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ABSTRACT

Task-trained recurrent neural networks (RNNs) are versatile models of dynami-
cal processes widely used in machine learning and neuroscience. While RNNs
are easily trained to perform a wide range of tasks, the nature and extent of the
degeneracy in the resultant solutions (i.e., the variability across trained RNNs)
remain poorly understood. Here, we provide a unified framework for analyzing
degeneracy across three levels: behavior, neural dynamics, and weight space. We
analyzed RNNs trained on diverse tasks across machine learning and neuroscience
domains, including N-bit flip-flop, sine wave generation, delayed discrimination,
and path integration. Our key finding is that the variability across RNN solutions,
quantified on the basis of neural dynamics and trained weights, depends primarily
on network capacity and task characteristics such as complexity. We introduce
information-theoretic measures to quantify task complexity and demonstrate that
increasing task complexity consistently reduces degeneracy in neural dynamics
and generalization behavior while increasing degeneracy in weight space. These
relationships hold across diverse tasks and can be used to control the degeneracy of
the solution space of task-trained RNNs. Furthermore, we provide several strate-
gies to control solution degeneracy, enabling task-trained RNNs to learn more
consistent or diverse solutions as needed. We envision that these insights will lead
to more reliable machine learning models and could inspire strategies to better
understand and control degeneracy observed in neuroscience experiments.

1 INTRODUCTION

Recurrent neural networks (RNNs) are widely used across machine learning and computational neu-
roscience for modeling dynamic processes. They can be efficiently trained using standard nonconvex
optimization techniques and have proven useful for understanding neural dynamics during task per-
formance (Sussillo, 2014; Rajan et al., 2016; Barak; Mastrogiuseppe & Ostojic, 2018; Vyas et al.,
2020; Driscoll et al., 2024). While it is well-known that in feedforward networks, differences in
weight initialization and randomness during training (stochastic gradients, mini-batch sample vari-
ability, etc.) can cause different final solutions, less is known about how such differences manifest
when training RNNs (Das & Fiete, 2020; Turner & Barak, 2024; Collins et al., 2022; Glorot &
Bengio, 2010; Fort et al., 2019; Goodfellow et al., 2015; Li et al., 2018; Jastrzebski et al., 2018;
Chaudhari et al., 2017; Frankle & Carbin, 2019; Kornblith et al., 2019).

Traditionally, the study of task-trained RNNs has often focused on analyzing models trained using a
single approach, implicitly assuming that multiple RNNs trained on the same task would converge
to similar solutions, even when trained differently or when starting from different initial conditions.
However, recent work has shown that this assumption may not hold universally. For instance, Ma-
heswaranathan et al. (2019) found that while trained RNNs may share certain topological features,
their internal representation geometry can vary widely. Similarly, Turner et al. (2021) discovered
that task-trained networks can develop qualitatively distinct dynamics.

These contrasting findings raise a fundamental question about the degeneracy of task-trained RNN
solutions: when do networks trained on the same task converge to similar dynamics and represen-
tations, and when do they exhibit substantial degeneracy? Previous studies offer conflicting per-
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spectives, with some suggesting that task-trained RNNs exhibit dynamics that are universal across
instances (Maheswaranathan et al., 2019), while others emphasize the degeneracy across individual
solutions (Turner et al., 2021; Galgali et al., 2023; Gholamrezaei & Whishaw; Gao et al.; Mehrer
et al.).

In this paper, we reconcile these differing views by providing a unified framework for analyzing
degeneracy at three levels: behavior, neural dynamics, and weight space. We hypothesize that the
variation in solutions of trained RNNs is influenced by task under-specification. In other words,
when constraints do not uniquely or adequately determine the network’s solution to a given task, we
observe greater variability across trained networks (D’Amour et al., 2020). To test this hypothesis,
we investigate how different task characteristics, particularly at the level of complexity of the inputs
and outputs, affect degeneracy of the solutions found by task-trained RNNs at three levels (across
behavioral, neural, and weight space). We simulated four tasks – N-Bits Flip Flip, Delayed Discrim-
ination, Sine Wave Generation, and Path Integration 1. Our key finding is that as task complexity
increases, the solution space becomes more constrained, reducing degeneracy in both behavior and
neural dynamics but increasing degeneracy in the underlying network weights.

Our simulations confirm the above hypothesis at the behavioral and neural-dynamical levels: with
increasing task complexity, the degeneracy of solutions – measured at the behavioral level by the
coefficient of variation of the out-of-distribution performance and at the dynamical level by the Dy-
namical Similarity Analysis distance – decreases consistently across all four tasks we tested 3 5
(Ostrow et al., 2023). Interestingly, at the weight level, we observe the opposite trend: the degener-
acy of solutions increases with task complexity.

After quantifying degeneracy at behavioral, neural, and weight-levels, next we propose practical
strategies for controlling the level of degeneracy in task-trained RNNs, including altering task com-
plexity, incorporating auxiliary loss functions, and applying structural constraints during training.
These methods provide flexibility for researchers aiming to tailor the training process to their spe-
cific needs, whether they are seeking more consistent (Kepple et al., 2022) or more diverse RNN
solutions (Liebana Garcia et al., 2023; Fascianelli et al., 2024; Pan-Vazquez et al., 2024; Kepple
et al., 2022).

1.1 CONTRIBUTIONS

Our contributions with this paper are as follows:

• Information-theoretic quantification of task complexity: We introduce a new frame-
work for assessing task complexity by quantifying the information content in the input and
target output time series of a task. This measure effectively captures the extent to which
input-output signals constrain neural dynamics. Furthermore, this measure correlates well
with the neural-dynamical degeneracy we observed both across different complexity levels
within the same task and across different tasks.

• Quantifying the degeneracy of solution spaces: We measure degeneracy at the behav-
ioral, dynamical, and weight levels in populations of trained networks across four different
tasks of wide applicability to both ML and neuroscience. Our findings reveal that, across
all tasks, increased task complexity leads to lower degeneracy at the behavioral and neural
dynamical levels, but concomitantly higher degeneracy at the weight level.

• Methods for controlling degeneracy: We propose five techniques for controlling degen-
eracy in task-trained RNNs, including manipulating task complexity, applying specific reg-
ularization during training through auxiliary losses, and structural constraints during train-
ing. Notably, we demonstrate that both neural dynamical degeneracy and weight degener-
acy can be manipulated to change either in the same (“covariant”) or opposite directions
(“contravariance”), providing flexibility for researchers to tailor network solutions to their
specific needs (Cao & Yamins, 2024; Kepple et al., 2022; Fascianelli et al., 2024; Mah-
eswaranathan et al., 2019; Durstewitz et al., 2023; Gilpin, 2024) .
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2 METHODS

2.1 MODEL ARCHITECTURE

We used discrete-time nonlinear vanilla recurrent neural networks (RNNs), where the update rule is
defined as: ht = F (ht−1,xt) = tanh (Whht−1 +Wxxt + b) , where ht ∈ Rn is the hidden state
at time t, xt ∈ Rm is the input at time t, Wh ∈ Rn×n is the recurrent weight matrix, Wx ∈ Rn×m

is the input weight matrix, and b ∈ Rn is the bias vector.

A linear readout layer is applied on top of the RNN hidden state to produce the model’s prediction at
each time step. The RNNs use Backpropagation Through Time (BPTT) as the learning rule where
the RNN is unrolled over time, allowing gradients to be computed for each time step in the sequence
(Werbos, 1990). All networks are trained using supervised learning via the Adam optimizer, with
a learning rate specific to each task determined via hyperparameter tuning (a list of all training-
related hyperparameters can be found in Appendix A). For each task, we train 50 networks using
different initializations, until they achieve near-asymptotic loss on the test set. For the N-Bit Flip-
Flop and Path Integration tasks 1, we use RNNs with 64 hidden units and input/output dimensions
appropriate to each task’s specific requirements. For the Delayed Discrimination and Sine Wave
Generation tasks 1, we use RNNs with 128 hidden units.

2.2 TASKS

Figure 1: Task suite: We train RNNs on a diverse set of four tasks: N-Bit flip-flop: Networks are
trained to remember the last non-zero input for each of the N channels. Delayed Discrimination:
Networks compare the magnitude of two temporally separated pulses across N channels. Sine Wave
Generation: Networks receive static input indicating frequency and produce sine waves of the spec-
ified frequency across each of the N channels. Path Integration: Networks integrate velocity inputs
to track position in a bounded arena in 2D or 3D space. Schematic only shows 2D environment.

N-Bit Flip-Flop Task In this task, RNNs are provided with N independent input channels, each
taking discrete values from {−1, 0,+1}, with a fixed probability of switching pswitch. The network
has N output channels, each of which is required to remember the value of the last nonzero input
received on its respective input channel. We vary the complexity of the task by changing the number
of input and/or output channels N .

Delayed Discrimination Task The network is presented with two pulses of varying amplitudes
f1, f2 ∈ [2, 10], separated in time by a variable delay t ∈ [5, 20] time steps. The network is required
to output the sign of the difference between the two amplitudes, i.e., sign(f2 − f1). This task can
be extended to have N independent input and output channels, where the network must compare f1
and f2 within each channel separately. We vary the complexity of the task by varying the number of
independent input and/or output channels N .

Sine Wave Generation RNNs receive a static input indicating a target frequency f ∈ [1, 30] and
are required to generate a sine wave of that frequency over time, effectively converting the input f
into the output sin(2πft). We define Nfreq as the number of possible target frequencies presented in
the training set, equally spaced within the range [1, 30]. This task can involve N independent input
and output channels, where each channel outputs a sine wave with the frequency specified by its
respective input channel. We vary the complexity of the task by changing Nfreq and N , the number
of independent input and/or output channels.
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Path Integration Task Each network is initialized at a random initial location within a bounded 2D
environment. At each time step, the network receives inputs representing the angular direction θ and
speed v, and must integrate this information over time to output the updated (x, y) location. To vary
the complexity of the task, we introduce a 3D version of the task, where the network receives inputs
θ (azimuth angle), ϕ (elevation angle), and v (speed), and must output the updated (x, y, z) location.
The network effectively performs path integration by accumulating movement vectors based on the
input directions and speeds.

3 RESULTS

3.1 CHARACTERIZING TASKS COMPLEXITY AND NEURAL DYNAMICS (RNN HIDDEN
STATES)

We quantified the task complexity by calculating the Shannon entropy of its input and target (output)
time-series (Shannon, 1948; Bialek et al., 2001; Crutchfield & Young, 1989). We chose this measure
because it directly reflects the amount of information present in the task’s inputs and outputs, which
the network must process and represent through its hidden state (Tishby et al., 2000). By quantifying
the statistical complexity of the input and output time series, we capture the information-processing
demand imposed on the network.

Figure 2: Characterizing tasks and RNN hidden states (neural dynamics): We analyze task
complexity and its effects on RNN hidden states using multiple measures: (A) Input complexity,
measured as the entropy of the time-averaged input signal. We use the integer in the task name to
indicate the number of input-output channels for each task except in “sineF”, where “F” stands for
frequency, and the integer indicates the number of frequencies the network learns to produce. (B)
Output complexity, measured as the entropy of the time-averaged output signal (C) Our tasks span
three quadrants of the Input and Output Complexity space (excluding low input and low output com-
plexity). (D) The number of leading Principal Components (PCs) explaining 95% of the variance,
which we use as a measure of the dimensionality of the task, increases consistently across tasks as
difficulty increases. (E) RNN hidden state (neural dynamics) trajectories projected onto the leading
two PCs for Path Integration and three PCs for the other tasks.
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Without loss of generality, given a one-dimensional output time series (y1, y2, . . . , yT ), the entropy

of this time series is given by: H(Y ) = −
n∑

k=1

p(yk) log2 p(yk), where n is the number of unique

values in the time series, and p(yk) is the probability of observing the value yk in the time series.

For Sine Wave Generation and Path Integration tasks, the outputs are continuous values rather than
discrete ones. Therefore, we binned the output values into discrete intervals before calculating the
entropy. For task variants with multiple independent channels, we multiplied the single-channel
entropy by the number of channels. Since each channel operates independently and has identical
statistical properties, multiplying the single-channel entropy by N provides an accurate measure
of the total entropy across all channels. For a training set with M trials, we averaged the entropy
across all trials presented in the training set to obtain a representative measure of task complexity:

Htask = N ×

(
1

M

M∑
i=1

H(Y (i))

)
.

Different tasks are characterized by their specific input and output complexity profiles (Figure 2A
and 2B). Within each task, increasing the number of input and output channels consistently increases
both the input and output complexities. We selected our tasks to span three quadrants of the input-
output complexity space (Figure 2C):

• High-input, high-output complexity: N-Bit Flip-Flop and Path Integration tasks

• High-input, low-output complexity: Delayed Discrimination task

• Low-input, high-output complexity: Sine Wave Generation task

Among them, the N-Bit Flip-Flop task exhibits the highest input and output complexities among all
tasks, suggesting that it imposes the greatest information-processing demands on the networks.

We then provide a link between the task complexity and the dimensionality of the representation de-
manded by the tasks. We found that the number of leading Principal Components (PCs) explaining
95% of the variance increases consistently across tasks as difficulty increases, indicating that harder
tasks demand higher-dimensional representations and fuller utilization of the networks’ representa-
tional capacity (Figure 2D) (Gao et al.).

Typical solutions found by converged networks across the different tasks are as follows (Figure
2E): In N-Bit flip-flop tasks, networks learn two fixed points corresponding to the output value of
{−1,+1} for each channel. Networks further factorize the fixed points corresponding to different
output channels along different orthogonal dimensions. Specifically , when N = 3, networks learn
23 = 8 fixed points on the vertices of a 3D cube. In Delayed Discrimination tasks, networks memo-
rize the first input value by storing each input value as a separate fixed point during the delay period,
when the inputs to the network are no longer on and working memory is required (Hopfield, 1982;
Sussillo & Barak, 2013; Driscoll et al., 2024). In Sine Wave Generation tasks, networks develop
limit cycles corresponding to different target frequencies indicated by inputs, and traverse different
limit cycles to produce different sine wave outputs at the appropriate frequencies. In 2D Path Inte-
gration tasks, without any external input, networks develop 2D maps of their environments using a
2D plane of attractors. Without any inputs, a network’s hidden state (neural dynamics) stabilizes on
fixed points corresponding to their current location.

3.2 CHARACTERIZING THE DEGENERACY OF TASK-TRAINED RNNS

We now quantify the degeneracy of task-trained RNNs at three levels of analysis: (out of distribu-
tion) behavior, neural dynamics, and weight space. We also relate the measured degeneracy back to
the task complexity measure introduced in the last section.

3.2.1 DEGENERACY IN DYNAMICS DECREASES WITH TASK COMPLEXITY

We use a recently published measure for comparing dynamical systems, called Dynamical Similar-
ity Analysis (DSA) (Ostrow et al., 2023), to perform pairwise comparisons of the neural dynamics
in our task-trained networks. DSA measures the temporal and topological structure of the system’s
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dynamics and ignores geometric configurations that alter the spatial representation of system tra-
jectories without changing the underlying dynamics. It provides a quantitative framework to assess
how different networks may arrive at similar or distinct dynamical implementations of a task (See
Appendix C for technical details).

To quantify the relationship between task complexity and dynamical degeneracy, we increased the
complexity of the tasks by increasing the number of independent input and output channels. This
choice is grounded in information theory, as an entropy measure of task complexity is additive for
statistically independent variables. We found that within each task, increasing the number of input
and output channels consistently reduced the dynamical degeneracy across the converged networks
(Figure 3A). Strikingly, this relationship (“covariant” degeneracy with task complexity) holds across
all the tasks we consider (Figure 3C).

Figure 3: Dynamical degeneracy decreases with increased task complexity: (A) Pairwise Dy-
namical Similarity Analysis (DSA) scores decrease consistently across all tasks as we increase task
complexity, suggesting more similar (less degenerate) dynamical solutions for harder tasks. In Sine
Wave Frequency, we change the frequency content of the task and in Sine Wave N, we change the
number of input-output channels (N) of the task. (B) 2D embedding of pairwise DSA distances us-
ing Multi-Dimensional Scaling (MDS) on the N-bit flip-flop task shows how the spread of solutions
decreases as task complexity is increased. Each dot represents a network with a different initializa-
tion. (C) Output complexity versus the average dynamical degeneracy on a task shows how higher
output complexity correlates with lower dynamical degeneracy both within and across tasks. Within
each task, larger marker size and less opacity indicate task variant with higher complexity. Smaller
DSA score implies dynamics are more similar.

3.2.2 DEGENERACY IN WEIGHTS INCREASES WITH TASK COMPLEXITY

We quantify degeneracy across task-trained RNNs at the level of post-training weights by using a
permutation invariant modification of the Frobenius Norm. For a pair of RNNs with recurrent weight
matrices given by W1 and W2, we define: dPIF(W1,W2) = min

P1,P2∈P(n)
∥W1 − P1W2P2∥F ,

where P(n) is the set of permutation matrices of size n×n, and ∥ · ∥F denotes the Frobenius norm.
(See Appendix D for additional details) For comparing networks of different sizes, we normalize
the above norm by the number of parameters in the weight matrix. We found that pairwise distances
between weight matrices from converged RNNs increases consistently as task complexity increases
across all tasks (Figure 4A).

Inspired by research linking statistical mechanics of random Gaussian landscapes to deep learning
theory (Bahri et al., 2020; Fyodorov & Williams, 2007; Bray & Dean, 2007), we hypothesized that
increasing task complexity while holding the network size constant could make possible solutions
’rarer’ at the level of recurrent weights. This implies that the optimization process would have to,
on average, search for solutions further away from the initial recurrent weights to converge. We
found that the distance between the converged weight matrices and the initialized weight matrices
indeed increases consistently with task complexity, and does so across all the tasks (Figure 4B and
Table 1). Formally, distance from initial weights is ∥WT −W0∥F , where WT is the weight matrix

6
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Figure 4: Degeneracy in weight space (measured using permutation-invariant metrics) in-
creases with increased task complexity: (A) Pairwise distances between weights, measured by
the normalized Frobenius norm of the recurrent connectivity matrix , increase consistently with task
complexity, across all tasks. (B) Distances from initialized weights, quantified by the Frobenius
Norm, also increases with task complexity, indicating greater divergence in weight space for harder
tasks. In other words, we observe greater variation/variability across trained individuals (individual
differences) at the connectivity level, even with the opposite trend observed at the dynamical and
behavioral levels. Each line represents the distance from the initialized weights for a given network.

after training and W0 is the initial weight matrix. We normalize this measure by the number of
parameters in the weight matrix across tasks.

3.2.3 DEGENERACY IN OUT-OF-DISTRIBUTION GENERALIZATION BEHAVIORS DECREASES
WITH TASK COMPLEXITY

Figure 5: Behavioral degeneracy, in
terms of variability of the OOD gen-
eralization performance, decreases
with increased task complexity: De-
generacy of the out of distribution
(OOD) generalization behavior, as mea-
sured by coefficient of variation of the
OOD performance (mean squared er-
ror), decreases consistently with in-
creasing task complexity across all
tasks.

Does degeneracy in Out-of-Distribution generalization
behaviors change concomitantly with degeneracy in neu-
ral dynamics (hidden state) with task complexity? We
hypothesize that lower dynamical degeneracy implies that
networks respond to input stimuli with more similar dy-
namics. Therefore, when these networks are probed with
out-of-distribution (OOD) inputs, they should produce
more similar outputs, leading to lower dispersion in their
OOD performance across networks (i.e., lower degener-
acy). In other words, as task difficulty increases and dy-
namical degeneracy decreases, the degeneracy in OOD
performance should also decrease.

To test this hypothesis, we measured the OOD perfor-
mance (mean squared error) of converged networks that
all achieved near-asymptotic training loss under the fol-
lowing length generalization conditions. For Delayed
Discrimination tasks, we doubled the length of the delay
period; for all other tasks, we doubled the length of the
entire trial. We then calculated the coefficient of variation
(CV) of the OOD performance across networks, defined
as CV = σ/µ, where σ is the standard deviation of the
OOD performance across networks, and µ is the mean
OOD performance.

Our results show that across all tasks, networks with
lower dynamical degeneracy indeed exhibited lower CV in their OOD performance 5. This finding
supports our hypothesis that increased task complexity, which reduces dynamical degeneracy, also
leads to more consistent – less degenerate – OOD generalization behaviors across networks. The
prediction this result makes is that when trained on harder tasks, “expert” animals in neuroscience
labs or task-trained networks/agents in ML should show less individual variation in generalization
performance when tested.
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3.3 CONTROLLING DEGENERACY OF TASK-TRAINED RNNS

Figure 6: Differential control of weight and dynamics degeneracy: Using Delayed Discrim-
ination (DD) tasks as an example, we demonstrate various methods to control the degeneracy of
solution spaces found by task-trained RNNs: (A) Adding an auxiliary loss. Adding an additional
loss term to calculate the signed difference (not just direction) between the two consecutive inputs
adds additional structure to the learned dynamics, resulting in reduced dynamical degeneracy and
increased weight degeneracy. (B) Changing network size: By increasing the networks’ size, we de-
crease the load on their representational capacity, which in turn, results in more degeneracy in their
neural dynamics or hidden states. Simultaneously, we see greater degeneracy in their weight space
(i.e., the trend in degeneracy is in the same direction for both dynamics and weights). (C) Regular-
izing weights to be low rank: We see a decrease in both dynamical and weight-space degeneracy
with increasing low-rank regularization on the recurrent weights and reduced distance from initial-
ized weights, likely due to smaller-magnitude weight updates. (D) Regularizing weights to be
sparse: Similar to above, we see a decrease in both dynamical and weight degeneracy with increas-
ing sparsity of the recurrent weight matrix.

Table 1: Impact of Various Factors on Degeneracy
Dynamical Degeneracy Weight Degeneracy

Increase Task Complexity ↓ ↑
Auxiliary Loss ↓ ↑
Representational Load ↓ ↑
Low-Rank Regularization ↓ ↓
Sparsity Regularization ↓ ↓

Based on our characterization of task complexity and quantification of degeneracy at multiple levels
of analysis, we propose several methods to control degeneracy across task-trained RNNs, making
predictions for ML and neuroscience studies:

Increase task complexity: As discussed in the previous section, increasing task complexity reduces
dynamical degeneracy and increases weight degeneracy in a consistent and measurable way in a suite
of tasks of broad interest to ML and neuroscience.

8
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Adding auxiliary loss: We can directly change the degeneracy of the solution spaces found by task-
trained RNNs by adding additional terms to the objective/loss function that are consistent with but
distinct from the primary task objective. This introduces additional structure to the learned dynam-
ics, which in turn, decreases dynamical degeneracy and increases weight degeneracy, as networks
must satisfy multiple constraints simultaneously. Figure 6A shows an example implementation of
this idea on a Delayed Discrimination task. We demand that the network output f1 − f2, instead of
only sign(f1−f2). By analyzing the RNN’s neural dynamics or hidden state after both input stimuli
have been presented, , we find that the additional objective forces the network to learn “line attrac-
tors” (Strogatz, 2000) with the same sign as network without the additional loss, but with variable
magnitudes reflecting different values of f1 − f2 (Figure 7).

Modifying representational load (or network capacity): Changing the network size (or the num-
ber of units in the RNN) affects its representational capacity. Increasing network size typically leads
to increased dynamical degeneracy due to more degrees of freedom. Simultaneously degeneracy
increases across weight space because of more parameters. (Figure 6 B).

Imposing structural constraints on weight spaces(or regularization of recurrent weight matri-
ces): Applying regularization techniques such as low-rank (nuclear norm) (Figure 6 C) or sparsity
(L1) (Figure 6 D) regularization to the recurrent weight matrix generally decreases the degener-
acy across neural dynamical and weight spaces simultaneously (Mastrogiuseppe & Ostojic, 2018;
Narang et al., 2017; Herbert & Ostojic, 2022).

Figure 7: RNNs learn more structured
dynamics with auxiliary losses: In De-
layed Discrimination tasks trained with aux-
iliary losses (e.g., an auxiliary output f1−f2
in addition to main output sign(f1 − f2)),
RNNs neural dynamics or hidden states
develop more sophisticated representations
to track task-variables with 1-D manifolds
(right) rather than just point-attractors (left).

These methods provide a toolkit for controlling de-
generacy that naturally follows from our earlier anal-
yses. Importantly, we report that some interventions
(increasing task complexity and modifying network
capacity) induce an inverse or “contravariant” rela-
tionship between weight-space and dynamical degen-
eracy, while others (structural constraints) tend to af-
fect both dynamical and weight-space degeneracy in
the same direction or “covariantly” (Summarized in
Table 1). Overall, the degeneracy of the solution
space is primarily controlled by two key factors: the
task complexity and the representational capacity of
the networks. Among the manipulations to control
degeneracy in RNNs, increasing task complexity and
adding auxiliary losses directly alter the task com-
plexity while representational load and adding struc-
tural constraints directly impact the representational
capacity of the networks.

4 RELATED WORK

Our approach extends a previously proposed measures of task complexity (Meister, 2022), which
defined a task as a mapping from states to actions, and quantified task complexity as the entropy
of all possible state-action mappings. Here, we regard tasks as predefined time-series of inputs and
outputs rather than in terms of state-action mappings. By taking into account the temporal dynamics
explicitly, we quantify the statistical complexity of the input and output time-series using Shannon
entropy. Meister (2022) focuses on evaluating task-complexity from a learning-theory perspective:
specifically, the amount of information an animal needs to acquire a perfect mapping between states
and actions. In contrast, we focus on the representational capacity and the constraints imposed by
the processing demands of a task. Our measure directly captures the amount of information that
must be “carried” through the neural dynamics to produce the desired output. Our measure of task
complexity is also consistent with the notion of Neural Task Complexity proposed by Gao et al.
(2017), which provides an upper bound on the dimensionality that neural trajectories can explore
during a task. We have demonstrated that within each type of task, variants with higher output
complexity require higher dimensional representations (Figure 2D).

We further show that the output complexity of a task directly shapes the degeneracy of solutions
found by RNNs. While previous work speculated that the degree to which neural dynamics are

9
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attractor-heavy may influence degeneracy (Turner et al., 2021), we have quantified the “attractor-
ness” of our tasks and found that it alone does not account for the different levels of dynamical
degeneracy across tasks (see Appendix B). Moreover, as we modified the task characteristics to
study its effect on degeneracy, we observed that degeneracy remains invariant under certain trans-
formations of the task, e.g., changing the delay duration in Delayed Discrimination or altering the
environment size in Path Integration tasks. In our framework, these transformations do not affect
the output complexity of the task and thus leave the degeneracy unchanged. In the language of
complex systems theory, these factors (e.g., delays) are “sloppy dimensions” of the task with respect
to degeneracy. In contrast, factors that directly modify output complexity (e.g., adding channels,
changing network size) are “stiff dimensions” that significantly control and modulate degeneracy of
solutions (Gutenkunst et al., 2007b;a; Daniels et al., 2008; Kepple et al., 2022).

Our findings are also consistent with the Contravariance Principle from Cao & Yamins (2024): the
harder a task, the more constrained the system that solves it will need to be. Another recent study
by Huh et al. (2024) hypothesizes that AI models seem to be converging on the same representation
spaces independent of modality, because more constraints from the massive-scale data make degen-
erate solutions less likely. Notably, the above related findings are based on feedforward networks for
visual object categorization and Transformer networks for language modeling, respectively. Here,
our study demonstrates that these ideas also generalize to recurrent networks/RNNs.

5 DISCUSSION

Our paper presents a unified approach to quantifying and controlling the degeneracy of solutions
found by task-trained RNNs across behavioral, neural dynamical (or hidden states), and weight-
space levels of analysis. We simulated and analyzed a task suite of broad interest to ML and neuro-
science, yielding several novel insights.

First, information content in inputs and outputs of different tasks, which we use to quantify task
complexity, emerges as a crucial determinant of degeneracy. This perspective helps reconcile previ-
ously conflicting observations on degeneracy across a range of tasks and measures. Second, across
different tasks, as task complexity increases, we observe a robust inverse relationship between neu-
ral dynamical and weight degeneracy. As a corollary, while harder tasks lead to more consistent
neural dynamics across task-trained networks, their underlying recurrent weight matrices are more
degenerate/variable.

Third, our study exemplifies several strategies for controlling solution degeneracy, including manip-
ulating task complexity, adding auxiliary loss functions, adjusting network capacity, and structural
constraints on recurrent weights 1. These prescriptions will allow researchers to tailor the level
of degeneracy of networks to suit specific research questions (e.g., probing individual variability
across animals in neuroscience experiments) or application needs (Bouthillier et al., 2021; Morik,
2005; Yang et al., 2022). Importantly, we observed that certain strategies–increasing task complex-
ity or modifying network capacity—induce an inverse (contravariant) relationship between weight
and dynamical degeneracy, while others—imposing structural constraints—tend to affect both types
of degeneracy in the same or covariant direction.

While our study is based on artificial neural network models, some of the above strategies could
apply to neuroscience experiments, (Howard, 2002) e.g., introducing an auxiliary sub-task during
behavioral shaping of lab animals to learn different tasks may constrain the degeneracy of the so-
lutions learned by the biological brain and manifest in a different representational load than in an
animal trained using a “curriculum” without an auxiliary sub-task. We note that degeneracy is also
ubiquitous in other biological systems (Golub et al., 2018; Prinz et al., 2004; Edelman & Gally,
2001); thus, we motivate future theoretical studies based on them.

In summary, our work provides insights into the factors that shape the solution landscape of task-
trained RNNs. The framework we bridges differing perspectives in prior work, reconciling obser-
vations of both universality and individuality in trained networks in ML and neuroscience. Future
research could delve deeper into the theoretical underpinnings of the observed relationships in bi-
ological and artificial agents, including neural networks, between task complexity, representational
capacity, and degeneracy.
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A TASK AND TRAINING DETAILS

A.1 N-BIT FLIP FLIP

Hyperparameter Value
Optimizer Adam
Learning rate 0.001
Learning rate scheduler None
Max epochs 300
Steps per epoch 128
Batch size 256
Early stopping threshold 0.0005
Patience 3
Probability of flip 0.3
Number of time steps 100

A.2 DELAYED DISCRIMINATION

Hyperparameter Value
Optimizer Adam
Learning rate 0.001
Learning rate scheduler CosineAnnealingWarmRestarts
Max epochs 500
Steps per epoch 128
Batch size 256
Early stopping threshold 0.05
Patience 3
Number of time steps 60
Max delay 20
Lowest stimulus value 2
Highest stimulus value 10

A.3 SINE WAVE GENERATION

Hyperparameter Value
Optimizer Adam
Learning rate 0.0005
Learning rate scheduler None
Max epochs 500
Steps per epoch 128
Batch size 32
Early stopping threshold 0.05
Patience 3
Number of time steps 100
Lowest frequency 1
Highest frequency 30
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A.4 PATH INTEGRATION

Hyperparameter Value
Optimizer Adam
Learning rate 0.001
Learning rate scheduler ReduceLROnPlateau
Learning rate decay factor 0.5
Learning rate decay patience 40
Max epochs 1000
Steps per epoch 128
Batch size 64
Early stopping threshold (2D) 0.1
Early stopping threshold (3D) 0.3
Patience 3
Number of time steps 100
Lowest frequency 1
Highest frequency 30
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B CHARACTERIZING THE ATTRACTORNESS OF THE TASKS

Attractors are associated with stable states in a network’s dynamics. To quantify how attractor-
heavy a task is, we measure the speed of change in the RNN’s hidden activities. Specifically, we
calculate the average normalized difference between the hidden states at two consecutive time steps.
This measure reflects the stability of the network’s internal states over time, where slower changes
indicate the presence of attractor-like behavior.

For each trial, given a time series of hidden state activities, we calculate the speed of change in the
hidden activities as:

∆h =
∥ht+1 − ht∥
1
T

∑T
t=1∥ht∥

where T is the total number of time steps in the trial. We then average ∆h across all trials in the
training set to obtain a representative measure of the average speed of change in hidden activations
for the task. A low ∆h indicates that the hidden state is changing slowly over time, suggesting
that the network is in or near an attractor state where the hidden activations are relatively stable.
Conversely, a high ∆h indicates more rapid changes in hidden activity, implying less attractor-heavy
dynamics.

As shown in Figure A1, tasks like N-Bits Flip-Flop and Path Integration, which have the highest task
complexity and lowest dynamical degeneracy, span opposite ends of the ”attractorness” spectrum.
Interestingly, Delayed Discrimination, which exhibits the highest dynamical degeneracy, shows an
intermediate attractorness score. This suggests that the attractorness score, as measured by the speed
of change in hidden activity, does not fully account for the dynamical degeneracy observed in the
networks. Therefore, while attractor-like behavior influences network dynamics, it is not the sole
factor determining dynamical degeneracy across tasks.

Figure A1: Normalized speed of change in hidden state activities for each task: (A) Speed of
change in hidden state activity (∆h)for all trials in the training set plotted in violin plot for each task
(B) Overlaid histogram of (∆h) for all tasks (C) Individual (∆h) for each task.
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C DYNAMICAL SIMILARITY ANALYSIS (DSA)

Briefly, DSA proceeds as follows: Given two RNNs with hidden states h1(t) ∈ Rn and h2(t) ∈ Rn,
we first generate a delay-embedded matrix, H1 and H2, by sampling several hidden-state trajecto-
ries from each RNN. Next, for each delay-embedded matrix, we use Dynamic Mode Decomposition
(DMD) (Schmid, 2022) to extract linear forward operators A1 and A2 of the two systems’ dy-
namics. Finally, a Procrustes distance between the two matrices A1 and A2 is used to quantify
the dissimilarity between the two dynamical systems and provide an overall DSA score, defined
as: dProcrustes(A1,A2) = min

Q∈O(n)
∥A1 − QA2Q

−1∥F where Q is a rotation matrix from the or-

thogonal group O(n) and ∥ · ∥F is the Frobenius norm. This metric quantifies how dissimilar the
dynamics of the two RNNs are after accounting for orthogonal transformations. We quantify Dy-
namical Degeneracy across many RNNs as the average pairwise distance between pairs of RNN
neural-dynamics/hidden-state trajectories

Task Number of delay Rank
N-Bits Flip Flop 30 1000
Delayed Discrimination 20 100
Sine Wave Generation 30 100
Path Integration 30 100

Table 2: Hyperparameters for DSA

D PERMUTATION-INDEPENDENT DISTANCE BETWEEN WEIGHTS

To quantify the dissimilarity between recurrent weight matrices in a permutation-independent man-
ner, we use a variant of the Frobenius norm that allows for optimal row and column permutations.
Given two RNNs with weight matrices W1 ∈ Rn×n and W2 ∈ Rn×n, we define the Permutation-
Independent Frobenius (PIF) distance as:

dPIF(W1,W2) = min
P1,P2∈P(n)

∥W1 −P1W2P2∥F

where P(n) is the set of permutation matrices of size n×n, and ∥ · ∥F denotes the Frobenius norm.

This distance is calculated using an iterative coordinate-descent optimization strategy with multiple
random restarts to avoid local minima. At each iteration, both the row permutation P1 or the column
permutation P2 is optimized using a linear-sum-assignment approach as described in (Ainsworth
et al., 2022).
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