Learning Enriched Features via Selective State Spaces Model for Efficient Image Deblurring Anonymous Authors

ABSTRACT

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

Image deblurring aims to restore a high-quality image from its corresponding blurred. The emergence of CNNs and Transformers has enabled significant progress. However, these methods often face the dilemma between eliminating long-range degradation perturbations and maintaining computational efficiency. While the selective state space model (SSM) shows promise in modeling long-range dependencies with linear complexity, it also encounters challenges such as local pixel forgetting and channel redundancy. To address this issue, we propose an efficient image deblurring network that leverages selective state spaces model to aggregate enriched and accurate features. Specifically, we introduce an aggregate local and global information block (ALGBlock) designed to effectively capture and integrate both local invariant properties and non-local information. The ALGBlock comprises two primary modules: a module for capturing local and global features (CLGF), and a feature aggregation module (FA). The CLGF module is composed of two branches: the global branch captures long-range dependency features via a selective state spaces model, while the local branch employs simplified channel attention to model local connectivity, thereby reducing local pixel forgetting and channel redundancy. In addition, we design a FA module to accentuate the local part by recalibrating the weight during the aggregation of the two branches for restoration. Experimental results demonstrate that the proposed method outperforms state-of-the-art approaches on widely used benchmarks.

KEYWORDS

Image deblurring, state spaces model, features aggregation

1 INTRODUCTION

Image deblurring aims to recover a latent sharp image from its corrupted counterpart. Due to the ill-posedness of this inverse problem, many conventional approaches [12, 18] address this by explicitly incorporating various priors or hand-crafted features to constrain the solution space to natural images. Nonetheless, designing such priors proves challenging and lacks generalizability, which are impractical for real-world scenarios.

46 Stimulated by the success of deep learning for high-level vi-47 sion tasks, numerous data-driven methods have resorted CNN as 48 a preferable choice and develop kinds of network architectural 49 designs, including encoder-decoder architectures [4, 7, 9], multi-50 stage networks [5, 47], dual networks [2, 35, 39], generative mod-51 els [22, 23, 49], and so on. While the convolution operation effec-52 tively models local connectivity, its intrinsic characteristics, such 53 as limited local receptive fields and independence of input con-54 tent, hinder the model's ability to eliminate long-range dependency 55 features. To alleviate such limitations, various transformer vari-56 ants [13, 21, 43, 45, 46] have been applied to image deblurring and 57 have achieved better performance than the CNN-based methods as 58 2024-04-12 14:14. Page 1 of 1-10.

Figure 1: Computational cost vs. PSNR of models on the Go-Pro dataset [34]. Our ALGNet achieve the SOTA performance while simultaneously reducing computational costs.

they can better model the non-local information. However, image deblurring often deals with high-resolution images, and the attention mechanism in Transformers incurs quadratic time complexity, resulting in significant computational overhead. To alleviate computational costs, some methods [11, 46] opt to apply self-attention across channels instead of spatial dimensions. However, this approach fails to fully exploit the spatial information, which may affect the deblurring performance. While other methods [13, 45] utilize non-overlapping window-based self-attention for single image deblurring, the coarse splitting approach still falls short in fully exploring the information within each patch.

State space models [15, 33, 40], notably the enhanced version Mamba, have recently emerged as efficient frameworks due to their ability to capture long-range dependencies with linear complexity. However, Mamba's [15] recursive image sequence processing method tends to neglect local pixels, while the abundance of hidden states in the state space equation often results in channel redundancy, thereby impeding channel feature learning. Given the critical importance of local and channel features in image deblurring, directly applying the state space model often leads to poor performance. MambaIR [17] introduces the vision state space module, which utilizes a four-direction unfolding strategy to scan along four different directions for local enhancement, and incorporates channel attention to mitigate channel redundancy. Nevertheless,

116

59 60

118

119

120

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

174

this four-directional scanning approach and the computation of state spaces result in increased computational overhead, potentially sacrificing the advantage of low computational resource utilization offered by the state spaces equation.

Taking into account the above analyses, a natural question arises: 121 Is it feasible to design a network that efficiently aggregates local 123 and global features for image deblurring? To achieve this objective, we propose ALGNet, with several key components. Specifically, we 124 125 present an aggregate local and global information block (ALGBlock) aimed at efficiently capturing and merging both local invariant prop-126 erties and long-range dependencies. This ALGBlock consists of two 127 key modules: a module dedicated to capturing local and global fea-128 tures (CLGF), and a feature aggregation module (FA). The CLGF 129 module is further divided into two branches: the global branch, 130 which utilizes a selective state spaces model to capture long-range 131 dependency features with linear complexity, and the local branch, 132 which incorporates simplified channel attention to effectively model 133 local connectivity. This combination not only addresses issues like 134 135 local pixel forgetting and channel redundancy but also empowers the network to capture more enriched and precise features. Addi-136 tionally, given that image details are predominantly comprised of 137 local features of images [6], we design the FA module to underscores 138 139 the significance of the local information in the restoration process by dynamically recalibrating the weights through a learnable factor 140 during the aggregation of the CLGF two branches for restoration. 141 142 Finally, we implement multiple scales for both input and output modes, aiming to alleviate training difficulty. As illustrated in Fig-143 ure 1, our ALGNet model achieves state-of-the-art performance 144 while preserving computational efficiency compared to existing 145 methods. 146

The main contributions of this work are:

- (1) We propose ALGNet, an efficient network for aggregating enriched and precise features leveraging a selective state spaces model for image deblurring. ALGNet consists of multiple ALGBlocks, each with a capturing local and global features module (CLGF) and a feature aggregation module (FA).
- (2) We design the CLGF module to capture long-range dependency features using a selective state spaces model, while employing simplified channel attention to model local connectivity, thus reducing local pixel forgetting and channel redundancy.
- (3) We present the FA module to emphasize the importance of the local features in restoration by recalibrating the weights through the learnable factor.
- (4) Extensive experiments demonstrate that our ALGNet achieves favorably performance against state-of-the-art methods.

2 RELATED WORK

2.1 Hand-crafted prior-based methods.

Due to the image deblurring ill-posed nature, many conventional
approaches [12, 18] tackle this problem by relying on hand-crafted
priors to constrain the set of plausible solutions. However, designing
such priors is a challenging task and usually lead to complicated
optimization problems.

2.2 CNN-based methods.

With the rapid advancement of deep learning, instead of manually designing image priors, lots of methods [2, 4, 22, 23, 35, 39, 47, 49] develop kinds of deep CNNs to solve image deblurring. To better explore the balance between spatial details and contextualized information, MPRNet [47] propose a cross-stage feature fusion to explore the features from different stages. MIRNet-V2 [48] introduces a multi-scale architecture to learn enriched features for image restoration. IRNeXt [9] rethink the convolutional network design and exploit an efficient and effective image restoration architecture based on CNNs. NAFNet [4] analyze the baseline modules and presents a simplified baseline network by either removing or replacing nonlinear activation functions. SFNet [10] and FSNet [8] design a multi-branch dynamic selective frequency module and a multibranch compact selective frequency module to dynamically select the most informative components for image restoration. Although these methods achieve better performance than the hand-crafted prior-based ones, the intrinsic properties of convolutional operations, such as local receptive fields, constrain the models' capability to efficiently eliminate long-range degradation perturbations.

2.3 Transformer-based methods.

Due to the content-dependent global receptive field, the transformer architecture [44] has recently gained much popularity in image restoration [3, 13, 27, 43, 45, 46, 51], demonstrating superior performance compared to previous CNN-based baselines. IPT [3] employs a Transformer-based multi-head multi-tail architecture, proposing a pre-trained model for image restoration tasks. However, image deblurring often deals with high-resolution images, and the attention mechanism in Transformers incurs quadratic time complexity, resulting in significant computational overhead. In order to reduce the computational cost, Uformer [45], SwinIR [27] and U² former [13] computes self-attention based on a window. Nonetheless, the window-based approach still falls short in fully exploring the information within each patch. Restormer [46] and MRLPFNet [11] compute self-attention across channels rather than the spatial dimension, resulting in the linear complexity. However, this approach fails to fully exploit the spatial information. FFTformer [21] explores the property of the frequency domain to estimate the scaled dot-product attention, but need corresponding inverse Fourier transform, leading to additional computation overhead.

2.4 State Spaces Model.

State spaces models [15, 16, 32, 33, 40, 41] have recently emerged as efficient frameworks due to their ability to capture long-range dependencies with linear complexity. S4 [16] is the first structured SSM to model long-range dependency. S5 [41] propose the diagonal SSM approximation and computed recurrently with the parallel scan. Mega [32] introduced a simplification of S4 [16] to be realinstead of complex- valued, giving it an interpretation of being an exponential moving average. SGConv [14] and LongConv [26] focus on the convolutional representation of S4 and create global or long convolution kernels with different parameterizations. Mamba [15] propose a selective mechanism and hardware-aware parallel algorithm. Many vision tasks start to employ Mamba to tackle image

2024-04-12 14:14. Page 2 of 1-10.

230

231

Learning Enriched Features via Selective State Spaces Model for Efficient Image Deblurring

Figure 2: Overall architecture of ALGNet. (a) ALGNet consists of several ALGBlocks and adopts the multi-input and multi-output strategies for image restoration. (b) ALGBlock comprises two primary modules: a module for capturing local and global features (CLGF), and a feature aggregation module (FA). The CLGF module is composed of two branches: (c) the local branch to model local connectivity, while (d) the global branch captures long-range dependency features.

classification [29, 52], image segmentation [31], and so on. However, the standard Mamba model still encounters issues with local pixel forgetting and channel redundancy when applied to image restoration tasks. To tackle this challenge, MambaIR [17] adopts a four-direction unfolding strategy to scan along four different directions and integrates channel attention. Nevertheless, this fourdirectional scanning approach results in increased computational overhead. In this work, we design an ALGBlock to efficiently capture and integrate both local invariant properties and long-range dependencies through a selective state spaces model with lower computational cost. As depicted in Figure 1, our ALGNet outperforms MambaIR [17] while reducing computational costs by 96.1%.

3 METHOD

In this section, we first outline the overall pipeline of our ALGNet. Subsequently, we delve into the details of the proposed ALGBlock, which includes the capturing local and global features module (CLGF) and the feature aggregation module (FA).

3.1 Overall Pipeline

The overall pipeline of our proposed ALGNet, shown in Figure 2, adopts a single U-shaped architecture for image deblurring. Given 2024-04-12 14:14. Page 3 of 1–10.

a degraded image $\mathbf{I} \in \mathbb{R}^{H \times W \times 3}$, ALGNet initially applies a convolution to acquire shallow features $\mathbf{F_0} \in \mathbb{R}^{H \times W \times C}$ (H, W, C are the feature map height, width, and channel number, respectively). These shallow features undergo a four-scale encoder sub-network, progressively decreasing resolution while expanding channels. It's essential to note the use of multi-input and multi-output mechanisms for improved training. The low-resolution degraded images are incorporated into the main path through the Convs (consists of multiple convolutions and ReLU) and concatenation, followed by convolution to adjust channels. The in-depth features then enter a middle block, and the resulting deepest features feed into a four-scale decoder, gradually restoring features to the original size. During this process, the encoder features are concatenated with the decoder features to facilitate the reconstruction. Finally, we refine features to generate residual image $\mathbf{X} \in \mathbb{R}^{H \times W \times 3}$ to which degraded image is added to obtain the restored image: $\hat{I} = X + I$. It's important to note that the three low-resolution results are solely used for training.

We optimize the proposed network ALGNet with the following loss function:

$$L = \sum_{i=1}^{4} (L_{char}(\hat{I}_i, \overline{I}_i) + \delta L_{edge}(\hat{I}_i, \overline{I}_i) + \lambda L_{freq}(\hat{I}_i, \overline{I}_i))$$
(1)

where *i* denotes the index of input/output images at different scales, \bar{I}_i denotes the target images and L_{char} is the Charbonnier loss:

$$L_{char} = \sqrt{||\hat{I}_i - \bar{I}_i||^2 + \epsilon^2}$$
⁽²⁾

with constant ϵ empirically set to 0.001 for all the experiments. L_{edge} is the edge loss:

$$L_{edge} = \sqrt{||\Delta \hat{I}_i - \Delta \bar{I}_i||^2 + \epsilon^2}$$
(3)

where \triangle represents the Laplacian operator. L_{freq} denotes the frequency domains loss:

$$L_{freq} = ||\mathcal{F}(\hat{I}_i) - \mathcal{F}(\bar{I}_i)||_1 \tag{4}$$

where \mathcal{F} represents fast Fourier transform, and the parameters λ and δ control the relative importance of loss terms, which are set to 0.1 and 0.05 as in [8, 47], respectively.

3.2 Capturing Local and Global Features Module (CLGF)

Transformer-based models [11, 13, 21, 45, 46] address the limitations of CNNs, such as a limited receptive field and lack of adaptability to input content. They excel in modeling non-local information, leading to high-quality image reconstruction, and have emerged as the dominant method for image deblurring. However, image deblurring commonly involves processing high-resolution images, and the attention mechanism in Transformers introduces quadratic time complexity, leading to considerable computational overhead. While it's possible to mitigate computational consumption by utilizing window-based attention [13, 45] or channel-wise attention [11, 46], these methods inevitably lead to information loss.

To address this challenge, we design the capturing local and global features module (CLGF) depicted in Figure 2(b), aiming to capture long-range dependency features and model local connectivity with linear complexity. Specifically, given an input tensor X_{l-1} , we initially process it through Layer Normalization (LN), Convolution, and Simple Gate (SG) to obtain spatial features X_{l-1}^s as follows:

$$X_{l-1}^{s} = SG(f_{3\times3}^{dwc}(f_{1\times1}^{c}(LN(X_{l-1}))))$$

$$SG(X_{f0}) = X_{f1} \otimes X_{f2}$$
(5)

where $f_{3\times3}^{dwc}$ denotes the 3 × 3 depth-wise convolution, $f_{1\times1}^c$ represents 1 × 1 convolution. $SG(\cdot)$ is the simple gate, employed as a replacement for the nonlinear activation function. For a given input $X_{f0} \in \mathbb{R}^{H \times W \times C}$, SG initially splits it into two features $X_{f1} \in \mathbb{R}^{H \times W \times \frac{C}{2}}$ and $X_{f2} \in \mathbb{R}^{H \times W \times \frac{C}{2}}$ along channel dimension. Subsequently, SG calculates the X_{f1}, X_{f2} using a linear gate. Next, we feed the spatial features X_{l-1}^s through both the global branch and the local branch to capture global features F_G and local features F_L , respectively.

In the global branch, depicted in Figure 2(c), we opt for a statespace model (SSM) instead of Transformers to capture long-distance dependencies, ensuring linear complexity. Specifically, starting with an input feature X_{l-1}^{s} , we first reshape and normalize it using layer normalization (LN). Subsequently, it undergoes processing through two parallel branches. In the top branch, the feature channels are expanded by a linear layer, followed by activation through the SiLU

Figure 3: (a) Local pixels (highlighted by the red dashed line) are susceptible to being forgotten in the flattened 1D sequence due to the extensive distance. (b) Following [17], we apply ReLU and global average pooling to the outputs of the global branch to obtain channel activation values. However, a considerable portion of channels remain inactive, indicating channel redundancy.

function. In the bottom branch, the feature channels are expanded by a linear layer followed by the SiLU activation function, along with the selective state spaces model layer. The SSM inspired by the particular continuous system that maps a 1-dimensional function or sequence $x(t) \in \mathbb{R} \rightarrow y(t) \in \mathbb{R}$ through an implicit latent state $h(t) \in \mathbb{R}^N$ as follows:

$$h'(t) = \mathbf{A}h(t) + \mathbf{B}x(t) \tag{6}$$

$$y(t) = \mathbf{C}h(t)$$

where $\mathbf{A} \in \mathbb{R}^{N \times N}$, $\mathbf{B} \in \mathbb{R}^{N \times 1}$, $\mathbf{C} \in \mathbb{R}^{1 \times N}$ are four parameters, and *N* is the state size. SSM first transform the continuous parameters **A**, **B** to discrete parameters $\overline{\mathbf{A}}$, $\overline{\mathbf{B}}$ through fixed formulas $\overline{\mathbf{A}} = exp(\Box \mathbf{A})$ and $\overline{\mathbf{B}} = (\Box \mathbf{A})^{-1}exp(\Box \mathbf{A} - I) \cdot \Box \mathbf{B}$, where \Box denotes the timescale parameter. After the discretization, the model can be computed as a linear recurrence way:

 u_t

$$h_t = \mathbf{A}h_{t-1} + \mathbf{B}x_t \tag{7}$$

$$= \mathbf{C}h_t$$

or a global convolution way:

$$\overline{\mathbf{K}} = (\mathbf{C}\overline{\mathbf{B}}, \mathbf{C}\overline{\mathbf{A}}\overline{\mathbf{B}}, ..., \mathbf{C}\overline{\mathbf{A}}^{\mathbf{K}-1}\overline{\mathbf{B}})$$

$$y = x \circledast \overline{\mathbf{K}}$$
(8)

where k is the length of the input sequence, \circledast denotes convolution operation, and $\overline{\mathbf{K}} \in \mathbb{R}^k$ is a structured convolution kernel. Selective SSM integrates a selection mechanism into SSM, making the parameters input-dependent. The selective SSM offers two key advantages. Firstly, it shares the same recursive form as Eq.7, enabling the model to capture long-range dependencies to aid in restoration. Secondly, the parallel scan algorithm enables SSM to leverage the advantages of parallel processing described in Eq.8, thereby facilitating efficient training.

After that, features from the two branches are aggregated with the element-wise multiplication. Finally, the channel number is projected back and reshape to the original size. The total process 2024-04-12 14:14. Page 4 of 1–10.

Anonymous Authors

Learning Enriched Features via Selective State Spaces Model for Efficient Image Deblurring

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

465 can be defined as:

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

$$F_{t} = SiLU(Linear(Reshape(LN(X_{l-1}^{s}))),$$

$$F_{b} = SSM(SiLU(f_{1\times 1}^{c}(Linear(Reshape(LN(X_{l-1}^{s}))))) \qquad (9)$$

$$F_{G} = Reshape(Linear(F_{t} \otimes F_{b}))$$

Despite the selective SSM's ability to capture long-range dependencies with linear computational complexity, it can result in issues like local pixel forgetting and channel redundancy, primarily due to the flattening strategy and an excessive number of hidden states. As shown in Figure 3(a), when the 2D feature map is flattened into a 1D sequence, adjacent pixels (e.g., sequence number 1 and 11) become widely separated, leading to the issue of pixel forgetting. Additionally, as per [17], we visualize the activation results for different channels in Figure 3(b) and observe significant channel redundancy attributed to the larger number of hidden states in the selective SSM. To address the above challenges, we equip our CLGF with a local branch to model local connectivity and facilitate the expressive power of different channels. The local branch shown in Figure 2(c), it is a simplified channel attention. Given the spatial features X_{l-1}^s , the local features F_L can be obtained by:

$$\begin{aligned} F_{L}^{'} &= X_{l-1}^{s} \otimes f_{1 \times 1}^{c} (GAP(X_{l-1}^{s})), \\ F_{L} &= f_{1 \times 1}^{c} (F_{L}^{'}) \end{aligned}$$
(10)

where GAP is the global average pool. Noted that, in our CLGF module, we initially capture the spatial feature X_{l-1}^s , which aggregates neighboring information, before feeding it to the global branch. This approach effectively reduces the problem of local pixel forgetting.

3.3 Feature Aggregation Module (FA)

Given that image details primarily consist of local features, we design a feature aggregation (FA) module, depicted in Figure 2(b), to highlight the significance of the local block in restoration. This is achieved by dynamically recalibrating the weights through a learnable factor during the aggregation of the two blocks for recovery. Specifically, given the global features F_G and local features F_L , the aggregate process can be defined as:

$$F_A = F_G \oplus WF_L \tag{11}$$

where *W* represents the learnable parameters, directly optimized by backpropagation and initialized as 1. It's worth noting that our design is exceptionally lightweight, as it does not introduce additional convolution layers. Finally, to capture richer and more accurate information, we refine the aggregated features F_A to obtain the output feature X_I of the ALGBlock as follows:

$$X_l = F_A \oplus f_{1 \times 1}^c (SG(f_{1 \times 1}^c (LN(X_{l-1} \oplus F_A))))$$
(12)

4 EXPERIMENTS

We first describe the experimental details of the proposed ALGNet. Then we present both qualitative and quantitative comparisons between ALGNet and other state-of-the-art methods. Following that, we conduct ablation studies to validate the effectiveness of our approach. Finally, we assess the resource efficiency of ALGNet. Due to the page limit, additional results are provided in the supplementary material.

522 2024-04-12 14:14. Page 5 of 1-10.

4.1 Experimental Settings

4.1.1 **Datasets**. **Image Motion Deblurring**. Following recent methods [8, 47], we train ALGNet using the GoPro dataset [34], which includes 2,103 image pairs for training and 1,111 pairs for evaluation. To assess the generalizability of our approach, we directly apply the GoPro-trained model to the test images of the HIDE [37] and RealBlur [36] datasets. The HIDE dataset contains 2,025 images that collected for human-aware motion deblurring. Both the GoPro and HIDE datasets are synthetically generated, but the RealBlur dataset comprises image pairs captured under real-world conditions. This dataset includes two subsets: RealBlur-J, and RealBlur-R.

Single-Image Defocus Deblurring. To evaluate the effectiveness of our method, we adopt the DPDD dataset [1], following the methodology of recent approaches [8, 46]. This dataset comprises images from 500 indoor/outdoor scenes captured using a DSLR camera. Each scene consists of three defocused input images and a corresponding all-in-focus ground-truth image, labeled as the right view, left view, center view, and the all-in-focus ground truth. The DPDD dataset is partitioned into training, validation, and testing sets, comprising 350, 74, and 76 scenes, respectively. ALGNet is trained using the center view images as input, with loss values computed between outputs and corresponding ground-truth images.

4.1.2 **Training details**. For various tasks, separate models are trained, and unless otherwise specified, the following parameters are utilized. The models are trained using the Adam optimizer [20] with parameters $\beta_1 = 0.9$ and $\beta_2 = 0.999$. The initial learning rate is set to 5×10^{-4} and gradually reduced to 1×10^{-7} using the cosine annealing strategy [30]. The batch size is chosen as 32, and patches of size 256×256 are extracted from training images. Data augmentation involves horizontal and vertical flips. We scale the network width by setting the number of channels to 32 and 64 for ALGNet and ALGNet-B, respectively.

4.2 Experimental Results

Image Motion Deblurring. We present the performance 4.2.1 of evaluated image deblurring approaches on the synthetic Go-Pro [34] and HIDE [37] datasets in Tables 1. Our ALGNet-B demonstrates a 0.43 dB improvement in performance over NAFNet-64 [4] on the GoPro [34] dataset. Compared with MambaIR [17], which is also based on the state space model, our ALGNet demonstrates an improvement in performance by 0.28 dB, while ALGNet-B achieves a substantial improvement of 0.84 dB. Additionally, as depicted in Figure 1, our ALGNet achieves even better performance through the scaling up of the model size, underscoring the scalability of ALGNet. Despite being trained solely on the GoPro [34] dataset, our network still achieves a significant gain of 0.19 dB PSNR over Restormer-Local [46] on the HIDE [37] dataset, demonstrating its generalization capability. Figure 4 illustrates that our model produces visually more pleasing results.

We also evaluate our ALGNet on real-world images from the RealBlur dataset [36] under two experimental settings: (1) applying the GoPro-trained model directly on RealBlur, and (2) training and testing on RealBlur data. As shown in Table 2, for setting 1, our ALGNet achieves performance gains of 0.16 dB on the RealBlur-R Table 1: Quantitative evaluations of the proposed approach against state-of-the-art motion deblrrring methods. The best and second best scores are highlighted and <u>underlined</u>. Our ALGNet-B and ALGNet are trained only on the GoPro dataset.

	GoPro	o [34]	HIDE	E [37]
Methods	PSNR ↑	SSIM ↑	PSNR ↑	SSIM ↑
DeblurGAN-v2 [23]	29.55	0.934	26.61	0.875
MPRNet [47]	32.66	0.959	30.96	0.939
MPRNet-local [47]	33.31	0.964	31.19	0.945
HINet [5]	32.71	0.959	30.32	0.932
HINet-local [5]	33.08	0.962	-	-
Uformer [45]	32.97	<u>0.967</u>	30.83	0.952
MSFS-Net [50]	32.73	0.959	31.05	0.941
MSFS-Net-local [50]	33.46	0.964	31.30	0.943
NAFNet-32 [4]	32.83	0.960	-	-
NAFNet-64 [4]	33.62	<u>0.967</u>	-	-
Restormer [46]	32.92	0.961	31.22	0.942
Restormer-local [46]	33.57	0.966	31.49	0.945
IRNeXt [9]	33.16	0.962	-	-
SFNet [10]	33.27	0.963	31.10	0.941
FSNet [8]	33.29	0.963	31.05	0.941
DeblurDiNAT-S [28]	32.85	0.961	30.65	0.936
DeblurDiNAT-L [28]	33.42	0.965	31.28	0.943
MambaIR [17]	33.21	0.962	31.01	0.939
ALGNet(Ours)	33.49	0.964	31.64	0.947
ALGNet-B(Ours)	34.05	0.969	31.68	0.952

subset over Restormer [46] and 0.13 dB on the RealBlur-J subset over DeBlurDiNAT-L [28]. Compared with MambaIR [17], our gains are 0.37 dB and 0.30 dB on RealBlur-R and RealBlur-J, respectively. Table 2: Quantitative real-world deblurring results under two different settings: 1). applying our GoPro trained model directly on the RealBlur dataset [36], 2). Training and testing on RealBlur data where methods are denoted with symbol*

	RealB	lur-R	RealF	Blur-J
Methods	PSNR ↑	SSIM ↑	PSNR ↑	SSIM ↑
MPRNet [47]	35.99	0.952	28.70	0.873
Restormer [46]	36.19	0.957	28.96	0.879
Stripformer [43]	36.08	0.954	28.82	0.876
FFTformer [21]	35.87	0.953	27.75	0.853
MRLPFNet [11]	36.16	0.955	28.98	0.861
DeblurDiNAT-S [28]	35.92	0.954	28.80	0.877
DeblurDiNAT-L [28]	36.07	0.956	28.99	0.885
MambaIR [17]	35.98	0.955	28.82	0.875
ALGNet(Ours)	36.35	0.961	29.12	0.886
DeblurGAN-v2* [23]	36.44	0.935	29.69	0.870
MPRNet [*] [47]	39.31	0.972	31.76	0.922
Stripformer* [43]	39.84	0.975	32.48	0.929
FFTformer [*] [21]	40.11	0.973	32.62	0.932
MRLPFNet* [11]	40.92	0.975	33.19	0.936
MambaIR* [17]	39.92	0.972	32.44	0.928
ALGNet*(Ours)	41.16	0.981	32.94	0.946

A similar trend is observed for setting 2, where our gains over MRLPFNet [11] are 0.24 dB on RealBlur-R. Although our ALGNet performs slightly inferiorly to MRLPNet in PSNR metric on the RealBlur-J dataset, our SSIM metric is higher. Moreover, for setting 1, our method outperforms MRLPNet, indicating superior generalization capability. Figure 5 presents visual comparisons of the evaluated approaches. Overall, the images restored by our model exhibit sharper details and are closer to the ground truth compared to those produced by other methods.

Figure 4: Image motion deblurring comparisons on the GoPro dataset [34]. Our ALGNet recovers perceptually faithful images.

-	tr	T	H	T	×	T	×
Reference (PSNR)	Blurry (22.41 dB)	DeblurGANv2 (28.46 dB)	MPRNet (28.64 dB)	DeepRFT+ (29.32 dB)	Restormer (30.05 dB)	MRLPFNet (30.23 dB)	ALGNet (30.37 dB)
		90					
더진국会 。 수융국반		「「日子山」。 今年5日子山」。		대한국승 · 수육국방	다만문국(金) · 수요:다만		더친국☆ 。 수용국반
Reference (PSNR)	Blurry (28 12 dB)	DeblurGANy2 (36 46 dB)	MPRNet (36.99 dB)	DeenRET+ (37.45 dB)	Restormer (37.32 dB)	MRLPENet (37.89 dB)	ALGNet (37.92 dB)

Figure 5: Image motion deblurring comparisons on the RealBlur dataset [36]. Our ALGNet recovers image with clearer details.

2024-04-12 14:14. Page 6 of 1-10.

Table 3: Quantitative comparisons with other single-image defocus deblurring methods on the DPDD testset [1] (containing 37 indoor and 39 outdoor scenes).

		Indoor	Scenes			Outdoo	r Scenes			Com	bined	
Methods	PSNR ↑	SSIM ↑	$MAE\downarrow$	LPIPS \downarrow	PSNR ↑	SSIM ↑	$MAE \downarrow$	LPIPS \downarrow	PSNR ↑	SSIM ↑	$MAE \downarrow$	LPIPS \downarrow
EBDB [19]	25.77	0.772	0.040	0.297	21.25	0.599	0.058	0.373	23.45	0.683	0.049	0.336
DMENet [24]	25.50	0.788	0.038	0.298	21.43	0.644	0.063	0.397	23.41	0.714	0.051	0.349
JNB [38]	26.73	0.828	0.031	0.273	21.10	0.608	0.064	0.355	23.84	0.715	0.048	0.315
DPDNet [1]	26.54	0.816	0.031	0.239	22.25	0.682	0.056	0.313	24.34	0.747	0.044	0.277
KPAC [42]	27.97	0.852	0.026	0.182	22.62	0.701	0.053	0.269	25.22	0.774	0.040	0.227
IFAN [25]	28.11	0.861	0.026	0.179	22.76	0.720	0.052	0.254	25.37	0.789	0.039	0.217
Restormer [46]	28.87	0.882	0.025	0.145	23.24	0.743	0.050	0.209	25.98	0.811	0.038	0.178
IRNeXt [9]	29.22	0.879	0.024	0.167	23.53	<u>0.752</u>	0.049	0.244	26.30	0.814	0.037	0.206
SFNet [10]	29.16	0.878	0.023	0.168	23.45	0.747	0.049	0.244	26.23	0.811	0.037	0.207
FSNet [8]	29.14	0.878	0.024	0.166	23.45	0.747	0.050	0.246	26.22	0.811	0.037	0.207
MambaIR [17]	28.89	0.879	0.026	0.171	23.36	0.738	0.051	0.243	26.11	0.809	0.039	0.202
ALGNet(Ours)	29.37	0.898	0.023	0.147	23.68	0.755	0.048	0.223	26.45	0.821	0.036	0.186
								XY				
			17					1		1		
MIMI Maukat	I TAT MA	-der 1.27	11 . 14 mil	DEM	Montal	MIMIN	Andrat	MIMI Mo	what MI	MI Mond	MIM.	Mankot
#VUMARKET		THE TON	Wilmanie!	CT TOTA	THUS MIT	ATUMA A	BUTT DUTT	AAMMADH	inci ici	Williage Barrie	AVI	MADUET
Reference (PSNR)	Blurry (22.75 d	dB) IF	AN (25.32 dB) IRNeXt	(26.13 dB)	Restormer (26.22 dB)	SFNet (26.33	dB) Mam	ıbaIR (26.30 d	B) ALGN	et (26.54 dB)
amai Studenis	mai histani S	tudente amo	n vistani Stud	amai amai	istani Studenio	amai	ni Studenio a	mai	tudento ama	wistani Studi	amai	vistani Studenio
amic Pakista the scur	nic Pen had t	he welamic	Panis had the	Mclamic Par	had the Mc	amic Panish	ad the Mclai	mic Pakishad	he Mc mic	Pakist had the	MCC amic Pa	had the Mcl
Iniversity Dave men	iversity Da	men Inive	rsily Dave	nen Iniversit	of Dave men	Iniversity	Dave men I	niversity Da	men Inive	sit Dave	en Iniversi	Davenen
Reference (PSNR)	Blurry (17.61	dB) IF	AN (20.44 dB)	IRNeXt	(21.02 dB)	Restormer (20.83 dB)	SFNet (20.98	dB) Man	ibaIR (20.88 d	B) ALGN	et (21.27 dB)

Figure 6: Single image defocus deblurring comparisons on the DDPD dataset [1]. Our ALGNet effectively removes blur.

Figure 7: The outputs of the CLGF module are processed by ReLU and global average pooling to obtain channel activation values.

4.2.2 **Single-Image Defocus Deblurring**. We conduct singleimage defocus deblurring experiments on the DPDD [1] dataset. Table 3 presents image fidelity scores of state-of-the-art defocus deblurring methods. ALGNet outperforms other state-of-the-art methods across all scene categories. Notably, in the combined scenes 2024-04-12 14:14. Page 7 of 1–10. category, ALGNet exhibits a 0.15 dB improvement over the leading method IRNeXt [9]. In comparison to MambaIR [17], which also relies on the state space model, our ALGNet showcases an improvement in performance by 0.48 dB in indoor scenes. The visual results in Figure 6 illustrate that our method recovers more details and visually aligns more closely with the ground truth compared to other algorithms.

4.3 Ablation Studies

Here we present ablation experiments to verify the effectiveness and scalability of our method. Evaluation is performed on the GoPro dataset [34], and the results are shown in Table. 4. The baseline is NAFNet [4]. We perform the break-down ablation by applying the proposed modules to the baseline successively, we can make the following observations:

(1) When our CLGF module consists of only one local branch or global branch, the improvement in deblurring performance is not significant. There are two main reasons for this. Firstly, our baseline model is already capable of fully capturing local information, rendering the addition of a local branch ineffective in enhancing the model's representation ability. Secondly, since our global branch is based on the state-space model, although it can capture long-distance information, it often encounters issues such as local pixel loss and channel redundancy, as illustrated in Figure 3. Therefore, when used alone, it fails to enhance performance.

Anonymous Authors

Figure 8: The internal features of ALGBlock. With our CLGF and FA, ALGBlcok produces more fine details than the initial feature, e.g., the number plate. Zoom in for the best view.

Table 4: Ablation study on individual components of theproposed ALGNet.

Method	PSNR
Baseline	32.83
Baseline + CLGF w/o local branch	32.89
Baseline + CLGF w/o global branch	32.86
Baseline + CLGF	33.35
Baseline + CLGF + FA	33.49

 Table 5: The impact of feature aggregation method on the overall performance.

Modules	Sum	Concatenation	FA
PSNR	33.35	33.37	33.49
FLOPs(G)	17	22	17

(2) When our CLGF module comprises both a local branch and a global branch, we observe a significant improvement in performance, up to 0.52 dB compared to the baseline. This indicates that CLGF has the ability to capture long-range dependency features and model local connectivity effectively.

(3) The FA contributes a gain of 0.14 dB to our model.

To further validate the effectiveness of our CLGF module, we apply ReLU and global average pooling operations on the output results of CLGF to obtain channel activation values (see Figure 7). It's evident that our CLGF successfully circumvents the issue of channel redundancy caused by an excessive number of hidden states in the state spaces model.

Furthermore, to assess the advantage of our FA design, we compare it with other methods such as sum and concatenation. As shown in Table 5, our FA consistently delivers superior results, indicating its effectiveness in emphasizing the importance of the local branch in restoration. Importantly, our design does not introduce any additional computational burden.

Finally, we compare the feature maps before and after our AL-GBLock in Figure 8. It is evident that the feature map from our local branch contains more detailed information compared to that from the global branch. Upon aggregation of the local and global branches of CLGF using FA, we observe a significant recovery of more details, particularly in the blurred license plate number present in the initial feature map. Table 6: The evaluation of model computational complexity on the GoPro dataset [34]. The FLOPs are evaluated on image patches with the size of 256×256 pixels. The running time is evaluated on images with the size of 1280×720 pixels.

Method	Time(s)	FLOPs(G)	PSNR	SSIM
MPRNet [47]	1.148	777	32.66	0.959
Restormer [46]	1.218	140	32.92	0.961
Stripformer [43]	1.054	170	33.08	0.962
IRNeXt [9]	0.255	114	33.16	0.962
SFNet [10]	0.408	125	33.27	0.963
FSNet [8]	0.362	<u>111</u>	33.29	0.963
MambaIR [17]	0.743	439	33.21	0.962
ALGNet(Ours)	0.237	17	33.49	0.964

4.4 Resource Efficient

We assess the model complexity of our proposed approach and state-of-the-art methods in terms of model running time and FLOPs. Table 6 and Figure 1 illustrate that our ALGNet model achieves SOTA performance while simultaneously reducing computational costs. Specifically, we achieve a 0.2 dB improvement over the previous best approach, FSNet [8], with up to 84.7% cost reduction and nearly 1.5 times faster inference. Compared to MambaIR [17], our ALGNet reduces computational costs by 96.1% and achieves 3.1 times faster inference. This underscores the efficiency of our method, demonstrating superior performance along with resource effectiveness.

5 CONCLUSION

In this paper, we propose an efficient image deblurring network that leverages selective state spaces model to aggregate enriched and accurate features. We design an ALGBlock consisting of CLGF and FA module. The CLGF module captures long-range dependency features using a selective state spaces model in the global branch, while employing simplified channel attention to model local connectivity in the local branch, thus reducing local pixel forgetting and channel redundancy. Additionally, we propose the FA module to emphasize the significance of the local information by dynamically recalibrating the weights through a learnable factor during the aggregation of the CLGF two branches. Experimental results demonstrate that the proposed method outperforms state-of-the-art approaches.

2024-04-12 14:14. Page 8 of 1-10.

Learning Enriched Features via Selective State Spaces Model for Efficient Image Deblurring

Conference'17, July 2017, Washington, DC, USA

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043 1044

929 **REFERENCES**

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

- Abdullah Abuolaim and Michael S Brown. 2020. Defocus deblurring using dualpixel data. In European Conference on Computer Vision. Springer, 111–126.
- [2] Dongdong Chen and Mike E Davies. 2020. Deep Decomposition Learning for Inverse Imaging Problems. In Proceedings of the European Conference on Computer Vision (ECCV).
- [3] Hanting Chen, Yunhe Wang, Tianyu Guo, Chang Xu, Yiping Deng, Zhenhua Liu, Siwei Ma, Chunjing Xu, Chao Xu, and Wen Gao. 2020. Pre-Trained Image Processing Transformer. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020), 12294–12305.
- [4] Liangyu Chen, Xiaojie Chu, Xiangyu Zhang, and Jian Sun. 2022. Simple Baselines for Image Restoration. ECCV (2022).
- [5] Liangyu Chen, Xin Lu, Jie Zhang, Xiaojie Chu, and Chengpeng Chen. 2021. HINet: Half Instance Normalization Network for Image Restoration. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops. 182–192.
- [6] Xiang Chen, Hao Li, Mingqiang Li, and Jinshan Pan. 2023. Learning a Sparse Transformer Network for Effective Image Deraining. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 5896– 5905.
- [7] Sung Jin Cho, Seo Won Ji, Jun Pyo Hong, Seung Won Jung, and Sung Jea Ko. 2021. Rethinking Coarse-to-Fine Approach in Single Image Deblurring. In ICCV.
- [8] Yuning Cui, Wenqi Ren, Xiaochun Cao, and Alois Knoll. 2024. Image Restoration via Frequency Selection. IEEE Transactions on Pattern Analysis and Machine Intelligence 46, 2 (2024), 1093-1108. https://doi.org/10.1109/TPAMI.2023.3330416
- [9] Yuning Cui, Wenqi Ren, Sining Yang, Xiaochun Cao, and Alois Knoll. 2023. IRNeXt: Rethinking Convolutional Network Design for Image Restoration. In Proceedings of the 40th International Conference on Machine Learning.
- [10] Yuning Cui, Yi Tao, Zhenshan Bing, Wenqi Ren, Xinwei Gao, Xiaochun Cao, Kai Huang, and Alois Knoll. 2023. Selective Frequency Network for Image Restoration. In The Eleventh International Conference on Learning Representations.
- [11] J. Dong, J. Pan, Z. Yang, and J. Tang. 2023. Multi-scale Residual Low-Pass Filter Network for Image Deblurring. In 2023 IEEE/CVF International Conference on Computer Vision (ICCV). 12311–12320.
- [12] Weisheng Dong, Lei Zhang, Guangming Shi, and Xiaolin Wu. 2011. Image Deblurring and Super-Resolution by Adaptive Sparse Domain Selection and Adaptive Regularization. *IEEE Transactions on Image Processing* 20, 7 (2011), 1838–1857.
- [13] Xin Feng, Haobo Ji, Wenjie Pei, Jinxing Li, Guangming Lu, and David Zhang. 2023. U2-Former: Nested U-shaped Transformer for Image Restoration via Multiview Contrastive Learning. *IEEE Transactions on Circuits and Systems for Video Technology* (2023), 1–1. https://doi.org/10.1109/TCSVT.2023.3286405
- [14] Daniel Y. Fu, Elliot L. Epstein, Eric Nguyen, Armin W. Thomas, Michael Zhang, Tri Dao, Atri Rudra, and Christopher Ré. 2023. Simple hardware-efficient long convolutions for sequence modeling. In *Proceedings of the 40th International Conference on Machine Learning*. Article 417, 19 pages.
- [15] Albert Gu and Tri Dao. 2023. Mamba: Linear-time sequence modeling with selective state spaces. arXiv preprint arXiv:2312.00752 (2023).
- [16] Albert Gu, Isys Johnson, Karan Goel, Khaled Saab, Tri Dao, Atri Rudra, and Christopher Ré. 2021. Combining recurrent, convolutional, and continuous-time models with linear state space layers. Advances in neural information processing systems 34 (2021), 572–585.
- [17] Hang Guo, Jinmin Li, Tao Dai, Zhihao Ouyang, Xudong Ren, and Shu-Tao Xia. 2024. MambaIR: A Simple Baseline for Image Restoration with State-Space Model. arXiv preprint arXiv:2402.15648 (2024).
- [18] Ali Karaali and Claudio Rosito Jung. 2017. Edge-based defocus blur estimation with adaptive scale selection. *IEEE Transactions on Image Processing* 27, 3 (2017), 1126–1137.
- [19] Ali Karaali and Claudio Rosito Jung. 2018. Edge-Based Defocus Blur Estimation With Adaptive Scale Selection. *IEEE Transactions on Image Processing* 27, 3 (2018), 1126–1137. https://doi.org/10.1109/TIP.2017.2771563
- [20] D. Kingma and J. Ba. 2014. Adam: A Method for Stochastic Optimization. Computer Science (2014).
- [21] Lingshun Kong, Jiangxin Dong, Jianjun Ge, Mingqiang Li, and Jinshan Pan. 2023. Efficient Frequency Domain-based Transformers for High-Quality Image Deblurring. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 5886–5895.
- [22] Orest Kupyn, Volodymyr Budzan, Mykola Mykhailych, Dmytro Mishkin, and Jiri Matas. 2017. DeblurGAN: Blind Motion Deblurring Using Conditional Adversarial Networks. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (2017), 8183–8192.
- [23] Orest Kupyn, T. Martyniuk, Junru Wu, and Zhangyang Wang. 2019. DeblurGANv2: Deblurring (Orders-of-Magnitude) Faster and Better. 2019 IEEE/CVF International Conference on Computer Vision (ICCV) (2019), 8877–8886.
- [24] Junyong Lee, Sungkil Lee, Sunghyun Cho, and Seungyong Lee. 2019. Deep Defocus Map Estimation Using Domain Adaptation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
- 986 2024-04-12 14:14. Page 9 of 1-10.

- [25] Junyong Lee, Hyeongseok Son, Jaesung Rim, Sunghyun Cho, and Seungyong Lee. 2021. Iterative filter adaptive network for single image defocus deblurring. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2034–2042.
- [26] Yuhong Li, Tianle Cai, Yi Zhang, Deming Chen, and Debadeepta Dey. 2023. What makes convolutional models great on long sequence modeling? *ICLR* (2023).
- [27] Jingyun Liang, Jiezhang Cao, Guolei Sun, Kai Zhang, Luc Van Gool, and Radu Timofte. 2021. SwinIR: Image Restoration Using Swin Transformer. arXiv preprint arXiv:2108.10257 (2021).
- [28] Hanzhou Liu, Binghan Li, Chengkai Liu, and Mi Lu. 2024. DeblurDiNAT: A Lightweight and Effective Transformer for Image Deblurring. arXiv:2403.13163 [cs.CV]
- [29] Yue Liu, Yunjie Tian, Yuzhong Zhao, Hongtian Yu, Lingxi Xie, Yaowei Wang, Qixiang Ye, and Yunfan Liu. 2024. VMamba: Visual State Space Model. arXiv preprint arXiv:2401.10166 (2024).
- [30] I. Loshchilov and F. Hutter. 2016. SGDR: Stochastic Gradient Descent with Warm Restarts. (2016).
- [31] Jun Ma, Feifei Li, and Bo Wang. 2024. U-Mamba: Enhancing Long-range Dependency for Biomedical Image Segmentation. arXiv preprint arXiv:2401.04722 (2024).
- [32] Xuezhe Ma, Chunting Zhou, Xiang Kong, Junxian He, Liangke Gui, Graham Neubig, Jonathan May, and Zettlemoyer Luke. 2023. Mega: Moving Average Equipped Gated Attention. *ICLR* (2023).
- [33] Harsh Mehta, Ankit Gupta, Ashok Cutkosky, and Behnam Neyshabur. 2022. Long range language modeling via gated state spaces. arXiv preprint arXiv:2206.13947 (2022).
- [34] Seungjun Nah, Tae Hyun Kim, and Kyoung Mu Lee. 2016. Deep Multi-scale Convolutional Neural Network for Dynamic Scene Deblurring. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016), 257–265.
- [35] Jinshan Pan, Deqing Sun, Jiawei Zhang, Jinhui Tang, Jian Yang, Yu Wing Tai, and Ming Hsuan Yang. 2022. Dual Convolutional Neural Networks for Low-Level Vision. International Journal of Computer Vision (2022).
- [36] Jaesung Rim, Haeyun Lee, Jucheol Won, and Sunghyun Cho. 2020. Real-World Blur Dataset for Learning and Benchmarking Deblurring Algorithms. In Proceedings of the European Conference on Computer Vision (ECCV).
- [37] Ziyi Shen, Wenguan Wang, Xiankai Lu, Jianbing Shen, Haibin Ling, Tingfa Xu, and Ling Shao. 2019. Human-Aware Motion Deblurring. 2019 IEEE/CVF International Conference on Computer Vision (ICCV) (2019), 5571–5580.
- [38] Jianping Shi, Li Xu, and Jiaya Jia. 2015. Just noticeable defocus blur detection and estimation. In 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 657–665. https://doi.org/10.1109/CVPR.2015.7298665
- [39] V. Singh, K. Ramnath, and A. Mittal. 2020. Refining high-frequencies for sharper super-resolution and deblurring. *Computer Vision and Image Understanding* 199, C (2020), 103034.
- [40] Jimmy TH Smith, Andrew Warrington, and Scott W Linderman. 2022. Simplified state space layers for sequence modeling. arXiv preprint arXiv:2208.04933 (2022).
- [41] Jimmy TH Smith, Andrew Warrington, and Scott W Linderman. 2023. Simplified state space layers for sequence modeling. *ICLR* (2023).
- [42] Hyeongseok Son, Junyong Lee, Sunghyun Cho, and Seungyong Lee. 2021. Single image defocus deblurring using kernel-sharing parallel atrous convolutions. In Proceedings of the IEEE/CVF International Conference on Computer Vision. 2642– 2650.
- [43] Fu-Jen Tsai, Yan-Tsung Peng, Yen-Yu Lin, Chung-Chi Tsai, and Chia-Wen Lin. 2022. Stripformer: Strip Transformer for Fast Image Deblurring. In ECCV.
- [44] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin. 2017. Attention Is All You Need. arXiv (2017).
- [45] Zhendong Wang, Xiaodong Cun, Jianmin Bao, Wengang Zhou, Jianzhuang Liu, and Houqiang Li. 2022. Uformer: A General U-Shaped Transformer for Image Restoration. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 17683–17693.
- [46] Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, and Ming-Hsuan Yang. 2022. Restormer: Efficient Transformer for High-Resolution Image Restoration. In CVPR.
- [47] Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, Ming-Hsuan Yang, and Ling Shao. 2021. Multi-Stage Progressive Image Restoration. In CVPR.
- [48] Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, Ming-Hsuan Yang, and Ling Shao. 2022. Learning Enriched Features for Fast Image Restoration and Enhancement. *IEEE Transactions on Pattern Analysis* and Machine Intelligence (TPAMI) (2022).
- [49] Kaihao Zhang, Wenhan Luo, Yiran Zhong, Lin Ma, Björn Stenger, Wei Liu, and Hongdong Li. 2020. Deblurring by Realistic Blurring. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020), 2734–2743.
- [50] Yanni Zhang, Qiang Li, Miao Qi, Di Liu, Jun Kong, and Jianzhong Wang. 2023. Multi-Scale Frequency Separation Network for Image Deblurring. *IEEE Transactions on Circuits and Systems for Video Technology* 33, 10 (2023), 5525–5537. https://doi.org/10.1109/TCSVT.2023.3259393
- [51] Xiaoqiang Zhou, Huaibo Huang, Zilei Wang, and Ran He. 2024. RISTRA: Recursive Image Super-resolution Transformer with Relativistic Assessment. IEEE

[52] Lianghui Zhu, Bencheng Liao, Qian Zhang, Xinlong Wang, Wenyu Liu, and	1103
Xinggang Wang. 2024. Vision Mamba: Efficient Visual Representation Learning	1104
with Bidirectional State Space Model. arXiv:2401.09417 [cs.CV]	

	1045	Transactions on Multimedia (2024) 1–12	https://doi.org/10.1109/TMM 2024	[52] Lianghui Zhu, Bencheng Liao, Oian Zhang	z. Xinlong Wang, Wenyu Liu and 1103
	1046	3352400		Xinggang Wang. 2024. Vision Mamba: Effici	ent Visual Representation Learning 1104
	1047			with Bidirectional State Space Model. arXiv	:2401.09417 [cs.CV] 1105
	1048				1106
	1049				1107
	1050				1108
	1051				1109
	1052				1110
	1053				1111
	1054				1112
	1055				1113
	1056				1114
	1057				1115
	1058				1116
	1059			CX.•	1117
	1060				1118
	1061				1119
	1062				1120
	1063			Or .	1121
	1064				1122
	1065				1123
	1066				1124
	1067				1125
	1060				1120
	1070				1127
	1071				1129
	1072				1130
191 192 195 193 197 193 198 193 199 193 190 193 192 194 193 193 194 193 195 194 196 194 197 194 198 194 199 194 193 194 194 194 195 194 196 194 197 194 198 194 199 194 194 194 195 194 196 194 197 194 198 194 199 194 191 194 192 194 193 194 194 194 195 194 196 194 197 194 198 194 199 194 191 194 192 194 193 194 194 194 195 194 196 194	1073			XY	1131
	1074				1132
	1075				1133
107 113 108 113 109 113 101 113 102 114 103 114 104 114 105 114 106 114 107 114 108 114 109 114 101 114 102 114 103 114 104 114 105 114 106 114 107 114 108 115 109 115 101 115 102 115 103 115 104 115 105 115 106 115 107 115 108 115 109 115 101 115 102 115 103 116 104 116 105 115 106 116 107 116 108 116 109 116 101 116 102 116 103 116	1076				1134
1073 1136 1079 1137 1080 1139 1081 1139 1082 1140 1083 1140 1084 1142 1085 1140 1086 1140 1087 1140 1088 1140 1089 1141 1080 1141 1081 1140 1082 1141 1083 1141 1084 1141 1085 1141 1086 1141 1087 1141 1088 1141 1089 1141 1089 1141 1081 1141 1082 1141 1083 1141 1084 1141 1085 1151 1084 1151 1085 1151 1086 1151 1087 1151 1088 1151 1091 1151 1011 1152 1012 1151 1014 1151 1015 1151 1016 1151 1017 1151 <t< td=""><td>1077</td><td></td><td></td><td></td><td>1135</td></t<>	1077				1135
107 137 1080 138 1081 138 1082 140 1083 141 1084 141 1085 141 1086 141 1087 141 1088 141 1089 141 1089 141 1091 141 1092 141 1093 141 1094 141 1095 141 1096 141 1097 151 1098 151 1099 152 1091 153 1092 154 1093 154 1094 154 1095 154 1096 154 1097 154 1098 154 1099 154 1010 154 1021 154 1032 154 1041 154 1051 154 <	1078		$\sqrt{2}$		1136
1000 1130 1051 1140 1052 1141 1054 1142 1055 1141 1056 1142 1057 1145 1058 1146 1059 1145 1050 1145 1051 1145 1052 1145 1051 1145 1052 1151 1054 1152 1055 1152 1056 1153 1056 1153 1056 1153 1057 1153 1058 1153 1059 1153 1051 1154 1052 1154 1054 1154 1055 1154 1056 1154 1057 1154 1058 1154 1059 1154 1051 1154 1052 1154 1053 1154 1054 1154 1055 1154 1056 1154 1057 1154 1058 1154 1059 1154 1056 1154 <t< td=""><td>1079</td><td></td><td></td><td></td><td>1137</td></t<>	1079				1137
101 113 102 114 103 114 104 112 105 114 106 114 107 115 108 114 109 114 109 114 109 114 109 114 109 114 109 114 109 114 109 115 109 115 109 115 109 115 109 115 109 115 109 115 109 115 101 116 102 116 103 116 104 117 105 116 106 116 107 116 108 116 109 116 101 116 102 116 103 116 104 116 105 116 106 116 107 116 108 116 109 116 101 116	1080				1138
1000 1100 1081 1140 1085 1140 1086 1140 1087 1140 1088 1140 1089 1147 1090 1147 1091 1147 1092 1147 1093 1151 1094 1151 1095 1151 1096 1151 1097 1152 1098 1151 1099 1151 1091 1152 1092 1151 1093 1152 1094 1152 1095 1153 1096 1154 1097 1154 1010 1154 1021 1154 1032 1154 1043 1154 1054 1154 1054 1154 1055 1154 1056 1154 1057 1154 1058 1154 1059	1082				1139
100 114 1084 114 1085 114 1086 114 1087 114 1088 114 1089 114 1090 114 1091 114 1092 115 1093 115 1094 115 1095 115 1096 115 1097 115 1098 115 1099 115 1091 115 1092 115 1093 115 1094 115 1095 115 1096 115 1097 115 1098 115 1099 115 1101 115 111 115 111 115 111 115 112 115 1131 115 1141 115 1152 115 1153 115 1154 115 1155 115 1156 115 1157 115 1158 115 1159 115	1083				1140
185 143 106 144 107 145 108 146 109 147 1001 148 1012 149 1023 149 1034 149 1035 151 1046 152 1057 153 1058 154 1059 155 1059 155 1051 156 1052 155 1053 155 1054 155 1055 155 1056 155 1057 155 1058 157 1059 157 1051 157 1052 157 1053 157 1054 157 1055 157 1056 157 1057 157 1058 157 1059 157 1050 157 1051 157	1084				1142
186 144 107 145 108 146 109 147 100 148 101 149 102 149 103 119 104 115 105 115 106 115 107 115 108 115 109 115 109 115 109 115 109 115 109 115 101 115 102 115 103 115 104 115 105 115 106 115 107 115 108 115 109 115 101 115 102 115 103 115 104 115 105 115 106 115 107 115 108 115 109 1	1085		*		1143
187 143 108 144 109 147 100 148 101 149 102 151 103 152 104 152 105 153 106 153 107 153 108 153 109 153 109 153 109 153 109 153 109 153 109 153 109 153 109 153 109 153 109 153 109 153 101 154 102 155 103 154 104 155 105 154 105 155 106 157 107 156 108 157 109 156 101 157 102 156 103 1	1086				1144
188 146 199 147 190 148 191 149 192 150 193 151 194 152 195 153 196 153 197 153 198 155 199 155 199 157 190 153 191 153 192 154 193 155 194 155 195 156 196 157 197 157 198 157 199 157 191 159 192 157 193 157 194 159 195 157 196 158 197 159 198 159 199 150 199 150 191 150 192 150 193 1	1087				1145
189 147 190 148 191 149 192 150 193 151 194 152 195 153 196 153 197 155 198 155 199 155 190 157 191 157 192 157 193 157 194 157 195 157 196 157 197 157 198 157 199 157 191 159 192 159 193 159 194 159 195 157 196 157 197 158 198 159 199 159 191 159 192 159 193 159 194 159 195 159 196 1	1088				1146
190 148 191 149 192 150 193 151 194 152 195 153 196 154 197 155 198 155 199 155 199 156 199 157 190 157 191 157 192 157 193 157 194 157 195 156 196 157 197 156 198 157 199 157 190 157 191 157 192 157 193 157 194 157 195 157 196 157 197 157 198 157 199 157 191 157 192 157 193 157 194 1	1089				1147
191 149 192 150 193 151 194 152 195 153 196 154 197 155 198 155 199 156 199 156 199 156 199 156 199 157 190 157 191 157 192 157 193 157 194 157 195 156 196 157 197 156 198 157 199 157 191 157 192 157 193 157 194 159 195 157 196 158 197 159 198 159 199 150 191 150 192 150 193 150 194 1	1090				1148
192 115 193 115 194 115 195 115 196 115 197 115 198 115 199 115 199 115 199 115 199 115 199 115 199 115 191 115 192 115	1091				1149
193 1151 194 1152 195 1153 196 1154 197 1155 198 1156 199 1157 110 1158 111 1159 112 2024-04-12 14:14. Page 10 of 1-10.	1092				1150
194 1152 195 1153 196 1154 197 1155 198 1156 1999 1157 1100 1157 1111 1159 112 2024-04-12 14:14. Page 10 of 1-10. 1160	1093				1151
1095 1153 1096 1154 1097 1155 1098 1156 1099 1157 1100 1158 1101 1159 1102 2024-04-12 14:14. Page 10 of 1-10. 1160	1094				1152
199 1154 1097 1155 1098 1156 1099 1157 1100 1158 1101 1159 1102 2024-04-12 14:14. Page 10 of 1-10. 1160	1095				1153
1097 1155 1098 1156 1099 1157 1100 1158 1101 1159 1102 2024-04-12 14:14. Page 10 of 1-10. 1160	1095				1154
105 115 109 1157 1100 1158 1101 1159 1102 2024-04-12 14:14. Page 10 of 1-10. 1160	1097				1155
1100 1158 1101 1159 1102 2024-04-12 14:14. Page 10 of 1-10. 1160	1090				1150
1101 1159 1102 2024-04-12 14:14. Page 10 of 1-10. 1160	1100				1157
1102 2024-04-12 14:14. Page 10 of 1-10. 1160	1101				1150
	1102				2024-04-12 14:14. Page 10 of 1–10. 1160