encoders
for embedding lane graph and agent history inputs; (2) interaction module for capturing scene-level
interaction; and (3a) action decoder for parameterizing the per-agent policy and (3b) value decoder
for the value model. Note that the policy model and the value model use the same architecture, but
are trained completely separately and do not share any parameters. Early experiments found that not
sharing parameters resulted in more stable training – we hypothesize that this is likely because this
approach prevents updates to the policy from interfering with the value function, and vice versa.

18

History encoder: The history encoder consists of a 1D residual neural network (ResNet) followed
by a gated recurrent unit (GRU) that extracts agent features h(i)a = f(s(i)) from a sliding window
of past agent states s. Intuitively, the 1D CNN captures local temporal patterns, and the GRU
aggregates them into a global feature.

Lane graph encoder: The lane graph encoder is a graph convolutional network (GCN) [66] that
extracts map features hm = g(m) from a given lane-graph G of map m. We use hidden channel
dimensions of [128, 128, 128, 128], layer normalization (LN), and max pooling aggregation.

Interaction module: To model scene-level interaction (i.e., agent-to-agent, agent-to-map, and
map-to-map), we build a heterogeneous spatial graph G′ by adding agent nodes to the original lane
graph G. Besides the original lane graph edges, we connect agent nodes to their closest lane graph
nodes. All agent nodes are also fully connected to each other. We use a scene encoder parameter-
ized by a heterogeneous graph neural network (HeteroGNN) [62] to process map features and agent
features into fused features,

{h(1), . . . h(N)} = HeteroGNN({h(1)a , . . . , h(N)
a }, hm). (28)

These fused features are then provided as input to the decoder.

Action decoder: Finally, we pass the fused features into a 4-layer MLP with hidden dimensions
[128, 128, 128] to predict agent’s acceleration and steering angle distributions (parameterized as
Normals).

(µ(i), σ(i)) = MLP(h(i)) (29)

π(a(i)|s) = N (µ(i), σ(i)) (30)

Value decoder: For the value model, a 4-layer MLP instead regresses a single scalar value repre-
senting the value

V̂ (i) = MLPvalue

(
h
(i)
value

)
. (31)

B.7 Kinematic Bicycle Model

We use a kinematic bicycle model [59] for our environment dynamics. The bicycle model state is
given as

s = (x, y, θ, v) (32)

where x, y is the position of the center of the rear axel, θ is the yaw, and v is the velocity. The bicycle
model actions are

a = (u, φ) (33)

where u is the acceleration, and φ is the steering angle. The dynamics function ṡ = f(s, a) is then
defined as

ẋ = v cos(θ) (34)
ẏ = v sin(θ) (35)

θ̇ =
v

L
tan(φ) (36)

v̇ = u (37)

where L is wheelbase length, i.e. the distance between the rear and front axel. We can use a simple
finite difference approach to computing the next state

st+1 = st + f(st, at)dt (38)

where dt is chosen to be 0.5 seconds in practice. We can apply the bicycle model to each agent
individually to obtain the joint state dynamics function.

19

Algorithm 1 RTR Closed-loop Learning
1: for n = 1, · · · , N do
2: Set LIL ← 0.
3: Set LRL ← 0.
4: for k = 1, · · · ,K do
5: Sample initial state s0 ∼ (1− α)ρD0 + αρS0 .
6: Generate trajectory τ using policy πθ(a|s) from Equation 3 and simulator.
7: Compute LRL ← LRL −R(τ).
8: if initial state of s0 is from Nominal Dataset then
9: LIL ← LIL +D(τE , τ).

10: end if
11: end for
12: Compute gRL ← ∇θ λKL

RL using our factorized PPO.
13: Compute gIL ← ∇θ 1

KL
IL using BPTT.

14: Update θ with gRL + gIL using AdamW.
15: end for

B.8 Training Details

We use AdamW [67] as our optimizer, and decay the learning rate by a factor of 0.2 every 3 epochs,
and train for a total of 10 epochs. We provide additional training hyperparameters in Table 7. Our
overall learning process is summarized in Algorithm 1.

Hyperparameter Value

IL minibatch size 32
PPO batch size 192
PPO minibatch size 32
PPO num epochs 1
PPO clip 0.2
Discount factor 0.79
Learning rate 0.00001
Weight decay 0.0001
GAE λ 1.0
Grad clip norm 1.0

Table 7: Training hyperparameters

20

0 20 400.00

0.02

0.04

0.06

Sp
ee

d
(m

/s
)

BC

0 20 400.00

0.01

0.02

0.03

0.04

0.05

IL

0 20 400.00

0.01

0.02

0.03

0.04

0.05 RL

0 20 400.00

0.05

0.10

0.15

0.20

0.25
RL-Shaped

0 20 400.00

0.01

0.02

0.03

0.04

0.05 BC+RL

0 20 400.00

0.01

0.02

0.03

0.04

0.05

RTR (ours)

4 2 0 2 40.0

0.2

0.4

0.6

Ac
ce

le
ra

tio
n

(m
/s

2)

4 2 0 2 40.0

0.1

0.2

0.3

4 2 0 2 40.0

0.1

0.2

0.3

4 2 0 2 40.0

0.1

0.2

0.3

4 2 0 2 40.0

0.1

0.2

0.3

4 2 0 2 40.0

0.1

0.2

0.3

0 50 100 150 2000.00

0.05

0.10

0.15

Le
ad

 d
ist

an
ce

 (m
)

0 50 100 150 2000.00

0.05

0.10

0.15

0 50 100 150 2000.00

0.05

0.10

0.15

0 50 100 150 2000.00

0.05

0.10

0.15

0 50 100 150 2000.00

0.05

0.10

0.15

0 50 100 150 2000.00

0.05

0.10

0.15

0.0 0.5 1.0 1.5 2.00.00

0.05

0.10

0.15

0.20

La
te

ra
l d

ev
ia

tio
n.

 (m
)

0.0 0.5 1.0 1.5 2.00.00

0.05

0.10

0.15

0.20

0.0 0.5 1.0 1.5 2.00.00

0.05

0.10

0.15

0.20

0.0 0.5 1.0 1.5 2.00.00

0.05

0.10

0.15

0.20

0.0 0.5 1.0 1.5 2.00.00

0.05

0.10

0.15

0.20

0.0 0.5 1.0 1.5 2.00.00

0.05

0.10

0.15

0.20

Demonstration Model

Figure 12: Histograms of scenario features for all methods used to compute JSD distributional
realism metrics. We see that BC and RL methods often struggle with capturing the data distribution
compared to IL and RTR. Notably, RTR closely matches IL performance in distributional realism,
while greatly improving infraction rate as seen in other results.

(a) BC (b) IL

(c) RL (d) RL-Shaped

(e) BC+RL (f) RTR (ours)

Figure 13: Qualitative results on a fork scenario. BC drives off the road, IL results in a collision
while RL and BC+RL slow down. RL-Shaped drives straight and loses the interesting lane change
behavior.

21

(a) BC (b) IL

(c) RL (d) RL-Shaped

(e) BC+RL (f) RTR (ours)

Figure 14: Qualitative results on a merge scenario. We see that RL methods slow down unrealisti-
cally. IL results in a collision while RTR maintains realism.

(a) BC (b) IL

(c) RL (d) RL-Shaped

(e) BC+RL (f) RTR (ours)

Figure 15: Qualitative results on procedurally generated merge scenario. IL and BC result in a
collision. RTR maintains realism.

(a) BC (b) IL

(c) RL (d) RL-Shaped

(e) BC+RL (f) RTR (ours)

Figure 16: Qualitative results on a procedurally generated cut-in scenario. BC+RL drives off the
road, while IL and RL-shaped result in a collision. RTR maintains realism.

22

	Introduction
	Related Work
	Learning Infraction-free Human-like Traffic Agents
	Preliminaries
	Learning
	Model Architecture
	Simulated Long-tail Scenarios

	Experiments
	Benchmarking Traffic Models
	Downstream Evaluation
	Additional Analysis

	Conclusion and Limitations
	Additional Results
	Learning
	Loss Derivation
	Imitation Learning Loss
	Reward Function
	Reinforcement Learning Loss
	Input Parameterization
	Model Architecture
	Kinematic Bicycle Model
	Training Details

