Workshop track - ICLR 2016

FIXED POINT QUANTIZATION OF DEEP CONVOLU-
TIONAL NETWORKS

Darryl D. Lin, Sachin S. Talathi V. Sreekanth Annapureddy

Qualcomm Research NetraDyne Inc.

{dexul, stalathi}@gti.gqualcomm.com sreekanthav@gmail.com
ABSTRACT

In recent years increasingly complex architectures for deep convolution networks
(DCNs) have been proposed to boost the performance on image recognition tasks.
However, the gains in performance have come at a cost of substantial increase in
computation and model storage resources. Fixed point implementation of DCNs
has the potential to alleviate some of these complexities and facilitate potential
deployment on embedded hardware. In this paper, we formulate and solve an op-
timization problem to identify the optimal fixed point bit-width allocation across
layers to enable efficient fixed point implementation of DCNs. Our experiments
show that in comparison to equal bit-width settings, optimized bit-width allocation
offers > 20% reduction in model size without any loss in accuracy on CIFAR-10
benchmark. We also demonstrate that fine-tuning can further enhance the accu-
racy of fixed point DCNs beyond that of the original floating point model. In doing
so, we report a new state-of-the-art fixed point performance of 6.78% error-rate
on CIFAR-10 benchmark.

1 INTRODUCTION AND RELATED WORK

Recent advances in the development of deep convolution networks (DCNs) have led to significant
progress in solving non-trivial machine learning problems involving image recognition (Krizhevsky
et al, |2012) and speech recognition (Deng et al.| 2013)). While increasing computational complex-
ity has afforded improvements in the state-of-the-art performance, the added burden of training and
testing times makes these networks impractical for real world applications involving real time pro-
cessing and for deployment on mobile devices or embedded hardware with limited power budget.
One of the approaches that may be cost efficient for large scale deployment is to implement DCNs
in fixed point, which may offer advantages in reducing memory bandwidth, lowering power con-
sumption and computation time as well as the storage requirements for the DCN models.

Earlier works in the area have primarily centered around designing the fixed point network during
training (Courbariaux et al., 2014; |Gupta et al.| [2015} |Lin et al., [2015). In contrast, we focus on
developing a principled approach to converting a pre-trained floating point DCN model to its fixed
point equivalent. This is important because in many real-world applications, a pre-trained DCN
is used as a feature extractor, followed by a domain specific classifier or a regressor. In these ap-
plications, the user does not have access to the original training data and the training framework.
For such cases, our proposed algorithm will offer an optimized method to convert any off-the-shelf
pre-trained DCN model for efficient run time in fixed point. The works of Kyuyeon & Sung|(2014);
Sajid et al.| (2015)) more closely resemble our work. In the spirit of Sajid et al.| (2015)), we also focus
on optimizing DCN models that are pre-trained with floating point precision. However, as opposed
to exhaustive search method adopted by |Sajid et al.|(2015)), our objective is to convert the pre-trained
DCN model into a fixed point model using an optimization strategy based on signal-to-quantization
noise ratio (SQNR). Other works that are somewhat closely related are [Vanhoucke et al.| (2011);
Gong et al.|(2014).

The proposed algorithm can be seen as a stand-alone tool to convert a floating point model to fixed
point, and can be used in conjunction with other state-of-the-art network pruning and compression
techniques such as|Han et al.| (2015)).

Workshop track - ICLR 2016

2 FLOATING POINT TO FIXED POINT CONVERSION

There are three inter-dependent parameters to determine for the fixed point representation of a float-
ing point DCN: bit-width, step-size (resolution), and dynamic range. They are related as:

Range = Stepsize - 2Bitwidth "

Without fine-tuning, converting a floating point deep network to fixed point is essentially a process of
introducing quantization noise into the network. It is well-understood in fields like audio processing
or digital communications that the effect of quantization can be accurately captured in a single
quantity, the SQNR. In particular, for an optimal uniform quantizer with ideal input, there is an
approximately linear relationship between the bit-width and the resulting SQNR (You, [2010):

YaB A K- B 2)
where, v4g = 10log;4(7), is the SQNR in dB, k is the quantization efficiency, and 3 is the bit-
width. Suppose we try to perform uniform quantization of the weight value w, the quantized version
@ can written as: @ = w + n,,, where n,, is the quantization noise. According to Equation 2] the
SQNR, 74, as a result of the quantization process can be written as:

E[w?]

101 - 101
0g(Vuw) %8 £z

Rk 3)

Consider the case where both the weights and activations are quantized, it can be shown that the
SQNR (Youtput) at the output of layer L of the network can be approximately expressed as:
1 1 1 1 1 1
|

= + + + -+
Youtput Va0 VYD) Ya®) Yaw(L) Val(L)

“4)

where v, and 7,, are the SQNR of activation and weight, respectively.

In other words, the SQNR at the output of a layer in DCN is the Harmonic Mean of the SQNRs of all
preceeding quantization steps. This simple relationship reveals some very interesting observations:
(1) All the quantization steps contribute equally to the overall SQNR of the output, regardless if it is
the quantization of weights, activations, or input, and irrespective of its location in the network. (2)
Since the output SQNR is the harmonic mean, the network performance will be dominated by the
quantization step with the lowest precision. (3) Doubling the depth of a work will half the output
SQNR (3dB loss). But this loss can be readily recovered by adding just 1 bit to the bit-width of all
weights and activations, assuming the quantization efficiency is more than 3dB/bit.

3 CROSS-LAYER BIT-WIDTH OPTIMIZATION

From Equation [4] it is seen that trade-offs can be made between quantizers of different layers to
produce the same oy ¢put- That is to say, we may choose to use smaller bit-widths for some layers
by increasing bit-widths for other layers. This may be desirable because of the following reasons:

e Some layers may require a large number of computations (multiply-accumulate opera-
tions). Reducing the bit-widths for these layers would reduce the overall network com-
putation load.

e Some layers may contain a large number of network parameters (weights). Reducing the
weight bit-widths for these layers would reduce the overall model size.

Interestingly, such objectives can be formulated as an optimization problem and solved exactly.
Suppose our goal is to reduce model size while maintaining a minimum SQNR at the DCN output.
We can use p; as the scaling factor at quantization step i. p; represents the number of parameters
being quantized in the quantization step. The problem can be written as:

10log v; 1 1
i pi | ——— 5. 6. — < 5
win oo (060, s ple L B
where 10 log 7, is the SQNR in dB domain, and (101og~;)/k is the bit-width in the ith quantization
step according to Equation Ymin 18 the minimum output SQNR required to achieve a certain

Workshop track - ICLR 2016

level of accuracy. The optimization constraint follows from Equation [4] that the output SQNR is
the harmonic mean of the SQNR of intermediate quantization steps. Substituting by \; = % and
removing the constant scalars from the objective function, the problem can be reformulated as:

min =) . pilogh;, st. Y AN <C (6)
where the constant C' = % This is a classic constrained optimization problem with a well-known
solution: i—; = constant. Or equivalently, p;; = constant. Recognizing that 10log~y; = kf;
based on Equation 2] the solution can be rewritten as:

101log p;
Y2 + f3; = constant @)
K

In other words, the difference between the optimal bit-widths of two quantization steps is inversely
proportional to the difference of p’s in dB, scaled by the quantization efficiency.

101log(p;/pi
51- — 5j = % (8)
This is a surprisingly simple and intuitive relationship. For example, assuming x = 3dB/bit, the
bit-widths 3; and 3; would differ by 1 bit if p; is 3dB (or 2x) larger than p;. More specifically, for
model size reduction, layers with more parameters should use relatively lower bit-width, as it leads

to better model compression under the overall SQNR constraint.

4 EXPERIMENTS

We evaluate our proposed cross-layer bit-width optimization algorithm on the CIFAR-10 bench-
mark. Consider the objective of minimizing the overall model size by applying Equation [§] As-
suming x = 3dB/bit, when the bit-width for layer conv0 is 3y, it can be shown that the optimal
bit-widths of subsequent layers should be 5y — 5 (convl), By — 5 (conv2), By — 6 (conv3), By — 6
(conv4), By — 8 (conv5).

Figure |1| plots the model size vs. error rate in a scatter plot. We can clearly see the advantage of
cross-layer bit-width optimization. When the model size is large (bit-width is high), the error rate
saturates at around 6.9%. When the model size reduces below approximately 25Mbits, the error
rate starts to increase quickly as the model size decreases. In this region, cross-layer bit-width
optimization offers > 20% reduction in model size compared to equal bit-width allocation.

11

—a— Optimized bit-width
10 \ — & —Equal bit-width

Error Rate (%)

12 14 16 18 20 22 24 26 28 30
Model Size (Mbits)

Figure 1: Model size vs. error rate with and without cross-layer bit-width optimization (CIFAR-10)

We conducted the same experiment on an AlexNet-like network for ImageNet classification. Similar
to our CIFAR-10 network, there is a clear benefit of cross-layer bit-width optimization in terms of
model size reduction. However, in the AlexNet-like DCN the convolutional layers comprises most
of the complexity in terms of multiply-accumulate operations whereas the fully-connected layers
dominate in the number of parameters. Therefore, the relative benefit of model size reduction is
smaller in this case.

Although our focus is fixed point implementation after training, our quantizer design can also be
used as a starting point for further model fine-tuning when the training model and data are available.
When the network is fine-tuned after quantization, we achieve a new state-of-the-art CIFAR-10
classification error rate of 6.78% with floating point weights and 8-bit fixed point activations.

Workshop track - ICLR 2016

REFERENCES

M. Courbariaux, Y. Bengio, and J. David. @ Low precision arithmetic for deep learning.
arXiv:1412.7024, 2014.

L. Deng, Hinton G.E., and B. Kingsbury. New types of deep neural network learning for speech
recognition and related applications: an overview. In IEEE International Conference on Acoustic,
Speech and Signal Processing, pp. 8599-8603, 2013.

Y. Gong, L. Liu, M. Yang, and L. Bourdev. Compressing deep convolutional networks using vector
quantization. arXiv:1412.6115,2014.

S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan. Deep learning with limited numerical
precision. arXiv:1502.02551, 2015.

S. Han, H. Mao, and W. J. Dally. A deep neural network compression pipeline: Pruning, quantiza-
tion, Huffman encoding. arXiv:1510.00149, 2015.

A. Krizhevsky, 1. Sutskever, and G.E. Hinton. ImageNet classification with deep convolutional
neural networks. In NIPS, 2012.

H. Kyuyeon and W. Sung. Fixed-point feedforward deep neural network design using weights +1, 0
and -1. In IEEE Workshop on Signal Processing Systems (SiPS), 2014.

Z. Lin, M. Courbariaux, R. Memisevic, and Y. Bengio. Neural networks with few multiplications.
arXiv:1510.03009, 2015.

A. Sajid, H. Kyuyeon, and W. Sung. Fixed point optimization of deep convolutional neural net-
works for object recognition. In IEEE International Conference on Acoustic, Speech and Signal
Processing, 2015.

V. Vanhoucke, A. Senior, and M. Mao. Improving the speed of neural networks on CPUs. In Proc.
Deep Learning and Unsupervised Feature Learning NIPS Workshop, 2011.

Yuli You. Audio Coding: Theory and Applications. Springer, 2010.

	Introduction and related work
	Floating point to fixed point conversion
	Cross-layer bit-width optimization
	Experiments

