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Abstract
Color perception has long remained an intrigu-
ing topic in vision and cognitive science. It is
a common practice to classify a person as ei-
ther “color-normal” or “color-blind”, and that
there are a few prevalent types of color-blindness.
However, empirical evidence has repeatedly sug-
gested that at best, categories for color-blindness
only serve as approximations to real manifesta-
tions of it. To better understanding individual-
level color perception, we propose a color percep-
tion model that unifies existing theories for color-
normal and color-blind people, which posits a low-
dimensional structure in color space according to
which any given user distinguishes colors. We
design an algorithm to learn this low-dimensional
structure from user queries, and prove statistical
guarantees on its performance. Taking inspira-
tion from these guarantees, we design a novel
data collection paradigm based on perceptual ad-
justment queries (PAQs) that efficiently infers a
user’s color distinguishability profile from a small
number of cognitively lightweight responses. In
a host of simulations, PAQs offer significant ad-
vantages over the de facto method of collecting
comparison-based similarity queries.

1. Introduction
A non-trivial fraction of the population, about 8% of men
and 0.5% of women, have color-blindness conditions (also
called color vision deficiency, or CVD). Color-blindness
is conventionally classified into a few types, based on the
person’s level of difficulty in perceiving three primary colors
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(red, green, and blue). It also varies in severity, which can be
quantified in color-blind test scores, from mild to complete
deficiency in perceiving a primary color. Common tests for
diagnosing color-blind conditions include the Ishihara test
(naming numbers from colored dots) and the Farnsworth-
Munsell test (arranging colors on a line to form a gradual hue
change). However, empirical studies suggest that these tests
often fail to accurately identify the type of color-blindness
or extent of defect (Hardy et al., 1945; Dain et al., 2019;
Miquilini et al., 2019; Van Staden et al., 2018).

In this work, we provide a principled framework towards
fine-grained analysis of a person’s color discrimination abil-
ity. We go beyond pre-defined categories and leverage con-
fusion lines in a color space (Moreira et al., 2018) as the
directions along which the person is not able to distinguish
colors. These confusion lines intersect at one single point
(termed the “copunctal point”, which provides rich informa-
tion about the impaired/missing cone); see Figure 1 for an
example of the confusion lines and the copunctal point for
the type of red-green color-blindness.

To locate the copunctal point, we draw on a second line of
color vision literature that conducts experiments to study
people’s varying levels of difficulty in distinguishing similar
colors, with or without color deficiency. This difficulty is
characterized by ellipses in the color space, where colors
within the same ellipse are hard for a person to distinguish
from the color at the center of this ellipse. We term the
center the “reference color” of the ellipse. The major axis
of the ellipse represents the direction that the person has the
most difficulty in distinguishing colors from the reference
color. This major axis reduces to a confusion line for people
with complete deficiency in perceiving a primary color.

We adopt a two-step procedure for computing the copunctal
point. In the first step, we collect user data to estimate
their ellipses and associated major axes. In the second step,
we compute an “approximate” intersection point of these
major axes and report it as our copunctal point estimate. We
provide a theoretical result that relates the error in locating
the copunctal point to the error in estimating the major axes
(see Thm 3.2). This result enables us to use and assess
different methods for estimating the ellipses in the first step.
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We exemplify this plug-in approach by using the perceptual
adjustment queries (PAQ) (Xu et al., 2024) to estimate the
ellipses in the first step. PAQ is designed for Mahalanobis
metric learning, where the metric is represented by a PSD
matrix. User responses to PAQs are collected from an in-
terface that presents a reference item (in the metric space)
to the user, and asks the user to move along a slider and
stop when the item changes from being similar to dissimilar.
PAQs are thus natural query mechanisms for our task: the
user is presented a reference color, and instructed to iden-
tify the first color on the sliding bar that is the same as the
reference color (see Figure 2). Furthermore, the problem
of estimating the major axis of confusion ellipse is related
to that of metric learning. We propose a least-squares esti-
mator to estimate the ellipses and subsequently the major
axes. We provide theoretical guarantees on the accuracy in
estimating the ellipse (Thm 4.1), completing the first step in
the plug-in approach.

Combining the theoretical results for the two steps, we
derive end-to-end guarantees for estimating the copunctal
point (Corollary 4.2). A sample experimental result for this
end-to-end procedure is presented in Figure 3, which visu-
alizes the ellipses and confusion lines for four individuals.
These results provide new quantitative findings about color
perception of normal and color-blind people (discussed in
more detail in Section 5.2).

Our framework for copunctal point estimation leads to theo-
retical and practical implications. Theoretically, our result
on ellipse estimation from the first step reveals the surpris-
ing phenomenon that the least-squares estimator is biased in
estimating the ellipse, but unbiased in estimating its major
axis. Practically, our framework has the potential to improve
downstream applications. For example, the image recolor-
ing task aims to enhance enhance contrast for color-blind
people by performing a remapping of the colors in an im-
age. Prior methods remap the colors by moving colors away
from on the same confusion line (Meyer & Greenberg, 1988;
Tsekouras et al., 2021b), where this line is determined by
the type of color-blindness. Our approach yields an estimate
for an individual’s copunctal point and hence an individual-
ized confusion line along which to perform color correction.
In summary, we envisage that our results lay the founda-
tions towards using statistical and computational methods
to quantitatively study and correct for color-blindness.

1.1. Our contributions and organization

Motivated by color theory, we formulate a forward model
that characterizes color perception through a copunctal point
and elliptical confusion regions. We set up the statistical
estimation problem of computing the copunctal point from
observations of confusion regions (Section 2), and present
an algorithm for this task (Section 3). We prove that our

Figure 1. CIE xy color space and a set of confusion
lines with intersection as the copunctal point for red-green
color-blindness (protanopia) (Tsekouras et al., 2021a)

Figure 2. Mock user interface for color matching experi-
ment

(a) Normal vision A (b) Normal vision B

(c) Normal vision C (d) Color-blind D

Figure 3. Ellipse plot and copunctal point estimation for
normal trichromats A, B and C and color-blind D)
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algorithm reliably estimates the copunctal point given good
metric estimates, and complement this result with guaran-
tees for metric learning (Section 4). We run some sim-
ulations to validate our algorithm with knowledge of the
true copunctal point, and conclude with a small user study
(Section 5).

1.2. Related work

We utilize two salient concepts from color vision theory,
both of which utilize the CIE 1931 xy chromaticity dia-
gram (Smith & Guild, 1931). The concept of confusion lines
is typically defined for different types of color-blindness,
and 2D color discrimination ellipses are commonly used
to reason about people with normal color vision. We unify
these concepts in presenting our forward model for color
vision. Our work is also related to human data elicitation
for metric learning. For example, pairwise comparisons
(Ying et al., 2009) can be used to compare colors in pairs
to judge if they are (in)distinguishable, and triplet compar-
isons (Mason et al., 2017) can be used to assess degrees of
distinguishability from a reference color. We compare both
these mechanisms with PAQ in simulation. Our theoretical
analysis also touches upon popular themes in functional
estimation. Our algorithm is inspired by robust optimization
and a delicate use of the Davis-Kahan theorem (Yu et al.,
2015).

1.3. Notation and Definition

For two real numbers a and b, let a ∧ b = min{a, b} and
a ∨ b = max{a, b}. Given a matrix A ∈ Rd1×d2 , denote
∥A∥F and |||A|||op as its Frobenius norm and operator norm,
respectively.

2. Forward model and copunctal point
estimation problem formulation

In this section, we present a formal mathematical model
and problem statement for personalized color perception
estimation. We begin with a brief overview of color the-
ory in Section 2.1 before presenting a formal mathematical
model in Section 2.2 and problem statement in Section 2.3.

2.1. Color theory and a unified model for color
perception

In this work, we operate primarily in the CIE 1931 xy chro-
maticity diagram (Smith & Guild, 1931), a two-dimensional
color space that is a projected version of CIE xyY. We refer
the chromaticity diagram as our color space. The two non-
negative coordinates in this space characterize a color’s hue
and colorfulness, two properties that collectively make up
a color’s chromaticity. The range of visible colors forms a
horseshoe shaped subset of the non-negative 2D quadrant

known as a gamut. For color-blind people, distinguishing
colors is difficult along a particular set of directions in the
color space, known as confusion lines. Though these con-
fusion lines vary based on the type of color-blindness (e.g.,
red-green or blue-yellow) as well as the particular colors
considered, the orientation of these lines is not random in
that they intersect at a point called the copunctal point. Dif-
ficulty distinguishing colors is not specific to color-blind
people. For any color in the color space, nearby colors are
naturally indistinguishable, forming local regions around
colors known as color discrimination ellipse (i.e., confusion
regions).

However, the relationship between the confusion lines and
the confusion regions are seldom discussed in previous re-
search. In this paper, we posit a single model of human
color perception that unifies the copunctal point structure
for color-blind people and the elliptical confusion regions
that arise for all people.
Model 1 (A unified model for color perception). Each user,
regardless of color-blindness status, has a unique copunctal
point w⋆, from which confusion lines are emitted. These
confusion lines define the major axes of the region of confu-
sion centered at any color in the color space.

Estimating the copunctal point characterizes how they per-
ceive differences with respect to any color in the color space.

2.2. A mathematical model for color perception

We now describe a mathematical model that captures vari-
ous facets of color perception discussed in Section 2.1. In
what follows, we explain how the problem of identifying
the copunctal point for individuals is naturally captured by
understanding a metric space and its geometry. We consider
the CIE xy chromaticity color space in R2. The ellipse at
each color z ∈ R2 can then be equivalently represented
by a matrix Σ⋆

z ∈ R2×2. We use the shorthand notation
Σ⋆ if its associated color z is clear from the context. All
points within the ellipse centered are hence captured by the
set {v ∈ R2 : (v − z)TΣ⋆

z(v − z) ≤ y}. In the metric
learning literature, the matrix Σ⋆

z is called a Mahalanobis
metric, and the product (v − z)TΣ⋆

z(v − z) is the distance
(amount of color difference perceived by an individual) be-
tween the two points v and z in this metric space. The
value of y is the minimum distance such that the user is
able to perceive the color difference, and hence the ellipse
{v ∈ R2 : (v − z)TΣ⋆

z(v − z) ≤ y} represents all col-
ors that cannot be distinguished from the reference color
z. Note that we are free to scale Σ⋆, so we assume y = 1
without loss of generality for the rest of the paper.

The major axis of the ellipse is the direction that the individ-
ual has the most difficulty distinguishing colors, namely the
direction that the individual’s color perception changes at
the slowest speed. It is the direction that the value aTΣ⋆

za
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changes the slowest, namely the direction of the last eigen-
vector (which reduces to the second eigenvector in 2D
space). The copunctal point is hence the intersection of
the lines corresponding to these eigenvectors.

2.3. Problem statement

Under the mathematical model for color perception, our goal
is to learn a user’s copunctal point from human responses
to queries that gauge color similarity to a variety of refer-
ence colors. Formally, we assume that we have N reference
colors {zn}Nn=1, against which we query for perceived sim-
ilarity and differences in color. For each reference color zn,
we obtain Mn responses of the form {(γ(n)

m ,A(n)
m )}Mn

m=1,
where γ

(n)
m is the human response to a query comprised of

the reference color zn and the query items in the query set
A(n)

m . From these responses and query sets, our goal is to
estimate the copunctal point w⋆. Two natural stages arise
in the copunctal point estimation problem. First, human
responses are used to estimate a metric. Then the estimated
metrics can be used to estimate the copunctal point by lever-
aging their major axes.

3. A copunctal point estimator and guarantees
In this section, we present an estimator that takes a set of es-
timated metrics corresponding to different reference points,
and estimates the copunctal point w⋆. For this estimator, we
present our main theoretical results on copunctal point esti-
mation, a deterministic result that bounds copunctal point
estimation error given noisy estimates of the ellipses.

3.1. An error cone-based estimator

We now present our copunctal point estimator, which takes
as input a set of estimates of distance metrics at various
reference points. We only require that the estimates have
bounded operator norm error. Specifically, we assume that
we have metric estimates {Σ̂n}Nn=1 that each satisfy the
error bound

|||Σ̂n −Σ⋆
n|||op ≤ τn. (1)

As discussed in Section 2.2, the copunctal point is at the
intersection of confusion lines. At each reference point, the
confusion line aligns with the major axes of the level-set
lines induced by the ground truth metric. This major axis
is determined by the second eigenvector of the true metric.
The estimator we present makes use of this fact and proceeds
in three steps below, see Figure 4. This general procedure is
outlined in Algorithm 1.

Step 1: Computing the major axes We assume that for
each of the N reference points {zn}Nn=1, we have estimated
a distance metric {Σ̂n}Nn=1 from collected human responses.

For every estimated metric Σ̂n at reference points zn, we
obtain its eigenvectors û

(n)
1 and û

(n)
2 and corresponding

eigenvalues λ̂(n)
1 and λ̂

(n)
2 via its eigenvalue decomposition.

Here, λ̂(n)
1 and λ̂

(n)
2 are the largest and smallest eigenval-

ues, respectively, and û
(n)
1 and û

(n)
2 are their respective

eigenvectors. In particular, we are interested in the second
eigenvector û(n)

2 , as discussed in Section 2.2, aligns with
the confusion line for this reference point. If we were guar-
anteed exact estimation of the metrics, then the intersection
of the second eigenvectors of any two metrics yields the cop-
unctal point exactly. However, because our measurements
are noisy and our estimation of the metrics is imprecise,
our estimate of the major axes is also imprecise. As such,
the estimated eigenvectors play a critical role in how we
estimate the copunctal point.

Step 2: Constructing an error cone Since our estimate
of the metric is imperfect, our estimated eigenvectors are
not exactly aligned with the true confusion lines. However,
if we have a reasonable estimate of the metric, then we
should expect that our estimated eigenvectors do not de-
viate too far from the true eigenvectors. Specifically, we
appeal to the Davis-Kahan theorem (Yu et al., 2015), which
informally states that if the operator norm error between
an estimated metric Σ̂n and true metric Σ⋆

n is bounded by
some threshold τn, then the angular deviation, which we
denote αn, between our estimated eigenvector û(n)

2 and the
true eigenvector u(n)

2 is bounded as

αn ≤
τn

|λ̂(n)
1 − λ̂

(n)
2 |

. (2)

Based on this result, we construct error cones of angle
αn, which we denote Cn(αn), for each of the N estimated
metrics. The n-th cone has vertex at the reference point
zn, is symmetric about the estimated eigenvector û(n)

2 , and
has boundaries that are an angle αn/2 rotated from the
estimated eigenvector. We precisely define this error cone
in Appendix A.

For each reference point and estimated metric, we compute
the error cone, which defines a viable angular region around
the estimated eigenvector in which the true eigenvector must
lie in. This enables us to estimate the copunctal point, as we
discuss next.

Step 3: Estimating the copunctal point With error cones
for each reference point in hand, we now turn to estimating
the copunctal point. Because each of the error cones con-
tains the true eigenvector, and hence the true confusion line,
the intersection of all of the error cones is non-empty and,
crucially, contains the copunctal point. As a result, we solve
the following feasibility program to obtain an estimate ŵ.

ŵ ∈ Cn(αn) for n = 1, . . . , N (3)
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Figure 4. Three steps for copunctal point estimation: (a) Estimate metrics from PAQ responses; (b) Translate metric estimates to
cones; (c) Estimate a copunctal point inside code intersection.

Since each error cone is defined by the two boundary lines
originating from the reference point, the above optimization
program can be rewritten as a linear feasibility program, and
can be solved by off-the-shelf solvers. Specifically, if we
write û

(n)
2 = [û

(n)
2,1 , û

(n)
2,2 ]

⊤, w⋆ = [w⋆
1 ,w

⋆
2 ]

⊤, and zn =

[zn,1, zn,1]
⊤, then the copunctal point w⋆ must satisfy both

of the following inequalities.

w⋆
2 − zn,2

w⋆
1 − zn,1

≥
− sin(αn

2 )û
(n)
2,1 + cos(αn

2 )û
(n)
2,2

cos(αn

2 )û
(n)
2,1 + sin(αn

2 )û
(n)
2,2

(4)

w⋆
2 − zn,2

w⋆
1 − zn,1

≤
sin(αn

2 )û
(n)
2,1 + cos(αn

2 )û
(n)
2,2

cos(αn

2 )û
(n)
2,1 − sin(αn

2 )û
(n)
2,2

. (5)

To estimate a copunctal point with N error cones, we solve
a linear program with 2N linear constraints. We refer to
the optimization program with the above constraints as
LP(C1(α1), . . . , CN (αN )). In solving this linear program,
we handle eigenvector orientation and consider the geome-
try of pairs of error cone intersections with some practical
considerations in Appendix B and Appendix C, respectively.

3.2. Deterministic copunctal point estimation

Suppose we have estimated N metrics Σ̂1, . . . , Σ̂N corre-
sponding to N distinct reference points. For all metrics,
we assume that each of our estimated metrics satisfies the
operator norm bound |||Σ̂n −Σn|||op ≤ τn, where for now,
we assume exact knowledge of τn.

In our analysis, we consider pairs of intersecting cones. Re-
call from Appendix C that for a pair of error cones, αn

denotes the error cone angle and θn denotes the deviation
angle for reference point n. We make the following assump-
tion on each pair (i, j) of reference points.

Assumption 3.1. For all pairs of error cones, the quantities
(αi, θi) and (αj , θj) satisfy

θi +
αi

2
≤ π

2
and θj +

αj

2
≤ π

2
.

Algorithm 1 Error cone-based copunctal point estimator

Input: Reference points {zn}Nn=1, estimated metrics
{Σ̂n}Nn=1, error bounds {τn}Nn=1

1: ErrorCones← {}.
2: for n = 1, . . . , N do
3: Step 1: For each Σ̂n, obtain its eigenvalues

λ̂
(n)
1 , λ̂

(n)
2 and eigenvectors û(n)

1 , û
(n)
2 via eigenvalue

decomposition.
4: Step 2: Set the error cone angle for each reference

point as the upper bound (2):

αn =
τn

|λ̂(n)
1 − λ̂

(n)
2 |

(6)

5: Construct error cone Cn(αn) from αn and zn.
6: ErrorCones← Cn(αn)
7: end for
8: Step 3: Transform error cones into linear constraints

(See equation (4)) and solve a linear program

ŵ ← LP(C1(α1), . . . , CN (αN )). (7)

Output: Estimated copunctal point ŵ

With this assumption, we are ready to present our first result,
which is a bound on the estimation error of Algorithm 1.

Theorem 3.2. Suppose Assumption 3.1 holds for all pairs of
cones. There exists a universal positive constant c such that
the following is true. Define Cij := max{(3 ∨ 6

tan(θi∨θj)
) ·

(1+tan2(θi∨θj)), 1
sin(θi∨θj)

} for each pair (i, j). If ∥Σ̂n−
Σ∗

n∥op ≤ τn for each n ∈ [N ], then

∥ŵ −w⋆∥2 ≤ c min
i,j∈[N ]

Cij · ∥zi − zj∥2 ·(
2πτi

|λ̂(i)
1 − λ̂

(i)
2 |
∨ 2πτj

|λ̂(j)
1 − λ̂

(j)
2 |

)
(8)

Theorem 3.2 is a deterministic result and stated broadly to
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accommodate estimates of metrics under various estimation
procedures. In the next section, we specialize this result to
the case of metric estimation with a specific type of query.
A few remarks are warranted about this result.

The denominator contains the absolute difference of the two
eigenvalues of the estimated metric, which we denote as
the eigenvalue gap. This term arises naturally as a measure
of the inherent difficulty in estimating the true metric’s
eigenvectors. If λ̂(i)

1 and λ̂
(i)
2 are close in value, then the

level-set lines of the true metric are likely to be circular,
making it difficulty to discern the directions of the true
eigenvectors. Conversely, if the difference between λ̂

(j)
1 and

λ̂
(j)
2 is large, then the level-set lines of the true metric are

more elliptical, resulting in easier identification of the major
and minor axes. The effect of the eigenvalue gap is explored
in simulation in Section 5.1.

4. Copunctal point estimation from perceptual
adjustment queries

In this section, we consider the specific problem of estimat-
ing the copunctal point from perceptual adjustment queries
(PAQs) (Xu et al., 2024). We first provide a brief overview
of the PAQ mechanism in Section 4.1 and then present esti-
mation bounds in Section 4.2.

4.1. Review of the perceptual adjustment query (PAQ)

A key component of estimating the copunctal point is how
users are queried for perception information. Queries and
responses (γ

(n)
m ,A(n)

m ) are defined broadly in Section 2.3
to accommodate a wide range of potential querying mech-
anisms. For example, paired comparisons between a refer-
ence color zn and another color a(n)

m , then the query set is
the single vector A(n)

m = {a(n)
m } and the response γ

(n)
m is

a binary response that indicates if the user can distinguish
the two colors. Ordinal responses like triplets (Mason et al.,
2017), have been analyzed in the broader context of met-
ric learning. The continuous nature of color space and the
need to identify precise transition regions make perceptual
adjustment queries (PAQs) (Xu et al., 2024) particularly
amenable to our task. Here, we provide an overview of the
PAQ mechanism.

A PAQ consists of a reference item and a continuous path
of items that start from the reference and vary gradually.
The user is asked to select the first item along this path
that is dissimilar (or inversely, similar) to the reference.
Operationally, PAQs can be implemented via a slider where
a user is asked to adjust a slider that gradually changes a
color to compatre against the reference color. The stopping
point from the user is recorded as the response collected by
the UI; see in Figure 2.

Such queries were originally proposed and theoretically
analyzed in a metric learning context (Xu et al., 2024). In
the metric learning setting, PAQ responses can be formalized
as follows. Suppose we want to estimate an unknown metric
Σ⋆. For a reference color z, the m-th query has query
set Am = {am}, where a is the direction along which
colors change. That is, the user is presented with a path of
items of the form {z + ℓam : ℓ ∈ [0,∞)}. The user then
selects the first item z + γmam that is perceivably different
from z, resulting in the response γm. This response γm
can be viewed as a scaling of the query vector am. Under
the confusion region model, the response item z + γmam

should be a squared Σ⋆-Mahalanobis distance y away from
the reference color. For a noiseless PAQ response, we write
this relationship as the quadratic measurement

y = ∥(z + γa)− z∥2Σ⋆ = γ2a⊤Σ⋆a. (9)

Since we do not expect human responses to be perfect, we
adopt the noise model of (Xu et al., 2024), which models
noise in the perception space. That is, for any direction a,
the user responds with an item that is a noisy distance y+ η
away from the reference. This can be expressed as a noisy
quadratic measurement

y + η = γ2a⊤Σ⋆a. (10)

Here, we assume that the noise η is an i.i.d. copy of a zero-
mean random variable that is bounded, i.e., η ≤ η↑ < y
almost surely.

4.2. Metric and copunctal point estimation bounds for
PAQs

Now we specialize the previous result to the scenario where
we use PAQs to perform estimation on the N metrics. In
order to do so, we first show a high-probability bound on
the operator norm error when estimating with PAQs. In
particular, we choose to apply an unregularized least squares
estimator to recover Σ̂. This procedure, as noted in previous
work (Xu et al., 2024), is an inconsistent estimator. However,
as we show in the following result, least squares produces a
consistent estimate of a scaled version of the true matrix Σ̂.
Crucially, this preserves the directions of the eigenvectors,
meaning the cone-based estimator (1) can still be utilized.
Our PAQ estimation bound is presented below.

Theorem 4.1. Let c > 0 be a universal constant. Let
σ = 2η↑

(1−η↑)(1+η↑)
. Consider any δ ∈ (0, 1). Suppose the

number of measurements satisfies

M ≥ cd

{
log

(
M

δ

)
+ log2

(
M

δ

)}
log

(
d

δ

)
. (11)
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Then with probability greater than 1− δ,

|||Σ̂ − E[
1

1 + η
]Σ⋆|||op ≤ cσ ∥Σ⋆∥F

√
d2
(
1 + polylog(dδ )

)
M

.

(12)

The σ quantity acts as a proxy for the noise variance of the
bounded measurement noise η. Crucially, σ appears without
any additive factors, meaning if the noise is zero, then we
achieve perfect recovery. This is consistent with the fact
that a set of M ≥ d(d+1)

2 noiseless PAQ responses results
in a solvable linear system, allowing for perfect recovery
of the metric. With this result stated, we arrive at an error
bound on the copunctal point estimation with PAQs.
Corollary 4.2. Suppose the conditions of Theorem 3.2
and Theorem 4.1 hold. Consider any δ ∈ (0, 1). Suppose
the number of measurements for each of the N reference
points satisfies

Mi ≥ cd

{
log

(
M

δ

)
+ log2

(
M

δ

)}
log

(
d

δ

)
. (13)

Then with probability greater than 1−Nδ,

∥ŵ −w⋆∥2 ≤ cd min
i,j∈[N ]

Cijσ · ∥zi − zj∥2 ·(
2πτi

|λ̂(i)
1 − λ̂

(i)
2 |
√
Mi

∨ 2πτj

|λ̂(j)
1 − λ̂

(j)
2 |
√

Mj

)
·√

1 + polylog(
d

δ
).

The proof of Corollary 4.2 is a straightforward application
of Theorem 3.2 and Theorem 4.1. Once again, the estima-
tion bound scales linearly with the noise variance. As such,
with noiseless PAQ measurements, the exact recovery of
the metrics also results in exact recovery of the copunctal
point. This is consistent with our estimator: If we are able
to recover all of the metrics perfectly, then the copunctal
point must be precisely the point at the intersection of all of
the major axes.

5. Experiments
In this section, we present our experimental results on both
simulated and real-world data. In Section 5.1, we investigate
the effects of various problem parameters and compare the
performance of our estimator with PAQs against other pop-
ular query types in a numerical simulation study. We then
present copunctal point estimation results on data collected
from user a study in Section 5.2.

5.1. Numerical simulations

For all results, we report the average estimation error
∥ŵ −w⋆∥2 and standard error of the mean over 20 trials.

We first generate a ground truth copunctal point uniformly
on [0, 0.15]2, then select N reference color at random on
[0, 1]2\[0, 0.15]2. For each reference color, we generate a
ground truth metric such that the second eigenvector aligns
exactly with the line that connects the reference color and
the true copunctal point. For each simulation, we pick a
fixed difference |λ1 − λ2| between the eigenvalues of all
metrics. We denote this quantity as the eigenvalue gap λgap.
We generate the largest eigenvalue λ

(n)
1 of the metric uni-

formly on [λgap, 2λgap] and set the smallest eigenvalue to
be λ

(n)
2 = λ

(n)
1 − λgap. For all query types, we assume the

metric estimation operator norm error τn = c
√
d2/M and

cross-validate the constant. For all experiments, we utilize
cvxpy (Diamond & Boyd, 2016; Agrawal et al., 2019) for
both metric estimation and copunctal point estimation.

In the following experiments, we compare the performance
of noiseless triplets, noiseless paired comparisons, and PAQs
at various noise levels. To generate noiseless triplets, we ran-
domly generate two colors x1 = z + a1 and x2 = z + a2,
where ai are i.i.d standard normal vectors. We select the
color xi that is closer to the reference point under the ground
truth metric. Noiseless paired comparisons are generated in
a similar manner: we generate an item x = z + a, where
a is a standard normal vector, and report if the distance
between x and the reference color z is greater or less than
the threshold y under the ground truth metric. For noise-
less PAQs, we assume that the user responds with a color
exactly a squared distance y away from the reference color.
With noisy PAQs, we adopt the noise model (10), where the
noise η is an i.i.d. copy of a zero-mean random variable
that is bounded, i.e., η ≤ η↑ < y almost surely. Follow-
ing (Xu et al., 2024), we sample noise in PAQ responses
to be uniform on the interval [−η↑, η↑], with η↑ < y. For
low, medium, and high noise we set η↑ to be 0.1y, 0.5y, and
0.75y, respectively.

Choice of query type. A crucial question in copunctal
point estimation how to collect color perception feedback
from users. Our first simulation explores this choice. We
compare PAQs against two commonly used queries in metric
learning: triplets (“Which one of these two colors is more
similar to the reference color?”) and paired comparisons
(“Is this color distinguishable from the reference color?”).
Specifically, we compare PAQs at four different noise levels
against noiseless triplets and paired comparisons. In this
experiment, we set y = 5, N = 25, and λgap = 10, and
sweep the performance of various queries as the number of
measurements increases. Our results, shown in Figure 5a,
demonstrates that PAQs have marked advantages in copunc-
tal point estimation when compared to other ordinal queries,
with responses with relatively high noise levels outperform-
ing noiseless triplet and paired comparison responses. This
increase in performance highlights the improved expressive
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Figure 5: Numerical simulation results

power of each individual PAQ response.

Metric eigenvalue gap. Another key quantity that arises
in our problem setting is the eigenvalue gap λgap, which
serves as one measure of how difficult preserving the eigen-
value structure of the ground truth metric is in estimation.
We show the effect of this quantity in Figure 5b, where we
fix the number of responses to be 50 per reference for all
query types and sweep the eigenvalue gap. Since we set
the error cone angles to be the bound (2), the error cone an-
gles are set inversely proportional to λgap. The smaller the
gap, the larger the error cones, and the more imprecise the
estimate of the copunctal point w⋆ is. This effect is borne
out to a modest degree in our experimental results, where
estimation error with the same number of measurements
tends to decrease as the eigenvalue gap grows.

Number of reference colors. We additionally test the
effect of the number of reference colors for which we collect
measurements and estimate metrics. We fix the number of
measurements per reference to again be 50 and sweep the
number of references. As seen in Figure 5c, as the number
of references increases, the estimation error decreases to a
certain point before flattening out, as expected. Because the
copunctal point is solved for by a linear feasibility program
and each reference color’s error cone adds two additional
constraints to the linear program, estimation error should
decrease steadily when the number of references is small.
However, as the number of references increases beyond a
certain point, it is unlikely that any additional error cones
will further reduce the area of the intersection, resulting in
performance that levels off.

5.2. Real-world data collection and copunctal point
estimation

We construct 80 questions by selecting four reference points
in CIE xyY space: (0.25, 0.34, 0.5), (0.29, 0.40, 0.5), (0.37,
0.40, 0.5) and (0.35, 0.35, 0.5) from a region where the
colors are relatively hard for people to differentiate in order
to capture users’ discrimination in a fine-grained manner.

For each reference point, we equivalently space 20 sensing
vectors over 360 degrees of angles. To construct the slider
along each sensing vector’s direction pointing towards a
fixed reference point, we select a start point by hand-finding
an appropriate length and sample 100 color points between
the start point and the reference point. To prevent cheating,
we randomly place the reference point on the slider and add
a second path afterwards. We collect PAQ response data
from 3 trichromats (color normal) users and 1 user with
color-blindness, and adopt least square estimator to fit the
chromaticity discrimination ellipses at four reference points.
Figure 3 shows the four ellipses along with their major
axes for each user. We make the following observations.
For the three trichromats, their confusion lines still follow
some directional patterns. For trichromats A and B, their
confusion lines point diagonally in bottom left/top right;
the confusion lines for trichromat C are more horizontal.
The confusion lines also appear to have some converging
behavior, and it appears plausible that they converge at
some point (the copunctal point of the user). Moreover, the
location of the copunctal point for trichromat C is different
than the ones for trichromats A and B.

Comparing the visualization for the color-blind person D
and the trichromats, the color-blind person has larger el-
lipses. The orientation of the confusion lines and the lo-
cation of the copunctal point are quite different from all
three trichromats. In this case, the color-blind person is
known to have red-green color-blindness, and their copunc-
tal point roughly aligns with the location for the protan type
(with a location of (0.76, 0.24) derived theoretically from
the literature (Smith & Pokorny, 2003). The person has
one confusion line pointing in bottom left/bottom right. We
observe that the ellipse is close to a circle for this particular
reference color, and hypothesize that this orientation is due
to the higher noise in estimating this major axis.
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A. Definition of error cones
Definition A.1 (Error cone at reference point). Given a reference point zn with the corresponding estimated metric Σ̂n and
its second eigenvector û(n)

2 , we define a cone Cn with cone angle αn as the set

Cn(αn) :=
{
zn + tR(β)û

(n)
2 : t ≥ 0,−α

2
≤ β ≤ α

2

}
, (14)

where R(β) :=

[
cos(β) − sin(β)
sin(β) cos(β)

]
is a rotation matrix of angle β.

B. Practical considerations: eigenvector orientation.
In our proposed approach, a key step in estimating the copunctal point is to ensure that the estimated eigenvectors all are
oriented in the general direction as the copunctal point. Because û2 and −û2 are both valid eigenvectors of estimated
an metric Σ̂, we need to ensure the correct direction is chosen. One such approach to is to consider pairs of estimated
eigenvectors. For a small number of pairs, choose the orientation of the eigenvectors such that they intersect, then orient the
rest of the eigenvectors in the same direction. Specifically in the color context, we can also choose eigenvector directions to
point toward general areas that copunctal points in which are known to be located.

C. The geometry of pairs of error cone intersections
To bound the error of the estimator (1), we must compute the diameter of the intersection of N error cones, which is
impracticable for general N , but is feasible if pairs of cones are considered at a time. As such, we work with two error cones
Ci(αi) and Cj(αj) associated with reference points zi and zj , respectively.

We begin by considering a rotated geometry, where the line connecting reference points zi and zj is parallel to the x-axis.
We next define the deviation angle, denoted θi, of the i-th cone as the acute angle between the line connecting zi and zj and
the estimated eigenvector at the center of the i-th cone, û(i)

2 . Note that the value of the deviation angle θi depends on the
pair of cones chosen, because it is measured with respect to the connecting line segment between the two reference points.
For a visualization with these products defined, see Figure 6.

θi

αi

θj

αj

ŵij

zi zj

û
(i)
2 û

(j)
2

∥zi − zj∥2
Figure 6: Geometry of the intersection of two error cones.
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