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ABSTRACT

Building accurate and robust value functions to estimate the expected future return
from the current state is critical in Multi-Agent Reinforcement Learning. Previous
works perform better estimation by strengthening the representation of the value
function. However, due to the uncertain and unavailable future, directly estimating
the future return from the current state is challenging and cannot be addressed by
just promoting representation ability. Socially, humans will derive future expec-
tations from current available information to help evaluate their behavior’s long-
term return. Motivated by this, we propose a novel framework, called future ex-
pectations multi-agent Q-learning (QFuture), for better estimating future expected
returns. In this framework, we design a future expectation module (FEM) to build
future expectations in the calculation process of the individual (IAV) and joint
action-value (JAV). In FEM, the future expectations are modeled as random vari-
ables and perform representation learning by maximizing their mutual information
(MI) with the future trajectory given current observation (in IAV) or state (in JAV).
We design a future representation module (FRM) to encode the future trajectory,
where a regularizer is designed to ensure informativeness. Experiments on Star-
Craft II micromanagement tasks and Google Research Football demonstrate that
QFuture significantly achieves state-of-the-art performance.

1 INTRODUCTION

Cooperative multi-agent reinforcement learning (MARL) has shown widespread application in
many real-world systems, such as autonomous vehicle teams (Xu et al. (2018)), swarm systems
(Hüttenrauch et al. (2017)), and traffic management (Singh et al. (2020)). However, the emergence
of effective coordination among agents is still challenging. The shortsightedness of agents is a major
obstacle to efficient cooperation among agents.

Since the birth of reinforcement learning, researchers have been devoted to leading the agent to
learn a long-term strategy. Many practical single-agent RL solutions (Q-Learning (Watkins & Dayan
(1992)), SARSA (Rummery & Niranjan (1994)) and Actor-Critic (Konda & Tsitsiklis (1999)) meth-
ods) adopt Temporal Difference (TD) Learning (Sutton (1988)), where a n-step return, the combi-
nation of current reward and future reward, is used as an estimate of the value function by averaging
bootstrapping from the nth state’s value function estimate. TD learning is further extended to deep
reinforcement learning (DRL), and MARL (Sutton et al. (1998)). However, a significant issue has
been ignored. Unlike the simple value iteration in the Q-table, TD learning in DRL expects the
agent to estimate the n-step return using only the current information. Since the current reward
correlates directly to the current state, this term can be an easy estimate. However, the future is
uncertain and unpredictable. Deriving an estimate of future reward from current information is ex-
tremely challenging in DRL, especially in MARL, due to the increasing future possibilities caused
by exponentially enlarged action space, which leads to inefficient learning in MARL.

A natural concept that comes to mind is using future information to improve the value function esti-
mate. However, since future information is not available when agents make decisions, direct usage
of future information is impossible. Socially, when humans are obliged to make a decision, they
will derive future expectations based on the current observation by asking themselves a question: if
we do that, what return would we obtain in the future? This procedure assists them in evaluating
and improving decisions (Engel et al. (2021); Guo et al. (2019)). When the future arrives, those
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future information will be used to improve their future expectations. Owing to future expectations,
humans can make more reasonable assessments of their behaviors and then emerge with elaborate
cooperation skills, such as planning and tacit understanding (Wang & Jia (2019)). Analogically,
the emergence of future expectations should also be essential for MARL to alleviate the estimated
difficulty of future reward in the value function.

In this paper, we propose a novel MARL approach, called future expectations multi-agent Q-learning
(QFuture), to learn future expectations in MARL. Specifically, we design a future expectation mod-
ule (FEM), where the future expectations are represented by stochastic latent variables conditioned
on current observation (in IAV) or state (in JAV). We propose a novel information-theoretical ob-
jective to associate future expectations with actual future trajectories by maximizing a mutual infor-
mation (MI) objective. In addition, we design a future representation module (FRM) and propose a
regularizer to enable reasonable and effective representation of future trajectory. Finally, the output
of FEM is used to generate the weight parameters to calculate the individual action-values (IAV)
and joint action-value (JAV).

We conduct experiments on two environments, i.e., StarCraft II micromanagement environments
(Samvelyan et al. (2019)) and Google Research Football (GRF) (Kurach et al. (2019)). The superior
performance of our approach on challenging benchmarking tasks shows that our approach provides
significantly higher coordination capacity. Moreover, we further carry out an ablation study to evalu-
ate the contribution of each key component in QFuture. Finally, the visualization of learned strategy
and future expectations in GRF effectively demonstrates future expectations can promote collabora-
tion among agents.

2 BACKGROUND

2.1 PRELIMINARIES

We consider a fully cooperative multi-agent task as a decentralised partially observable Markov
decision process (Dec-POMDP) (Oliehoek & Amato (2016)), which can be defined as a tuple M =<
N,S,A, P, r, Z,O, n, γ >, where N represents a finite set of agents and s ∈ S the true state of the
environment, γ ∈ [0, 1) the discount factor. At each time step, each agent i ∈ N receives his
own observation oi ∈ O and then chooses an action ai ∈ A on a global state s, forming a joint
action vector a⃗. It results in a joint reward r(s, a⃗) and causes a transition on the environment based
on the transition function P (s′|, s, a⃗). Each agent has its own action-observation history τi∈Ti ≡
(Zi × A)∗, conditioned by a stochastic policy πi(ai|τi). The joint policy π then induces a joint
action-value function: Qπ

tot(s, a⃗) = Es0:∞,a0:∞ [Gt| s0 = s,a0 = a⃗, π], where Gt =
∑∞

t=0 γ
trt+1

is the expected discounted return.

2.2 RELATED WORK

Centralized Training with Decentralized Execution (CTDE) has been a major paradigm of co-
operative multi-agent deep reinforcement learning (Rashid et al. (2018); Wang et al. (2020a); Yang
et al. (2020); Rashid et al. (2020)) and can effectively deal with nonstationarity while learning de-
centralized policies for agents (Foerster et al. (2016)). Agents are trained in a centralized way and
have access to other agents’ information or the global states during the centralized training process.
Value function decomposition is of the central way to exploit the CTDE paradigm (Rashid et al.
(2018); Wang et al. (2020a); Yang et al. (2020)). It learns a decentralized utility function for each
agent and then adopts a mixing network to combine local utilities into a global action value. IGM
(Individual-Global-MAX;Son et al. (2019)) is an essential principle to realize effective value-based
CTDE which asserts that ∃Qi, such that the following holds:

argmax
a⃗

Qπ
tot(s, a⃗) = (argmax

a1

Q1(τ1, a1), . . . , argmax
aN

QN (τN , aN )). (1)

Value-Function Factorization: Value-function factorization is the most popular method in value-
based MARL under the CTDE paradigm. VDN (Sunehag et al. (2017)) proposes to decompose the
value function of the team into agent-specific value functions by an additive factorization. QMIX
(Rashid et al. (2018)) ameliorates the way of value-function factorization by learning a mixing net-
work, following the Individual-Global-Max (IGM) principle (Hostallero et al. (2019)) . Qatten
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(Yang et al. (2020)) is a variant of VDN, which supplements global information through a multi-head
attention structure. QPLEX (Wang et al. (2020a)) employs a duplex dueling network architecture to
estimate joint action-values, achieving a full expressive power of IGM. However, increasing JAV’s
representative capability is insufficient to address the issue that future expected returns are difficult
to estimate from current information. To solve this issue, we incorporate future expectations into the
IAV and JAV calculation procedures in this paper.

MI Learning in MARL: To emerge specific capability on agents, many MARL methods explicitly
enhance the correlation of agents, where the correlations are typically quantified by the MI. For
instance, to strengthen the exploration ability, MAVEN (Mahajan et al. (2019)) extracts the latent
variables about joint policy information from the initial global state and maximizes the MI of fu-
ture trajectories and the latent variables. To learn roles, ROMA (Wang et al. (2020b)) proposes to
optimize the conditional MI between the individual trajectory and the role given the current obser-
vation. To learn diversity, CDS (Li et al. (2021)) constructs an information-theoretical regularization
to maximize the MI between agents’ identities and their trajectories. MI has demonstrated its ad-
vantage in guiding the agent learning various capabilities. In this paper, with the help of MI, we
construct future expectations learning in IAV and JAV.

3 QFUTURE LEARNING FRAMEWORK

In this section, we will introduce the QFuture learning framework. The overall architectural sketch
of QFuture is illustrated in Figure 1. QFuture is a value-based MARL framework under the paradigm
of CTDE. Over the course of training, neural networks are trained in a centralized manner where the
agents are gathered to estimate the JAV and compute TD error for optimization. During decentralized
execution, the mixing network will be removed, and each agent will use its own IAV to take action
with local observation. Specifically, in JAV, FEM derives the future expectations from the current
global state st and then uses them to generate the parameters to calculate JAV. In IAV, FEM uses
local observation as input and generates the parameters to calculate IAV.
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Figure 1: Schematics of QFuture. FEM is plugged into both the utility network and the mixing
network to calculate IAV and JAV, respectively. The left is the mixing network, and the right is the
utility network of each agent.

3.1 FUTURE EXPECTATION MODULE

In this paper, we design a future expectation module (FEM), shown in Fig. 2, which generates the
parameters for IAV or JAV. Since the future is uncertain given current information, future expecta-
tions may not be deterministic but probabilistic. Here, we represent the future expectations at time t
(denoted as et) using a multivariate Gaussian distribution N (µet , σet), where mean µt and variance
σt represents the expectation and the uncertainty of the future, respectively. Formally, at time t, its
future expectations are learned by:

(µe, σe) = fe (xt; θe)

e = µe + σe ⊙ εe, εe ∼ N(0, 1)
(2)
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where xt is the input of FEM and fe denotes a trainable neural network parameterized by θe (future
expectations encoder). The sampled future expectations are then fed into the future expectations
decoder to further generate the inputs for IAV or JAV.

Future Expectations Learning: We expect FEM to construct future expectations based on current
information. Intuitively, conditioning et on current information without a specific guide to achieve
this goal is difficult. Under the CTDE paradigm, the whole episode’s information in an episode
is available in the training phase. Therefore, we propose an information-theoretic objective for
maximizing the MI I(et; τ

f
t | xt) between future expectations et and future trajectory τft given xt,

where τft = (xT , xT−1, ..., xt+1) is the future trajectory information at time t.
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Figure 2: Schematics of FEM. T is a final time step.

However, since the estimate of MI is intractable, we can not directly optimize this objective. Moti-
vated by the related works about variational inference (Alemi et al. (2016),Mahajan et al. (2019)),
a variational estimator is introduced to derive a tractable lower bound for the MI objective (see the
proof in Appendix A.1):

I(et; τ
f
t | xt) = Eet,τ

f
t
[log

p(et, τ
f
t | xt)

p(et | xt)p(τ
f
t | xt)

]

≥ −Eτf
t
[CE [p(et | xt)∥qξ(et | τft−1)]] + Eτf

t
[H(et | xt)],

(3)

where T is a final time step; qξ is the variational estimator parameterised with ξ and H(·) denotes
the entropy. For qξ, we design a future representation module (FRM) to encode the future trajectory
information. As shown in Figure 2, GRU receives time series τft−1 (combinations of τft and xt) as
input and then outputs the hidden future state hf

t . It is noted that the time series is input in reverse
chronological order. This is because future information sampled at larger time steps shares fewer
environmental dynamics correlations than that sampled at time steps closer to t. In other words, the
distant future is illusory, but the next few steps are foreseeable and more meaningful for the present.
Meanwhile, the learned future representation should be informative. To this end, an auxiliary loss
function is necessary. In MARL, we focus on the expected return. Therefore, we design a return-
based loss to guide the learning process. As shown in Fig. 2, the future representation embedding
is sampled from the variational posterior distribution qξ(et | τft−1), and then fed into a linear neural
network to estimate the expected discounted return and output G

′

t. The reparameterization trick is
applied to ensure the gradient is tractable for the sampling operation. Thus, the loss of FRM is

LRB(ξ) = E<Gt,G
′
t>∼B[(G

′

t −Gt)
2]. (4)

Then, the lower bound in Eq. 3 can be formalized as a loss function to be minimized:

LMI(θe, ξ) = Eτf
t ∼B[DKL[p(et | xt)∥qξ(et | τft−1)]], (5)

where B is the replay buffer, and DKL[·∥·] is the Kullback-Leibler divergence operator.

3.2 FUTURE EXPECTATIONS IN IAV

Socially, future expectations improve human behaviors by influencing their evaluation of strategies.
As a result, we additionally propose a future expectation Q-function QF . In teamwork, different
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members will show different levels of concentration on future expectations, e.g., leaders will share
more but followers less. Therefore, we let agents adaptively decide the focus level by decomposing
Qi as

Qi(ai | τi) = QB(ai | τi) +QF (ai | τi), (6)
where QS is the basic Q-function among agents.

Here, FEM uses its observation information with xi
t = (oit) as input, and then future expectations

encoder generates an embedding distribution. We then sample a future expectations vector et and
input it to the decoder, which generates the parameters of the local utility network. In centralized
training phase, τfit−1 = (xi

T , x
i
T−1, ..., x

i
t) is fed into a GRU in reverse chronological order. After

several steps computation, FRM then offers the variational posterior distribution qξ1(e
i
t | τfit−1).

We maximize an MI objective I(eit; τ
fi
t | xi

t) for each agent according to Eq. 5, derived an MI
regularizer LIMI . Since I(eit; τ

fi
t | xi

t) is a low bound of I(ait; τ
fi
t | xi

t) (see the proof in Appendix
A.2), pursuing this objective also maximizes the MI I(eit; τ

fi
t | xi

t) that can be formulated as

I(ait; τ
fi
t | xi

t) = H(ait | xi
t)−H(ait | τ

fi
t−1). (7)

Since ait is deterministic given τfit−1, we have H(ait | τ
fi
t−1) = 0. Therefore, we have

I(ait; τ
fi
t | xi

t) = H(ait | xi
t). (8)

H(ait | xi
t) measures agent i’ ability to explore various behaviors, which encourages the agent to

show various behaviors, and therefore our method explores the environment better.

3.3 FUTURE EXPECTATIONS IN JAV

The mixing network uses the IAVs of all agents as input and mixes them monotonically, providing
the values of Qtot(s, a⃗) and optimizing the following TD loss:

LTD(θ) =

b∑
i=1

[(r + γmax
a⃗′

Qtot(s
′, a⃗′; θ−)−Qtot(s, a⃗; θ))

2], (9)

where θ− are the parameters of a periodically updated target network. The term
γmaxa⃗′ Qtot(s

′, a⃗′; θ−) estimates expected future return.

Many value decomposition methods try to complicate the mixing network to strengthen the repre-
sentation ability, such as QPLEX (Wang et al. (2020a)) and Qatten (Yang et al. (2020)). The ability
of JAV to build better estimates of the joint action-value functions directly results in better policy
estimates and faster learning. The estimation objective can be divided into two parts: immediate re-
ward r and expected future return γmaxa⃗′ Qtot(s

′, a⃗′; θ−). The immediate reward can be estimated
easily since there is a certain mapping mechanism from the current state to the reward. However,
due to the uncertain and unknown future, deriving an accurate estimate of future return from the
current state is challenging, especially in the early training phase. As a result, the essence limiting
JAV’s performance may not be its representation ability, but rather its ability to estimate expected
future returns. To alleviate this problem, we introduce future expectations into the mixing network
to provide faster and more reliable learning.

In JAV, FEM takes the global state xt = st as input and then generates future expectations et, which
are input into the decoder network and finally generates the final parameters to calculate Qtot(τ, a⃗).
Here is also a MI regularizer LJMI according to Eq. 5 to learn future expectations.

3.4 OVERALL OPTIMIZATION OBJECTIVE

We have introduced optimization objectives for future expectations learning in IAV and JAV. The
final learning objective of QFuture is:

L(θ) = LTD(θ) + βILIMI(θ
I
e , ξ

I) + βJLJMI(θ
J
e , ξ

J) + LRB(ξ) (10)
where θ = (θIe , θ

J
e , ξ) are the parameters of the whole framework;θIe and θJe represent the parameters

of future expectations encoder in IAV and JAV respectively; ξ = (ξI , ξJ) are the parameters of FRM;
LIMI and LJMI represent the MI regularizers in IAV and JAV respectively; ξI and ξJ represent the
parameters of FRM in IAV and JAV respectively; βI and βJ are scaling factors.
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4 EXPERIMENTAL RESULTS

4.1 EXPERIMENTAL SETUP

To evaluate the effectiveness of QFuture, we conduct experiments with different scenarios on two
challenging benchmarks, i.e., StarCraft II micro-management challenge. (SMAC) (Samvelyan et al.
(2019)) 1 and Google Research Football (GRF) (Kurach et al. (2019)). In these tasks, QFuture is
compared with Qtran (Son et al. (2019)), QMIX (Rashid et al. (2018)), QPLEX (Wang et al. (2020a))
and Qatten (Yang et al. (2020)), all of which can be implemented on both Starcraft II and GRF. For
evaluation, each method is conducted with four different seeds. Test winning rates are chosen to
better compare the effectiveness and superiority of different methods.

The details of the architecture of our method, baselines, and task settings can be found in Appendix
B. Additional experimental results can be found in Appendix C.

4.2 COMPARISON STUDIES

QFuture QMIX QPLEX Qatten Qtran

a b c d e

Figure 3: Comparison of our method against baseline methods on five super hard maps in StarCraft
II with the evaluation index of test winning rate.

In this section, we first carry out the experiments on StarCraft II with four random seeds, and the
average results are shown in Fig. 3. These experimental results show that our method outperforms
all alternative baselines with acceptable variance across random seeds on all maps. Our method is
developed based on the QMIX, and QFuture significantly and constantly improves the learning per-
formance and outperforms QMIX. Specifically, in Corridor, 3s5z vs 3s6z and 3s5z vs 3s7z, QMIX
all fails to learn effective strategy with 0% win rate. The baselines QPLEX and Qatten can achieve
satisfactory performance on some tasks, such as MMM2 and Corridor. In 3s5z vs 3s6z, QPLEX
learns effective strategies earlier than QFuture, but QFuture learns faster than QPLEX. Qtran fails
to show progress on all tasks. On our hand-crafted map 3s5z vs 3s7z, only QFuture can explore an
effective strategy. Overall, the comparison studies on StarCraft II show the success of QFuture in
learning performance improvements.

QFuture QMIX QPLEX Qatten Qtran

a b c d e

Figure 4: Comparison of our method with baseline methods on five academy tasks in GRF with the
evaluation index of test winning rate.

To further evaluate the proposed method in cooperative tasks, we conduct experiments on five GRF
tasks. Unlike StarCraft II tasks, GRF tasks highly test the exploration ability of the algorithm since
agents cannot get effective feedback in the early training phase due to the sparse reward. Only the
agent exploring goal strategy can then know their learning objective. As depicted in Fig. 4, QFuture
achieves superior performance on all tasks, whose curves rise earliest and fastest. Among these

1We use SC2.4.10 version.
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baselines, QMIX delivers a relatively better strategy. Compared to QMIX, our method shows no-
ticeable performance promotion. In 3vs4, QMIX traps in optimum local strategy, whereas QFuture
leaps out quickly. Although QPLEX and Qatten behave better than QMIX in StarCraft II tasks, they
only show slightly effective performance here. Qtran only delivers meaningful learning in run pass
and shoot with keeper, but fails on other tasks.

4.3 ABLATIONS

To thoroughly understand the superior performance of QFuture, we carry out ablation studies to
show the contribution of future expectations learning. In particular, we carry out the following
ablation studies: (1) w/o LIMI : the QFuture without (abbreviated as w/o) MI regularizer in IAV;
(2) w/o LJMI : the QFuture without MI regularizer in JAV; (3) w/o LRB : the QFuture without
return-based regularizer in both IAV and JAV’s FRM.

As shown in Fig.5, QFuture offers the best learning performance on nearly all tasks. In addition, the
deletion of any regularizer can still lead to evidently better learning performance than QMIX. Sepa-
ration of any loss will yield degeneracy in learning quality. These results convincingly demonstrate
the necessity of each designed regularizer.

QFuture QMIX𝑤/𝑜 𝐿𝐼𝑀𝐼 𝑤/𝑜 𝐿𝐽𝑀𝐼

a b c d e

f g h i j

𝑤/𝑜 𝐿𝑅𝐵

Figure 5: The Winning rate of ablation studies on all tasks.

In Starcraft II tasks, removing return-based loss LRB in FRM will bring the most noticeable perfor-
mance decadence. This detachment will induce adverse effects for FRM, which may fail to extract
helpful information from the future trajectory, and then influence the future expectations of learning
in both IAV and JAV. However, in GRF tasks, w/o LRB only shows slight performance degeneration
compared to those in Starcraft II tasks. Since GRF is a sparse reward scenario, FRM cannot receive
effective training due to the lack of feedback, especially at the early training stage, which hinders the
learning of future expectations. However, Starcraft II tasks provide dense rewards for each frame,
which then induce more effective future representation learning and contribute to efficient learn-
ing in IAV and JAV. These performance gaps in different scenarios demonstrate the importance of
return-based loss in FRM. In addition, we show how to improve the performance of QFuture in
sparse reward tasks in Appendix C.1.

In GRF tasks, due to the sparse reward, the exploration ability of the method plays a vital role in the
final learning performance. In Section 3.2, our analysis shows that maximization of I(eit; τ

fi
t | xi

t)

realizes the additional objective I(eit; τ
fi
t | xi

t) that can promote exploration. Therefore, deleting
LIMI will weaken the exploration ability. As shown in Figs. 5(f ∼ j), compared to w/o LRB and
w/o LJMI , w/o LIMI shows the worst learning quality, particularly in the early stages, where
w/o LIMI usually spends more training steps to explore a strategy with 20% win rate. Furthermore,
as shown in Figs. 5(b,d,e), w/o LIMI fails to learn effective strategy in these three maps, which
are harder than MMM2 and 3s vs 8z. Since exploration ability is essential in harder tasks, the
performance gap between QFuture and w/o LIMI reveals the ability to explore the environment.

The learning curves of w/o LJMI show outstanding performance in most tasks. The comparison of
QFuture performance and w/o LJMI proves that the regularizer LJMI effectively reduces perfor-
mance variance between different random seeds, particularly in Starcraft II tasks. Furthermore, as
shown in Figs. 5(b,d,e), QFuture offers faster promotion of the strategy among agents after explor-
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ing an effective strategy. This may be because the mixing network with future expectations provides
more reasonable credit assignments.

4.4 VISUALIZATION OF FUTURE EXPECTATIONS

In this section, we visualize the learned strategy and its future expectations, shown in Fig. 6. We
choose counter attack hard, the most challenging GRF task, where we control four left team players,
i.e., p7, p8, p9, and p10, with others controlled by the built-in rule. As shown in Figs. 6(a, d), the
green and red trajectories represent the left and right team’s whole episode movement, respectively.
The blue points denote the ball’s location. We show the pitch control heat map (Fernandez & Bornn
(2018)) at the final step, with 1 for entirely left team dominance and 0 for the entire right team,
whereas the length of the vector represents the player’s velocity at the final time step. To show
the learned strategy delicately, we provide more pitch control snapshots in the Appendix C.3 and
provide the learned strategy’s video in supplement materials. In Figs. 6(b,c,e,f), dots with the same
color denote the same phase in an episode. The number close to the dot is the time step located in
the strategy.

a

d

a.

d.

By QFuture

By w/o 𝐿𝐼𝑀𝐼

a

d

𝑝(𝑒𝑡
7|𝑥𝑡

7)c

c 𝑝(𝑒𝑡
7|𝑥𝑡

7)f

𝑞(𝑒𝑡
7|𝜏𝑡−1

𝑓7 )b

e 𝑞(𝑒𝑡
7|𝜏𝑡−1

𝑓7 )

Figure 6: The visualization of the learned strategies, the future representation distributions
q(e7t |τ

f7
t−1) and future expectations p(e7t |x7

t ). The number 7 represents the player p7. Fig.a and
Fig.d are strategies learned by QFuture and w/o LIMI , respectively. Figs.(bc) and Figs.(ef) are
principal components of sampling vector at each step after Linear PCA, corresponding to the strat-
egy in Fig. a and Fig.d, respectively.

Strategy learned by QFuture: As shown in Fig. 6 (a), this strategy can be divided into five event
phases (see more details in videos): (1) From steps 0 to 9, the player p8 gets ball possession and
then dribbles the ball to make space for p9. (2) From steps 10 to 17, p8 gives a ground pass to p9
after successfully distracting two defensive players, and p9 runs to the expected pass position. (3)
From steps 18 to 30, p9 gives a one-touch pass directly to the penalty box in step 18, while p7 dashes
forward to the expected ball impact point. (4)From steps 32 to 35, the ball reaches the penalty box
at step 32, and p7 keeps running, trying to give a quick attack. (5) From steps 36 to 39, p7 gives a
one-touch shot facing the block of a goalkeeper and finally scores a goal, spending four steps from
shot to goal.

In Fig. 6 (b), we visualize the learned future representation distribution q(e7t |τ
f
t−1), who is the

leading role of this score. Overall, three laws can be concluded from this figure. First, the positions
of dots in the same event phase are nearly in line with time. Second, the dots in different event phases
will not overlap. Third, the junction of two event phases will show the discontinuity or turning
points (transitions). There are mainly three transitions, i.e., (18,19,20), (30,31,32) and (34,35,36).
Transitions happen when p7’s situation changes. He observes the ball passed into his region in the
first transition, prepares to receive the ball at the second transition, and completes a shot at the third
transition. These transitions accord with our understanding of football that a progressive pass could

8



Under review as a conference paper at ICLR 2023

change the situation on the field. Socially, future expectations should change as time progresses and
show a turning point when critical events happen. These two laws correspond to our cognition of
future expectations. Therefore, by comparing the learned strategy with Fig. 6(b), it can be concluded
that the FRM successfully encodes future trajectories for agents.

Strategy learned by w/o LIMI : As illustrated in Fig. 6(d), this strategy can be decomposed into 6
event phases (see more details in videos): (1) From step 0 to 3, player p8 gets ball possession. (2)
From steps 4 to 15, p8 waits motionlessly while p7 sprints to the penalty box. (3)From step 16 to
32, p8 dribbles the ball and waiting for p7 running to appropriate location. (4) From steps 33 to 43,
p7 stand still and p8 give him a ground pass. (5) From steps 44 to 47, p7 receives the ball at step 44
and dribbles the ball to the goal area. (6) From step 48 to 55, p7 shots and then gets a score, spend
8 step from shot to goal.

In Fig. 6(e), we also visualize the learned future representation distribution (q(e7t |τ
f7
t )). Clearly,

the orbit of these dots continues to follow the aforementioned three laws. Particlularly, there two
transitions, i.e. (16,17,18) and (43,44,45). These results further demonstrate the effectiveness of our
learned future representation.

How MI regularizer help build future expectations: As shown in Fig. 6(c), although the learned
future expectations e7t is derived from p7’s local observation, there are still similar dots distribution
with q(e7t |τ

f7
t−1), which are indicative of three laws. These dots are chronically consistent. Specif-

ically, et also captures three transitions in this strategy. As shown in Fig. 6(f), the majority of the
dots mass as a cluster rather than being spread over a line when the MI regularizer is removed from
IAV. Dots in different event phases overlap. Furthermore, two transitions in Fig. 6(e) are difficult to
capture here. Hence, the future expectations fail to be build without LIMI regularizer. The differ-
ence between Fig. 6 (e) and (f) clearly describes the necessity and effectiveness of the proposed MI
regularizer to establish future expectations.

How future expectations benefits cooperation: By comparing two strategies, QFuture learns a
more excellent strategy. It is noted that the strategy learned by QFuture consumes same training
steps with w/o LIMI . With future expectations, agents know what to expect next and then how
to do best. Both methods learn to pass the ball to p7 when he reaches the appropriate position.
However, in w/o LIMI , p8 shows excessive dribbling in event phase (3) before a pass because of
waiting for p7 to run to the penalty box and stand still. Instead, in QFuture, p9 runs to the expected
ball landing and gives a one-touch pass directly to the penalty box even if p7 does not reach the ball
landing position at this time, which releases a one-touch shot finally. Here, players p7, p8, and p9
show two advanced cooperation skills owing to future expectations, i.e., running to receive a pass
and one-touch pass (shot). With future expectations, the passer can know where his teammates can
intercept the ball promptly, and the receiver is qualified to infer the ball’s landing and then plan its
velocity. To realize a one-touch shot or pass, the agent must plan the destination of the pass before
touching the ball (action lag in GRF tasks). Therefore, we observe that the strategy in Fig. 6 (d)
fails to perform a one-touch pass or shot since future expectations are hard to construct without a
specific guide. In general, future expectations help players achieve closer cooperation with tacit
understanding and contribute to a quick attack strategy in Fig. 6(a).

5 CONCLUSION AND FUTURE WORK

In this paper, we have introduced the concept of future expectations into deep multi-agent reinforce-
ment learning by maximizing a MI objective I(et, τ

f
t | xt). Future expectations are used to generate

parameters to estimate individual action-values and joint action-value. Experimental results demon-
strate the superior effectiveness of our method.

To our best knowledge, it is the first paper using all future step’s information at each step’s training.
This utilization can accelerate training and promote collaboration, but it is easily stuck in chrono-
logical logical traps. We believe there are other ways to fully advantage of future information to
improve learning performance and sample-efficiency. Our work may motivate researchers in both
the sing-agent RL and multi-agent RL fields.
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A MATHEMATICAL DERIVATION

A.1 FUTURE EXPECTATIONS LEARNING

In this paper, we propose to learn future expectations which is implemented by maximizing:

I(et; τ
f
t | xt) =Eet,τ

f
t ,xt

[
log

p(et | τft−1)

p(et | xt)

]

=Eet,τ
f
t ,xt

[
log

qξ(et | τft−1)

p(et | xt)

]
+

[
DKL(p(et | xt)||qξ(et | τft−1))

]
≥Eet,τ

f
t ,xt

[
log

qξ(et | τft−1)

p(et | xt)

]
=Eet,τ

f
t ,xt

[
log qξ(et | τft−1)

]
+ Ext [H(et | xt)]

=Eet,τ
f
t ,xt

[∫
p(et | τft−1) log qξ(et | τ

f
t−1)det

]
+ Ext

[H(et | xt)] .

Since future expectations encoder is conditioned on current information xt, the distributions of
future expectations p(et) is independent from the future trajectory τft . Therefore, we have

I(et; τ
f
t | xt) ≥ −Eτf

t ,xt

[
CE

[
p(et | xt)∥qξ(et | τft−1)

]]
+ Ext

[H(et | xt)] , (11)

We use a replay buffer B in practice. We can derive the following minimization objective:

LMI (θe, ξ) = Eτf
t ∼B

[
DKL

[
p (et | xt) ∥qξ(et | τft−1)

]]
(12)

Above proofs refer to the derivation in MAVEN (Mahajan et al. (2019)) and ROMA (Wang et al.
(2020b)).
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A.2 I(ait; τ
fi
t | xi

t) AND I(eit; τ
fi
t | xi

t)

Given xi
t, then eit and τfit are conditionally independent given ait, since eit can only influence τfit

through ait. Considering the MI term I(τfit ; eit, a
i
t | xi

t) which can be decomposed as:

I(τfit ; ait, e
i
t | xi

t) = I(τfit ; eit | xi
t) + I(τfit ; ait | eit, xi

t) (13)

= I(τfit ; ait | xi
t) + I(τfit ; eit | ait, xi

t). (14)

Since eit and τfit are conditionally independent given ait and xi
t, we have I(τfit ; eit | ait, xi

t) = 0.
Since I(τfit ; ait | eit, xi

t) ≥ 0, we have

I(τfit ; ait | xi
t) ≥ I(τfit ; eit | xi

t). (15)

Thus, the proof is accomplished.

B EXPERIMENT DETAILS

B.1 QFUTURE AND BASELINES

In this paper, we compare our approach with five value-based methods. QFuture is developed
based on the QMIX. For QMIX, we use the code framework in https://github.com/
starry-sky6688/MARL-Algorithms. QFuture is also implemented based on this code
framework. Except for the additional parameters in QFuture, all other parameters are set the same as
QMIX, such as batch size, learning rate, parallel environments, etc. For QPLEX, Qatten, and Qtran,
we use the code provided by PYMARL2 (https://github.com/hijkzzz/pymarl2), and
we use the default training settings in StarCraft II tasks. For GRF tasks, we ensure the same envi-
ronmental settings as QFuture, including reward, observation, state settings, etc.

In QFuture, we introduce two important hyperparameters: βI and βJ , correlated to the MI reg-
ularizers. For Starcraft II scenarios, we search the best hyperparameters on MMM2, and use
{βI ,βJ}={0.01,0.05} on all five tasks. For GRF scenarios, we also search the best hyperparam-
eters, and use {βI ,βJ}={0.02,0.05} on run pass and shoot with keeper and 3vs1 with keeper ,
{βI ,βJ}={0.1,0.05} on counterattack hard , 3v3 and 3v4. The MI regularizer LIMI can promote
exploration ability, so we increase the value of βI in more challenging GRF tasks.

Experiments are carried out on NVIDIA GTX3090 GPU.

B.2 STARCRAFT II

StarCraft II is a popular real-time strategy game, which derives many micromanagement scenarios.
In the micromanagement scenarios, the agents need to cooperate to eliminate the enemies. This
benchmark consists of various maps classified as easy, hard, and super hard. We test our method
on five super hard micromanagement tasks i.e., MMM2, corridor, 3s8z, 3s5z vs 3s6z, 3s5z vs 3s7z.
Details of these maps are shown in Table 1.

Table 1: Starcraft II challenges.

Task Ally Units Enemy Units Type Challenge

Corridor 6 Zealots 24 Zerglings Asymmetric, Homogeneous Kite enemy
3s vs 8z 3 Stalkers 8 Zealots Asymmetric, Homogeneous Kite enemy

3s5z vs 3s6z 3 Stalkers,
5 Zealots

3 Stalkers ,
6 Zealots Asymmetric, Heterogeneous Medivac absorbs fire

3s5z vs 3s7z 3 Stalkers,
5 Zealots

3 Stalkers ,
7 Zealots Asymmetric, Heterogeneous Medivac absorbs fire

MMM2
1 Medivac,

2 Marauders,
7 Marines

1 Medivac,
2 Marauders ,

8 Marines
Asymmetric, Heterogeneous Circuitous tactics
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B.3 GRF TASKS

In GRF, agents are trained to play football in a physics-based 3D simulator. GRF is a challenging
task for its inner stochasticity and sparse reward. The agents must learn high-level cooperation skills
such as passing, obstructing opponents for teammates, et al., and then score a goal. We choose five
academy tasks (3 official and 2 hand-crafted) to evaluate our method, i.e., run pass and shoot with
keeper , 3vs1 with keeper , counterattack hard , 3v3 and 3v4.

The initial positions of players, opponents, and the ball are shown in Fig. 7. In these tasks, we
control the left team, where each agent must choose an action from 19 available actions, including
run, pass, dribble, shot, etc. All agents must cooperate well to organize offenses and seize fleeting
opportunities. There are only two types of rewards: (1) a reward +0.5 for the first time the team
gets the ball. (2) a reward +10 for the left team to score a goal. An episode will be terminated,
reaching the following four situations: (1) the ball controlled by opponents, (2) the ball returning to
left half-court, (3) scoring a goal (4) the ball bouncing out of fields. The observation contains the
positions and directions of the ego-agent, teammates, and the ball. The original observation data
will induce explosive gradients in the agent utility network. To address this problem, we normalize
all the observation data in the range [−1, 1].

(a) run pass and shoot with keeper (b) 3 vs 1 with keeper (c) 3 vs 3

(d) 3 vs 4 (e) counter attack hard

Figure 7: Visualization of the initial position of each agent in five GRF tasks. Blue dots represent
the agent. Red dots are opponents, and the green dot denotes the ball.

C MORE EXPERIMENTAL RESULTS

C.1 IMPROVING QFUTURE IN SPARSE REWARD TASKS

In ablation studies, our experimental results and analysis indicate that the sparse reward problem
will degrade the performance of QFuture by hindering the learning of q(et|τft ). In sparse reward
tasks, Gt can only provide effective feedback in successful episodes’ training, unfavorable to future
expectation learning. To address this problem, we slightly modify QFuture for sparse reward tasks.

In sparse reward tasks, we can change the predict target in the FRM of the agent network from Gt

(denoted QFuture-Gt) to maxa⃗′ Qtot(s
′, a⃗′; θ−) (denoted QFuture-Q

′

tot). Once agents can succeed
with a specified probability, maxa⃗′ Qtot(s

′, a⃗′; θ−) can evaluate these failed episodes with the help
of successful episode experience. As shown in Fig. 8, QFuture-Q

′

tot show evident performance
promotion in GRF tasks. In Fig. 8(a,c,e), QFuture-Q

′

tot performs an increase of over ten percent
winning rate at the end. In Fig. 8(b,d), the winning rate is the same at the end. It is worth noting that
QFuture-Q

′

tot is always worse than QFuture-Gt in the early training phase, but it learns faster after
it reaches the winning rate 40%, corresponding to our above analysis.
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QFuture-𝐺𝑡 QFuture-𝑄𝑡𝑜𝑡
′

a b c d e

Figure 8: Comparison of QFuture-Gt against QFuture-Q
′

tot on five academy tasks in GRF with the
evaluation index of test winning rate.

In addition, in dense reward tasks, Gt can provide more accurate feedback than
maxa⃗′ Qtot(s

′, a⃗′; θ−) on both successful and failed episodes. We also perform experiments on
Starcraft II, QFuture-Gt performs better than QFuture-Q

′

tot in these tasks.

C.2 APPLYING PARTS OF QFUTURE TO QMIX

In this paper, we propose a novel method to introduce future expectations into the calculation of
IAV and JAV. We denote the IAV and JAV in QFuture as FIAV and FJAV, respectively. FIAV can
be combined with many value-based MARL algorithms, such as QMIX, QPLEX, Qatten, etc. FJAV
provides a way of value function decomposition by learning a mixing network. To show the scala-
bility of FIAV, we apply it to QMIX, denoted as QMIX-FIAV. To show the effectiveness of FJAV,
we replaced the mixing network in QMIX with FJAV, denoted as FJAV.

As shown in Fig. 9, QMIX-FIAV shows significant improvements to QMIX, demonstrating the
scalability of our method. FJAV also show better performance than QMIX. The splendid perfor-
mance on QFuture indicates that the combination of FIAV and FJAV will present an advantageous
performance than used them separately.

QFuture QMIX QMIX-FIAV FJAV

a b c d e

f g h i j

Figure 9: The Winning rate of QFuture, QMIX, QMIX-FIAV and FJAV on all tasks. .

C.3 LEARNED STRATEGY IN GRF

Football is a game about space. Here, we use the pitch control model (Fernandez & Bornn (2018))
to visualize the learned strategy.

QFuture: Comparing Fig. 10(a) and Fig. 10(c), p8’s dribble in Fig. 10(b) creates more valuable
space for p9. As shown in Fig. 10(d), p9 shares a broad safe space to pass the ball. Comparing Fig.
10(d) and Fig. 10(f), the land point of the oblique pass is in the penalty box, where the receiver p7
does not reach this position when the pass starts. With the help of future expectations, the passer
p9 knows p7 will reach this position at the correct time, and the receiver p7 knows how to plan his
velocity to receive the ball. After the ball is passed to p7, p8 and p9 still occupy valuable upfield
space for the team.

w/oLIMI : As shown in Figs. 11(a,b,c), p8 gets the ball and stands still waiting for p7 running to
appropriate positions. However, at this interval, more right team defenders cross the half line and
occupy more valuable space in their half. As shown in Fig. 11(d), p8 is surrounded by defenders.
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When p7 reaches the correct position and stands still, the ball is passed from p8 to p7. When p7
receives the ball, the majority of valuable space upfield has been occupied by the defenders.

Comparison: With future expectations, QFuture evidently learn higher level skills, where coop-
eration in p7, p8 and p9 show tacit understandings. In the whole episode, the strategy learned by
QFuture occupies more valuable space in the opposition half than w/oLIMI . In QFuture, agents
learn one-touch pass and shot, which can pass the ball quickly and be powerful. Comparing Fig.
10(g) and Fig. 10(h), the ball shot by the agent p7 performs at higher speeds (the length of the
vector represents the velocity). Overall, the agent with future expectations learns more effective
cooperation.
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Figure 10: Snapshots of the learned strategy by QFuture.
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Figure 11: Snapshots of the learned strategy by w/o LIMI .
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