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Abstract

While task-agnostic debiasing provides notable001
generalizability and reduced reliance on down-002
stream data, its impact on language model-003
ing ability and the risk of relearning social004
biases from downstream task-specific data re-005
main as the two most significant challenges006
when debiasing Pretrained Language Models007
(PLMs). The impact on language modeling008
ability can be alleviated given a high-quality009
and long-contextualized debiasing corpus, but010
there remains a deficiency in understanding011
the specifics of relearning biases. We empir-012
ically ascertain that the effectiveness of task-013
agnostic debiasing hinges on the quantitative014
bias level of both the task-specific data used015
for downstream applications and the debiased016
model. We empirically show that the lower017
bound of the bias level of the downstream fine-018
tuned model is the bias level of the debiased019
model, in most practical cases. To gain more in-020
depth understanding about how the parameters021
of PLMs change during fine-tuning due to the022
forgetting issue of PLMs, we propose a novel023
framework which can Propagate Socially-fair024
Debiasing to Downstream Fine-tuning, ProSo-025
cialTuning. Our proposed framework can push026
the fine-tuned model to approach the bias lower027
bound during downstream fine-tuning, indicat-028
ing that the ineffectiveness of debiasing can be029
alleviated by overcoming the forgetting issue030
through regularizing successfully debiased at-031
tention heads based on the PLMs’ bias levels032
from stages of pretraining and debiasing1.033

1 Introduction034

Social fairness of PLMs has recently drawn in-035

tense critical attention, particularly due to the036

widespread deployment of PLM-based systems037

(Bender et al., 2021; Zhuo et al., 2023; Ouyang038

et al., 2022). Social biases embedded in PLMs039

1Unless explicitly stated otherwise, debiasing in this paper
refers to task-agnostic debiasing.

can drive PLM-based systems to generate stereo- 040

typical content with respect to underrepresented 041

demographic groups, raising serious issues of so- 042

cial fairness (Elsafoury and Abercrombie, 2023). 043

Therefore the process of debiasing PLMs to bet- 044

ter align them with social values of fairness is a 045

key procedure before deploying PLMs for public 046

access (Sun et al., 2019). 047

To illustrate the unintended behavior of social 048

bias, a popular example is: The surgeon asked 049

the nurse a question, he ...; The nurse asked the 050

surgeon a question, she .... Given the occupation to- 051

ken, surgeon, in the context of “The surgeon asked 052

the nurse a question", PLMs are more likely to 053

make a generation decision to assign the binary 054

gender token he, instead of she, by referring to 055

the occupational token. This indicates that PLMs 056

predict surgeons as male with a higher probability 057

than surgeons as female, presenting an example of 058

gender bias (Bordia and Bowman, 2019; Lu et al., 059

2020). Intrinsically, PLMs amplify the statistical 060

bias in the pretraining corpus where the concur- 061

rence between surgeon and he is much larger than 062

that between surgeon and she (Liang et al., 2021). 063

Despite various studies highlighting social bias 064

issues (Bordia and Bowman, 2019; Nozza et al., 065

2022; Smith et al., 2022), the effectiveness of de- 066

biasing for downstream applications has been a 067

debate (Kaneko et al., 2022; Jeoung and Diesner, 068

2022; Jin et al., 2021). 069

When it comes to debiasing, the language mod- 070

eling abilities (Meade et al., 2022) and relearn- 071

ing social biases (Kaneko et al., 2022) are the two 072

main concerns limiting the effectiveness of debias- 073

ing. Considering counterfactual data augmentation 074

(CDA) (Webster et al., 2020) as an instance of de- 075

biasing, the lower quality of the debiasing corpora 076

compared to the pretraining corpora negatively im- 077

pacts the language modeling ability, therefore de- 078

grading downstream performance. Earlier studies 079

have arrived at varying conclusions regarding the 080
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effectiveness of debiasing in reducing social bias in081

fine-tuned tasks. Webster et al. (2020) and Jeoung082

and Diesner (2022) claim that a debiased model083

can help with downstream tasks, but Kaneko et al.084

(2022) empirically demonstrates that fine-tuning a085

debiased model for downstream tasks can lead to086

significantly biased models (He et al., 2022; Zhou087

et al., 2023a). However, an in-depth understanding088

of this ineffectiveness is still under-studied.089

This paper focuses on the relearning of social090

bias challenge and proposes a framework to alle-091

viate this problem via an in-depth understanding092

of how PLMs’ parameters change during debias-093

ing and fine-tuning. We empirically indicate that094

debiased PLMs are sensitive to bias in downstream095

data through a comprehensive analysis of the bias096

score of the fine-tuned model given various bias lev-097

els 2 in downstream data. Our observations indicate098

that: (1) the bias level of the debiased PLMs is the099

lower bound for any fine-tuned PLMs for practical100

cases, and (2) relearning social biases derives from101

the forgetting issue of PLMs (Kirkpatrick et al.,102

2017; Zhao et al., 2023).When fine-tuning occurs in103

downstream tasks exhibiting higher bias levels, the104

resultant model tends to display greater bias com-105

pared to the initial debiased model. Through metic-106

ulous control of bias levels within downstream107

tasks, we can conclude that the effectiveness of108

task-agnostic debiasing is dependent on the bias109

level of both the debiased PLMs and the down-110

stream data.111

To thoroughly understand how the attention112

heads of a PLM change, and how those changes are113

associated with social biases and downstream gen-114

eralization, we propose ProSocialTuning. Specif-115

ically, we implement a generalization importance116

estimation method based on PAC-Bayes training,117

which indicates parameters’ importance by learn-118

ing parameter-wise noise variance through mini-119

mizing a variant of a PAC-Bayes bound in a post-120

training manner (Liu et al., 2023a; Louizos et al.,121

2018). A higher noise variance indicates less im-122

portance to generalization. In the downstream fine-123

tuning stage, we apply regularization to success-124

fully debiased attention heads, guided by their im-125

portance to downstream generalization.126

In Section 2 we introduce relevant works. Sec-127

tion 3 introduces our first main contribution: use of128

the bias level as a lower bound. Section 4 presents129

2We define bias level as the intrinsic/extrinsic bias score of
the target PLM before/after fine-tuned with downstream data.

the necessary mathematical and algorithmic back- 130

ground context for our second main contribution: 131

our novel framework, ProSocialTuning. The re- 132

maining sections detail ProSocialTuning and its 133

experimental evaluation. 134

2 Related Works 135

The effectiveness of a separate step of debias- 136

ing before downstream fine-tuning has been ex- 137

plored in recent studies. Kaneko et al. (2022) im- 138

plement comprehensive studies on the intrinsic bias 139

of PLMs and extrinsic bias of fine-tuned PLMs in 140

downstream applications, in terms of gender bias. 141

The experimental results show a debiasing step 142

is less effective for downstream tasks, against the 143

conclusion of debiasing transferability in Jin et al. 144

(2021). Goldfarb-Tarrant et al. (2021) indicates the 145

intrinsic bias evaluation metric is not correlated to 146

application bias. A similar conclusion is presented 147

in Steed et al. (2022), in which the authors inves- 148

tigate the bias transfer hypothesis and prove that 149

debiasing cannot help mitigate bias in fine-tuned 150

tasks. Zhou et al. (2023b) proposed causal-Debias 151

to solve the ineffectiveness of debiasing but their 152

assumption about causal factors is too strong and 153

cannot generalize to other datasets well. 154

PAC-Bayes Training is a training algorithm 155

that is different from the conventional empirical 156

risk minimization, optimizing a machine learn- 157

ing model by minimizing a generalization error 158

bound (PAC-Bayes bound). McAllester (1998) 159

trained a shallow network through minimizing a 160

non-vacuous PAC-Bayes bound and achieved good 161

performance. The PAC-Bayes with BackProp pro- 162

posed by Rivasplata et al. (2019) trains shallow 163

probabilistic networks and certifies their risk by 164

PAC-training on the MNIST dataset. Liu et al. 165

(2023a) proposes PAC-tuning to leverage PAC- 166

Bayes training for fine-tuning PLMs in the sig- 167

nificantly challenging context of high dimensional 168

parameters and small size of the training dataset. 169

The PAC-tuning is an extension to Zhang et al. 170

(2023) which introduced an Auto-tune method 171

based on PAC-Bayes training, by optimizing both 172

prior and posterior variance of model’s parame- 173

ters, and proposing a new PAC-Bayes bound for 174

unbounded classification loss. 175

3 Bias Lower Bound 176

In this section, we present the first major contribu- 177

tion of this work: that the bias level, i.e., the level 178
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Figure 1: StereoSet Scores of BERT models when bias level and training dataset size Vary. The (StereoSet) intrinsic bias
scores of the pretrained, debiased, and fine-tuned models are assessed concerning different bias levels and training dataset sizes
present in specific datasets for downstream tasks. The fine-tuned model is based on the debiased one and fine-tuning indicates
fine-tuning the pretrained model with task-specific data. Models are considered to be less biased when closer to 50.

of a specific type of bias (e.g., gender bias) of a179

debiased model can be leveraged as a lower bound180

for optimizing the fine-tuning of PLMs, given a bi-181

ased fine-tuning dataset. With this, we aim to close182

the debate about the ineffectiveness of debiasing183

via experiments highlighting extreme cases.184

We began by investigating the correlation be-185

tween the effectiveness of debiasing and the bias186

levels in the debiased model and downstream tasks,187

in the context of the gender bias task. To do so,188

for different datasets, we compare the bias score of189

fine-tuned models, as measured by the StereoSet190

Score 3, with respect to: (1) proportions of female191

gender-relevant samples, as defined by the gender192

word list in Zhao et al. (2018), and (2) dataset sizes,193

as shown in Figure 1. Given a debiased model, we194

manipulate the bias levels in the training set and195

report the bias score of the fine-tuned model with196

respect to various bias levels. We use three datasets197

for analysis: MultiNLI (Williams et al., 2018) from198

the GLUE benchmark, the Jigsaw Unintended Bias199

in Toxicity Classification 4, and the Stanford Nat-200

ural Language Inference (SNLI) Corpus (Bow-201

man et al., 2015). To experiment with dataset202

sizes, we randomly sample data from the train-203

ing dataset wherein no sentences contain female-204

relevant words. We consider varying dataset sizes205

of 100, 500, 1000, 5000, and 10000 instances to an-206

alyze the impact of different training dataset sizes.207

To vary the bias levels with respect to gender-208

3In this work, the intrinsic bias score is the StereoSet
Score (Nadeem et al., 2021a).

4https://www.kaggle.com/c/jigsaw-unintended-bias-in-
toxicity-classification

relevant samples across PLMs, we rebalance sam- 209

ples containing words relevant to the female gender 210

in our training dataset. Then we construct a train- 211

ing dataset with 10,000 samples and change the 212

amount of samples with the pre-defined female- 213

relevant words. In our experiments, we systemati- 214

cally varied the proportion of sentences containing 215

female gender words, setting it at 0.0, 0.25, 0.5, 216

0.75, and 1.0. Subsequently, we calculated the aver- 217

age bias score across three different seeds for each 218

of these proportion settings. To validate the effects 219

of debiasing on the language modeling ability, we 220

conducted experiments to gauge the language mod- 221

eling score5. As shown in Appendix Figure 3, the 222

Pearson product-moment correlation coefficients 223

between bias score and language modeling score is 224

less than 1. Thus, we can focus on the effects of the 225

bias levels of the data and models, as those are the 226

most straightforward factors in practical scenarios. 227

According to Figure 1, the fine-tuned model in- 228

dicates more bias than the debiased one in most 229

cases, implying the ineffectiveness of debiasing. 230

This is further verified by the lower bias score 231

of the fine-tuned model based on the pretrained 232

model versus the pretrained model (Figure 1(b)- 233

(c)). These findings indicate that the bias level in 234

the downstream task is less than that of the pre- 235

trained model. Changing the bias levels in training 236

data results in varying fluctuations of bias scores 237

among fine-tuned models across the three evalu- 238

ated benchmark tasks. The bias score gap between 239

5The language modeling score evaluates the baseline per-
formance of PLMs in language modeling tasks. An ideal
model would have a score of 100.
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the fine-tuned model based on the pretrained model240

versus the debiased model is attributed to the dis-241

parity of their language modeling abilities. Given242

the experimental results regarding varying dataset243

sizes (Figure 1(d)-(f)), it is obvious that fewer train-244

ing samples result in lower bias scores. Therefore245

we can conclude that the bias levels of the down-246

stream tasks are highly relevant to the debiasing247

effectiveness.248

Remarkably, debiasing + fine-tuning displays249

the highest bias scores of around 55 across various250

bias levels and tasks. Conversely, fine-tuning has a251

peak bias score closely aligned with the bias score252

of the pretrained model. Moreover, the lowest bias253

scores exhibited by debiasing + fine-tuning with254

differing dataset sizes are strikingly akin to the bias255

score of the debiased model. However the bias256

score of debiasing + fine-tuning should be higher257

than the debiased model, considering downstream258

tasks are generally rather biased in practical sce-259

narios. Consequently, the efficacy of task-agnostic260

debiasing hinges upon both the bias level present in261

the downstream task data and the debiased model.262

The debiased model sets a definitive lower bound263

for the bias levels of the fine-tuned model after264

debiasing, as long as social bias exists within the265

downstream task data (Gaci et al., 2022b). Inspired266

by this conclusion, in Section 5, we prove that we267

can approach the lower bound of the bias level by268

regularization over the debiased model itself, with-269

out any additional debiasing methods or annotated270

datasets, given highly biased downstream tasks.271

4 Background272

In this section, we present the mathematical and273

algorithmic context necessary for understanding274

our ProSocialTuning framework. Assume a PLM275

f , consisting of L layers and K attention heads276

per layer, is parameterized by θ with attention277

weights as θA. The kth attention head in the l-278

th layer al,k is parameterized by θAl,k. We denote279

CMA(f,Dcma) as the Causal Mediation Analysis280

to the attention heads of f with dataset Dcma, and281

denote CDA(f,Dcda) as debiasing of PLM f with282

the counterfactual data augmentation dataset Dcda.283

For each training sample xi and its label yi, we284

denote the cross-entropy loss as l(xi, yi; θ).285

4.1 Bias-inducing Attention Shift286

Based on the conclusion of Section 3 that the bias287

level of the debiased PLMs performs the lower288

bound for downstream fine-tuning as long as there 289

exists bias in the downstream task, we investigated 290

how the bias-inducing effects of PLMs change 291

throughout the pipeline of pretraining, debiasing, 292

and fine-tuning, given the well-known forgetting 293

issue of PLMs (Kirkpatrick et al., 2017). Our em- 294

phasis on the attention heads of PLMs stems from 295

their deterministic nature in associating tokens dur- 296

ing the inference process, as well as their utilization 297

in previous debiasing works (Attanasio et al., 2022; 298

Zayed et al., 2023; Gaci et al., 2022a). 299

Causal Mediation Analysis (CMA) is widely 300

used in the social sciences fields. Imai et al. (2010) 301

and Vig et al. (2020) first proposed localizing 302

social bias-inducing network components using 303

CMA. The rationale behind CMA is to measure the 304

effect of a target network component concerning 305

the anti-stereotypical and stereotypical outputs of 306

PLMs, according to the interventions over the input 307

prompt u. For analyzing gender bias, an example 308

intervention is modifying the gender-relevant word. 309

Specifically, given the prompt unurse = “The
nurse is great, ”, the anti-stereotypical candi-
date word is [he] and the stereotypical word is
[she]. The prediction probability of [he] given the
prompt unurse is pθ([he]|unurse); by swapping the
word nurse into man, then the probability of he is
pθ([he]|uman). The effects of intervention in u to
the output via al,k is defined as:

eal,k =
pθ([he]|uman)

pθ([she]|uman)
/
pθ([he]|unurse)

pθ([she]|unurse)
− 1

CMA measures how the prediction probability gap 310

between anti-stereotypical predictions and stereo- 311

typical predictions is different from the ground- 312

truth probability gap, considering the effect of 313

al,k. By applying CMA, the distributions of bias- 314

inducing effects of attention heads are shown in 315

Figure 2. The effect distributions of attention heads 316

within the pretrained model, debiased model, and 317

fine-tuned models are rather different even though 318

those fine-tuned models are all based on the same 319

debiased model. For example, an attention head 320

a4,9 has higher bias-inducing effects in the pre- 321

trained model becomes less effective in all fine- 322

tuned models, and not all attention heads are debi- 323

ased, to some extent, in the debiased model. This 324

strong inconsistency, termed as bias-inducing at- 325

tention shift, is attributed to the forgetting issue 326

of PLMs. The conclusion, from Section 3, that the 327

effectiveness of debiasing is partially dependent on 328

the bias level of the debiased model, motivates us 329
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Pretrained Debiased Fine-tuned (NLI-bias) Fine-tuned (STS-B) Fine-tuned (BiasBios)

Figure 2: Visualization of CMA Effects of Attention Heads. From left to right, these figures show the effect of CMA on attention
heads in the pretrained BERT-base model, debiased BERT-base model, and fine-tuned BERT-base model on benchmarks of
NLI-bias, STS-B, and BiasBios respectively. The default random seed is 1. The fine-tuned model is based on the debiased model.

to regularize successfully debiased attention heads330

to enhance the effectiveness of debiasing.331

4.2 PAC-Bayes Training332

The idea of PAC-Bayes training arises from mini-333

mizing the PAC-Bayes upper bound over the gener-334

alization (test) error:335

Generalization Error︷ ︸︸ ︷
Eθ∼QE(x,y)∼Dtestℓ(x,y;θ)336

≤ 1

m

m∑
i=1

Eθ∼Qℓ(xi, yi; θ)︸ ︷︷ ︸
Ltrain

+

√
log 1

δ + KL(Q||P)

2m︸ ︷︷ ︸
LPAC

337

PAC-Bayes bounds are probabilistic bounds that338

hold with high probabilities, i.e., 1− δ(δ > 0), and339

for any neural network type. They characterize the340

generalization error of a trained model fθ. Here,341

m is the number of training samples, Q and P are342

arbitrary pairs of posterior and prior distributions343

of θ, KL is the Kullback–Leibler divergence mea-344

suring the distance between two distributions, and345

Dtrain and Dtest is the training data distribution and346

test data distribution, respectively.347

PAC-Bayes training is a framework for under-348

standing and improving generalization by directly349

minimizing a generalization upper bound. One dif-350

ficulty in leveraging PAC-Bayes training for PLMs351

and any other deterministic models is to estimate352

Q and P . A popular solution is to fix P and in-353

ject Gaussian noise to the trained parameters θ354

in the course of training, and estimate the Gaus-355

sian noise variance (Zhang et al., 2023; Liu et al.,356

2023a). Therefore the Ltrain term can be rewritten357

as Ltrain = 1
m

∑m
i=1 Eϵ∼N (0,diag(q))ℓ(xi, yi, θ + ϵ)358

where q ∈ R|θ|. Ltrain becomes increasingly larger359

as the injected noise variance q rises, indicating360

Ltrain is an increasing function with respect to q. 361

Once convergence has been achieved by minimiz- 362

ing Ltrain + LPAC, the learned noise ϵ can be uti- 363

lized to reflect how important each parameter is to 364

the final performance. Parameters associated with 365

larger noise variance are less important than those 366

with a smaller noise variance. This is because in- 367

jecting larger noise into those parameters does not 368

influence training error (Ltrain). A similar idea of 369

Gaussian noise injection has been used in sparse 370

Bayesian learning (Tipping, 2001). Sønderby et al. 371

(2016) implements dropout through multiplying 372

the outputs of neurons by Gaussian random noise. 373

Molchanov et al. (2017) proposes a sparse varia- 374

tional dropout method to learn a costumed dropout 375

rate per parameter via variational inference, and 376

approximate the KL-divergence term by having a 377

Gaussian posterior and a log-uniform prior over 378

model weights. 379

5 ProSocialTuning 380

Using the analysis of Section 3 and bias-inducing 381

attention shift (Section 4.1), ProSocialTuning 382

shows that we can propagate debiasing efforts to 383

downstream fine-tuning by only remembering the 384

successfully debiased attention heads. This frame- 385

work offers insight into understanding the resur- 386

gence of social bias in downstream applications. 387

5.1 Algorithm of ProSocialTuning 388

Algorithm 1 describes the pipeline of ProSocialTun- 389

ing. Given a pretrained language model f0, CMA 390

is employed to get the bias-inducing effects of all 391

attention heads (B0). We denote B0
l,k as the bias- 392

inducing effect of the kth attention head in the lth 393

layer. After that f0 is aligned with human values of 394

social fairness through counterfactual data augmen- 395

tation (Webster et al., 2020). The aligned model fA 396
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Algorithm 1: ProSocialTuning
1 Input: Pretrained Language Model f0, Causal Mediation Analysis dataset Dcma, counterfactual data augmentation

dataset Dcda, downstream dataset Dtask, regularization coefficient γ
2 Output: A fine-tuned model fT
3 B0 = CMA(f0,Dcma) ▷ causal mediation analysis
4 fA = CDA(f0,Dcda) ▷ counterfactual data augmentation
5 Ba = CMA(fA,Dcma) ▷ causal mediation analysis
6 Fine-tune fA to convergence and produce f

′
A

7 Estimate generalization importance aG by minimizing the objective of Egen ▷ Section 5.2
8 Fine-tune fA with the objective of Etuning and produce fT ▷ Section 5.3

is passed into CMA to get the bias-inducing effects397

of attention heads as Ba. By comparing B0 and398

Ba, we can determine which attention heads are399

debiased. ProSocialTuning propagates the learned400

fairness to downstream fine-tuning tasks by regu-401

larization over those successfully aligned attention402

heads, as further described below.403

5.2 Generalization Importance Estimation404

Specifically, to estimate the parameter-wise gener-405

alization importance, we propose a post-training406

method that first fine-tunes fA to convergence, then407

estimates the injected noise variance associated408

with each parameter by minimizing Egen (defined409

below). With the learned noise variance, we can410

calculate the parameter-wise generalization impor-411

tance of aG. Finally, the aligned model fA is fine-412

tuned with the new objective function Etuning (Sec-413

tion 5.3) over the downstream task dataset Dtask.414

Our proposed generalization importance estimation415

method is task-agnostic and less sensitive to hyper-416

parameters, enabling ubiquitous application of our417

proposed framework for downstream applications.418

The LPAC term in Section 4.2 can be simpli-419

fied as LPAC = KL(Qq||P) if the prior distri-420

bution P is fixed and δ is omitted. The only421

learnable parameter is q, further reducing the422

computational complexity. The objective func-423

tion for estimating generalization importance is:424

Egen = 1
m

∑m
i=1 Eϵ∼N (0,diag(q))ℓ(xi, yi, θ + ϵ) +425

λKL(Qq||P) where λ is the coefficient for the KL426

term. More details about our generalization estima-427

tion method are available in Appendix A.1.428

Our method estimates generalization importance429

in a post-training manner, ensuring the estimation430

accuracy by referring to the performance of the431

converged model. ProSocialTuning enjoys com-432

putational benefits in contrast to other in-training433

approaches (Kwon et al., 2022). For the ith parame-434

ter in θ, its generalization importance is calculated435

as 1/ exp(qi). For the importance of each atten-436

tion head, we summarize the importance associ- 437

ated with all parameters of the same attention head 438

and take the summarized importance as the gener- 439

alization importance measurement of that attention 440

head. Appendix A.2 details our implementation of 441

the generalization importance estimation. 442

5.3 Generalization-guided Regularization 443

Given the aligned model fA debiased with coun- 444

terfactual data augmentation, the attention heads’ 445

parameters of θcda ∈ R|θA|, detected bias-inducing 446

effects of attention heads B0 ∈ RL·K and 447

Ba ∈ RL·K , for f0 and fA respectively, as well 448

as the generalization importance measurement 449

aG ∈ RL·K , the objective function in downstream 450

fine-tuning is: Etuning = 1
m

∑m
i=1 ℓ(xi, yi; θ) + 451

γ 1
LK

∑
l,k

aGlk·I(B
a
lk<B0

lk)∑
i,j a

G
ij ·I(Ba

ij<B0
ij)

∥θAlk − θcda
lk ∥22 where γ 452

is the regularization coefficient, and θcda is fixed. 453

With the indicator function I(Ba
ij < B0

ij) we only 454

consider attention heads that have weaker effects 455

for bias-induction in f0 than their effects within 456

fA. The regularization coefficient γ is re-weighted 457

according to the generalization importance of those 458

attention heads. The generalization-guided reg- 459

ularization reflects the attention heads’ sensitiv- 460

ity to downstream performance and helps balance 461

the fairness-accuracy trade-off in downstream fine- 462

tuning tasks. 463

6 Experiments 464

In this section, we introduce the experimental set- 465

tings and results of ProSocialTuning, which indi- 466

cate that an inability to address the forgetting issue 467

in PLMs limits the effectiveness of debiasing. 468

6.1 Experimental Settings 469

In this paper, we take two masked language models 470

BERT-base-uncased (Kenton and Toutanova, 2019) 471

and RoBERTa-base (Liu et al., 2019) as our back- 472

bone models, and use the language modeling head 473
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BERT-base Accuracy
(NLI-bias)

Bias
(NLI-bias)

Accuracy
(STS-B)

Bias
(STS-B)

Accuracy
(Biasbios)

Bias
(Biasbios)

Vanilla-tuning .795 .021 .507 .197 .722 .018
Debiased-tuning .751 .020 .473 .184 .668 .013
EAR (Attanasio et al., 2022) .796 .013 .509 .233 .727 .017
MABEL (He et al., 2022) .813 .030 .570 .181 .694 .028
INLP (Ravfogel et al., 2020) N/A N/A N/A N/A .714 .038
ProSocialTuning .747 .012 .460 .169 .661 .003

RoBERTa-base Accuracy
(NLI-bias)

Bias
(NLI-bias)

Accuracy
(STS-B)

Bias
(STS-B)

Accuracy
(BiasBios)

Bias
(BiasBios)

Vanilla-tuning .859 .021 .578 .330 .691 .030
Debiased-tuning .774 .015 .518 .314 .647 .018
EAR (Attanasio et al., 2022) .859 .040 .595 .333 .734 .026
MABEL (He et al., 2022) .864 .008 .591 .304 .718 .029
INLP (Ravfogel et al., 2020) N/A N/A N/A N/A .693 .016
ProSocialTuning .738 .013 .494 .280 .674 .008

Table 1: Extrinsic Bias Evaluation on BERT-base and RoBERTa-base with Three Downstream Benchmarks: NLI-bias, BiasBios,
and STS-B. Both accuracy and bias are reported; the optimal result is highlighted with underline. Please note: MABEL is
pretrained with additional data augmented with SNLI and MNLI datasets, thus its accuracy on NLI-bias should be better than
other methods. We did focus on propagating debiaisng from the debiased model to fine-tuned model, and the accuracy of
ProSocialTuning is mainly determined by the steps of CDA.

of these backbone models. Masked PLMs are bet-474

ter suited for testing our technique than autoregres-475

sive models, e.g. the GPT family, for three main476

reasons. First, our solution is based on Causal Me-477

diation Analysis and PAC-Bayes training, both of478

which are model-agnostic. Second, GPT-2 has been479

reported to be unstable for classification tasks (Rad-480

ford et al., 2019; Liu et al., 2023b), which are used481

to test the effectiveness of our technique. Lastly,482

the strong correlation between social groups and483

labels on classification tasks makes them more chal-484

lenging to debias than text generation tasks in terms485

of relearning social bias. This issue can more easily486

be mitigated for text generation tasks, such as those487

performed by the GPT family of models, by inter-488

vening the generation-time sampling (Yang et al.,489

2022). The latter two reasons further contribute to490

the difficulty in distinguishing the effects of debias-491

ing methods from the unsatisfactory performance492

of an autoregressive model for this task.493

For implementing mitigation of gender bias494

through counterfactual data augmentation, we fol-495

low Kaneko et al. (2022) to rebalance the debias-496

ing corpus6 with gender words from Zhao et al.497

(2018). We run 150 epochs for debiasing both498

backbone models. The StereoSet score (Nadeem499

et al., 2021b) is used as the intrinsic bias evaluation500

metric over Masked PLMs; we conduct extrinsic501

bias evaluation over fine-tuned PLMs with three502

tasks, e.g., STS-B (Cer et al., 2017), BiasBios (De-503

Arteaga et al., 2019), and NLI-bias (De-Arteaga504

et al., 2019). For NLI-bias we randomly sample505

6https://data.statmt.org/news-commentary/v15/

10,000 instances from the Stanford Natural Lan- 506

guage Inference (SNLI) dataset (Bowman et al., 507

2015) as training data and development data, and 508

we generate 20,000 test samples with words related 509

to male and 20,000 test samples with words related 510

to female as defined by De-Arteaga et al. (2019). 511

We sample 20,000 training samples from the train- 512

ing set for NLI-bias and BiasBios, but use all train- 513

ing data in STS-B. To implement causal mediation 514

analysis, we re-use the Winograd-schema-style ex- 515

amples from Vig et al. (2020). 516

To validate the performance of ProSocialTuning, 517

we implement experiments with the following mod- 518

els: (1) Vanilla-tuning: fine-tunes a model without 519

any debiasing operations; (2) Debiased-tuning: 520

fine-tunes a debiased model with downstream task- 521

specific data, where the performance should be the 522

upper bound with respect to that of ProSocialTun- 523

ing; (3) EAR (Attanasio et al., 2022): attention- 524

based debiasing method, which introduces a reg- 525

ularization term for minimizing the entropy of at- 526

tention; (4) MABEL (He et al., 2022): enhances 527

CDA by pretraining PLMs with natural language 528

inference datasets, e.g., SNLI and MNLI, and is 529

a supervised way to implement task-agnostic de- 530

biasing; and (5) INLP (Ravfogel et al., 2020): a 531

task-dependent debiasing method, which removes 532

gender information in sentence representations by 533

projection. INLP iteratively trains linear classifiers 534

that predict a certain undesired property and then 535

exploits nullspace projection to make the classifiers 536

oblivious to the undesired property. Details of the 537

hyperparameters and implementations are available 538
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in Appendix A.2.539

6.2 Main Results540

Table 1 shows the extrinsic bias evaluation7 results541

of the two backbone models of BERT-base and542

RoBERTa-base with three downstream fine-tuning543

datasets8. Table 2 indicates the intrinsic bias score544

of the model achieved with ProSocialTuning and545

the debiased model. Note that we do not pursue a546

SOTA debiasing method because our aim is to un-547

derstand how the mechanism of forgetting causes548

the relearning of social bias during downstream549

fine-tuning. Regarding the accuracy of ProSocial-550

Tuning, it is determined by the performance of the551

debiased model. The low accuracy of ProSocial-552

Tuning can be straightforwardly resolved by taking553

a fusion strategy over the prediction of the debiased554

model and the original one (Liang et al., 2021), but555

this is not the focus of this paper. ProSocialTuning556

is proven effective at mitigating relearning social557

bias as long as its bias score is lower than that of558

the Debiased-tuning model.559

Overall, ProSocialTuning achieves the best bias560

score for all downstream fine-tuning tasks, ex-561

cept the NLI-bias dataset with RoBERTa model,562

wherein MABEL outperforms other methods in563

both accuracy and bias. The bias score gap be-564

tween ProSocialTuning and other methods is rather565

large for the task of BiasBios. This is because the566

causal mediation analysis is done with a corpus por-567

traying gender occupation association but the asso-568

ciation does not exist in other tasks. However, the569

downstream task-specific performance with CDA570

prohibits widespread usage owing to its negative571

impact on the language modeling ability.572

In contrast to ProSocialTuning, other task-573

agnostic debiasing methods exhibit inconsistencies574

across diverse experimental setups. For instance,575

EAR demonstrates good accuracy and bias score576

improvements when applied to the BERT back-577

bone model in the NLI-bias task. However, in578

certain scenarios, its bias score surpasses even that579

of the Vanilla-tuning method, as reported by Gaci580

et al. (2022b). Similarly, MABEL showcases in-581

creased bias compared to Vanilla-tuning in the STS-582

B task, highlighting the inefficiency of a purely583

task-agnostic debiasing approach devoid of inter-584

ventions during downstream fine-tuning processes.585

7More details about bias score calculation are available in
Appendix A.3.

8All experiments are run with 3 seeds (1, 42, 100); reported
performance scores are the average over three experiments.

The strong inconsistency of those baseline debias- 586

ing methods demonstrates debiasing performance 587

cannot be propagated without solving the forget- 588

ting issue of PLMs. As a task-dependent debiasing 589

method, INLP achieves rather good accuracy and 590

debising performance given the RoBERTa model 591

and the BiasBios dataset but it leads to a highly 592

biased fine-tuned model with BERT. Since it re- 593

quires the annotation of gender information of each 594

sample, the experimental result is only available 595

for the BiasBios dataset.

StereoSet Score STS-B NLI-bias BiasBios

DEBIASED 53.20 53.20 53.20
Debiased-tuning 54.53↑1.33 54.94↑1.74 54.78↑1.58
ProSocialTuning 53.55↑0.35 53.96↑0.66 54.67↑1.37

Table 2: StereoSet Scores of Fine-tuned Models with Various
Methods. DEBIASED reports the bias score of the debiased
model using CDA. The closer the model’s bias approaches 50,
the lower its level of bias.

596

Table 2 shows the intrinsic bias score of fine- 597

tuned BERT models with various methods. Given 598

the bias score of the debiased model as 53.20, di- 599

rectly fine-tuning the debiased model results in an 600

obvious increase of bias level. Furthermore, the 601

increases associated with Debiased-tuning are over 602

1.0 after training with three datasets. In contrast, 603

ProSocialTuning leads to a smaller increase of bias 604

levels. For the downstream task of BiasBios, ProSo- 605

cialTuning is close to Debiased-tuning; this is due 606

to the higher bias level of the dataset by referring 607

to the high bias core of Vanilla-tuning. 608

For more details about the ablation study, Ap- 609

pendix A.4 shows the results supporting the neces- 610

sity of each component in ProSocialTuning. 611

7 Conclusion 612

This work addresses the ongoing debate surround- 613

ing the effectiveness of task-agnostic debiasing 614

techniques for downstream tasks. Our research re- 615

veals a pivotal factor determining the effectiveness 616

of debiasing: the bias level of the debiased model 617

and the downstream task dataset. Specifically, the 618

bias level of the debiased model serves as the lower 619

bound for bias in fine-tuned tasks wherein social 620

bias exists. To gain in-depth understanding of how 621

forgetting changes PLMs’ parameters, we intro- 622

duce ProSocialTuning, a novel framework which 623

mitigates the diminishing effectiveness by impos- 624

ing regularization on attention heads that have al- 625

ready undergone successful debiasing. 626
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8 Limitations627

In this paper, we only consider two backbone mod-628

els of BERT-base and Roberta-base due to hard-629

ware constraints. However, larger models are more630

vulnerable to social bias, therefore the analysis of631

bias level disparity should be done for larger PLMs.632

On the other hand, ProSocialTuning depends on633

the results of causal mediation analysis; specifi-634

cally for this work, the prompts should be relevant635

to gender bias towards occupations in order to align636

causal mediation analysis with the downstream fine-637

tuning tasks of occupation prediction. For other638

downstream fine-tuning tasks such as STS-B and639

NLI-bias, the corpus for causal mediation analysis640

should be redesigned. Additionally, we omit the641

influence of the adapted classification layer in Sec-642

tion 3 by validating the intrinsic bias scores and643

language modeling ability. Given the smaller size644

of parameters, this omission of the adaptation layer645

is expected to be safe.646
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A Appendix 919

Hyperparameters Setting

Optimizer AdamW
Adam β1 0.9
Adam β2 0.98
Adam ϵ 1e-3

Learning rate for θ 5e-5
Learning rate for ω 1e-2

Maximum training epochs 25
Weight decay 0.01

Batch size 64

Table 3: Hyperparameter Settings for the AdamW Opti-
mizer.

A.1 Details about Generalization Importance 920

Estimation 921

In contrast to Molchanov et al. (2017), we fix P by 922

a re-scaled parameter-wise logarithm prior where 923

the prior noise variance is initialized as the abso- 924

lute value of the parameter weights. Furthermore, 925

fine-tuning a PLM-based classifier should assign 926

different learning rates for the pretrained layers and 927

the adapted classification layer, respectively. The 928

difference in confidence w.r.t. pretrained layers and 929

adaptation classification layers is also considered 930

through leveraging a lower learning rate to update 931

dimensions, in q, associated with pretrained layers 932

and a higher learning rate for dimensions relevant 933

to the adaptation layers. 934
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Figure 3: Language Modeling Scores. These figures present the language modeling scores of the pretrained, debiased, and
fine-tuned models with respect to different bias levels and dataset sizes in downstream tasks.

A.2 Implementations935

Figure 3 introduces the hyperparameters used for936

fine-tuning. We add an adapted layer of fully-937

connected forward neural network as the classi-938

fication layer beyond a PLM. For all experiments939

except the CDA, we freeze the embedding layers940

of PLMs. For the generalization estimation driven941

by PAC-Bayes training, we first fine-tune models942

with 35 epochs to make them fit the task-specific943

data well. In the stage of generalization importance944

estimation, we initialize both the prior and poste-945

rior noise variance with log(0.001 · |qi|) where qi is946

the ith parameter of the final classification model.947

The noise parameter dimensions associated with948

the pretrained layers and classification layer are949

0.01 and 0.1 respectively.950

For the EAR method, we take regularization951

terms of 0.001, 0.01, 0.1, 1.0 and report the best952

downstream performance and bias scores. To im-953

plement MABEL, we directly leverage the open-954

source checkpoints9 from HuggingFace as the debi-955

ased model and fine-tune it with downstream task-956

specific data. In the implementation of ProSocial-957

Tuning, we have the regularization γ hyperparam-958

eter space of 0.001, 0.01, 0.1, 1.0. For the INLP959

method, first, we fine-tune the classification model960

with 25 epochs to fit the data well and select the961

best model. Then, we iteratively train 300 linear962

SVM classifiers to fit the data concerning gender la-963

bels, and exploit nullspace projection to remove the964

gender information. Finally, we freeze the PLMs965

9https://huggingface.co/princeton-nlp/mabel-bert-base-
uncased and https://huggingface.co/princeton-nlp/mabel-
roberta-base

and train only the classification layers to fit the 966

debiased representations. 967

A.3 Bias Score 968

Following Kaneko et al. (2022), we create the bias 969

evaluation datasets w.r.t. different genders. For 970

the BiasBios, we calculate the TPR score differ- 971

ence between male-relevant evaluation samples and 972

female-relevant evaluation samples. For the NLI- 973

bias dataset, we calculate the difference between 974

the ratios w.r.t. classifying male-relevant evaluation 975

samples to the label of neutral and w.r.t. classifying 976

female-relevant evaluation samples to the label of 977

neutral. For the STS-B dataset, we create paral- 978

lel bias evaluation corpus w.r.t. genders, and we 979

calculate ratio of how many parallel samples are 980

predicted with the same label. Then we take the 981

difference of this ratio to 1 as the bias score. 982

A.4 Ablation Study 983

Table 4 shows the experimental results of the abla- 984

tion study, proving the necessity of generalization- 985

guided regularization over successfully debiased 986

attention heads. The generalization-guided regu- 987

larization alleviates the negative impact on down- 988

stream task-specific performance and keeps those 989

debiased attention heads to avoid relearning too 990

many biases during downstream fine-tuning. 991
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STS-B Accuracy STS-B Bias

Random Attention .459 .216
Uniform Regularization .455 .180

ProSocialTuning .460 .177

Table 4: Ablation study for ProSocialTuning. We consider
Random Attention to randomly pick up attention heads to reg-
ularize during downstream fine-tuning. For Uniform Regular-
ization, we do not apply generalization-guided regularization
but take uniform regularizations.
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