
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

NOT ALL TOKENS ARE WHAT YOU NEED: SELECTIVE
DEEPENING FOR EFFICIENT MODEL REASONING.

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models typically process information via two dominant
paradigms, both of which can be inefficient. The first is a brute-force approach
that ingests vast streams of tokens with uniform effort. The second, a selective ap-
proach exemplified by Retrieval-Augmented Generation (RAG), often flattens in-
herently structured data—like codebases or API schemas—into a context-agnostic
list of vector chunks. Both methods have critical flaws: the former is computation-
ally prohibitive, while the latter destroys the hierarchical information necessary
for complex reasoning.
This paper introduces Selective Deepening, a new navigational framework for
model reasoning that respects and exploits the native structure of data. Instead
of retrieving from a flattened pool of information, our method first creates a struc-
tural abstraction—a computationally inexpensive, low-fidelity “map” of the data
that preserves its hierarchy. The model then intelligently navigates this map to
identify the most relevant areas to “deepen” into. Only after this targeted naviga-
tion does the model dedicate its full computational power to analyzing the high-
fidelity details of the selected components.
By replacing structure-agnostic retrieval with structure-aware navigation, Selec-
tive Deepening enables models to reason more effectively and efficiently. We
demonstrate the broad applicability and benefits of this principle across diverse
tasks, including function calling and code generation. Our experiments show that
this approach not only drastically reduces computational overhead but also yields
significant improvements in task accuracy by mitigating the context-degradation
problems inherent in existing paradigms.

1 INTRODUCTION

Human perception is a masterpiece of efficiency. When we enter a room, our eyes do not perform
a raster scan of every photon; instead, they execute rapid saccades, fixating on salient objects while
maintaining a low-resolution awareness of the periphery. When searching for a book in a library,
we scan titles and covers—abstract, low-fidelity representations—before committing to reading the
high-fidelity content within. This hierarchical and adaptive allocation of cognitive resources (Wolfe,
1994; Navon, 1977; Itti & Koch, 2001) is fundamental to biological intelligence, allowing us to
navigate and reason within a world of overwhelming sensory data.

In stark contrast, Large Language Models often employ information processing strategies that are
fundamentally at odds with this principle of efficiency. These strategies generally fall into two cate-
gories. The first is a brute-force approach that compels models to ingest entire contexts with uniform
effort, triggering the well-documented “lost in the middle” phenomenon (Liu et al., 2023; Hsieh
et al., 2024). The second strategy is selective retrieval, most famously represented by Retrieval-
Augmented Generation (RAG) (Lewis et al., 2020; Borgeaud et al., 2022; Wang et al., 2023a;
Nakano et al., 2021; Guu et al., 2020; Izacard & Grave, 2021; Huang et al., 2023). While aim-
ing for efficiency, standard retrieval mechanisms perform a lossy compression of the data’s native
structure. They shred a logical hierarchy—be it a codebase, an API specification, or a document’s
chapters—into a flat list of semantically similar but contextually unaware vector chunks. This pro-
cess creates a “semantic similarity trap,” where retrieved information is locally relevant but struc-
turally incorrect (Sarthi et al., 2024; Han et al., 2024; Wang et al., 2023b).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Full Data
(Source code,
Tool Schema)

LLM Processing
(lost in the middle)

?

LESS SATISFACTORY ANSWER
(Low Efficiency)

BASELINE SELECTIVE DEEPENING

Source
Code

Tool Schema

LLM:
SelectOutlined

Code
Simplified

Tool chema

ROUND 1: ABSTRACT & SELECTION

Source
Code Tool Schema

LLM:
Deepen

Understanding
Relevant

Source Code
Relevant

 Tool chema

ROUND 2: DEEPENING

HIGH SATISFACTORY ANSWER
(Improved Performance, High Efficiency)

Figure 1: A conceptual comparison between the standard processing paradigm and our proposed
Selective Deepening approach. (Left) In the standard approach, the model’s context is filled with all
available high-fidelity information (e.g., full tool schemas), leading to high computational costs and
the risk of the model getting “lost in the middle.” (Right) Selective Deepening introduces a two-stage
process. First, a fast, low-cost scan of abstract summaries identifies relevant candidates. Second, a
focused reasoning stage processes only the high-fidelity details of these candidates, leading to lower
costs and higher performance.

We argues that the path to more capable AI requires a shift from simple retrieval to structured
navigation. We introduce the principle of Selective Deepening, a framework designed to respect and
exploit the inherent hierarchy of information. Instead of pulling from a flat pool of data, Selective
Deepening teaches a model to perform a “drill-down” analysis, operating on the inductive bias that
relevance is revealed by navigating a data source’s explicit structure. As illustrated in Figure 1,
it begins with a structural abstraction—a low-fidelity map of the information space (e.g., API
categories or module outlines). Using this map, the model reasons about the overall architecture
to identify the most relevant branches, and only then dedicates its full computational power to the
high-fidelity leaves within that selection.

This paper’s contributions represent a step towards this new navigational approach:

1. We formalize Selective Deepening, a biologically-inspired principle that replaces flat re-
trieval with structured navigation, enabling models to reason more effectively within com-
plex information hierarchies.

2. We demonstrate the universality of this principle by instantiating it across diverse and chal-
lenging domains with inherent structure, including function calling and source code com-
prehension.

3. We provide compelling empirical evidence that this approach not only yields dramatic gains
in efficiency but, more importantly, leads to significant improvements in reasoning accuracy
and robustness by avoiding the pitfalls of structural flattening.

By teaching models to first navigate a structural map and then focus its analysis, we can build sys-
tems that are not only more scalable but also more aligned with the elegant principles of intelligence
found in the natural world.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 THE PRINCIPLE OF SELECTIVE DEEPENING

Selective Deepening is a computational framework that replaces the standard, single-pass processing
paradigm with a structured, multi-stage approach. Its design is guided by the core idea of intelligent
navigation over inherent data hierarchies, rather than flat retrieval.

2.1 A FORMAL NAVIGATIONAL FRAMEWORK

Let us define a general reasoning task where a model M must produce an output O from a query
Q and a body of information that possesses an inherent structure. We represent this information
source not as a flat set, but as a structured object, G, which can be a tree, a graph, or a timeline.
The nodes in G contain the high-fidelity information chunks {i1, i2, . . . , in}, and its edges represent
their structural relationships (e.g., containment, dependency, or temporal succession).

Selective Deepening decomposes the task into a recursive process. The primary instantiation, used
in our experiments, is a two-stage application:

Stage 1: Structural Abstraction & Navigation. First, the framework creates a low-fidelity struc-
tural abstraction, G′ = Abstract(G). This abstraction preserves the essential structure of the original
data (the ”map”) while replacing the high-fidelity node content with computationally inexpensive
summaries. This map is then presented to a navigator function, Mnavigate, which reasons over the
query and the data’s structure to identify a subset of relevant nodes, Vselected.

Vselected = Mnavigate(Q,G′) (1)

The resulting candidate set C is composed of the high-fidelity information from these selected nodes,
where C = {ik | vk ∈ Vselected}. By design, |C| ≪ n.

Stage 2: Focused Reasoning. A reasoning function, Mreason, subsequently performs the main
task, but on a dramatically reduced and structurally-aware context containing the query Q and only
the selected high-fidelity candidates C.

O = Mreason(Q, C) (2)

The functions Mnavigate and Mreason can be implemented by the same underlying model M operating
in different passes or by distinct, specialized models.

Recursive Deepening. The two-stage process is the base case of an inherently recursive frame-
work. For deeply hierarchical data, the output of Mreason can be a decision to re-apply the principle,
treating a selected candidate c ∈ C as the new information source Gk+1 for a subsequent naviga-
tion step. For example, after navigating to a specific class in a codebase, the model could treat that
class’s method signatures as a new structural abstraction to decide which specific function body to
”deepen” into next. The formal exploration of this multi-stage navigation is a compelling direction
for future work.

2.2 INSTANTIATIONS ACROSS MODALITIES

The power of this framework lies in its application to the intrinsic structure of different data types.
The structural abstraction G′ provides the ”information scent” needed to guide the subsequent high-
fidelity analysis.

The Nature of Structural Abstractions (G′). The goal of the abstraction is to provide a compu-
tationally cheap but structurally-sound map of the information landscape.

• For Code Comprehension: The abstraction is a symbol tree, representing the hierarchy of
files, classes, and functions with their signatures, stripping away implementation logic.

• For Structured Data (Function Calls): The abstraction is a tool-set schema, outlining
the available tools and their primary purpose, omitting the verbose details of their nested
parameter structures.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

The Nature of High-Fidelity Details (C). Following navigation, C provides the rich, detailed
information from the selected nodes needed for precise reasoning.

• For Code Comprehension: The complete source code of the specific functions or files
chosen for detailed analysis.

• For Structured Data: The full, verbose JSON Schema for the single tool (or small set of
tools) selected as a candidate.

2.3 IMPLEMENTATION OF THE NAVIGATOR

The practical implementation of the navigator function, Mnavigate, is a crucial component of the
framework. For the experiments in this paper, we focus on a training-free, LLM-based navigator.
In this configuration, the Stage 1 prompt contains the user query Q and the serialized structural
abstraction G′. The model is then instructed to reason over this map and return the names of the
relevant nodes for the high-fidelity analysis in Stage 2. This approach directly leverages the pow-
erful reasoning capabilities of modern foundation models to perform the navigation task. While
this training-free implementation offers maximum flexibility, an alternative for specialized domains
could involve explicitly fine-tuning the Mnavigate to maximize recall on the selection task, ensuring
no critical information is overlooked.

2.4 SCALABILITY TO MASSIVE CORPORA: A HYBRID APPROACH

While the LLM-based navigator is powerful, its performance may be challenging when the structural
abstraction G′ itself becomes too large to fit within a model’s context window (e.g., a codebase with
millions of files). For these massive-scale scenarios, the Selective Deepening framework can be
extended with a hybrid navigation strategy.

This approach introduces a preliminary, coarse-grained filtering step. A fast, embedding-based re-
trieval method can be used to first select a plausible subset of nodes from the enormous graph G′.
Crucially, unlike standard RAG which retrieves from a flat list of disconnected text chunks, this
step retrieves and preserves the original nodes and their relationships from the structured abstrac-
tion. The LLM-based Mnavigate then performs its nuanced, reasoning-based navigation on this much
smaller, pre-filtered subgraph. This hybrid model combines the raw speed of vector search for ini-
tial candidate generation with the superior structural reasoning of our method for the final, precise
selection, offering a practical path to scaling Selective Deepening to virtually any size. We consider
the empirical validation of this hybrid approach a promising avenue for future research.

3 EXPERIMENTS AND RESULTS

Our experiments are designed to validate two core hypotheses: (1) that the Selective Deepening
principle can be effectively applied across diverse modalities, and (2) that it yields simultaneous
improvements in both task performance and computational efficiency. The primary baseline, which
we term Brute-Force, provides the model with all available high-fidelity information in a single
context window, representing the standard paradigm.

3.1 APPLICATION TO STRUCTURED DATA: FUNCTION CALLING

Setup. To evaluate Selective Deepening on a structured data reasoning task, we use the Berkeley
Function Calling Leaderboard (BFCL v3) dataset (Patil et al., 2024). We focus our analysis on the
multiple and live multiple subsets—with the latter featuring more complex tools from real-world,
actively-maintained APIs—as they are specifically designed to test a model’s ability to select the
correct tool(s) from a list within a single turn. This setup directly probes the challenge of identifying
relevant information in a cluttered context. Our experiments were conducted using the Gemma 3
series of models (1B, 4B, and 12B) to assess performance across different model scales.

Methodology. The standard approach, which we term the Brute-Force (Baseline), presents the
model with the full, verbose JSON schema for all available tools in a single prompt. This includes
tool names, descriptions, and detailed parameter specifications.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Our Selective Deepening (SD) method implements the two-stage process defined in Section 2.

1. Stage 1 (Candidate Selection): The model is first given the user’s query along with a low-
fidelity, abstract representation of the tools. We test two levels of abstraction: Name only
(tool names) and Name + Description (tool names with their corresponding descriptions).
The model’s task is to identify and return a list of relevant tool names.

2. Stage 2 (Focused Reasoning): In the second stage, the model receives the user’s query
again, but this time with the full, high-fidelity JSON schemas for only the candidate tools
selected in Stage 1. This allows the model to perform detailed reasoning and parameter
filling on a clean, focused context.

We measure performance by the function calling Success Rate (SR) and efficiency by the average
number of tokens processed per interaction.

1b 4b 12b
Model Size

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

37.3

88.7
94.5

62.3

92.6 93.0

63.5

91.7 93.0

Multiple

1b 4b 12b
Model Size

0

10

20

30

40

50

60

70

80

Ac
cu

ra
cy

 (%
)

9.6

65.1

75.7

19.2

68.3

74.3

19.8

68.8

74.7

Live Multiple

Baseline Name Name + Description

Figure 2: Function calling accuracy on the BFCL v3 multiple and live multiple subsets. Selective
Deepening strategies (Name and Name + Description) significantly outperform the Baseline across
all model sizes. The performance gap is most pronounced for smaller models, which benefit most
from the reduced context noise.

Results and Analysis. As illustrated in Figure 2, Selective Deepening yields substantial improve-
ments in function calling accuracy. The key findings are:

• Superior Accuracy with Less Information: Both SD strategies consistently outperform
the Brute-Force baseline. The improvement is most dramatic for the 1B model, where the
baseline struggles with the noisy, verbose context (37.3% SR on multiple, 9.6% SR on
live multiple). By simplifying the context, our method boosts accuracy to 62.3% on mul-
tiple and 19.2% SR on live multiple, demonstrating that reducing cognitive load is critical
for smaller models.

• A Revealing Exception in Large Models: While SD is highly effective, the 12B model
shows a slight accuracy decrease on the multiple task compared to the baseline. We identi-
fied examples where tools could only be differentiated by subtle details in their parameter
descriptions, which were absent in our low-fidelity summaries. The 12B baseline, with its
larger capacity, was able to leverage this detailed information, while our method filtered it
out. This highlights a key trade-off: the efficiency of SD relies on the assumption that the
abstract representation retains sufficient information for selection.

Overall, our method achieves superior or highly competitive accuracy on a standard benchmark
while inherently improving efficiency by processing only the schemas for selected tools. The full
impact of this efficiency gain is analyzed in our robustness tests in Section 3.3.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

3.2 APPLICATION TO CODE COMPREHENSION

Setup. To validate our approach, we evaluated it on a repository-level bug-fixing task using the
SWE-bench Lite benchmark (Jimenez et al., 2024). This benchmark contains 300 test instances from
popular open-source Python repositories such as Django, Matplotlib, and NumPy. Our experiments
were conducted using the DeepSeek-V31 API, which has a 64K context length. A core challenge in
this task is sifting through a large context of retrieved files to find the precise location for a fix. The
SWE-bench framework provides two retrieval settings to benchmark this ability:

• BM25 Setting: A practical scenario using the keyword-based BM25 algorithm to retrieve
files. SWE-bench Lite provides contexts of varying lengths (13K, 27K, 50K, 100K tokens),
which correspond to progressively higher recall rates for the files required for the gold-
standard fix (33.7%, 49.0%, 64.7%, and 73.3% respectively). This creates a natural trade-
off between having more necessary information and more distracting noise.

• Oracle Setting: An idealized scenario where the model is given the exact files modified in
the human-authored solution. This isolates the code reasoning challenge by establishing a
near-theoretical upper bound on retrieval performance.

Methodology. We compare our Selective Deepening (SD) method against a standard brute-force
Baseline, which feeds the entire concatenated content of all retrieved files to the model at once. Our
SD method, following the principle in Section 2, employs a two-stage process:

1. Stage 1 (Outline and Select): The model first receives a low-fidelity ”structural map” of
the code, containing file structures and function/class signatures with their implementations
hidden. It analyzes this outline to select a small subset of relevant function signatures.

2. Stage 2 (Focus and Resolve): The context is rebuilt, revealing the full code bodies for
only the selected functions. This focused context is then used to generate the final patch.

Performance is measured by the Resolve Rate (RR), with efficiency measured by API cost.

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Cost ($)

10

12

14

16

18

20

Re
so

lv
e

Ra
te

 (%
)

13K
11.67%

13K
12.33%

27K
13.67%

27K
14.67%

50K
11.33%

50K
17.33%

100K
17.67%

Oracle
18.00%

Oracle
19.67%

Performance vs. Cost: Selective Deepening vs. Baseline

Selective Deepening (BM25)
Baseline (BM25)
Selective Deepening (Oracle)
Baseline (Oracle)

Figure 3: Resolve Rate on SWE-bench Lite as a function of retrieval context size. Selective Deep-
ening’s performance scales with increasing context and file recall, while the baseline method’s per-
formance collapses under the noise of larger contexts.

1We used the official API for the 0324 version.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Results and Analysis. Our results demonstrate a clear advantage for Selective Deepening, which
consistently outperforms the baseline methods across all settings and context sizes while using
significantly less computational cost. As summarized in Figure 3, the key to this success lies in
how each method handles the trade-off between useful information and distracting noise as context
grows.

• Translating Recall into Performance: The central finding is how each method handles the
trade-off between information and noise. As context length and recall increase from 13K
to 100K, the performance of Selective Deepening consistently improves, from 12.33% to
17.67%. This demonstrates it successfully leverages the more complete context provided
by higher recall to find better solutions.

• Baseline Collapse Under Noise: In stark contrast, the Baseline method’s performance
peaks at the 27K context (14.00%) and then collapses to 11.00% at the 50K context mark.
Although the 50K context has a higher recall (64.7% vs. 49.0%), the baseline is over-
whelmed by the accompanying noise and its performance regresses. This clearly illustrates
the “lost in the middle” (Liu et al., 2024) problem that our method is designed to solve.

• Superior Scalability and Effective Use of Improved Retrieval: The baseline’s collapse
at 50K highlights its practical limitations in noisy settings. Selective Deepening, how-
ever, remains robust and effective as context grows. Crucially, its 17.67% resolve rate
in the 100K BM25 setting begins to approach the 19.67% achieved in the Oracle setting.
This is significant because it shows that as practical retrieval systems improve and provide
higher recall, our method is uniquely capable of translating those retrieval gains into tan-
gible improvements in code generation, effectively closing the performance gap caused by
imperfect retrieval.

The performance gains are achieved with significant improvements in efficiency. In the 50K dataset
scenario, while the baseline must pay the cost to process 50,000 tokens of dense code, our model
only processes the high-fidelity code for the few functions it deems relevant. This resulted in our
approach achieving its superior accuracy at approximately half the computational cost of the base-
line, making it a more scalable and practical solution for real-world software engineering tasks.

3.3 STRESS TEST: ROBUSTNESS, EFFICIENCY, AND THE IMPACT OF ABSTRACTION

Setup. To conclusively validate that Selective Deepening mitigates the “lost in the middle” (Liu
et al., 2024) problem, we designed a stress test to analyze model performance under extreme noise.
We created a synthetic dataset by augmenting the original toolsets from the BFCL benchmark (Patil
et al., 2024) with a varying number of irrelevant “distractor” tools, ranging from 10 to over 2002.
This experimental design is not merely academic; it mirrors real-world function-calling scenarios
where a model must select from a large toolset provided by various MCP services. For instance,
a widely used GitHub MCP service exposes 96 distinct tools. This setup, therefore, allows us to
precisely measure how each method withstands realistic levels of context pollution.

Results and Analysis. The results in Figure 4 confirm the central hypothesis of our work: in-
sulating the reasoning process from noise is critical for success. The performance of the Baseline
approach degrades catastrophically as the number of irrelevant tools (N) increases. Even the 12B
model fails completely when all tools are provided, perfectly demonstrating the “lost in the middle”
phenomenon. In stark contrast, Selective Deepening proves exceptionally resilient. Its two-stage
design effectively filters the noise, allowing the 12B model to maintain over 50% accuracy in the
most cluttered setting—a scenario where the baseline scores 0%.

This experiment also reveals a crucial insight into designing the low-fidelity summaries. By com-
paring our two SD variants, we find a clear trade-off between a summary’s conciseness and its
informativeness. In moderately noisy environments (N ≤ 100), the richer ‘Name + Description‘
summary provides a distinct advantage. However, in extremely noisy environments (N ≥ 200),
these descriptions begin to contribute to the noise, and the ultra-concise ‘Name Only‘ representation

2We ensured distractor tools had different functionality from the original candidates to maintain correct
ground truth.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

2-4 10 30 10
0

20
0 All

Number of Available Tools

0

20

40

60

80

100
Ac

cu
ra

cy
 (%

)

Gemma-3-1B

2-4 10 30 10
0

20
0 All

Number of Available Tools

Gemma-3-4B

2-4 10 30 10
0

20
0 All

Number of Available Tools

Gemma-3-12B

Baseline Name Only Name + Description

Figure 4: Model accuracy as a function of the number of irrelevant tools in the context. Results
are shown for three model sizes. The Baseline’s performance collapses as the context is filled with
distractors. In contrast, the Selective Deepening methods (Name Only and Name + Description)
demonstrate significantly greater robustness to this noise, with larger models retaining substantial
capability even in highly cluttered environments.

becomes more robust. This demonstrates that the ideal abstraction depends on the task’s expected
signal-to-noise ratio.

This trade-off directly informs the profound efficiency implications of the framework—the ultimate
advantage of which is unlocking reasoning over contexts that would be too large for a model’s native
window or effective context length (Hsieh et al., 2024). The efficiency gains are dramatic. The
baseline’s cost scales linearly with the number of tools (Costbaseline ≈ N × Tokensfull schema),
while our method’s cost is an order of magnitude smaller (CostSD ≈ (N × Tokenssummary) +
Costreasoning). For example, representing 200 tools would require 30K tokens for the baseline. In
contrast, our method requires only 3.6K tokens, with the majority of this cost coming from JSON
formatting overhead rather than the summary content itself. Despite this, the approach remains
nearly 10x more efficient, making it a highly scalable solution.

4 RELATED WORK

The principle of Selective Deepening intersects with several active areas of research. We position
our contribution by relating it to three main themes: methods for efficient long-context processing,
strategies for selective context reduction, and the historical precedent of hierarchical processing in
computer vision.

4.1 EFFICIENT LONG-CONTEXT PROCESSING

A primary challenge in scaling language models is enabling them to process ever-longer sequences
of tokens. A significant body of work focuses on making the underlying Transformer architec-
ture more efficient. These efforts include engineering innovations in the attention mechanism like
FlashAttention (Dao et al., 2022; Dao, 2023) and various sparse attention patterns (Child et al., 2019;
Jaszczur et al., 2021; Chen et al., 2024; Ding et al., 2023); algorithmic improvements to positional
embeddings that improve length extrapolation (Press et al., 2022; Sun et al., 2023; Su et al., 2023;
Chen et al., 2023; Peng et al., 2024); and entirely new, sub-quadratic architectures like Mamba (Gu
& Dao, 2023) and RWKV (Peng et al., 2023).

Selective Deepening is orthogonal and complementary to this entire line of research. While these
methods optimize how a model efficiently processes a long, flat sequence, our method operates
at the data-structuring level. We change what information is presented to the model, rather than
altering the model’s architecture itself. Our principle can therefore be composed with these efficient
architectures to yield compounded gains.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

4.2 SELECTIVE CONTEXT REDUCTION: RETRIEVAL VS. NAVIGATION

A primary approach to long-context challenges is to selectively reduce the information presented
to the model, mitigating the “lost in the middle” phenomenon (Liu et al., 2024). The dominant
paradigm for this is Retrieval-Augmented Generation (RAG), which has a long history of improving
language model performance. RAG has been shown to improve perplexity (Borgeaud et al., 2022;
Wang et al., 2023a), factual accuracy (Nakano et al., 2021), downstream task accuracy (Guu et al.,
2020; Izacard & Grave, 2021; Lewis et al., 2020), and in-context learning (Huang et al., 2023). Typ-
ically combining a standalone retriever (Karpukhin et al., 2020; Wang et al., 2022) with a generator,
RAG can be integrated at inference (Khandelwal et al., 2019), fine-tuning (Izacard et al., 2022),
or pre-training (Borgeaud et al., 2022), with some end-to-end solutions also proposed (Jiang et al.,
2022; Shi et al., 2023).

However, the effectiveness of standard RAG is predicated on retrieval from a flattened represen-
tation. It chunks a corpus, discarding native structure, which risks retrieving disconnected though
semantically similar snippets—the “semantic similarity trap” (Gao et al., 2024)—especially when
applied to inherently structured data.

Selective Deepening offers a fundamentally different philosophy: navigation of a native hierarchy.
Instead of using an external retriever, our method empowers the LLM itself to act as an intelligent
navigator. It reasons over a low-fidelity “map” of the data’s structure to actively select where to
focus its attention. This concept of using the LLM for decision-making is related to the field of
LLM Agents, where systems like ReAct (Yao et al., 2023) learn to select tools. Selective Deepening
can be seen as a specialized form of agentic reasoning where the “action” is the decision to deepen
into a specific branch of a data structure. Furthermore, because the structural abstractions are often
intrinsic to the data format and the navigation can be guided by a training-free LLM, our method
can frequently be implemented via simple prompt engineering, bypassing the complex data pipelines
required by traditional RAG systems.

4.3 HIERARCHICAL AND COARSE-TO-FINE PROCESSING

The core principle of processing information at multiple levels of abstraction has deep roots in AI,
with a long history of coarse-to-fine and hierarchical methods in computer vision (Fu et al., 2017;
He et al., 2017; Feichtenhofer et al., 2019; Xu et al., 2024; Cai & Vasconcelos, 2018). This principle
of respecting innate structure is also a cornerstone of Natural Language Processing (Yang et al.,
2016; Sarthi et al., 2024; Socher et al., 2013). Selective Deepening formalizes and generalizes
this cross-domain pattern into a principle for dynamic reasoning. While prior methods often employ
fixed hierarchical architectures, Selective Deepening implements this process adaptively at inference
time. It leverages a model’s intelligence to navigate a structural map and decide where to ”zoom in,”
creating a flexible, modality-agnostic framework.

5 CONCLUSION

This work introduced Selective Deepening, a navigational framework for model reasoning that re-
spects and exploits the inherent structure of information. By replacing structure-agnostic retrieval
with a two-stage process of abstracting and then deepening, our approach mitigates the context-
degradation issues that plague standard methods. Our experiments on function calling and code
comprehension demonstrate that this principle yields substantial gains in both reasoning accuracy
and computational efficiency.

The principle of Selective Deepening opens several exciting avenues for future research. A primary
direction is the development of methods for models to automatically learn optimal, multilevel
abstractions from raw data, removing the need for predefined schemas. Furthermore, the core
navigational capabilities could be enhanced by exploring the use of multiple, complementary ab-
stractions simultaneously—akin to using both a table of contents and a semantic index to search
a book. Finally, the formal study of multi-stage recursive deepening for deeply hierarchical data
promises to unlock even more complex, nuanced reasoning. By building on these directions, we can
create AI systems that navigate the world’s information with ever-greater precision and efficiency.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann, Trevor Cai, Eliza Rutherford, Katie Milli-
can, George Bm Van Den Driessche, Jean-Baptiste Lespiau, Bogdan Damoc, Aidan Clark, et al.
Improving language models by retrieving from trillions of tokens. In ICML, 2022.

Zhaowei Cai and Nuno Vasconcelos. Cascade r-cnn: Delving into high quality object detection. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 6154–6162,
2018.

Shouyuan Chen, Sherman Wong, Liangjian Chen, and Yuandong Tian. Extending context window
of large language models via positional interpolation. In ICLR, 2023.

Yukang Chen, Shengju Qian, Haotian Tang, Xin Lai, Zhijian Liu, Song Han, and Jiaya Jia. Lon-
gLoRA: Efficient fine-tuning of long-context large language models. In ICLR, 2024.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse
Transformers. arXiv:1904.10509, 2019.

Tri Dao. FlashAttention-2: Faster attention with better parallelism and work partitioning.
arxiv:2307.08691, 2023.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. FlashAttention: Fast and
memory-efficient exact attention with IO-awareness. In NeurIPS, 2022.

Jiayu Ding et al. LongNet: Scaling Transformers to 1,000,000,000 tokens. arXiv:2307.02486, 2023.

Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik, and Kaiming He. Slowfast networks for video
recognition. In Proceedings of the IEEE/CVF international conference on computer vision, pp.
6202–6211, 2019.

Jianlong Fu, Heliang Zheng, and Tao Mei. Look closer to see better: Recurrent attention convolu-
tional neural network for fine-grained image recognition. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 4438–4446, 2017.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, Meng
Wang, and Haofen Wang. Retrieval-augmented generation for large language models: A survey,
2024. URL https://arxiv.org/abs/2312.10997.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces.
arXiv:2312.00752, 2023.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Mingwei Chang. REALM: Retrieval
augmented language model pre-training. In ICML, 2020.

Haoyu Han, Yu Wang, Harry Shomer, Kai Guo, Jiayuan Ding, Yongjia Lei, Mahantesh Halap-
panavar, Ryan A Rossi, Subhabrata Mukherjee, Xianfeng Tang, et al. Retrieval-augmented gen-
eration with graphs (graphrag). arXiv preprint arXiv:2501.00309, 2024.

Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In Proceedings of the
IEEE international conference on computer vision, pp. 2961–2969, 2017.

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei Jia, Yang
Zhang, and Boris Ginsburg. RULER: what’s the real context size of your long-context language
models? CoRR, abs/2404.06654, 2024.

Jie Huang, Wei Ping, Peng Xu, Mohammad Shoeybi, Kevin Chen-Chuan Chang, and Bryan Catan-
zaro. Raven: In-context learning with retrieval augmented encoder-decoder language models.
arXiv preprint arXiv:2308.07922, 2023.

Laurent Itti and Christof Koch. Computational modelling of visual attention. Nature reviews neuro-
science, 2(3):194–203, 2001.

Gautier Izacard and Édouard Grave. Leveraging passage retrieval with generative models for open
domain question answering. In EACL, 2021.

10

https://arxiv.org/abs/2312.10997

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Gautier Izacard, Patrick Lewis, Maria Lomeli, Lucas Hosseini, Fabio Petroni, Timo Schick, Jane
Dwivedi-Yu, Armand Joulin, Sebastian Riedel, and Edouard Grave. Few-shot learning with re-
trieval augmented language models. arXiv preprint arXiv:2208.03299, 2022.

Sebastian Jaszczur et al. Sparse is enough in scaling transformers. In NeurIPS, 2021.

Zhengbao Jiang, Luyu Gao, Jun Araki, Haibo Ding, Zhiruo Wang, Jamie Callan, and Graham Neu-
big. Retrieval as attention: End-to-end learning of retrieval and reading within a single trans-
former. In EMNLP, 2022.

Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. Swe-bench: Can language models resolve real-world github issues?, 2024. URL
https://arxiv.org/abs/2310.06770.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi
Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question answering. In EMNLP,
2020.

Urvashi Khandelwal, Omer Levy, Dan Jurafsky, Luke Zettlemoyer, and Mike Lewis. Generalization
through memorization: Nearest neighbor language models. arXiv preprint arXiv:1911.00172,
2019.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented gener-
ation for knowledge-intensive nlp tasks. NeurIPS, 2020.

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni,
and Percy Liang. Lost in the middle: How language models use long contexts, 2023. URL
https://arxiv.org/abs/2307.03172.

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and
Percy Liang. Lost in the middle: How language models use long contexts. Transactions of the
Association for Computational Linguistics, 12:157–173, 2024. doi: 10.1162/tacl a 00638. URL
https://aclanthology.org/2024.tacl-1.9/.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christopher
Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, et al. WebGPT: Browser-assisted
question-answering with human feedback. arXiv preprint arXiv:2112.09332, 2021.

David Navon. Forest before trees: The precedence of global features in visual perception. Cognitive
psychology, 9(3):353–383, 1977.

Shishir G. Patil, Huanzhi Mao, Charlie Cheng-Jie Ji, Fanjia Yan, Vishnu Suresh, Ion Stoica, and
Joseph E. Gonzalez. The berkeley function calling leaderboard (bfcl): From tool use to agentic
evaluation of large language models. In Advances in Neural Information Processing Systems,
2024.

Bo Peng et al. RWKV: Reinventing RNNs for the transformer era. In EMNLP, 2023.

Bowen Peng, Jeffrey Quesnelle, Honglu Fan, and Enrico Shippole. YaRN: Efficient context window
extension of large language models. In ICLR, 2024.

Ofir Press, Noah Smith, and Mike Lewis. Train short, test long: Attention with linear biases enables
input length extrapolation. In ICLR, 2022.

Parth Sarthi, Salman Abdullah, Aditi Tuli, Shubh Khanna, Anna Goldie, and Christopher D.
Manning. Raptor: Recursive abstractive processing for tree-organized retrieval, 2024. URL
https://arxiv.org/abs/2401.18059.

Weijia Shi, Sewon Min, Michihiro Yasunaga, Minjoon Seo, Rich James, Mike Lewis, Luke Zettle-
moyer, and Wen-tau Yih. RePlug: Retrieval-augmented black-box language models. arXiv
preprint arXiv:2301.12652, 2023.

11

https://arxiv.org/abs/2310.06770
https://arxiv.org/abs/2307.03172
https://aclanthology.org/2024.tacl-1.9/
https://arxiv.org/abs/2401.18059

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng,
and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 conference on empirical methods in natural language pro-
cessing, pp. 1631–1642, 2013.

Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. RoFormer: En-
hanced Transformer with rotary position embedding. arXiv:2104.09864, 2023.

Yutao Sun, Li Dong, Barun Patra, Shuming Ma, Shaohan Huang, Alon Benhaim, Vishrav Chaud-
hary, Xia Song, and Furu Wei. A length-extrapolatable Transformer. In Proc. of the 61st Annual
Meeting of the ACL (Volume 1: Long Papers), 2023.

Boxin Wang, Wei Ping, Peng Xu, Lawrence McAfee, Zihan Liu, Mohammad Shoeybi, Yi Dong,
Oleksii Kuchaiev, Bo Li, Chaowei Xiao, et al. Shall we pretrain autoregressive language models
with retrieval? a comprehensive study. arXiv preprint arXiv:2304.06762, 2023a.

Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Daxin Jiang, Rangan Ma-
jumder, and Furu Wei. Text embeddings by weakly-supervised contrastive pre-training. arXiv
preprint arXiv:2212.03533, 2022.

Liang Wang, Nan Yang, and Furu Wei. Query2doc: Query expansion with large language models.
arXiv preprint arXiv:2303.07678, 2023b.

Jeremy M Wolfe. Guided search 2.0 a revised model of visual search. Psychonomic bulletin &
review, 1(2):202–238, 1994.

Mingze Xu, Mingfei Gao, Zhe Gan, Hong-You Chen, Zhengfeng Lai, Haiming Gang, Kai Kang,
and Afshin Dehghan. Slowfast-llava: A strong training-free baseline for video large language
models. arXiv preprint arXiv:2407.15841, 2024.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alex Smola, and Eduard Hovy. Hierarchical
attention networks for document classification. In Proceedings of the 2016 conference of the North
American chapter of the association for computational linguistics: human language technologies,
pp. 1480–1489, 2016.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models, 2023. URL https://arxiv.
org/abs/2210.03629.

12

https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629

	Introduction
	The Principle of Selective Deepening
	A Formal Navigational Framework
	Instantiations Across Modalities
	Implementation of the Navigator
	Scalability to Massive Corpora: A Hybrid Approach

	Experiments and Results
	Application to Structured Data: Function Calling
	Application to Code Comprehension
	Stress Test: Robustness, Efficiency, and the Impact of Abstraction

	RELATED WORK
	Efficient Long-Context Processing
	Selective Context Reduction: Retrieval vs. Navigation
	Hierarchical and Coarse-to-Fine Processing

	Conclusion

