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ABSTRACT

Large language models typically process information via two dominant
paradigms, both of which can be inefficient. The first is a brute-force approach
that ingests vast streams of tokens with uniform effort. The second, a selective ap-
proach exemplified by Retrieval-Augmented Generation (RAG), often flattens in-
herently structured data—like codebases or API schemas—into a context-agnostic
list of vector chunks. Both methods have critical flaws: the former is computation-
ally prohibitive, while the latter destroys the hierarchical information necessary
for complex reasoning.
This paper introduces Selective Deepening, a new navigational framework for
model reasoning that respects and exploits the native structure of data. Instead
of retrieving from a flattened pool of information, our method first creates a struc-
tural abstraction—a computationally inexpensive, low-fidelity “map” of the data
that preserves its hierarchy. The model then intelligently navigates this map to
identify the most relevant areas to “deepen” into. Only after this targeted naviga-
tion does the model dedicate its full computational power to analyzing the high-
fidelity details of the selected components.
By replacing structure-agnostic retrieval with structure-aware navigation, Selec-
tive Deepening enables models to reason more effectively and efficiently. We
demonstrate the broad applicability and benefits of this principle across diverse
tasks, including function calling and code generation. Our experiments show that
this approach not only drastically reduces computational overhead but also yields
significant improvements in task accuracy by mitigating the context-degradation
problems inherent in existing paradigms.

1 INTRODUCTION

Human perception is a masterpiece of efficiency. When we enter a room, our eyes do not perform
a raster scan of every photon; instead, they execute rapid saccades, fixating on salient objects while
maintaining a low-resolution awareness of the periphery. When searching for a book in a library,
we scan titles and covers—abstract, low-fidelity representations—before committing to reading the
high-fidelity content within. This hierarchical and adaptive allocation of cognitive resources (Wolfe,
1994; Navon, 1977; Itti & Koch, 2001) is fundamental to biological intelligence, allowing us to
navigate and reason within a world of overwhelming sensory data.

In stark contrast, Large Language Models often employ information processing strategies that are
fundamentally at odds with this principle of efficiency. These strategies generally fall into two cate-
gories. The first is a brute-force approach that compels models to ingest entire contexts with uniform
effort, triggering the well-documented “lost in the middle” phenomenon (Liu et al., 2023; Hsieh
et al., 2024). The second strategy is selective retrieval, most famously represented by Retrieval-
Augmented Generation (RAG) (Lewis et al., 2020; Borgeaud et al., 2022; Wang et al., 2023a;
Nakano et al., 2021; Guu et al., 2020; Izacard & Grave, 2021; Huang et al., 2023). While aim-
ing for efficiency, standard retrieval mechanisms perform a lossy compression of the data’s native
structure. They shred a logical hierarchy—be it a codebase, an API specification, or a document’s
chapters—into a flat list of semantically similar but contextually unaware vector chunks. This pro-
cess creates a “semantic similarity trap,” where retrieved information is locally relevant but struc-
turally incorrect (Sarthi et al., 2024; Han et al., 2024; Wang et al., 2023b).
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Figure 1: A conceptual comparison between the standard processing paradigm and our proposed
Selective Deepening approach. (Left) In the standard approach, the model’s context is filled with all
available high-fidelity information (e.g., full tool schemas), leading to high computational costs and
the risk of the model getting “lost in the middle.” (Right) Selective Deepening introduces a two-stage
process. First, a fast, low-cost scan of abstract summaries identifies relevant candidates. Second, a
focused reasoning stage processes only the high-fidelity details of these candidates, leading to lower
costs and higher performance.

We argues that the path to more capable AI requires a shift from simple retrieval to structured
navigation. We introduce the principle of Selective Deepening, a framework designed to respect and
exploit the inherent hierarchy of information. Instead of pulling from a flat pool of data, Selective
Deepening teaches a model to perform a “drill-down” analysis, operating on the inductive bias that
relevance is revealed by navigating a data source’s explicit structure. As illustrated in Figure 1,
it begins with a structural abstraction—a low-fidelity map of the information space (e.g., API
categories or module outlines). Using this map, the model reasons about the overall architecture
to identify the most relevant branches, and only then dedicates its full computational power to the
high-fidelity leaves within that selection.

This paper’s contributions represent a step towards this new navigational approach:

1. We formalize Selective Deepening, a biologically-inspired principle that replaces flat re-
trieval with structured navigation, enabling models to reason more effectively within com-
plex information hierarchies.

2. We demonstrate the universality of this principle by instantiating it across diverse and chal-
lenging domains with inherent structure, including function calling and source code com-
prehension.

3. We provide compelling empirical evidence that this approach not only yields dramatic gains
in efficiency but, more importantly, leads to significant improvements in reasoning accuracy
and robustness by avoiding the pitfalls of structural flattening.

By teaching models to first navigate a structural map and then focus its analysis, we can build sys-
tems that are not only more scalable but also more aligned with the elegant principles of intelligence
found in the natural world.
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2 THE PRINCIPLE OF SELECTIVE DEEPENING

Selective Deepening is a computational framework that replaces the standard, single-pass processing
paradigm with a structured, multi-stage approach. Its design is guided by the core idea of intelligent
navigation over inherent data hierarchies, rather than flat retrieval.

2.1 A FORMAL NAVIGATIONAL FRAMEWORK

Let us define a general reasoning task where a model M must produce an output O from a query
Q and a body of information that possesses an inherent structure. We represent this information
source not as a flat set, but as a structured object, G, which can be a tree, a graph, or a timeline.
The nodes in G contain the high-fidelity information chunks {i1, i2, . . . , in}, and its edges represent
their structural relationships (e.g., containment, dependency, or temporal succession).

Selective Deepening decomposes the task into a recursive process. The primary instantiation, used
in our experiments, is a two-stage application:

Stage 1: Structural Abstraction & Navigation. First, the framework creates a low-fidelity struc-
tural abstraction, G′ = Abstract(G). This abstraction preserves the essential structure of the original
data (the ”map”) while replacing the high-fidelity node content with computationally inexpensive
summaries. This map is then presented to a navigator function, Mnavigate, which reasons over the
query and the data’s structure to identify a subset of relevant nodes, Vselected.

Vselected = Mnavigate(Q,G′) (1)

The resulting candidate set C is composed of the high-fidelity information from these selected nodes,
where C = {ik | vk ∈ Vselected}. By design, |C| ≪ n.

Stage 2: Focused Reasoning. A reasoning function, Mreason, subsequently performs the main
task, but on a dramatically reduced and structurally-aware context containing the query Q and only
the selected high-fidelity candidates C.

O = Mreason(Q, C) (2)

The functions Mnavigate and Mreason can be implemented by the same underlying model M operating
in different passes or by distinct, specialized models.

Recursive Deepening. The two-stage process is the base case of an inherently recursive frame-
work. For deeply hierarchical data, the output of Mreason can be a decision to re-apply the principle,
treating a selected candidate c ∈ C as the new information source Gk+1 for a subsequent naviga-
tion step. For example, after navigating to a specific class in a codebase, the model could treat that
class’s method signatures as a new structural abstraction to decide which specific function body to
”deepen” into next. The formal exploration of this multi-stage navigation is a compelling direction
for future work.

2.2 INSTANTIATIONS ACROSS MODALITIES

The power of this framework lies in its application to the intrinsic structure of different data types.
The structural abstraction G′ provides the ”information scent” needed to guide the subsequent high-
fidelity analysis.

The Nature of Structural Abstractions (G′). The goal of the abstraction is to provide a compu-
tationally cheap but structurally-sound map of the information landscape.

• For Code Comprehension: The abstraction is a symbol tree, representing the hierarchy of
files, classes, and functions with their signatures, stripping away implementation logic.

• For Structured Data (Function Calls): The abstraction is a tool-set schema, outlining
the available tools and their primary purpose, omitting the verbose details of their nested
parameter structures.
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The Nature of High-Fidelity Details (C). Following navigation, C provides the rich, detailed
information from the selected nodes needed for precise reasoning.

• For Code Comprehension: The complete source code of the specific functions or files
chosen for detailed analysis.

• For Structured Data: The full, verbose JSON Schema for the single tool (or small set of
tools) selected as a candidate.

2.3 IMPLEMENTATION OF THE NAVIGATOR

The practical implementation of the navigator function, Mnavigate, is a crucial component of the
framework. For the experiments in this paper, we focus on a training-free, LLM-based navigator.
In this configuration, the Stage 1 prompt contains the user query Q and the serialized structural
abstraction G′. The model is then instructed to reason over this map and return the names of the
relevant nodes for the high-fidelity analysis in Stage 2. This approach directly leverages the pow-
erful reasoning capabilities of modern foundation models to perform the navigation task. While
this training-free implementation offers maximum flexibility, an alternative for specialized domains
could involve explicitly fine-tuning the Mnavigate to maximize recall on the selection task, ensuring
no critical information is overlooked.

2.4 SCALABILITY TO MASSIVE CORPORA: A HYBRID APPROACH

While the LLM-based navigator is powerful, its performance may be challenging when the structural
abstraction G′ itself becomes too large to fit within a model’s context window (e.g., a codebase with
millions of files). For these massive-scale scenarios, the Selective Deepening framework can be
extended with a hybrid navigation strategy.

This approach introduces a preliminary, coarse-grained filtering step. A fast, embedding-based re-
trieval method can be used to first select a plausible subset of nodes from the enormous graph G′.
Crucially, unlike standard RAG which retrieves from a flat list of disconnected text chunks, this
step retrieves and preserves the original nodes and their relationships from the structured abstrac-
tion. The LLM-based Mnavigate then performs its nuanced, reasoning-based navigation on this much
smaller, pre-filtered subgraph. This hybrid model combines the raw speed of vector search for ini-
tial candidate generation with the superior structural reasoning of our method for the final, precise
selection, offering a practical path to scaling Selective Deepening to virtually any size. We consider
the empirical validation of this hybrid approach a promising avenue for future research.

3 EXPERIMENTS AND RESULTS

Our experiments are designed to validate two core hypotheses: (1) that the Selective Deepening
principle can be effectively applied across diverse modalities, and (2) that it yields simultaneous
improvements in both task performance and computational efficiency. The primary baseline, which
we term Brute-Force, provides the model with all available high-fidelity information in a single
context window, representing the standard paradigm.

3.1 APPLICATION TO STRUCTURED DATA: FUNCTION CALLING

Setup. To evaluate Selective Deepening on a structured data reasoning task, we use the Berkeley
Function Calling Leaderboard (BFCL v3) dataset (Patil et al., 2024). We focus our analysis on the
multiple and live multiple subsets—with the latter featuring more complex tools from real-world,
actively-maintained APIs—as they are specifically designed to test a model’s ability to select the
correct tool(s) from a list within a single turn. This setup directly probes the challenge of identifying
relevant information in a cluttered context. Our experiments were conducted using the Gemma 3
series of models (1B, 4B, and 12B) to assess performance across different model scales.

Methodology. The standard approach, which we term the Brute-Force (Baseline), presents the
model with the full, verbose JSON schema for all available tools in a single prompt. This includes
tool names, descriptions, and detailed parameter specifications.
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Our Selective Deepening (SD) method implements the two-stage process defined in Section 2.

1. Stage 1 (Candidate Selection): The model is first given the user’s query along with a low-
fidelity, abstract representation of the tools. We test two levels of abstraction: Name only
(tool names) and Name + Description (tool names with their corresponding descriptions).
The model’s task is to identify and return a list of relevant tool names.

2. Stage 2 (Focused Reasoning): In the second stage, the model receives the user’s query
again, but this time with the full, high-fidelity JSON schemas for only the candidate tools
selected in Stage 1. This allows the model to perform detailed reasoning and parameter
filling on a clean, focused context.

We measure performance by the function calling Success Rate (SR) and efficiency by the average
number of tokens processed per interaction.
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Figure 2: Function calling accuracy on the BFCL v3 multiple and live multiple subsets. Selective
Deepening strategies (Name and Name + Description) significantly outperform the Baseline across
all model sizes. The performance gap is most pronounced for smaller models, which benefit most
from the reduced context noise.

Results and Analysis. As illustrated in Figure 2, Selective Deepening yields substantial improve-
ments in function calling accuracy. The key findings are:

• Superior Accuracy with Less Information: Both SD strategies consistently outperform
the Brute-Force baseline. The improvement is most dramatic for the 1B model, where the
baseline struggles with the noisy, verbose context (37.3% SR on multiple, 9.6% SR on
live multiple). By simplifying the context, our method boosts accuracy to 62.3% on mul-
tiple and 19.2% SR on live multiple, demonstrating that reducing cognitive load is critical
for smaller models.

• A Revealing Exception in Large Models: While SD is highly effective, the 12B model
shows a slight accuracy decrease on the multiple task compared to the baseline. We identi-
fied examples where tools could only be differentiated by subtle details in their parameter
descriptions, which were absent in our low-fidelity summaries. The 12B baseline, with its
larger capacity, was able to leverage this detailed information, while our method filtered it
out. This highlights a key trade-off: the efficiency of SD relies on the assumption that the
abstract representation retains sufficient information for selection.

Overall, our method achieves superior or highly competitive accuracy on a standard benchmark
while inherently improving efficiency by processing only the schemas for selected tools. The full
impact of this efficiency gain is analyzed in our robustness tests in Section 3.3.
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3.2 APPLICATION TO CODE COMPREHENSION

Setup. To validate our approach, we evaluated it on a repository-level bug-fixing task using the
SWE-bench Lite benchmark (Jimenez et al., 2024). This benchmark contains 300 test instances from
popular open-source Python repositories such as Django, Matplotlib, and NumPy. Our experiments
were conducted using the DeepSeek-V31 API, which has a 64K context length. A core challenge in
this task is sifting through a large context of retrieved files to find the precise location for a fix. The
SWE-bench framework provides two retrieval settings to benchmark this ability:

• BM25 Setting: A practical scenario using the keyword-based BM25 algorithm to retrieve
files. SWE-bench Lite provides contexts of varying lengths (13K, 27K, 50K, 100K tokens),
which correspond to progressively higher recall rates for the files required for the gold-
standard fix (33.7%, 49.0%, 64.7%, and 73.3% respectively). This creates a natural trade-
off between having more necessary information and more distracting noise.

• Oracle Setting: An idealized scenario where the model is given the exact files modified in
the human-authored solution. This isolates the code reasoning challenge by establishing a
near-theoretical upper bound on retrieval performance.

Methodology. We compare our Selective Deepening (SD) method against a standard brute-force
Baseline, which feeds the entire concatenated content of all retrieved files to the model at once. Our
SD method, following the principle in Section 2, employs a two-stage process:

1. Stage 1 (Outline and Select): The model first receives a low-fidelity ”structural map” of
the code, containing file structures and function/class signatures with their implementations
hidden. It analyzes this outline to select a small subset of relevant function signatures.

2. Stage 2 (Focus and Resolve): The context is rebuilt, revealing the full code bodies for
only the selected functions. This focused context is then used to generate the final patch.

Performance is measured by the Resolve Rate (RR), with efficiency measured by API cost.
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Figure 3: Resolve Rate on SWE-bench Lite as a function of retrieval context size. Selective Deep-
ening’s performance scales with increasing context and file recall, while the baseline method’s per-
formance collapses under the noise of larger contexts.

1We used the official API for the 0324 version.
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Results and Analysis. Our results demonstrate a clear advantage for Selective Deepening, which
consistently outperforms the baseline methods across all settings and context sizes while using
significantly less computational cost. As summarized in Figure 3, the key to this success lies in
how each method handles the trade-off between useful information and distracting noise as context
grows.

• Translating Recall into Performance: The central finding is how each method handles the
trade-off between information and noise. As context length and recall increase from 13K
to 100K, the performance of Selective Deepening consistently improves, from 12.33% to
17.67%. This demonstrates it successfully leverages the more complete context provided
by higher recall to find better solutions.

• Baseline Collapse Under Noise: In stark contrast, the Baseline method’s performance
peaks at the 27K context (14.00%) and then collapses to 11.00% at the 50K context mark.
Although the 50K context has a higher recall (64.7% vs. 49.0%), the baseline is over-
whelmed by the accompanying noise and its performance regresses. This clearly illustrates
the “lost in the middle” (Liu et al., 2024) problem that our method is designed to solve.

• Superior Scalability and Effective Use of Improved Retrieval: The baseline’s collapse
at 50K highlights its practical limitations in noisy settings. Selective Deepening, how-
ever, remains robust and effective as context grows. Crucially, its 17.67% resolve rate
in the 100K BM25 setting begins to approach the 19.67% achieved in the Oracle setting.
This is significant because it shows that as practical retrieval systems improve and provide
higher recall, our method is uniquely capable of translating those retrieval gains into tan-
gible improvements in code generation, effectively closing the performance gap caused by
imperfect retrieval.

The performance gains are achieved with significant improvements in efficiency. In the 50K dataset
scenario, while the baseline must pay the cost to process 50,000 tokens of dense code, our model
only processes the high-fidelity code for the few functions it deems relevant. This resulted in our
approach achieving its superior accuracy at approximately half the computational cost of the base-
line, making it a more scalable and practical solution for real-world software engineering tasks.

3.3 STRESS TEST: ROBUSTNESS, EFFICIENCY, AND THE IMPACT OF ABSTRACTION

Setup. To conclusively validate that Selective Deepening mitigates the “lost in the middle” (Liu
et al., 2024) problem, we designed a stress test to analyze model performance under extreme noise.
We created a synthetic dataset by augmenting the original toolsets from the BFCL benchmark (Patil
et al., 2024) with a varying number of irrelevant “distractor” tools, ranging from 10 to over 2002.
This experimental design is not merely academic; it mirrors real-world function-calling scenarios
where a model must select from a large toolset provided by various MCP services. For instance,
a widely used GitHub MCP service exposes 96 distinct tools. This setup, therefore, allows us to
precisely measure how each method withstands realistic levels of context pollution.

Results and Analysis. The results in Figure 4 confirm the central hypothesis of our work: in-
sulating the reasoning process from noise is critical for success. The performance of the Baseline
approach degrades catastrophically as the number of irrelevant tools (N ) increases. Even the 12B
model fails completely when all tools are provided, perfectly demonstrating the “lost in the middle”
phenomenon. In stark contrast, Selective Deepening proves exceptionally resilient. Its two-stage
design effectively filters the noise, allowing the 12B model to maintain over 50% accuracy in the
most cluttered setting—a scenario where the baseline scores 0%.

This experiment also reveals a crucial insight into designing the low-fidelity summaries. By com-
paring our two SD variants, we find a clear trade-off between a summary’s conciseness and its
informativeness. In moderately noisy environments (N ≤ 100), the richer ‘Name + Description‘
summary provides a distinct advantage. However, in extremely noisy environments (N ≥ 200),
these descriptions begin to contribute to the noise, and the ultra-concise ‘Name Only‘ representation

2We ensured distractor tools had different functionality from the original candidates to maintain correct
ground truth.
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Figure 4: Model accuracy as a function of the number of irrelevant tools in the context. Results
are shown for three model sizes. The Baseline’s performance collapses as the context is filled with
distractors. In contrast, the Selective Deepening methods (Name Only and Name + Description)
demonstrate significantly greater robustness to this noise, with larger models retaining substantial
capability even in highly cluttered environments.

becomes more robust. This demonstrates that the ideal abstraction depends on the task’s expected
signal-to-noise ratio.

This trade-off directly informs the profound efficiency implications of the framework—the ultimate
advantage of which is unlocking reasoning over contexts that would be too large for a model’s native
window or effective context length (Hsieh et al., 2024). The efficiency gains are dramatic. The
baseline’s cost scales linearly with the number of tools (Costbaseline ≈ N × Tokensfull schema),
while our method’s cost is an order of magnitude smaller (CostSD ≈ (N × Tokenssummary) +
Costreasoning). For example, representing 200 tools would require 30K tokens for the baseline. In
contrast, our method requires only 3.6K tokens, with the majority of this cost coming from JSON
formatting overhead rather than the summary content itself. Despite this, the approach remains
nearly 10x more efficient, making it a highly scalable solution.

4 RELATED WORK

The principle of Selective Deepening intersects with several active areas of research. We position
our contribution by relating it to three main themes: methods for efficient long-context processing,
strategies for selective context reduction, and the historical precedent of hierarchical processing in
computer vision.

4.1 EFFICIENT LONG-CONTEXT PROCESSING

A primary challenge in scaling language models is enabling them to process ever-longer sequences
of tokens. A significant body of work focuses on making the underlying Transformer architec-
ture more efficient. These efforts include engineering innovations in the attention mechanism like
FlashAttention (Dao et al., 2022; Dao, 2023) and various sparse attention patterns (Child et al., 2019;
Jaszczur et al., 2021; Chen et al., 2024; Ding et al., 2023); algorithmic improvements to positional
embeddings that improve length extrapolation (Press et al., 2022; Sun et al., 2023; Su et al., 2023;
Chen et al., 2023; Peng et al., 2024); and entirely new, sub-quadratic architectures like Mamba (Gu
& Dao, 2023) and RWKV (Peng et al., 2023).

Selective Deepening is orthogonal and complementary to this entire line of research. While these
methods optimize how a model efficiently processes a long, flat sequence, our method operates
at the data-structuring level. We change what information is presented to the model, rather than
altering the model’s architecture itself. Our principle can therefore be composed with these efficient
architectures to yield compounded gains.
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4.2 SELECTIVE CONTEXT REDUCTION: RETRIEVAL VS. NAVIGATION

A primary approach to long-context challenges is to selectively reduce the information presented
to the model, mitigating the “lost in the middle” phenomenon (Liu et al., 2024). The dominant
paradigm for this is Retrieval-Augmented Generation (RAG), which has a long history of improving
language model performance. RAG has been shown to improve perplexity (Borgeaud et al., 2022;
Wang et al., 2023a), factual accuracy (Nakano et al., 2021), downstream task accuracy (Guu et al.,
2020; Izacard & Grave, 2021; Lewis et al., 2020), and in-context learning (Huang et al., 2023). Typ-
ically combining a standalone retriever (Karpukhin et al., 2020; Wang et al., 2022) with a generator,
RAG can be integrated at inference (Khandelwal et al., 2019), fine-tuning (Izacard et al., 2022),
or pre-training (Borgeaud et al., 2022), with some end-to-end solutions also proposed (Jiang et al.,
2022; Shi et al., 2023).

However, the effectiveness of standard RAG is predicated on retrieval from a flattened represen-
tation. It chunks a corpus, discarding native structure, which risks retrieving disconnected though
semantically similar snippets—the “semantic similarity trap” (Gao et al., 2024)—especially when
applied to inherently structured data.

Selective Deepening offers a fundamentally different philosophy: navigation of a native hierarchy.
Instead of using an external retriever, our method empowers the LLM itself to act as an intelligent
navigator. It reasons over a low-fidelity “map” of the data’s structure to actively select where to
focus its attention. This concept of using the LLM for decision-making is related to the field of
LLM Agents, where systems like ReAct (Yao et al., 2023) learn to select tools. Selective Deepening
can be seen as a specialized form of agentic reasoning where the “action” is the decision to deepen
into a specific branch of a data structure. Furthermore, because the structural abstractions are often
intrinsic to the data format and the navigation can be guided by a training-free LLM, our method
can frequently be implemented via simple prompt engineering, bypassing the complex data pipelines
required by traditional RAG systems.

4.3 HIERARCHICAL AND COARSE-TO-FINE PROCESSING

The core principle of processing information at multiple levels of abstraction has deep roots in AI,
with a long history of coarse-to-fine and hierarchical methods in computer vision (Fu et al., 2017;
He et al., 2017; Feichtenhofer et al., 2019; Xu et al., 2024; Cai & Vasconcelos, 2018). This principle
of respecting innate structure is also a cornerstone of Natural Language Processing (Yang et al.,
2016; Sarthi et al., 2024; Socher et al., 2013). Selective Deepening formalizes and generalizes
this cross-domain pattern into a principle for dynamic reasoning. While prior methods often employ
fixed hierarchical architectures, Selective Deepening implements this process adaptively at inference
time. It leverages a model’s intelligence to navigate a structural map and decide where to ”zoom in,”
creating a flexible, modality-agnostic framework.

5 CONCLUSION

This work introduced Selective Deepening, a navigational framework for model reasoning that re-
spects and exploits the inherent structure of information. By replacing structure-agnostic retrieval
with a two-stage process of abstracting and then deepening, our approach mitigates the context-
degradation issues that plague standard methods. Our experiments on function calling and code
comprehension demonstrate that this principle yields substantial gains in both reasoning accuracy
and computational efficiency.

The principle of Selective Deepening opens several exciting avenues for future research. A primary
direction is the development of methods for models to automatically learn optimal, multilevel
abstractions from raw data, removing the need for predefined schemas. Furthermore, the core
navigational capabilities could be enhanced by exploring the use of multiple, complementary ab-
stractions simultaneously—akin to using both a table of contents and a semantic index to search
a book. Finally, the formal study of multi-stage recursive deepening for deeply hierarchical data
promises to unlock even more complex, nuanced reasoning. By building on these directions, we can
create AI systems that navigate the world’s information with ever-greater precision and efficiency.
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