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ABSTRACT

Online reviews provide product evaluations for customers to make

decisions. Unfortunately, the evaluations can be manipulated us-

ing fake reviews (“spams”) by professional spammers, who have

learned increasingly insidious and powerful spamming strategies

by adapting to the deployed detectors. Spamming strategies are

hard to capture, as they can be varying quickly along time, di�erent

across spammers and target products, and more critically, remained

unknown in most cases. Furthermore, most existing detectors focus

on detection accuracy, which is not well-aligned with the goal of

maintaining the trustworthiness of product evaluations. To address

the challenges, we formulate a minimax game where the spammers

and spam detectors compete with each other on their practical goals

that are not solely based on detection accuracy. Nash equilibria of

the game lead to stable detectors that are agnostic to any mixed

detection strategies. However, the game has no closed-form solu-

tion and is not di�erentiable to admit the typical gradient-based

algorithms. We turn the game into two dependent Markov Deci-

sion Processes (MDPs) to allow e�cient stochastic optimization

based on multi-armed bandit and policy gradient. We experiment

on three large review datasets using various state-of-the-art spam-

ming and detection strategies and show that the optimization al-

gorithm can reliably �nd an equilibrial detector that can robustly

and e�ectively prevent spammers with any mixed spamming strate-

gies from attaining their practical goal. Our code is available at

https://github.com/YingtongDou/Nash-Detect.
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1 INTRODUCTION

Online reviews and ratings contributed by real customers help

shape reputations of the businesses and guide customer decision-

makings, playing an integrative role in e-commerce and websites

such as Amazon [8], Yelp [21], and Google Play [26]. However,

monetary incentives therein have also attracted a large number

of spammers to hold sway over less informed customers: it is esti-

mated that about 40% of the reviews on Amazon are fake (called

“review spams”) [33]. To cope with the spams and restore the trust-

worthiness of online reviews, many detection methods based on

texts [13, 24, 39], reviewer behaviors [16, 23, 40], and graphs [10, 14,

20, 27] have been proposed. See Table 1 for some state-of-the-art.

Table 1: Comparison of the proposed Nash-Detect and prior work. “Attack
Agnostic” indicates a method does not assume a �xed attack. “Practical Goal”
means at a business metric is considered.

Business Fraud Detection Proposed

Nash-Detect[17] [22] [45] [10] [42] [12] [3]

Practical Goal X X X X X X

Attack Agnostic X X X

We note two drawbacks of existing detectors. 1) Most detectors

assume spams are generated by spammers1 with the same mindset

and can detect the spams by relying on the assumed spamming

strategy. In the real world, there are multiple groups of spammers

who have di�erent goals, targets, resources, and strategies. One

spammer may want to promote a new business while another aims

to demote a popular brand’s competitors [22]. The wide spectrum

of detection signals published so far serves as strong evidence that

multiple spamming strategies co-exist and no single detector can

stop the spams. 2) Professional spammers are more persistent and

committed, and can research the latest detection techniques from

published papers [24], third-party detection websites with detailed

detection manuals [29], and labeled spams released by the review

website [27]. The spammer can integrate these resources and learn

to in�ltrate the deployed detectors.

The above drawbacks are partially addressed by a diverse set of

spamming modes considered in the prior work [3, 5, 10, 12, 37, 41].

Nonetheless, the prior work aimed at high detection recall, AUC,

or top-k accuracy. Without considering practical spamming goals,

the accuracy-oriented detectors may not directly counteract the

unknown spamming goal. For example, as shown in Figure 1a, when

the human inspectors can only screen the most suspicious reviews

identi�ed by the detector, one can achieve high top-k accuracy by

reporting k easy-to-catch but insigni�cant spams, while letting go

the more signi�cant ones that are actually manipulating the review

system [46]. In other words, the accuracy-oriented detectors and

1A “spammer” refers to a physical person or entity in the real world that spams, rather
than a “spamming account” that is set up by a spammer on the online review system.
⇤This work was done when the author was at University of Illinois at Chicago.

https://github.com/YingtongDou/Nash-Detect
https://doi.org/10.1145/XXXXXX.XXXXXX
https://doi.org/10.1145/XXXXXX.XXXXXX
https://doi.org/10.1145/XXXXXX.XXXXXX


KDD ’20, August 23–27, 2020, Virtual Event, USA Yingtong Dou, Guixiang Ma⇤ , Philip S. Yu, and Sihong Xie

A(p)

! "#$%&$#’(

) **+$%

u1 u2

u3 u4

u5 u6

a1

a2

a3

d1

d2

d3

a4

r1 r2

r3

r4

r5

r6

d4

r1 r2

r3 r4

r5 r6

! "#$%&$#’() **+$

M
e
th

o
d
o
lo
g
y

C
h
a
ll
e
n
g
e
s

r1 r3

D(q)

(a) Challenges and our methodology.
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(b) Practical E�ect vs. Recall for
di�erent detectors.
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(c) Practical e�ect under di�er-
ent spamming attack strategies.

Figure 1: (a): A vulnerable spam detection pipeline, with steps numbered as (1), (2), etc. Accuracy-based detectors can bemisled to detect numerous insigni�cant
spams from new accounts, leaving behind themoremanipulative elite spams.We de�ne a zero-sum game to �nd a robust defender against unknown and evolving
spamming strategies A(p). (b): The Practical E�ect vs. Recall of individual detectors (shown in legend) against a mixed spamming strategy. The curve is obtained
by sweeping the detection thresholds. For most detectors, the attack could attain high practical e�ects even with high detection recall scores. (c): For a �xed spam
detector (Fraudar), a spammer can choose the best out of �ve attack strategies to maximize the practical e�ect.

the limited human screening resources create a unique vulnerability

in the spam detection pipeline.

We reconsider spam detection by posing the following questions.

1) What is the ultimate intention of the spammers? What is con-

sidered as a successful spamming campaign? From a marketing

perspective, a spammer aims to maximize reputation manipulations

and get paid by dishonest businesses. We distinguish the manipu-

lative e�ect by elite accounts from that by regular accounts, and

adopt marketing research results [17, 21] to formulate a practical

quantitative spamming goal. To show the vulnerability mentioned

above, we create spamming attacks against various state-of-the-art

spam detectors. The attacks e�ectively attain the practical spam-

ming goals while saturating the detectors to rather high detection

recall scores (Figure 1b). 2) What if there are multiple evolving

spamming strategies? Our experiment results in Figure 1c show

that a single �xed detector will always fail to detect some spams

when a spammer has knowledge about the detector to carefully

craft evasive spams. This implies a black-box attack: if a �xed de-

tector is adopted, a spammer can probe the detection system by

continuously changing the spam generation strategy until success.

Further, if multiple spamming strategies co-exist, either because

a spammer diversi�es its strategy portfolio, or because multiple

spammers are adopting di�erent strategies simultaneously, likely,

some strategies will successfully in�ltrate the �xed detector.

To answer the above questions, we propose Nash-Detect, an

attack-agnostic spam detector that is a Nash equilibrium of a mini-

max game and can tame adaptive and evolving spamming. 1)We

de�ne practical goals for both spammers and detectors from the

business perspective. We calibrate the detector via a cost-sensitive

loss function focusing on practical spamming e�ect measured by

revenue manipulations rather than detection accuracy. By minimiz-

ing this loss function, the detector can be trained to go after a small

number of more manipulative spams, while letting go spams that

are less signi�cant. 2) To reveal the vulnerability, we design strong

base spamming strategies against speci�c state-of-the-art detectors.

The base strategies will be combined into mixed strategies to ex-

plore even stronger attacks. Compared to neural network-based

attacks [31, 47], our spamming strategies rely on unlabeled data and

have no parameters to train. A spamming strategy based on param-

eter learning on a labeled set will be less general and can over�t the

training data. 3)We formulate a minimax game, where the spammer

will vary its mixed spamming strategies to maximize the practical

spamming e�ect, while the detector will recon�gure its detection

strategy to minimize the updated practical spamming e�ect. The

two strategies will hopefully evolve to an equilibrium consisting

of a robust detection strategy. To ensure computation tractability,

we propose a reinforcement learning approach to �nd an equilib-

rium of the minimax game in multiple episodes of �ctitious plays

of the game. Each episode has two phases. In the inference phase,

the spammer samples a base spamming strategy according to the

current mixed strategy, and the detector runs its current detection

strategy. This step will evaluate the practical spamming e�ect under

the current two strategies. In the learning phase, we update the two

strategies by backpropagating the practical e�ect to the strategy

parameters, so that both players can move in opposite directions to

maximize and minimize the e�ect. After multiple rounds of �cti-

tious play, the converged detection strategy will be robust to any

spamming strategy, including the worst one that the spammer can

synthesize using the base spamming strategies.

Experiments show that Nash-Detect can �nd the best con�gura-

tions of detectors which always have better defending performance

than the worst cases the spammer can synthesize. Nash-Detect also

exhibits great stability under various scenarios.
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2 PRELIMINARIES AND CHALLENGES

The data of a review system can be represented by a bipartite

graph G consisting of a set of accounts U = {u1, . . . ,um }, a set

of productsV = {v1, . . . ,vn } wherem is the number of accounts

and n is the number of products, and a set of edges R = {ri j : i 2

{1, . . . ,n}, j 2 {1, . . . ,m}}. Account ui posts a review to product

vj if and only if there is ri j 2 R and we use R and ri j to denote the

set of reviews and a speci�c review. Nodevi (uj , edge ri j , resp.) can

have various attributes, represented by the vector xi (xj , xi j , resp.),

describing account and product pro�les, and review metadata (e.g.,

posting time, ratings, and the related texts or image contents). The

review system evaluates a node v 2 V with a reputation score

s(v), according to the product ratings, rankings, and credibility of

the review account . Users may rely on s(v) to decide whether to

commit trust, attention, and money tov . For example, elite accounts

have higher credibility and more likely to be trusted by users [8, 22].

A physical spammer is a person who registers and controls a set

of accounts (the “Sybils”) US = UE [UN ⇢ U [45], where UE is

a set of elite accounts carrying more weights in their ratings, and

UN is a set of new accounts that the spammer register at any time.

When committing a spamming campaign, the spammer creates

a set of spams, represented as a set of new edges RS emitting

from some accounts in US towards the target nodes VT ⇢ V

and some non-targets V \ VT (for camou�aging) within a time

window. For simplicity, we assume the spams are posted towards

the target nodes only. The edges RS and the attributes of the edges

are decided by a spamming strategy with the goal of increasing

or decreasing s(v) for v 2 VT . A spammer can adopt multiple

spamming strategies simultaneously. We assume there are K base

attack strategies a = [a1, . . . ,aK ] (speci�ed in Section 3.4). Given

the current review system status and a spamming goal, a spamming

strategy decides when to use what accounts to post reviews with

what ratings to which targets. When multiple strategies are used

at the same time, the mixed attack strategy is denoted by A(p) =

Ek⇠p[ak ] =
ÕK
k=1

(pkak ), where p = [p1, . . . ,pK ] is the mixture

parameter with
Õ

pk = 1.2

No single detector can tackle all spamming strategies, and a

myriad of detectors based on di�erent spamming assumptions have

been proposed in [1, 10, 24, 27, 40]. See the related work for more

details. Ensembling a diverse set of detectors has been proven

useful [27, 28]. We assume there is an array of L base detectors

d = [d1, . . . ,dL] and each detector outputs a number in [0, 1], with

a larger value denoting more suspiciousness. The detectors are

given various importance q = [q1, . . . ,qL], so that the detector in

e�ect is D(q) =
ÕL
l=1

(qldl ) = q>d.

Challenges and the threat model. While the existing detectors

are designed to defend against one or multiple spamming strate-

gies, the underlying true spamming strategy has never been fully

revealed. To make the research problem tractable, we are not trying

to discover the true spamming strategy, but instead addressing the

strongest spamming strategy that the spammers can engineer given

due knowledge and resources [36]. This goal is more practically

meaningful: professional spammers can access the details of spam

detectors through published papers [24], reverse engineering from

2Rigorously, A(p) is not a weighted sum of numbers, since ak are not numbers but a
spam-generating function. Instead, think of A(p) as a weighted sum of functions.

labeled spams [27], and detection explanations [29], and update

their spamming strategies to evade a �xed detector. Indeed, pre-

vious work [5, 10, 30, 42] have considered spams in camou�age

for evading a �xed detector. Even if the �xed detector remains un-

known to the spammer, there are only a handful of salient detection

signals, leading to a relatively small space of detectors (all q over

the set of known salient detectors). A spammer can continue to

probe the current detector until it �nds something vulnerable and

then crafts a strong spamming strategy.

The second challenge is that, spam detection is treated as a

binary classi�cation problem and evaluated using accuracy [10],

recall [23], precision, AUC, or nDCG [27, 38]. These metrics are not

well aligned with the practical spamming goal, namely, to perturb

product reputation and revenue in a relatively short period. We

observed that the amount of perturbation is only weakly correlated

with the detection recall score. See Figures 1b and 2. In reality,

human spam screening and removals are limited to the top-k suspi-

cious spams, and the revenue manipulation is not entirely due to

the number of missed spams (false negatives). We identify the fol-

lowing vulnerability: massive obvious spams can easily be detected,

saturate the human screening capacity, and pose a deceivingly high

detection accuracy, while a small number of spams posted by elite

accounts are missed by the top-k screening and remain to manipu-

late the target reputation and revenue signi�cantly [21]. We term

such detectors as “accuracy-focusing detectors”, as they optimize

accuracy and other related metrics (F1-score, recall rate, etc.)

3 METHODOLOGY

3.1 Turning Reviews into Business Revenues

A high (or low) rating will contribute to the growth (or decrease)

in the sales of a product [8, 22], and a one-star increase in average

rating contributes to a 5 to 9 percent increase in revenues [17, 21].

More speci�cally, the unit increase in revenue can be attributed to

two di�erent types of reviews: those posted by regular accounts

(“regular reviews”) and those by elite accounts (“elite reviews”).

Di�erent from the regular accounts, an elite account is recognized

by the review system if the account has frequently posted high-

quality reviews. The elite reviews are more in�uential in product

revenue [21], as they count more in product evaluation in the review

system and are more frequently presented to the customers than

the regular reviews.

Formally, let R (RE , resp.) be the set of all (elite, resp.) reviews

before a spamming attack, and let R(v) (RE (v), resp.) be the (elite,

resp.) reviews posted towards product v . We adopt the revenue

estimation function f (v;R) from [21] to measure the in�uence of

the reviews on the revenue of product v :

f (v ;R) = β0 ⇥ RI(v ;R) + β1 ⇥ ERI(v ;RE (v)) + α

= β0 ⇥ (д(R(v)) − д(R)) + β1 ⇥ д(RE (v)) + α , (1)

where the function д(·) computes the average rating from the given

set of reviews. RI(v;R) , д(R(v)) − д(R) is the Review In�uence

derived from how much the average rating of v is better or worse

than the overall average rating. ERI(v;RE (v)) , д(RE (v)) is the

Elite Review In�uence due to the average rating contributed solely

by the elite reviews for v . β0 and β1 are coe�cients of the two
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in�uences, and α is the baseline revenue of all items3. Although

these coe�cients are estimated using Yelp’s data and may not be

applicable to other review systems, the underpinning of the paper

can be applied to other systems such as Amazon so long as this

estimation can be done.

3.2 Practical Spamming and Detection Goals

While the spammers aim to manipulate (promote or demote) the

targets’ revenues, the spam detector aims to tame such manipu-

lations. In the following, assuming a spammer wants to promote

the given targets’ revenue, we de�ne the goals of the spammer and

the defender (demotions are discussed at the end of Section 3). We

denote a spamming strategy by A(p) with parameters p, and the de-

tector with detection strategy q by D(q). The letter v is designated

to a target product.

A practical spamming goal. Let R(p) be the spams posted using

themixed spamming strategyA(p), andR(p, q) be the false-negative

spams that remain afterR(p) is purged by the detectorD(q) 4. Based

on the revenue f de�ned in Eq. (1), a metric to evaluate the Practical

E�ect (PE) of spamming using A(p) on v against the detection of

D(q) is:

PE(v ;R, p, q) = f (v ;R(p, q)) − f (v ;R)

= β0 ⇥ ∆ RI(v) + β1 ⇥ ∆ ERI(v),
(2)

which is the di�erence in the revenues of v after and before the

spamming and the detection.

∆ RI(v) = RI(v ;R(p, q)) − RI(v ;R) = д(R(v ; p, q)) − д(R(v))

∆ ERI(v) = ERI(v ;RE (p, q)) − ERI(v ;RE ) = д(RE (v ; p, q)) − д(RE (v))

are the change in in�uences due to the missed spams.

PE(v) can be negative when the spams and the detector bringv’s

rating down. This can happen when the human inspectors delete

some organic reviews with high ratings from v . We assume that

the inspectors will screen the top k (k is typically small) detected

reviews carefully so that there is no genuine review deleted. A drop

in revenue can also be caused by a spamming strategy that posts

negative reviews for the camou�age purpose. We consider such

more complex strategies in future work.

Spamming goal: max
p

max{0, PE(v ;R, p, q))}. (3)

A practical detection goal. The practical detection goal should

be minimizing max{0, PE(v ;R, p, q))} and make sure the resulting

detection strategy q will not entirely focus on detection accuracy

but will suppress the spamming promotion.

In the following, we de�ne a back-propagation algorithm for de-

tection strategy learning. According to Eq. 2, max{0, PE(v ;R, p, q))}

summarized the e�ect of the false-negative spams R(p, q). To guide

the detection strategy q, we �rst back-propagate (or attribute)

max{0, PE(v ;R, p, q))} to individual false-negative spams, and the

attributed costs are further back-propagated to the current detec-

tion strategy q that lead to the false negatives. From the spammer’s

3 β0 = 0.035, β1 = 0.036, and α = 1 based on the empirical �ndings in [21].
β1д(RE (v)) is much larger than β0(д(R(v))−д(R)) since β0 multiplies a di�erence.
4Possiblywith human screening of the detected reviews to further reduce false positives

perspective, elite spamming reviews are more in�uential. From the

detector’s perspective, a missed elite spamming review leads to

a larger amount of revenue manipulation that a missed regular

spamming review. Based on cost-sensitive learning [7], we turn

the spamming e�ect max{0, PE(v;R, p, q))} into detection costs

according to di�erent detection outcomes: the detection costs of

true positives and true negatives are 0 (CTP = CTN = 0); the false

positives will be handled by human screening and will cause zero

e�ect on the product revenue (CFP = 0); a false negative will not

contribute to the promotion of product v if PE(v)  0 unless oth-

erwise it will contribute to the following cost through ∆ RI(v) and

∆ ERI(v):

CFN(v, r ) =
β0∆ RI(v)

Z1
+ 1r 2RE (p,q)



β1∆ ERI(v)

Z2

]

, (4)

where Z1 and Z2 are respectively the amount of non-elite and elite

spams posted towards v . 1 is the indicator function. Based on the

analysis, the detection goal is de�ned as:

Detection goal:min
q

L(q) =
1

|R(p, q)|

’

r is FN

CFN(v, r ), (5)

where v is the target product that r was posted to.CFN(v, r ) implic-

itly depends on the strategy q, through the ranking of reviews by

the detector D(q) and the screening of the top k reviews. To facil-

itate the optimization of q, we de�ne the following cost-sensitive

surrogate detection loss function:

Lq =
1

|R(p, q)|

’

r is FN

−CFN(v, r ) log P(y = 1|r ; q), (6)

where y 2 {0, 1} is the label of r (y = 1 if and only if r is spam).

P(y = 1|r ; q) is the probability of r being a spam predicted by D(q):

P(y = 1|r ; q) = σ (q>d(r )), d(r ) = [d1(r ), . . . ,dL(r )], (7)

where σ represents the sigmoid function, the surrogate loss says

to reduce the cost CFN(r ,v), the detector should output a large

P(y = 1|r ; q) so that the spam r can be pushed into the top k

suspicious reviews.

3.3 Minimax Game and Optimization

The spammer and the detector’s goals are now well-aligned: the

spammer aims at promoting the revenues of the targets v 2 VT

and the detector wants to suppress such promotion. They will play

the following zero-sum game over the practical spamming e�ect

max{0, PE(v ;R, p, q))}:

min
q

max
p

’

v 2VT

max{0, PE(v ;R, p, q)}. (8)

Solving the above game will lead to a detector that can withstand

any mixing spamming strategies weights [a1, . . . ,aK ]. In particular,

we aim at a robust detector, parameterized by q⇤, that will minimize

practical spamming e�ects caused by any spamming strategiesA(p).

One limitation of q⇤ is that, during test time, a spammer may use

a pure strategy not considered in the pure strategies [a1, . . . ,aK ]

that D(q⇤) was trained on. It is thus essential to include represen-

tative spamming strategies during the training of q. Exhausting

all spamming strategies is out of the scope of this work, and in
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Section 3.4, we specify evasive attacks against mainstream detec-

tors. In the sequel, “spammer” can refer to the �ctitious spammers

during training or the real spammer during test time.

The objective function is not di�erentiable, as the calculation

of PE (shown in Eq. (2)) are based on nonlinear operators such

as adding reviews to R using the spamming strategy A(p), rank-

ing the reviews in R(p) based on P(y = 1|r ; q) (which depends on

the detectors [d1, . . . ,dL]), the removal of spams from the top k

suspicious ones, and the consideration of elite accounts. We note

that such non-di�erentiability is a necessary evil in robust spam

detection: diverse spamming and detection strategies help explore

the limit of both players, while many state-of-the-art spam attacks

and detectors are non-di�erentiable, non-continuous [42], stochas-

tic [10]. Therefore, gradient-based optimization methods are not

applicable, and we propose amulti-agent non-cooperative reinforce-

ment learning approach [11, 19, 34] and use stochastic optimization

based on Monte-Carlo to address the challenges. Regarding the

spammer and the detector as two competing agents who play the

attack and defense game in Eq. (8). The experiences of detector

and spammer will be obtained from a T -step roll-out of two de-

pendent Markov Decision Processes (MDPs) [32]: for each episode

(indexed by t = 1, . . . ,H ) of the H episodes of game playing, the

spammer will attack the review system using the current mixed

strategyA(p(t )) =
ÕK
k=1

(p
(t )

k
ak ) and the detector will respond with

the mixed detection strategy D(q(t )) =
ÕL
l=1

(q
(t )

l
dl ). Both mixing

parameters p and q will be updated as follows.

An MDP for the spammer. We adopt the multi-armed bandit

formulation [4] so that the spammer has no explicit state repre-

sentation of the review system but acts based on the practical

spamming e�ects. To be precise, the spammer maintains the distri-

bution p over the base spamming strategies a1, . . . ,aK as a policy.

In episode t , for each target v , the spammer samples an action ak
with k ⇠ Multinominal(p(t )) to execute a spamming attack (via

posting a fake review to v using an account selected by ak ). The

attack on v by ak is denoted by ak  v . At the end of the episode,

the detector uses the mixed strategy D(q(t )) to remove some posted

spams, and the �nal PE(v;R, p(t ), q(t )) is calculated as in Eq. (2).

The reward for the spamming strategy ak is the portion of PE in

this episode due to the spams posted by ak but missed by D(q(t )).

The speci�c credit assignment at episode t is:

G(t )(ak ) =
’

ak v

σ

 

PE(v ;R, p(t ), q(t )) − AVG(PE)

Z

!

, (9)

whereZ = maxv 2VT
PE(v ;R, p(t ), q(t ))−minv 2VT

PE(v ;R, p(t ), q(t )).

Themaximum,minimum, and average are calculated over all targets

VT , including those not attacked by the strategy ak . The subtrac-

tion of the average from PE(v;R, p(t ), q(t )) can help di�erentiate

e�ective attacks from less e�ective ones [32]. The rewards are ac-

cumulated across multiple episodes of the game, and p(t ) is as:

p
(t+1)
k

/

"

p
(0)
k
+ η

t
’

τ=1

G(τ )(ak )

|{v : ak  v}|

#

. (10)

An MDP for the detector. In episode t , the detector senses the

state of the review system as the vector d(ri ) = [d1(ri ), . . . ,dL(ri )]

for each review ri 2 R(p(t )) after the spamming attack A(p(t )).

To evaluate the current detection strategy, the labels of the added

spams are not disclosed to the detector when the detector D(q(t ))

takes its actions. To simplify training, the base detectors dl are

�xed. The strategy q(t ) generates the probability P(y = 1|r ; q) on

each review r 2 R(p(t )) according to Eq. (7). The top-k suspicious

reviews based on P(y = 1|r , q(t )) are removed, leading to the set

R(p(t ), q(t )), which potentially contains false negatives that con-

tribute to PE(v;R, p(t ), q(t )). The spamming e�ect attributed to

individual false negatives is CFN de�ned in Eq. (4). The mixing pa-

rameter q(t ) will be updated to q(t+1) by minimizing the following

cost-sensitive loss function:

L(q) =
1

|R(p(t ), q(t ))|

’

r 2R(p(t ),q(t ))

−CFN(v, r ) log P(y = 1|r ; q),

(11)

where v is the target that r was posted to. After the detection,

the current episode is done, and both agents move to the next

episode and play the same game with the updated parameters

(p(t+1), q(t+1)).

Optimization algorithm.We proposeNash-Detect in Algorithm 1

for �nding a Nash equilibrium (p⇤, q⇤), and q⇤ is the resulting robust

detection strategy. Figure 1a presents a toy-example of Nash-Detect.

At a Nash equilibrium, both the spammer and detector will not want

to change their strategies (p⇤, q⇤) since it will not lead to further

bene�t. There can be multiple Nash equilibria and the algorithm

just �nds one. It is challenging to prove the uniqueness of Nash equi-

libria except in some very restrictive problem settings. Experiments

show that Nash-Detect always �nds a robust detector regardless

of what p⇤ is. Nash-Detect is trained in H episodes. During each

episode t = 1, . . . ,H , there are the forward and backward steps:

• Inference (forward): for each target v 2 VT , the �ctitious spam-

mer samples one pure strategy from a1, . . . ,aK according to

p(t ) and posts spams to v using an account determined by the

selected strategy. The sampling of ak and the selection of ac-

counts by ak are conducted independently among the targets.

That is, posting spams to one target will not a�ect the selection

of ak and how ak runs its attack on the subsequent targets. It is

left as future work to consider updating the review data before

spamming the next target so there can be dependencies between

the spams towards two targets. When all targets receive their

spams, the detector D(q⇤) removes the top-k suspicious spams

and the practical e�ect PE(v;R, p, q) is computed as the �nal

output of the inference (forward pass).

• Learning (backward): the current rewards for the spamming

strategies are calculated using Eq. (9) and p(t ) is updated to p(t+1).

Simultaneously, the detection strategy q(t ) is also updated by

minimizing the loss function Eq. (6) to obtain q(t+1).

Discussion. Nash-Detect assumes the spammer aims at promoting,

rather than demoting the targets. Nash-Detect can handle demotion

by changing the practical spamming e�ect frommax{0, PE(v ;R, p, q))}

tomin{0, PE(v ;R, p, q))}where PE(v ;R, p, q)) shall bemade a small

negative number to bring down the targets’ revenues.
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Algorithm 1 Nash-Detect: Training a Robust Spam Detector

1: Input: all reviews R, target items VT , pure attack strategies

[a1, . . . ,aK ], pure spam detectors [d1, . . . ,dL], initial spam-

ming strategy p(0) = [p1, . . . ,pK ] and initial detection strategy

q(0) = [q1, . . . ,qL] to uniform distributions.

2: Output: a Nash equilibrium (p⇤, q⇤).

3: repeat . Go through the H episodes indexed by t

4: Inference:

5: R(p(t )) = R.

6: for all v 2 VT do . Post fake reviews

7: Sample ak using ϵ-greedy for v according to p(t ).

8: Post spams to v using ak .

9: Remove spams in the top k reviews detected by D(q(t )).

10: Compute PE(v,R, p(t ), q(t )) using Eq. (2) on R(p(t ), q(t )).

11: Learning:

12: Compute CFN(v, r ) using Eq. (4) and G(ak ) using Eq. (9).

13: Update p(t ) to p(t+1) using the gains G(ak ).

14: Update q(t ) to q(t+1) by minimizing Eq. (11).

15: until L(q) converges

When applying the resulting detector, admittedly, onemust know

whether a spammer will promote or demote a product. A sim-

ple solution is to learn about the probability that a product will

commit self-promotion and apply Nash-Detect trained based on

max{0, PE(v;R, p, q))}. For example, pieces of evidence showed

that when a product recently received negative reviews, it is more

likely to commit spamming for self-promotion. On the other hand,

demotions are more likely among competitors who o�er similar

products (e.g., Samsung vs. Apple [35], or Starbucks vs. Dunkin’

Donuts [22]). We leave as future work regarding apply two robust

detectors to handle demotions and promotions simultaneously.

3.4 Base Detection and Spamming Strategies

Base detection strategies. As mentioned in Section 2, there have

been a variety of graph-based and behavior-based detectors. We

select the following �ve base detectors:

• GANG [38]: a social network Sybil detection algorithm via lin-

earized belief propagation.

• SpEagle [27]: an advanced belief propagation algorithm veri�ed

on Yelp review spam datasets.

• fBox [30]: an SVD-based algorithm that spots small-scale suspi-

cious links in social networks.

• Fraudar [10]: a fraudster detection algorithm that detects dense

blocks in graphs.

• Prior: an algorithm that ranks spams based onmultiple suspicious

behavior features listed in [23, 24, 27].

These detectors are unsupervised [10, 27, 30], have no or very few

parameters [10, 23], are scalable [38], diverse, and representative

of explicit assumptions about the spamming strategies, making the

resulting detector more robust and interpretable. Supplement A.1.4

shows their implementation details. There is no hurdle for Nash-

Detect to include deep learning methods [13, 20] as base detectors.

However, the underlying spamming strategies are learned from

many labeled data, leading to a less interpretable detector (in the

sense of explaining the interplay between any two detection and

spamming strategies, and why the resulting detector is robust).

Base spamming strategies. Di�erent from the secure machine

learning literature [2], a spamming strategy cannot manipulate

some important detection features directly but has to do so via

posting new reviews. On some review systems, a spammer can

retract posted reviews and can be used in attacks against clus-

tering and classi�cation on graphs [31, 47]. We assume that only

additions of reviews are allowed, similar to the attacks on graphs

proposed in [5]. The reasons are that adding reviews is the most

direct way to perturb target ratings, while deleting reviews can

make a spamming account look suspicious [29] and reduce the

e�ects of previous attacks. There are attacks based on text gener-

ation [14, 42] and control of spamming tempo [9], but we do not

consider such controls in this work for simplicity. All these prior

attacks do not distinguish elite and regular accounts and are not

trained to maximize the practical spamming e�ect. We consider the

situation where elite and regular accounts contribute di�erently to

the practical spamming e�ect [40, 45]. We propose the following

base spamming strategies that di�er in their target detectors and

whether elite accounts are employed, and let Nash-Detect learn the

importance of each base spamming strategy. The implementation

details of following strategies are shown in Supplement A.1.5.

• IncBP: it uses elite accounts and tries to evade detectors that

use both behavior [23, 24, 40] and graph information [27, 38]. It

employs linearized belief propagation (LinBP) [38] on a Markov

Random Field (MRF) to estimate account suspiciousness. The

strategy estimates the suspiciousness of controlled accounts after

posting fake reviews to one target and posts reviews to the next

target using accounts with the minimum suspiciousness.

• IncDS: it uses elite accounts and aims to evade detectors that

regard dense blocks suspicious [10]. IncDS estimates the sus-

piciousness of each account using the density of the subgraph

composed of its neighbors after a spam is posted. IncDS selects

the account with minimum density to post the next spam.

• IncPR: it uses elite accounts and aims to evade the detector Prior.

The spamming process is iterative with account suspiciousness

estimation, similar to IncBP and IncDS.

• Random [10, 30]: it randomly picks an elite account to post a spam.

• Singleton: it uses new accounts, each of which posts only one

review. Such spams can avoid creating dense blocks and thus can

evade Fraudar.

4 EXPERIMENTS

4.1 Experimental Setup

Datasets.We conduct experiments on three Yelp review datasets

(YelpChi, YelpNYC, and YelpZip) used in [24, 27]. The datasets

contain reviews labeled as spams and legitimate, but we simply

assume the set of reviews are R where the spammer will start their

spamming attacks. Dataset details are in the Supplement.

Elite account selection. The datasets only contain partial infor-

mation of each account and we could not crawl the accounts’ elite

status from Yelp. Since Yelp takes the number of reviews posted by

the accounts as a crucial factor in determining account elite status,
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and there are estimated 6% − 9% elite members among all accounts

of Yelp [6, 15, 44], we regard accounts with more than ten reviews

as elite accounts in the experiments, representing 1.4%, 4.30% and

4% of the total accounts on the three datasets, respectively.

Spamming attack and detector setting. We select �xed sets of

elite accounts and target products to train/test all spamming and de-

fense strategies (details are in Supplement A.1.3). After calculating

the review suspicious scores using Eq. (7), all reviews are ranked by

their suspicious scores in descending order, and we remove the top

k% suspicious reviews as spams. We set k = 1 in all experiments.

Evaluation criteria.According to Section 3.3, we expect that Nash-

Detect can �nd the optimal detector con�guration (q⇤) by playing

the minimax game between the spammer and defender. WithD(q⇤),

the performance of A(p) should be worse than the worst-case of

each single attack against a single detector [36]. It will show that

the detectors con�gured by Nash-Detect could defend the attacks

better than any single detector. The performance of attacks and

defenses are both measured by the practical e�ect (Eq. (2)).
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Figure 2: Practical E�ect vs. Recall for di�erent detectors against ensemble
attacks on YelpNYC and YelpZip.

4.2 Practical E�ect vs. Accuracy

To verify the advantage of the proposed practical goal, we plot

the detection results of �ve single detectors against �ve attacks

under three datasets. Figure 1b and Figure 2 show the Practical

E�ect-Recall curves of �ve detectors against multiple attacks on

three Yelp datasets. The practical e�ect is calculated according to

Eq. (2) and recall score is obtained by using the suspicious scores

as a detector. Given the review suspicious scores, as we decrease

the classi�cation threshold from 100% to 0%, more spams will be

detected, the recall score increase from 0 to 1, and the practical

e�ect should gradually decrease. However, most detectors (GANG,

fBox, SpEagle, Prior) only reduce a small practical e�ect of attacks

when their recall scores increase from 0 to 0.8. It demonstrates that

the practical goal proposed by us could capture the practical e�ect

of the spamming campaign, and a high accuracy metric does not

mean a good practical detection performance. We also employ the

practical e�ect to show the vulnerability of individual detectors.

Table 2 shows the practical e�ect of individual detectors against

individual attacks. One can see that if the spammer knows that

a speci�c detector (such as Fraudar and fBox) is adopted by the

defender, the spammer can adopt the spamming strategy (such as

Random or IncBP) that leads to the most practical e�ect with respect

to the known detector. Therefore, a detector ensemble con�guration

D(q) is necessary.

Table 2: The practical e�ect of detectors against attacks under YelpChi.

GANG SpEagle fBox Fraudar Prior

IncBP 4.8916 4.9052 4.9125 1.4203 4.9099

IncDS 4.9010 4.9052 4.9110 4.8959 4.9099

IncPR 4.9010 4.9052 4.9105 3.0716 4.9099

Random 4.9010 4.9052 4.9092 4.8962 4.9099

Singleton 0.5300 0.5865 0.5783 0.5771 0.5912

4.3 Nash-Detect Training Process

In the training phase, we run Nash-Detect for 50 episodes on three

datasets, and the results are shown in Figure 3.

Spamming strategy updating. Figure 3a shows the updates that

the spamming strategy mixture parameters (p) undergo. We can

see that Nash-Detect successfully identi�es reviews posted by new

accounts using Singleton as insigni�cant to the practical e�ect.

A similar observation is shown in Table 2 where the Singleton

attack’s practical e�ect is much smaller than the other spamming

strategies against all detectors. This observation is consistent with

the practical in�uence of non-elite accounts discussed in Section 3.2.

In Figure 3a, the �uctuations in the relative importance (pk values)

of the remaining four spamming strategies indicate that it is hard

to �nd a single useful spamming strategy to evade the defense

strategy, which is also under training and evolving.

Detector importance updating.By juxtaposing Figures 3a and 3b,

we can see that no matter how the spamming strategy evolves, the

detectors’ weights (q) move smoothly toward the optimal con�gu-

ration. Meanwhile, the loss of detectors (Eq. (11)) converges as train-

ing episodes increases (Figure 3f). Note that in Figure 3b, though the

relative importances of GANG and Fraudar (q) di�er across datasets,

the two detectors both perform better than other detectors under

the worst cases individual attack under each dataset. This means

that the Nash-Detect converges to the optimal con�guration.

Practical e�ect. According to Figures 3b and 3d, the learned de-

tector importance (q) do not use a single detector but with a stable

distribution that guarantees the worst-case performance is better

than the worst-case when using a single detector (dash lines at the

top). By comparing Figure 3c and 3e, we see that the number of

evaded spams are not positively correlated with the total rewards

of the spamming attacks on the target products. This observation

further con�rms that the promotions mainly come from the small

number of elite accounts that evaded the detection, even with many

singleton spams detected. Similar observations can be seen from

Figures 3c and 3d, as the practical e�ect will be backpropagated to

individual products as their rewards. The bumping of the number

of evaded reviews on the YelpNYC dataset is due to the suspicious

scores of posted fake reviews are around the �ltering threshold.

Interpretability. Since the fake reviews posted by elite accounts

contribute much more than other reviews to practical e�ect (Eq.

(2)), Nash-Detect favors detectors that can spot more elite accounts.

From the graph perspective, the elite accounts and target products

are likely to form dense blocks when fake reviews are added be-

tween the accounts and the products. Since Fraudar is designed

to spot dense blocks, more elite spams should be detected and

Nash-Detect successfully assigns higher importances to Fraudar, as
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Figure 3: The training process of Nash-Detect with 50 episodes.

shown in Figure 3b. Contrarily, fBox is designed to detect “small”

attacks and can’t handle elite spams. Since singleton spams are

insigni�cant to the practical in�uence, Nash-Detect assigns lower

importance to fBox.

4.4 Performance in Deployment

In the testing phase, we select new sets of controlled accounts

following the same settings in the training phase but keep the

same set of target products. For each target product, we sample

base spamming strategies uniformly to test the performance of

various detectors in suppressing practical spamming e�ects when

deployed. We repeat the sampling for 10 times. In Figure 4 we show

the means and standard deviations of the practical e�ects when the

detectors are deployed. Equal-Weights is a baseline where all base

detectors have the same importance, and Nash-Detect represents

the optimal detector con�guration (q⇤) found during the training

phase. From Figure 4, we can see that Nash-Detect (in red bars)

has lower mean practical e�ects, compared to other detectors on

YelpChi and YelpNYC. On YelpZip, the performance of Nash-Detect

is not as good as Fraudar’s, since the selected accounts in the testing

phase have a higher percentage of elite accounts with more reviews

(> 100). As a result, Fraudar can easily spot the large dense blocks

and has a much lower practical e�ect on YelpZip. This suggests

that one should incorporate diverse accounts and products during

training to guarantee the robustness of the resulting detectors. More

experiment results are presented in the Supplement A.2.

5 RELATED WORK

Spam detectors. Besides text-based detectors [13, 24, 27, 39], there

are three major types of spam detectors: behavior-based detectors,

graph-based detectors, and detectors using both behavioral and

graph structural information. Behavior-based detectors [23, 24, 27,

40] calculate review suspicious scores based on di�erent behav-

ior features. Graph-based detectors adopt representation learning

approaches, such as SVD [30], node2vec [14], and more recently

graph neural networks [20]. Some graph-based detectors identify

dense blocks [10] or dense �ows [18] of the spamming accounts

and targets from review graph. Examples of detectors using both be-

havioral and graph structural information include the SpEagle [27],

GANG [38], and GraphConsis [20], etc.

Marketing research on spam campaigns. Online review sys-

tems and the associated spam campaigns have drawn much at-

tention from researchers in marketing. [8, 21, 43] study how on-

line business ratings in�uence consumers’ purchase decisions. [43]

shows that a ten percent increase in traveler review ratings will

boost online bookings by more than �ve percent. [8] suggests that

both the reviews and the accounts’ social status will contribute
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Figure 4: The practical e�ect of Nash-Detect and baselines during testing.

to revenue growth. Inspired by the above works, we propose to

incorporate economic incentives and accounts’ social status into

the spamming practical goal. In the real world business system,

there are other factors like marketing operation status and business

category that may a�ect the business revenue as well. However, it

is infeasible for us to model such a complicated relationship using

only the online review data. Therefore, in this paper, we mainly

focus on the relationship between rating and revenue.

6 CONCLUSION

In this work, we propose a practical metric for review systems with

product revenue promotion in mind. We investigate the practical

performance of mainstream spam detectors against several goal-

oriented spamming attacks in an adversarial setting. We formulate

a game theoretical model and reinforcement learning algorithm to

�nd a robust detection strategy against a diverse set of spamming

strategies. Empirical evaluations on three large review datasets

demonstrate that the proposed algorithm can indeed generate de-

tectors that can e�ectively tame the practical spamming goal of

product revenue manipulation. It remains our future work to adopt

the proposed model and algorithms to adversarial misinformation

attack in other reputation systems, such as rumor detection on

social networks.
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