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Abstract
Mixture of Experts (MoE) models have emerged
as a primary solution for reducing the computa-
tional cost of Large Language Models. In this
work, we analyze their scaling properties, high-
lighting certain arbitrary assumptions present in
the existing literature. In particular, we introduce
a new hyperparameter, granularity, the modifica-
tion of which allows for the optimal adjustment
of the size of experts. Subsequently, we present
scaling laws for fine-grained MoE, taking into ac-
count the number of training tokens, model size,
and granularity. Using these scaling laws, we
derive the optimal training configuration for a
given computational budget. Furthermore, in con-
trast with previous works, we demonstrate that the
gap in efficiency between dense and MoE models
grows as we scale up the model size and training
budget.

1. Introduction
In recent years, we have witnessed Large Language Models
(LLMs) achieve exceptional performance in tasks across nu-
merous domains (Chowdhery et al., 2022; Yin et al., 2023;
Agostinelli et al., 2023). However, training those massive
models incurs high computational costs, measured in mil-
lions of GPU-hours, (Touvron et al., 2023b) enabled only
by enormous budgets (Scao et al., 2023) and leading to non-
negligible carbon footprints (Faiz et al., 2024). To combat
these obstacles, the research community has been striving to
increase the efficiency of LLMs. One promising approach
that has lately been gaining visibility is the use of Mixture
of Experts (MoE) methods. Models such as Switch (Fedus
et al., 2022) and Mixtral (Jiang et al., 2024) have already
demonstrated that MoE models can achieve effectiveness
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comparable to dense models with significantly lower com-
putational costs.

In the context of the current trend of increasing budgets
for training models, a question arises: will MoE models
continue to be attractive in the future? This is an important
issue, as results from other studies (Clark et al., 2022) sug-
gest that the traditional dense models may outperform MoE
as the size of models increases.

In this paper, we argue that previous claims lose their valid-
ity when we relax certain implicit assumptions regarding the
training process present in previous research (Clark et al.,
2022). In particular, we refer to the fixed training duration
and the constant size of experts in MoE models.

Our results suggest that a compute-optimal MoE model
trained with a budget of 1020 FLOPs will achieve the same
quality as a dense Transformer trained with a 20× greater
computing budget, with the compute savings rising steadily,
exceeding 40× when budget of 1025 FLOPs is surpassed
(see Figure 1).

Our main contributions are:

1. Introducing a new hyperparameter - granularity. Ad-
justing this parameter allows us to determine the opti-
mal size of experts in MoE models, which translates
into increased efficiency (see Figure 1b and Figure 5).

2. Deriving new scaling laws for MoE models that in-
corporate variable training duration, the number of
parameters, and granularity. Such scaling laws allow
us to calculate optimal training hyperparameters for
MoE models.

3. Demonstrating that, with optimal settings, MoE models
can always outperform traditional Transformers at any
computing budget. This is a conclusion contrary to the
results from (Clark et al., 2022), see Section 6.3.

Additionally, we open-source the code used to produce the
results described in this work at github.com/llm-random/llm-
random.
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Figure 1. Mixture-of-Experts can be always considered more efficient than dense Transformers, regardless of the model size. (a) Compute
Optimal scaling curves for granular models and standard Transformers. The dashed line represents a dense Transformer. Colors denote
optimal granularity for the given FLOPs training budget. (b) Relative number of FLOPs needed to train Transformer and Vanilla MoE
(MoE with G = 1) to achieve the performance of MoE with compute optimal G.

2. Related Work
Mixture of Experts. In the context of language model-
ing, MoE was first introduced by (Shazeer et al., 2017) as
a sparsely gated layer between stacked blocks of LSTM
(Hochreiter & Schmidhuber, 1997). A similar technique
was proposed in the context of Transformers by (Shazeer
et al., 2018) and (Lepikhin et al., 2020). (Fedus et al., 2022)
proposed to route each input to only a single expert and
designed a modified initialization scheme to reduce training
instability.

Numerous studies have proposed to modify the original
routing method. (Lewis et al., 2021) used a linear assign-
ment algorithm to postprocess token-expert mappings and
ensure even expert selections. (Roller et al., 2021) sug-
gested another approach involving deterministic hash func-
tions. (Zhou et al., 2022) proposed expert choice routing,
eliminating the need for additional load balancing losses.
(Puigcerver et al., 2023) designed a fully-differentiable Soft
MoE architecture. Concurrently to our work, (Dai et al.,
2024) proposed to modify the MoE layer by segmenting
experts into smaller ones and adding shared experts to the
architecture. Independently, (Liu et al., 2023) suggested
a unified view of sparse feed-forward layers, considering,
in particular, varying the size of memory blocks. Both ap-
proaches can be interpreted as modifying granularity. How-
ever, we offer a comprehensive comparison of the relation-
ship between training hyperparameters and derive principled
selection criteria.

Scaling Laws. Scaling laws are empirically derived equa-
tions relating the loss of a model with variables such as the
number of parameters, training samples, or the computa-

tional budget. In the case of dense Transformers, scaling
laws were first studied by (Kaplan et al., 2020), who ob-
served power law relationships between the final model
perplexity and model and dataset size. This work was ex-
tended by (Hoffmann et al., 2022), by considering variable
cosine cycle lengths, and formulating a modified functional
form of the scaling equation.

Scaling laws have also been proposed for other architec-
tures and training scenarios. (Henighan et al., 2020) studied
autoregressive modeling across various modalities, while
(Ghorbani et al., 2021) considered machine translation.
(Frantar et al., 2023) explored the impact of pruning on
vision and language Transformers, deriving optimal sparsity
for a given compute budget. (Clark et al., 2022) studied the
scaling of MoE when changing model size and number of
experts on a fixed dataset, concluding that routed models are
more efficient only until a certain model size. In this work,
we challenge that claim by considering a variable, optimal
dataset size for both model families (see Section 6.3).

3. Background
3.1. Model Architecture

Transformer. A standard decoder-only Transformer (Rad-
ford et al., 2018a;b; Kaplan et al., 2020; Brown et al., 2020)
consists of an embedding layer, a stack of alternating atten-
tion and feed-forward layers, and an unembedding layer. In
the model, each input token is converted by the embedding
layer into a vector of size dmodel, the dimension maintained
across all the layers in the residual stream.

The feed-forward component consists of two linear transfor-
mations and a nonlinearity ϕ in between. It can be described
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Figure 2. (a) Standard MoE layer with G = 1 (b) Corresponding MoE layer with G = 2. Each of the original experts is split into two
granular ones. The split occurs in the hidden dimension of an expert. Increasing G allows for a more precise mapping between experts
and tokens. Since for granularity G, the token is routed to G granular experts, the number of parameters activated per token is the same in
both cases.

as FFN(x) = ϕ(xW1 + b1)W2 + b2, with W1 mapping
from dmodel to dff, and W2 back to the original dmodel. It is
standard (Radford et al., 2018a; Rae et al., 2022; Touvron
et al., 2023a; Jiang et al., 2023) to set the hidden dimension
as dff = 4 · dmodel.

Feed-forward layers contain the majority of Transformer
parameters and require the biggest computational budget
counted in terms of FLOPs. Subsequently, they are the main
focus of the Mixture of Experts models considered in this
work.

Mixture of Experts. The core idea behind MoE in Trans-
formers is to replace the feed-forward layer with a set of
experts. The size of each expert is typically (Fedus et al.,
2022; Zhou et al., 2022; 2023; Jiang et al., 2024) set to
mirror the original dimensions of the layer, with the hidden
expert dimension dexpert equal to dff. Therefore, the total
number of parameters in MoE scales linearly with the num-
ber of experts. However, the computational cost remains
approximately constant as each input is routed and then
processed by a subset of experts.

3.2. Scaling Laws

Dense Transformers. Large Transformer-based models are
known to approximately obey the power-law relationship
between final loss L, model size N, and number of train-
ing tokens D. This relationship is often called Chinchilla
scaling laws described in (Hoffmann et al., 2022) as

L(N,D) = c+
a

Nα
+

b

Dβ
. (1)

The power-law formula is composed of three distinct terms
that characterize the intrinsic entropy of data, constraints of

the model, and limitations in the training data. The term c
represents the minimum possible error intrinsic to the data.
The remaining two terms are suboptimality terms, which
address the limitations in function representation owing to
the size of the model and in data signified by the number of
tokens. In the limit, with infinite data and model size, the
loss is reduced to c.

Mixture of Experts. For MoE Transformer-based models,
(Clark et al., 2022) formulated the final loss for a constant
dataset size D of 130B tokens, allowing for variations in the
number of experts E, as:

L(N,E) =

(
10d/a

N

)a (
1

E

)b+c logN

. (2)

However, this result has a notable limitation as it can be
applied only to the original dataset size. The scalability
and effectiveness are constrained in this scenario because
it is crucial to align the number of training samples with
the available computational resources for optimal use. As
per (Kaplan et al., 2020) and (Hoffmann et al., 2022), main-
taining a constant dataset size while scaling up the neural
network size leads to undertraining, resulting in a model
that does not perform to its full potential.

4. Granularity
As described in Section 3, in the standard setting, the inner
dimension of each expert network dexpert = dff, the same
size as the feed-forward layer of the base model.

In this work, we suggest an alternative approach where the
hidden dimension of the expert is not necessarily set to
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Figure 3. (a) The difference in the loss between training for 16B and 65B tokens for all model sizes and granularity values. The model
size is reported as the expansion rate and the number of active parameters. (b) The impact of varying the number of parameters N on the
loss for fixed granularity G. For other granularity values, see Appendix I.

mirror that of the standard feed-forward layer. Instead, it
can be adjusted to a value that is the most effective. This
approach allows the configuration of MoE to be articulated
in terms of two key hyperparameters: granularity (G) and
expansion rate (R). In the following parts of this work, we
will also use the term active parameters to refer to the non-
embedding parameters used to produce output for a single
token, except routing. The number of active parameters is
denoted as Nact.

Let dexpert be the hidden dimension of a single expert. Gran-
ularity is defined as

G =
dff

dexpert
.

In other words, granularity denotes the multiplier factor for
the change in the size of an expert from the original standard
model, defined as G = 1. In this work, we investigate G > 1
where experts are smaller than in the standard layer.

Note that increasing granularity does not affect the number
of active parameters since, as G increases, the number of
experts that process the token grows proportionally to G.
That is, for granularity G, a token is routed to G fine-grained
experts, keeping the number of active parameters constant.
See Fig. 2 for visualization.

We then define the expansion rate, which describes the
increase in the number of parameters from a standard trans-
former layer to an MoE layer. Given that, NMoE and Nff
denote the total number of parameters in an MoE layer
excluding routing and the standard feed-forward layer, re-
spectively. The expansion rate R is then defined as

R =
NMoE

Nff
.

Expansion rate can also be seen as the total number of
parameters in an MoE layer compared to active parameters.
The relationship between the number of experts (Nexpert),
the expansion rate, and the granularity is described by the
following equation:

Nexpert = G ·R. (3)

For non-granular models, i.e., G = 1, the expansion rate is
equal to the number of experts.

Intuitively, increasing granularity for a given expansion rate
gives the model more flexibility in mapping datapoints to
experts, potentially improving performance. We incorporate
the notion of granularity into our scaling laws in Section 5.
The discussion about practical tradeoffs in changing this
parameter is given in Section 6.

5. Scaling Laws
Granularity determines changes in the architecture of MoE.
In this section, we answer a central question of this work:
whether the granular MoE models follow scaling laws and,
if so, how granularity affects them. Thus, we aim to derive
a parametric scaling law for predicting the final loss value
L based on granularity G, total number of non-embedding
parameters N , and number of training tokens D.

We run over 100 experiments on the decoder-only Trans-
former architecture, with each feed-forward component re-
placed by a Mixture of Experts layer. Those experiments
involve training models with sizes ranging from 129M to
3.7B parameters across different training durations, from
16B to 130B tokens. We consider logarithmically spaced val-
ues of granularity between 1 and 16. To constrain the search
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Figure 4. We plot the effect of G on LN,D(G) for constant N and
D. Both axes are in the log-scale. The results suggest the linear
relationship between log(G) and log(L − c). The given values
are N = 64 × 25M , D = 16B, const = 3.12 . The plots for
additional values of N and D can be found in Appendix I.

space, R = 64 is fixed, following the recommendations of
(Clark et al., 2022). In addition, we also run experiments
with dense Transformers to compare their performance with
MoE. The details of all architectures, the training proce-
dure, and hyperparameter choices are described in detail in
Appendix A.

In the subsequent part of this paper, we will use the nota-
tion R × Nact to describe a MoE model with Nact active
parameters and expansion rate R.

5.1. Power Law With Respect to Granularity

We first answer the question of whether granular models
follow the scaling laws. In Figure 4, we can notice that
increasing granularity results in a lower loss. The returns
follow approximately an exponential pattern, converging
to a positive constant. The empirical relationship given by
Figure 4 suggests, for given N and D, the following power-
law dependence of loss LD,G on a varying granularity G,
parametrized by gN,D, γN,D, and hN,D,

LN,D(G) =
gN,D

GγN,D
+ hN,D. (4)

5.2. Scaling the Model and Dataset Size

As outlined in Section 3.2, the power-law given by Eq. (1)
consists of three terms that describe inherent data entropy
and limitations in function representation and data. This
derivation is independent of the architecture. In particular,
the Eq. (1) also holds for constant granularity. Empirically,
we observe a power law relationship in N and D analogous
to that in dense models (see also Figure 1 in (Kaplan et al.,
2020)), as depicted in Figure 3 for a fixed value of granu-

larity. Furthermore, the validity of this functional form is
verified by fit in Section 5.4.

Since we know that separate scaling laws are valid for given
granularities, in the general form, the parameters in Eq. (1)
can be dependent on the model’s granularity:

LG(N,D) = cG +
aG
NαG

+
bG
DβG

. (5)

5.3. The Form of the Joint Scaling Law

Following the above observation that models with constant
granularity obey Chinchilla scaling laws given by Eq. (1),
the key question arises as to how the general notion of
granularity G can be incorporated into the joint scaling law.
Moreover, the scaling law formula from Eq. (5) for constant
N and D has to be representable by Eq. (4). This is because
the former is a more general equation, encompassing shared
hyper-parameters across all N , D, and G. It is anticipated
to align with the latter, consisting of distinct power laws,
each with specific parameters for different N and D values.
Consequently, the objective is to identify a function that
fulfills these criteria.

L(N,D,G) = LN,D(G) = LG(N,D) (6)

=
gN,D

GγN,D
+ hN,D = cG +

aG
NαG

+
bG
DβG

In the subsequent sections, we aim to determine which of
these parameters remain independent of G and identify their
functional form. Additionally, we present some rationale
for the structure of our formula.

Lower Bound. Consider the limit of Eq. (5) for N and D
growing to infinity:

lim
N→∞
D→∞

L(N,D,G) = cG. (7)

with the constant term cG dependent on granularity.

This dependence is contradictory to the fact that the term
captures the inherent entropy of the dataset, as also defined
in (Hoffmann et al., 2022) appendix D.2 ‘the minimal loss
achievable for next-token prediction on the full distribution
P , a.k.a the “entropy of natural text.”’.

The lower bound of the achievable loss for training bigger
models on more samples should not depend on the archi-
tecture since it is a function of a dataset, not of a model.
Therefore, the parameter cG = c is constant for all granular-
ities.

Granularity and Number of Tokens D. As seen in Fig-
ure 3(a), the benefit of training a model on a larger dataset
is almost the same for each granularity value. This suggests
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that there is no interaction between D and G. Therefore, we
can assume that

bG
DβG

=
b

Dβ
. (8)

Granularity and Model Size N . We consider α to be a
constant that describes how the function scales with N . In
this work, we assume polynomial functional forms that rule
out the potential dependency of α on G given the form of
Eq. 4. Therefore, the only element dependent on G is aG:

L(N,D,G) = c+
( g

Gγ
+ a

) 1

Nα
+

b

Dβ
. (9)

Finally, one could consider omitting the constant a in the
equation above, and it would still reduce to (4) for constant
N and D. However, this would mean that a model with
infinite granularity and a small number of active parameters
can achieve the perfect perplexity of the lower bound. We
think that MoE sparse model should not exceed the perfor-
mance of its dense counterpart matched by a total number
of parameters and with all of them activated. This means
that constant a can act as a marginal improvement from
granularity.

5.4. Fitting the Parametric Scaling Law

Subsequently, we fit parameters in (9) to describe the scaling
of MoE. For comparison, we also perform fitting for dense
transformer given by (1). Similarly to (Hoffmann et al.,
2022), we use Huber loss (Huber, 1964), with δ = 0.1. The
optimization is performed using the BFGS algorithm. We
include a weight decay of 5e − 4 to enhance generaliza-
tion. We start with fitting parameters in (9) and then find
architecture-dependent coefficients α, β, a and b in (1). The
values are presented in Table 1. We depict the fit of the
equation in Figure 5. We generally observe a good fit, with
RMSE = 0.015.

Table 1. Values of the fitted coefficients.

Model a α b β g γ c

MoE 18.1 0.115 30.8 0.147 2.1 0.58 0.47
Dense 16.3 0.126 26.7 0.127 - - 0.47

We validate the stability of the fit by excluding the top 20%
of models with the lowest perplexity and finding the coef-
ficients based on the remaining experiments. We observe
that the formula remains almost unchanged in this scenario
(see Table 6 in Appendix C). The validation RMSE is 0.019.
Results are depicted in Figure 6.

5.5. MoE Scaling Properties

Comparing the part of the formula that approximates un-
derfitting (that is, dependent on training tokens) in MoE
(30.8D−0.147) and Transformer (26.7D−0.127), we can in-
fer that MoE models need longer training to perform compet-
itively but scale better after reaching that point. Nonetheless,
this moment may still precede the compute-optimal for both
models. On the other hand, we can see that the exponent on
dense models α = −0.126 scales better with a total num-
ber of parameters than the MoE counterpart α = −0.115.
This should not be surprising since dense models use all
parameters on each token contrary to MoE, which gains
a computational advantage by activating only a subset of
them. Therefore, the fair comparison of the performance
has to take into account FLOPs used by each model type. In
the next section, we find compute-optimal granularity for a
given FLOP budget.

6. Optimal Allocation of Computational
Budget

The goal of this section is to find optimal N,D,G for a
given computational budget F . This can be done by solving
the following optimization problem,

minimize
N,D,G

L(N,D,G)

subject to FLOPs(N,D,G) = F.

6.1. Computational Cost of Granularity

It is important to acknowledge that increasing granularity
can lead to some challenges in training the model, namely
higher computational and communication costs and a larger
memory footprint.

The main component responsible for higher costs is the in-
crease in routing operations due to a larger pool of granular
experts. This increase is proportional to the value of G.
For standard, non-granular MoE models (G = 1), the rout-
ing overhead still exists, although it has been considered
negligible.

Taking into account the routing operation overhead, the
number of used FLOPs F is described by the following
formula:

F = (12dmodel
2cf + dmodelRGcr) ·D · nblocks, (10)

given expansion rate R, granularity G, and constants that de-
note FLOPs per active parameter ratio, respectively, within
routing (cr) and within the rest of the network (cf ). The
term 12dmodel

2 is the number of active parameters within
a transformer block, while dmodelRGcr is the number of
active parameters within a routing network. The in-depth
analysis of constants cr and cf can be found in Appendix G.
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Figure 6. Validation of the fit.

We exclude embedding and unembedding from the FLOPs
calculations, following (Hoffmann et al., 2022).

Observe that, in contrast to scenarios where routing opera-
tions are omitted, the FLOPs calculation that incorporates
routing overhead relies on both dmodel and nblocks. Conse-
quently, an additional condition is required to determine
the scaling of dmodel and nblocks in relation to an increase in
N , the number of parameters. It is noted that minor varia-
tions in the depth-to-width ratio are not significant (Kaplan
et al., 2020). Following this analysis, we opt to adopt the
assumption that dmodel = 64nblocks.

The total number of parameters in the feed-forward layer,
excluding the routing matrix, is 2Rdffdmodel = 8Rdmodel

2,
and 4dmodel

2 in attention (key, query, value, and output
projection). This results in the following formula for
N = dmodel

2 · (8R+ 4) · nblocks.

6.2. Compute Optimal Formula

Putting all together we need to solve the following optimiza-
tion problem, given F ,

minimize
N,D,G

L(N,D,G)

subject to F = (12dmodel
2cf + dmodelRGcr) ·D · nblocks

N = d2model · (8R+ 4) · nlayers,

dmodel = 64 · nlayers.

All these constraints are reducible to a one-dimensional op-
timization problem, which is, however, hard to solve analyt-
ically. Therefore we approximate the solution using Brent’s
method (Brent, 1971). The results of this optimization for
varying FLOPs budgets are plotted in Figure 1 while the op-
timal configurations of parameters for selected model sizes
are presented in Table 2. To validate the uncertainty of these
predictions, we follow (Hoffmann et al., 2022) and calculate
the 10th and 90th percentiles estimated via bootstrapping
data (see Appendix D for the detailed results).

6.3. MoE is Always More Efficient

Contrary to the results from (Clark et al., 2022), in Figure 1
we can see, that Mixture-of-Experts can be always consid-
ered more efficient than dense Transformers, regardless of
the model size. According to our previous observations from
Section 5.5, MoE models scale better with optimal train-
ing. However, for short training schedules, they may under-
perform dense models. This means that for constant training
time and increasing model size, there exists a point where
both models will become very under-trained, in which sce-
nario dense models surpass MoE. This shows why in (Clark
et al., 2022), where varying the number of training tokens
has not been considered, MoE was predicted to be under-
performing for models bigger than 1T . However, when all

7
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Table 2. Compute optimal training hyper-parameters for MoE mod-
els. Optimal N and D follow approximately similar relation to
these of (Hoffmann et al., 2022) for active parameters around the
range of 1B to 10B parameters, requiring comparably longer train-
ing for smaller models and shorter for bigger ones. Note that, this
also considers optimal granularity and its FLOPs cost.

N D G FLOPs Loss

64 x 100M 4.37B 8 2.95e+18 3.133
64 x 1B 28.94B 16 1.93e+20 2.491
64 x 3B 72.90B 16 1.41e+21 2.245
64 x 7B 137.60B 32 6.46e+21 2.076

64 x 70B 941.07B 32 4.16e+23 1.694
64 x 300B 2.96T 64 5.69e+24 1.503

64 x 1T 7.94T 64 4.97e+25 1.367

training hyper-parameters N,D,G are properly selected to
be compute-optimal for each model, the gap between dense
and sparse models only increases as we scale.

7. Discussion
Extreme Granularity. In Section 5, we argue that model
performance improves with increasing granularity. This pos-
tulate largely aligns with the empirical findings of our study.
Nonetheless, at exceedingly high granularity levels, such
as G = 64 in models characterized by dmodel = 256 and
R = 64, there is an observable decline in performance. This
phenomenon is particularly evident in scenarios where the
number of parameters in the routing mechanism exceeds ac-
tive parameters in actual experts. Additionally, as described
in Section 6, the utility of such high granularity is predomi-
nantly restricted to models of substantial size. In alignment
with the principles outlined in (Hoffmann et al., 2022), this
research focuses more on findings that can be broadly ap-
plied rather than delving into the specific details of these
corner-case situations. However, it is hypothesized that
the efficiency of models with significantly high granularity
could be potentially enhanced through careful expert ini-
tialization or modifications to the routing algorithm. These
ideas are set aside to be investigated in future studies.

Varying Expansion Rate. In this study, due to compu-
tational resources constraint, we focus on R = 64, as rec-
ommended by (Clark et al., 2022). This value of R was
also used for the largest models in other works (Du et al.,
2022; Zhou et al., 2022) and the best-performing configura-
tion in (Fedus et al., 2022). Nonetheless, we acknowledge
the importance of considering different expansion rates, as
different levels of R may be chosen based on factors like

the target size of the model in memory. Therefore, in Ap-
pendix E, we present the results of the study for R = 16
and show that the main findings of this work are still valid
in such cases.

Including R in the Formula. Another possible advance-
ment would be to unify all of the factors N,D,G and R
in one formula. While this would open the possibility of
studying the relationships between coefficients in more de-
tail, it would also be hard to practically recommend the
optimal configuration in such a scenario using only FLOPs.
This is because larger values of R typically lead to better
performance but also incur additional memory requirements.
Therefore, the choice of expansion rate may be heavily de-
pendent on the available hardware configuration. We leave
a detailed study of these factors for future work.

Modeling the Cost of Granularity. It is important to note
that the exact estimation of the training cost of MoE models
is dependent on the training setup, hardware, and implemen-
tation. Specifically, increasing G can lead to higher transfer
costs, depending on the adopted model of distributed train-
ing. Therefore, the precise selection of hyperparameters
should be made considering these factors. In this work, we
model the cost of operations using FLOPs, which is com-
mon in the Scaling Laws literature (Kaplan et al., 2020;
Hoffmann et al., 2022; Frantar et al., 2023). Additionally,
we would like to note that in our setup, we observe signifi-
cant gains of granular models measured as wall-clock time
needed to achieve given perplexity (see Appendix H for an
example).

8. Conclusions
This study introduces a novel hyperparameter, granularity
(G), and underscores the significance of adjusting it for
optimizing the efficiency of experts within MoE models.
A central finding of this research is that a standard gran-
ularity of G = 1 is suboptimal across a broad range of
FLOPs, leading to the recommendation of using higher
granularity values to enhance MoE model performance and
efficiency. Simultaneously, this work emphasizes the im-
portance of varying training duration for compute-optimal
settings. Consequently, both granularity and variable train-
ing length are incorporated into new scaling laws. These
laws confidently demonstrate that MoE models consistently
outperform dense transformers in terms of efficiency and
scaling. This work not only sheds new light on the scaling
laws applicable to MoE models but also provides practical
guidance for improving computational efficiency in large
language models. The insights are critical for the devel-
opment and optimization of large-scale language models,
marking a significant advancement in the field.
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A. Architecture and Training Setup
All of the models considered in this work are decoder-only Transformers trained on the C4 dataset (Raffel et al., 2023). We
use GPT2 tokenizer (Radford et al., 2018a). Each batch consists of 0.5M tokens packed into 2048 sequences. Our optimizer
is AdamW (Loshchilov & Hutter, 2019), with a weight decay of 0.1. In each training run, we use the maximum learning
rate of 2e−4, with linear warmup for 1% steps and cosine decay to 2e−5. To improve stability, we initialize weights using
the truncated normal distribution with reduced scale, as advised in (Fedus et al., 2022). The models are trained using mixed
precision; we always keep the attention mechanism and router in high precision. We assume the infinite data regime, as the
number of training tokens for any of the runs in less than the number of tokens in the corpus. We follow (Hoffmann et al.,
2022) and perform our analysis on the smoothed training loss.

In MoE, we use the Expert Choice routing algorithm, as it guarantees a balanced expert load without tuning additional
hyperparameters. To maintain compatibility with autoregressive language modeling, we apply the recipe described in (Zhou
et al., 2022): tokens are grouped by position across different sequences. The group size is always set to 256. We match the
number of FLOPs for MoE and dense models with the same dmodel (meaning we activate an average of 8d2model parameters
per token in each MoE layer). In the router, softmax is performed over the expert dimension, while we choose tokens over
the token dimension, as this leads to the best performance (as opposed to performing softmax over the token dimension).
We put an additional layer normalization before the output of MoE layer. This gives a small improvement for standard MoE,
but is crucial for the performance of models with G > 1.

Table 3 and Table 4 list the considered architecture and training variants for dense and MoE models, respectively.

Table 3. Architecture and training variants (MoE models).

#parameters (nonemb) dmodel nblocks nheads D (in #tokens) G

64x3M 256 4 4 16B, 33B, 66B 1, 2, 4, 8, 16
64x7M 384 4 6 16B, 33B, 66B 1, 2, 4, 8, 16

64x13M 512 4 8 16B, 33B, 66B 1, 2, 4, 8, 16
64x13M 512 4 8 130B 1, 2, 4
64x25M 512 8 8 16B, 33B, 1, 2, 4, 8, 16
64x25M 512 8 8 66B 1, 2, 4, 8
64x49M 640 10 10 16B, 33B 1, 2, 4, 8, 16
64x49M 640 10 10 66B 1, 2, 4
64x85M 768 12 12 33B 1, 2, 4

Table 4. Architecture and training variants (dense models).

#parameters (nonemb) dmodel nblocks nheads D (in #tokens)

3M 256 4 4 16B, 24B, 33B, 66B
6M 256 8 4 16B, 24B, 33B, 66B
13M 512 4 8 16B, 24B, 33B, 66B
25M 512 8 8 16B, 24B, 33B, 66B
49M 640 10 10 16B, 24B, 33B, 66B
85M 768 12 12 16B, 33B
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B. Comparison to (Clark et al., 2022) with Effective Parameter Count Curve
One of the main conclusions of our work, that MoE is always more efficient, is contradictory to the thesis from (Clark
et al., 2022). Their work focuses on a fixed dataset length D = 130B, and they define the effective parameter count of any
MoE model as the size of a dense model that achieves the same perplexity as a given MoE with a certain number of active
parameters. Subsequently, they claim that as the number of parameters grows, this effective parameter count curve crosses
with the active parameter curve, which means that using MoE will lead to worse performance in the future. Despite this
incompatibility, we do not claim that their experiments and extrapolations are not valid. If we use our fitted scaling laws
with a fixed number of training tokens D, the resulting effective parameter count curve (which can be properly defined only
for a fixed D) would indeed cross at some parameter count in the same way as it did in (Clark et al., 2022).

This crossing point of effective parameter count curve, that is, a number of parameters where dense Transformers surpass
MoE models for a given number of training tokens D, can be calculated by determining where our scaling laws for MoE and
for dense models cross, solving the following equation for N , given D: 0.47 + ( 2.1

G0.58 + 18.1)N−0.115 + 30.8D−0.147 =
0.47 + 16.3N−0.126 + 26.7D−0.127 This solves for:

Table 5. Crossing point for MoE Effective Parameter Count Curve with Dense

D 10B 130B 1T
(N ) MoE/dense Crossing Point 251B 1.9T 10T

This crossing point will be placed further away for each increase in D.

Importantly, the lines will never cross if we train each of these models in a compute-optimal manner using the same
computational budget (Figure 1). Our results show that regular dense models perform better than MoE only when both are
severely undertrained, as in the extrapolation from (Clark et al., 2022), where a comparison is made between 1T parameter
models trained on 130B steps. Moreover, in industry settings, it is common to overtrain LLMs and extremely rare to
undertrain them, and our scaling laws indicate even better performance of MoE models in an overtrained regime.

C. Validation of the Scaling Law
In this section, we provide coefficients of the scaling law fitted with 20% of datapoints with the lowest perplexity excluded
for the purpose of validation.

Table 6. Values of the fitted coefficients.

Model a α b β g γ c
MoE 17.6 0.114 26.7 0.140 2.07 0.570 0.472

D. Reliability of Compute Optimal Formula
In this section, we assess the stability of our predictions presented in Section 6.1. Similarly to (Hoffmann et al., 2022) we
calculate the 10th and 90th percentiles estimated via bootstrapping data (80% of the data is sampled 100 times). See Table 7
for the details.

E. Varying Expansion Rate
In this section, we provide results for R = 16. The training procedure is the same as described in App. A. The models
considered in this part are listed in Table 8.

We fit Eq. 9 using the same procedure as described in Section 5.4. The results are detailed in Table 9.

Using the coefficients and FLOPs calculation formulas, we can derive the compute optimal training parameters. The results
are presented in Table 10.

We can observe that similarly to the case when R = 64, larger compute budgets imply larger optimal values of G. Note
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Table 7. 10th and 90th percentiles estimated via bootstraping data.

N D G

64 x 100M (2.97B, 5.98B) (8, 8)
64 x 1B (21.17B, 40.73B) (16, 16)
64 x 3B (50.20B, 105.88B) (16, 32)
64 x 7B (101.06B, 205.40B) (32, 32)

64 x 70B (638.49B, 1.59T) (32, 64)
64 x 300B (1.99T, 5.62T) (64, 64)

64 x 1T (5.29T, 16.87T) (64, 64)

Table 8. Architecture and training variants (MoE models).

#parameters (nonemb) dmodel nblocks nheads D (in #tokens) G

64x3M 256 4 4 8B, 16B, 33B 1, 2, 4, 8, 16
64x7M 256 8 4 8B, 16B, 33B 1, 2, 4, 8, 16
64x13M 512 4 8 8B, 16B, 33B 1, 2, 4, 8, 16
64x13M 512 4 8 66B 1, 2, 4
64x25M 512 8 8 8B, 16B, 33B 1, 2, 4, 8, 16
64x49M 640 10 10 8B 1, 2, 4, 8, 16

Table 9. Values of the fitted coefficients.

Model a α b β g γ c

MoE (R = 16) 19.64 0.124 57.07 0.169 1.18 0.986 0.472

Table 10. 10th and 90th percentiles estimated via bootstrapping data for R = 16.

N D G

16 x 100M (10.29B, 17.73B) (8 , 16)
16 x 1B (53.74B, 103.54B) (16, 32)
16 x 3B (106.22B, 261.04B) (16, 32)
16 x 7B (177.65B, 511.43B) (16, 32)

16 x 70B (721.60B, 3.22T) (32, 64)
16 x 300B (1.73T, 10.69T) (32, 64)

16 x 1T (3.60T, 28.22T) (32, 128)

that the values for 10th and 90th percentiles form larger intervals in this case, as in this part we run a smaller number of
experiments and keep shorter training durations. However, we believe that this preliminary study forms a valuable addition
to the results in the main part.
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F. Choosing Granularity
Table 7 (for expansion rate 64) and Table 9 (for expansion rate 16) list the optimal granularity values for various compute
budgets. Fig. 1 (a) presents an alternative presentation for R = 64. We observe that the optimal granularity values are
generally similar between different expansion rates. We can generally provide the following guidelines:

• The standard value of G = 1 is almost never optimal.

• For a reasonable default value of G refer to Table 7 and Table 9 . For constant N or D, one can calculate optimal G
and the trade-off between predicted loss and training FLOPs directly from our scaling laws using the coefficients from
Table 6.

• The exact optimal value of granularity may differ slightly from our setup, but based on other works on scaling laws, we
expect only slight differences.

G. FLOPs Constants
The number of FLOPs F used in Transformer training, considering the routing operation overhead in MoE, can be described
by the following formula:

F = (12dmodel
2cf + dmodelEGcr) · ntokens · nblocks (11)

Following (Hoffmann et al., 2022), we assume cf to be 6. This is interpreted as 6 FLOPs for each pair of an active parameter
(in linear projection) and a processed token. The breakdown of operations is as follows:

• During the forward pass, 2 operations (single multiplication and single addition) are used to compute the matrix
multiplication of an input and linear projection.

• During the backward pass, 2 operations are used to compute gradients wrt. the input.

• During the backward pass, 2 operations are used to compute gradients wrt. the weights of linear projection.

In our work, we have assumed the routing constant, cr, to be 14, with the breakdown presented below. The exact number of
operations may depend on the implementation of routing, but it will be between 6 and 20. However, our main conclusions of
the paper are resistant to different assumptions of this constant.

• During the forward pass, 2 operations are used to compute the expert logits based on an input and ”routing linear
projection”.

• During the backward pass, 2 operations are used to compute gradients for ”routing linear projection” wrt. the input.

• During the backward pass, 2 operations are used to compute gradients for ”routing linear projection” wrt. the weights
of linear projection.

• During the forward pass, 2 operations are used to route input tokens to chosen experts.

• During the forward pass, 2 operations are used to route expert outputs to chosen tokens and multiply those outputs by
the routing score.

• During the backward pass, 2 operations are used to route gradients from output tokens to experts.

• During the backward pass, 2 operations are used to route gradients from experts to input tokens.

Similarly to the calculation of FLOPs for cf , FLOPs come in pairs as each multiplication is followed by an addition (used to
accumulate outputs or gradients).
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H. Measuring Wall-clock Time
In this section, we provide an example of training curves for models with different levels of granularity, measured in terms
of wall-clock training time on NVIDIA A100 GPU. We can see that the model with G = 8 achieves the best performance in
this case.
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Figure 7. Training loss curves for model with N = 64× 7M , D = 66B tokens.
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I. Additional Visualizations
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Figure 8. Illustration of scaling N and D for constant granularity value of: (a) G = 1 (b) G = 2 (c) G = 8 (d) G = 16.
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Figure 9. Illustration of scaling granularity when N,D are fixed for: (a) N = 64× 25M , D = 16B, const = 3.12 (b) N = 64× 49M ,
D = 16B, const = 3.02 (c) N = 64× 25M , D = 32B, const = 3.03 (d) N = 64× 49M , D = 32B, const = 2.88
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