INTERIORAGENT: LLM Agent for Interior Design-Aware 3D Layout Generation

Ishit Mehta! ~ Kun Wang!
Ravi Ramamoorthi®

Kunal Gupta®

!University of California, San Diego

Nicholas Chua'!
Manmohan Chandraker!

Abhimanyu Krishna? Yan Deng?

2Qualcomm

{k5gupta, mkchandraker}@ucsd.edu

Figure 1. (Left) shows 3D scenes generated by INTERIORAGENT with prompts “a dining room” (top) and “a beauty parlour” (bottom).
(Middle) shows scenes where INTERIORAGENT deploys new tools, namely, an ASCII generator with the prompt “forest made to look like
INTERIORAGENT 3DV 2026 VANCOUVER?” (top) and human model placement with the prompt “a living room scene where friends have
gathered to watch TV” (bottom). (Right) shows an editing application with the prompt “add a larger window and additional decor items”.

Abstract

Creating interior layout designs has numerous applica-
tions, including virtual reality, architectural visualization
and real estate planning. Generating realistic and func-
tional indoor scenes requires a nuanced understanding of
spatial configurations and human-centered design princi-
ples. We propose INTERIORAGENT , an LLM-agent-driven
framework for text-to-3D indoor scene generation that pro-
duces scenes with visual quality and functional utility that
significantly surpass prior works. We achieve this through
several key advantages of INTERIORAGENT : (1) encoding
of interior design principles with a novel scene description
language, (2) aesthetics and functionality through synthesis
tools that satisfy design principles, (3) realism and prompt

adherence with optimization tools that ensure ergonomics
and iterative constraint satisfaction, (4) extensibility with a
framework that allows incorporating even mature, complex
tools like diffusion models, LLMs and 3D generation reposi-
tories. We evaluate INTERIORAGENT through a user study,
where participants strongly favor its generated scenes over
prior state-of-the-art methods. Additionally, we demonstrate
novel applications uniquely enabled by INTERIORAGENT ,
including language-based scene editing and seamless tool
integration for new tasks. Code and data will be publicly
released.

1. Introduction

Creating realistic and visually appealing 3D indoor envi-
ronments has long been a goal in computer vision. Today,

Holodeck

SceneCraft

InferiorAgent

*qc‘) -
I ¢ =V ;;’,2’7’;%
[0)
[¢)
O =
o
Unoptimized SceneCraft InteriorAgent
'5 Input Scene
©
N
£
°
O

Figure 2. Toy example illustrating design-aware placement and
optimization : (Top) Comparison of asset placement across meth-
ods for a dining setup. Holodeck [41] and SceneCraft [12] rely
on coarse proximity constraints and struggle to arrange chairs con-
sistently around the table, whereas INTERIORAGENT leverages
interior design—aware synthesis tools to produce a coherent and
ergonomic layout. (Bottom) Given an initial scene with overlap-
ping furniture, SceneCraft’s VLM-based optimization fails to fully
resolve collisions. In contrast, INTERIORAGENT employs precise,
design-informed gradient-based optimization to produce a collision-
free and functionally valid arrangement.

design tools such as Planner5D, TargetHomePlanner, and
RoomSketcher [24, 27, 35] are widely used, including by
retailers like IKEA [10]. While prior approaches have lever-
aged LLMs to integrate natural language inputs into these
tools for 3D scene generation, they still fall short in terms of
visual quality and functional utility. We argue that an effec-
tive system is one that is systematically grounded in interior
design principles, ensuring superior scene quality in both aes-
thetics and functionality. Such a system not only enhances
realism but also makes interior design tasks more accessi-
ble, even for users without specialized expertise. Inspired
by established work in interior design [21, 42], we present
INTERIORAGENT , a framework for generating structured,
visually compelling 3D indoor scenes from natural language
prompts. INTERIORAGENT comprises three key compo-
nents: (1) a program synthesizer that translates prompts into
Python-like scene programs while integrating specialized
tools; (2) an Interior Design—aware Scene Description Lan-
guage (IDSDL) for authoring these programs; and (3) a suite
of design-informed tools that drive both synthesis and opti-
mization, improving ergonomics, realism, and aesthetics.

Scenes generated by INTERIORAGENT are both aesthet-
ically pleasing and functionally sound (Figure 1). Prior
LLM-based methods, including Holodeck [41], I-Design,
SceneCraft [12], and LayoutVLM [32], struggle to synthe-
size and optimize interior design layouts. Consider the toy
example in Figure 2 of placing six chairs around a rectan-
gular table (top): Holodeck and SceneCraft rely on simple
proximity rules, limiting their ability to capture interior de-
sign—oriented inter-object relations.

We empirically evaluate the scene generation quality
of INTERIORAGENT through a perceptual study, demon-
strating its superiority over existing text-to-3D baselines,
Holodeck [41], I-Design [2], LayoutVLM [32], and qualita-
tively against SceneCraft [12] across a range of user prompts.
Our analysis shows that INTERIORAGENT produces scenes
that adhere more closely to physical realism compared to a
state-of-the-art data-driven method, DiffuScene [34]. Fur-
ther, we highlight INTERIORAGENT ’s versatility by inte-
grating tools like Stable Diffusion and full 3D generation
repositories like SceneMotifCoder [33] to enhance visual
appeal and capability for interactive dialogue-driven iterative
scene refinement.

2. Related Works

Classical Methods Early systems like WALKEDIT [1]
utilize constraints based on object associations to ascertain
layouts. Several methods have leaned on principles of inte-
rior design to optimize scene layouts [3, 21, 42]. The INTE-
RIORAGENT SDL incorporates such design principles, but
allows intuitive language-based design, while avoiding the
hand-crafted constraints and stochastic optimization pitfalls
such as local minima faced by classical works [5].

Learning-Based Methods Recent works have used Gaus-
sian mixtures [7, 19], autoregressive transformers [13, 17,
22], recursive autoencoder [14], and graph convolution net-
works [36, 43] to learn indoor scene layouts, as well as
diffusion models [34, 38, 40] for indoor scene synthesis.
But data-driven methods face hurdles due to the scarcity of
high-quality 3D scene datasets with diverse layouts and an-
notations. Importantly, once trained, they are not extensible
to new assets or design features without expensive retraining.

LLMs for indoor scene synthesis LayoutGPT [6] gen-
erates layouts as CSS-style descriptions but struggles with
overlaps and poor arrangements due to direct pose regres-
sion. Holodeck [41] and I-Design [2] improve on this by
prompting GPT-4 to define spatial constraints, resolved with
an external optimizer. However, their JSON-like represen-
tations limit relations to simple proximity. FlairGPT [16]
further incorporates interior design heuristics by prompting
an LLM to reason about functional zones, anchor objects,
and stylistic intent, followed by translation into executable
programs. While effective at capturing high-level design
structure, FlairGPT adopts a language-centric planning and
translation pipeline, in contrast to approaches that synthe-
size executable scene programs directly and provide more
explicit control over geometry, ergonomics, and extensibility.
SceneCraft [12] and LayoutVLM [32] instead rely directly
on Vision-Language Models (VLMs), either for iterative op-
timization or to ascribe proximity-based constraints. Both

approaches lack the depth of interior design reasoning and
suffer from imprecise VLM-based 3D understanding. In
contrast, INTERIORAGENT introduces a dedicated scene
description language with design-informed synthesis and
optimization tools, achieving structured, ergonomic, and
high-quality layouts. While SceneCraft emphasizes tool
learning, INTERIORAGENT focuses on effective tool usage,
making their contributions complementary.

Program Synthesis with LLMs INTERIORAGENT lever-
ages tools usage in a program synthesis framework for 3D
scene generation. Several LLM-based code generators such
as Codex [28], GPT-4 [25], and AlphaCode [15] are used
as coding assistants in software development. Tool usage
to deploy models and APIs such as HuggingGPT [30] and
plug-and-play frameworks such as Chameleon [18] have en-
hanced LLM adaptability to visual reasoning. Works like
Toolformer [29] and Gorilla [23] have explored fine-tuning
to improve tool usage for LLMs. VisProg [9] leverages a
vision-based API to prompt LLMs to tackle compositional
visual tasks, which has been adapted to other domains, such
as autonomous driving [39] and robotics [31].

Self-Correcting LLMs Several approaches improve LLM
code accuracy: Self-Refine [20] iteratively refines outputs,
[11] debugs with print statements, and “rubber duck debug-
ging” [4] detects errors from execution results. Inspired by
these, INTERIORAGENT employs a self-correcting mecha-
nism that prompts an LLM to fix syntax errors, API misuse,
and scene violations using feedback from execution trace-
backs and scene constraints.

3. Interior Design aware Scene Generation

INTERIORAGENT generates 3D scenes from natural lan-
guage by synthesizing Python programs in a custom Inte-
rior Design—aware Scene Description Language (IDSDL).
IDSDL embeds design principles and integrates with Al
tools and expert modules via a structured I/O framework.
Unlike typical LLM-based 3D generation that relies on func-
tion calls or tool use, INTERIORAGENT emphasizes design
fidelity and extensibility through a robust tools and API stack.
As shown in Figure 3, given a prompt, PROGRAMS YNTHE-
SIZER generates a scene program, evaluates embedded VLM-
based constraints, and iteratively refines the program until
all constraints are satisfied.

3.1. Scene Description Language

A procedural language for indoor layout generation must
support core functions such as registering objects, position-
ing them within scene, and optimizing constraints to enhance
functionality and realism. IDSDL excels in all three areas,

achieving higher scene fidelity than state-of-the-art meth-
ods by strongly integrating interior design principles with
a structured framework that accommodates advanced tools,
including LLMs, diffusion models, and 3D generation repos-
itories. We now discuss each of these functions in detail.

Object Registration. IDSDL offers a unified API for ob-
ject retrieval from natural language descriptions, returning
appropriately scaled instances suited to indoor settings. Un-
like prior work, it supports diverse sourcing methods, includ-
ing retrieval from multiple 3D asset datasets (e.g., 3DFront,
HSSD, Objaverse), generation via text-to-3D models (e.g.,
Hunyuan3D), and domain-specific tools such as Stable Dif-
fusion (for paintings) and SceneMotifCoder (for stacked
objects). Figure 3 lists all retrievers currently implemented
in IDSDL with more details in supplementary.

Each retrieval tool integrates cleanly by implementing a
Python class (Figure 15), which must: (1) define a name,
usage description (e.g., 3DFront provides high-quality fur-
niture, Objaverse offers greater diversity), and examples;
and (2) implement __call__() to return an object path and
estimated width from a prompt. Beyond retrieving object
primitives, IDSDL provides rich functions for registered ob-
jects such as local coordinate frame, ray intersections, etc
(Figure 4), supporting layout generation and optimization.

Object Placement. Objects are typically placed by first
assigning approximate positions via a planner (e.g., a VLM)
to form an initial layout, then refining through constraint
optimization to satisfy spatial and functional requirements.
While the toy example in Figure 2 already shows improved
placement and optimization over prior work, a more power-
ful capability stems from functional groups, borrowed from
interior design, which cluster related objects to support spe-
cific activities (e.g., seating areas or workspaces).

For instance, the prompt “Place two tables, each with
two chairs, next to each other” requires both chair—table
and table—table constraints (Figure 5). LayoutVLM [32],
which enforces all constraints simultaneously (left), intro-
duces trade-offs between relations. For illustration, we adapt
LayoutVLM into a hierarchical variant that first arranges
chairs around each table, then places the two table—chair
groups side by side (middle), yielding a more coherent lay-
out and evidencing the value of group-level optimization.
IDSDL is designed around this principle: by registering,
placing, and optimizing within groups, it enables hierarchi-
cal reasoning that produces layouts faithful to functional
intent (right) while avoiding trade-offs inherent in global
placement.

While prior methods have acknowledged functional
groups or “zones,” they have largely treated them as chain-
of-thought prompts to guide layouts. They neither capture
the diversity of group types nor optimize them in isolation,

@ R @ ‘ Object Retrieval
* Refrieve3DFront() [EENEEIG
sl

“Make me a nice
living room with a
pony toy!”

RetrieveHSSD() % aiat
RetrieveObjaverse() Objaverse-XL

GenerateHunyuan3D() (g maisszso-r.0

RetrieveHumans() @ sketchfab TURBOSRUID
CreatePaintingStableDiffusion() o Stable Diffusion

CreateStacksSceneMotifCoder() < - ~—/

Program
Synthesizer

Object Placement
RelativeGroup()

RoomProportionConstraint() . ChatGPT
ConversationConstraint()

AroundGroup()

=

[0} GridGroup()

8 E‘ RoomGroup()

25 @,

g = v Createasclart() [G) chatrt g
2 9 ShelfFilMask2F >
9 2 3 Scene Program Siilcs2ierer]

= s e o
% 2§ Scene Optimization
8 a‘: Gradient Based
w— vz "
s g O exec() OverlapConstraint()
S’ g ﬁ = OutOfBoundConstraint]

_S a EI ClearanceConstraint()

g %% VisibilityConstraint()

O c g, @ AccessConstraint() /6

g qggﬁ RenderingConstraint() B

o
= oA VLM Based
L &" d' + ObjectProportionConstraint()

InteriorAgent Scene Program Procedural Tools available in IDSDL
Scene Generation

BalanceConstraint()

Figure 3. INTERIORAGENT pipeline. From a (1) natural language prompt, (2) PROGRAMSYNTHESIZER generates an executable scene
program in IDSDL (3). The scene is constructed through functional groups: (4) a RelativeGroup defines a seating area anchored on the
sofa, enabling (5) placement of lounge chairs, a coffee table, and related assets. Objects are optimized at the group level (6), yielding layouts
that are physically plausible and functionally coherent. (7) A RoomGroup manages walls, windows, and other wall assets, while also
positioning functional groups at candidate locations (8). Room-level constraints (9) enforce non-overlap, adherence to room dimensions, and
functional requirements such as maintaining TV visibility from the seating area—for example, the unicorn is shifted to preserve sightlines
(red box). Execution of the program produces both the scene and (10) VLM feedback, which is passed back to PROGRAMS YNTHESIZER for
refinement. Program edits (11), such as relocating the wall clock to resolve its overlap with the door (red box), yield the final optimized
scene (12). The INTERIORAGENT framework is enriched by a broad set of IDSDL tools, including asset retrievers, interior design—inspired
placement and optimization routines, as well as Al-enabled modules such as LLMs, diffusion models, and 3D generation repositories.

chair.ray_intersect(ray)

chair.place_frontitable) Scharnger,AABBn

UtVLM + Groups IDSDL (Ours)

Z::hair.ge',crea() chair.is_overlap(table) chair.add_lighting()

(a) Local coordinate (o] relative placement (c) Bounding Boxand (d) Rayinfersectionand (e) Adding lights Figur e 5. Toy Example (FunCtiOHal Gl’OllpS): Illustration of
system via function passing floor area computation object overlap computation hierarchical object placement Via functional groups, (Left) Directly

placing four chairs around two tables is challenging for VLM-based

chaifoce.fowards(ioble) chairscale ‘Mi'h() Ch“"fil v chjlr[Ql 3
S s . K ﬂ methods such as LayoutVLM [32], which struggle to satisfy all
a A] H e table—chair relations simultaneously. (Middle) Decomposing the
A —_— task hierarchically—first arranging chairs relative to each table,

chair.set_pose(x.y.z6)]
xy.2.8 = chair.gef_pose() chair.scale_height() 2 . n

s s chairfs] > " then placing the table—chair groups—improves results, highlighting

Semond ocamary \Gscanadepi wiamandnaant 1) Sy SRS Lovind drecrons the value of group-level reasoning. (Right) INTERIORAGENT
natively supports functional groups through its scene description

Figure 4. Functionalities available to both IDSDL objects and language, enabling hierarchical placement that yields coherent and

groups for versatile scene generation. functionally consistent layouts.

“A sofa with end tables on either side

(a) RelativeGroup i ebem o fobe lamps
are placed on the end tgbles."
O g [
back_further §

back=> IZI back_right
[@M@ [4

front_| Ieﬁ < o

i=en) w il |

“A rectangulor dining fable with
three chairs on each side!

(b) AroundGroup

“A recepfion desk with a chair, @ potted
plant beside it, and a display cabinet
further behind.”

rectiinear
cirt culo “Four chairs are placed in an

arc to view a sculpture.”

@ =
arc

&| ,mmm ; Ty

“A row of 4 treadmills” “A bed with two nightstar

nds
placed on the left side of bock wall

(c) GridGroup

(d) RoomGroup

,ii‘ifi i IME/

Figure 6. Object placement. Groups provide an intuitive mechanism for arranging assets based on interior design patterns. Boxes indicate
candidate positions within a group, while arrows mark object orientations. Distances and orientations are fixed to support ergonomic factors
such as accessibility, visibility, conversation, and circulation. For each group, example scenes generated with IDSDL (left) better align with
the prompt (see supplementary for corresponding scene programs), whereas LayoutVLM (right) struggles due to limited placement capacity.
This underscores the value of interior design—aware placement in improving both visual quality and functional utility.

Gradient Based
OverlapConstraint()
OutOfBoundConstraint ()

VLM Based

ClearanceConstraint() ObjedPropomonConstrcim() RoomPropomonConsncim(]

> >
o Dy -y ™ ™
> & o g" gm\ gm @;\ @
vt v
Vlslb\htyConsfrc\m() AccessConsIrumt() COWVSFSO“OHCOWSVO‘”TU BalanceConstraint()
< o~ o ~
o Y ™S N N - ™
q\ @ &) .sﬁﬁ\ V/&\ J &)
N \v \

Figure 7. Visualization of constraints available in IDSDL.

thereby missing the advantages of hierarchical reasoning. In
contrast, IDSDL introduces a rich set of group APIs inspired
by interior design patterns (Figure 6). RelativeGroup ()
arranges objects relative to an anchor object—a focal ele-
ment that sets the tone for the group—across 17 predefined
positions based on anchor’s local coordinate frame: eight
adjacent (three per side, plus front and back), eight at greater
distances, and one on top. Orientations are fixed to promote
ergonomic layouts, such as conversational seating, while
object-object distances, especially for adjacent placements,
are chosen to ensure functional access. AroundGroup ()
places objects around an anchor in rectilinear, circular, or
arc configurations, while GridGroup () supports repeti-
tive patterns in rows, grids, or arcs. At the highest level,
RoomGroup () organizes all groups and manages global
elements such as windows, doors, and wall-mounted objects.

Each group is implemented as a Python class (Figure 16)
that specifies: (1) a group name; (2) a placement routine,
decorated with @placemethod, which includes a descrip-
tion, example usage, and pose-computation logic; and (3) an
optional compile () method for fine-grained control over
placement and optimization order. Groups can then be in-
voked directly by INTERIORAGENT using their descriptions
and examples.

Scene Optimization. Our framework supports joint use
of gradient-based optimization—effective for continuous
constraints such as overlap minimization—and VLM-based
optimization—suited to qualitative constraints like aesthet-
ics—yielding superior visual appeal and functionality. See
Figure 7 for visualization of various constraints. Gradient-
based constraints Overlap () and OutOfBound () pre-

vent object—object intersections and placement outside the
room bounds. Clearance () reserves necessary space for
accessibility (e.g., beside beds, in front of cabinets), while
Access () ensures key items such as coffee tables remain
within reach from seating. Visible () maintains clear
sightlines, for example between a TV and seating.

Each constraint provides a pseudo-gradient for its ob-
jects, guiding updates that minimize violations. IDSDL
accumulates these gradients and optimizes at the end of
placement. To balance constraint satisfaction with minimal
displacement, updates are applied selectively, sampled from
a distribution that considers object size and surrounding free
space, thus preserving group structure.

Consider a group G, with do denoting the total gradient
from all constraints on each object o € G. Let FreeSpace :
G x D — R measure the available space around o along
directions D = [&+,&—, £+, 2—], defined as the distance
to the nearest object or wall. At optimization step s, the
unnormalized action density I'f; ., = [7}'] is

" . FreeSpace (o5, j), O> (1)

favoring objects with smaller footprint (o) and directions
j aligned with Qo that have greater free space, thereby
reducing collision risk. A small subset of updates U® =
{(i,7) | (4,7) ~ SoftMax(I'*)} with |U®| < |G| is then
sampled, and each selected object o; moves along j:

o 05 i+ 1 - 00 5, 2)
where 7 is the learning rate. The process runs for S’ steps per
group, yielding one optimization pass per execution.

VLM-based constraints use group renderings and nu-
merical context to suggest edits to the scene program.
ObjectProportion () enforces realistic relative ob-
ject sizes within a group; RoomProportion () en-
sures room dimensions accommodate placed furniture;
Conversation () orients seating to support interaction;
and Balance () promotes even spatial distribution of ob-
jects.

“Remove
sideboard "

@, got L
=
cene -
Programmer CodeRefine
L # = &
exec|. (ol
“Living room" C] Scone
Progrom
¢} feo

TraceRefine
Q]

Debugger

Figure 8. PROGRAMS YNTHESIZER takes an input prompt (or an
optional edit prompt) and generates a valid scene program that,
when executed, produces a 3D scene. This is done by prompt-
ing Programmer with the input descriptions and relevant in-
context examples provided by the Ret riever for reference. The
Programmer outputs an initial 5 scene program, which may
contain syntax errors; these are resolved by Debugger , result-
ing in an executable scene program. Debugger performs this
refinement through an iterative loop between CodeRefine and
TraceRefine , optimizing based on the scene program and any
traceback information from its execution.

When executed, IDSDL consolidates VLM feedback and
passes it to PROGRAMSYNTHESIZER to refine the scene
program. At iteration ¢, the program ®! and feedback O®?
yield an updated program:

®'*! « PROGRAMSYNTHESIZER (z|®, 0®%) (3)

where z is the input prompt. Constraints are implemented
as Python classes (Figure 17) specifying metadata (name,
usage, examples, type, and optional VLM prompt) and
a compute_gradients () method for pseudo-gradients
computation and generating response from VLM.

3.2. Program Synthesizer

Given an input prompt and optional edit instructions,
Programmer produces an initial S scene program, which
may contain syntax errors. To improve accuracy, the
Retriever provides relevant in-context examples that
serve as references for Programmer . Any remaining
errors in [are resolved by the Debugger , yielding
the refined scene program (Figure 8). All LLM-based
modules (Programmer , Retriever, CodeRefine ,
TraceRefine) use the same backbone VLM (GPT-40),
differing only in system prompts.

Programming. The Programmer is an LLM prompted
to write scene programs. It is provided with IDSDL doc-
umentation along with up to K in-context examples © re-
lated to the input query. Additionally, Programmer can be
used in “edit” mode by providing a previous scene program
&t and 9P?, containing edit instructions, as an additional

prompt. Given a prompt composed from these inputs, the
Programmer VLM outputs a scene program ‘I)tgﬂ

(I)tﬁ+1 = Programmer (33, @|‘I)t7 aq)t) (4)

We refer to this scene program as a /3 scene program due to its
tendency to have syntax errors. This program is subsequently
debugged by the Debugger . A program based scene rep-
resentation provides fine-grained control over object place-
ment and relationships, enables iterative scene refinement
through program modifications, and extends functionality
via modern programming constructs and external libraries.
In contrast, prior methods [2, 6, 8, 41] rely on less expressive
scene representations like JSON and lists. Moreover, our
ability to apply language-domain edits to a scene program
enables language-based scene editing capabilities as shown
in Section 4.

In-Context Examples. We curate a dataset of V instruc-
tive scene programs, each demonstrating how to use the
IDSDL for a variety of scene layouts (a few examples are
shown in supplementary). Each example comprises a brief
layout description in plain English, A;, 0 < [< N, and
the corresponding scene program ;. For each example, a
1D vector encoding e; = £(\;) is generated using a text
embedding model £. Similar embedding is computed for
auser’s input e = £(z). We then calculate the cosine sim-
ilarities between e and each embedding e; in the database,
yielding the similarity set C(\) = {e-e1,e-ea, - ,e-en}.
The set of relevant in-context examples © = {s;}, k €
arg top g (C) is thus passed to the Programmer which sig-
nificantly enhanced the correctness of generated scene pro-
grams. In-context examples enhance VLM-driven scene gen-
eration by incorporating expert knowledge through Retrieval-
Augmented Generation (RAG), unlike previous VLM-based
3D scene generation methods that rely solely on the VLM,
often producing weaker results.

Debugging. The initial scene program, ®7*, is reviewed
by the CodeRefine tool, a VLM prompted to catch syntax
errors and basic issues, producing an error-free version. Any
remaining errors are identified by executing the program
and capturing tracebacks, which are then refined by the
TraceRefine tool, another VLM prompted to addresses
errors indicated in the traceback. Through a few iterations,
this process yields a functional scene program, ®*1:

ottl = Debugger(q)t;l) (5)

Using CodeRefine upfront for syntax fixes speeds up
debugging, reducing execution cycles. We note Debugger
is crucial for INTERIORAGENT to write accurate code given
its complex tool-based IDSDL. Notably, prior program-
synthesis-based 3D generation methods, such as [12], lack
this functionality.

Ql Q2 Q3 Q4 Q5 Q6
NearestE.g. 41% 42% 43% 65% T1% 16%
I-Design 65% 10% 9% 2% 11% 70%
Holodeck MN% 69% 70% 70% 67% 67%
LayoutVLM 70% 75% 73% 69% 63% 63%

Table 1. User preference for INTERIORAGENT -generated scenes
over Nearest Example, I-Design, Holodeck, and LayoutVLM across
Q1-Q6 (prompt adherence, 7).

4. Experiments

We evaluate INTERIORAGENT by generating scenes from
various inputs and comparing them to four state-of-the-art
methods: Holodeck [41], I-Design [2], SceneCraft [12], and
LayoutVLM [32]. For Holodeck, I-Design, and LayoutVLM,
we use publicly available code and conduct a perceptual
study. Since SceneCraft’s code was unavailable at submis-
sion, we re-implemented it based on the original paper and
report only qualitative results, incorporating its spatial skill
library without retraining. Ablations are evaluated both qual-
itatively and quantitatively. Implementation details and addi-
tional experiments are provided in the supplementary.

Evaluation Dataset. We construct the MIT Scenes dataset
to evaluate different models, derived from [26]. It covers 53
diverse indoor categories, each with three detailed prompts,
for a total of 159 prompts.

4.1. Perceptual Study

We conduct a perceptual study comparing INTERIORAGENT
with Holodeck, I-Design, and LayoutVLM, involving 50
undergraduate and graduate participants. Each completed a
two-alternative forced-choice test across 50 top-down images
and 360° videos of generated scenes. Participants answered:
Q1: “In which scene are the room and objects sized more ap-
propriately?”, Q2: “In which scene are the objects arranged
more naturally?”, Q3: “Overall, which scene is more aes-
thetically pleasing?”, Q4: “Overall, which scene is better?”,
Q5: “In which scene are the objects arranged more in accor-
dance with the caption/prompt?”, and Q6: “In which scene
are the object—object relations more in accordance with the
caption?”. Participants also provided absolute ratings (Ta-
ble 2). Quantitative results are summarized in Table 1, and
qualitative comparisons across scene categories are shown in
Figure 9. Users strongly preferred INTERIORAGENT , con-
sistently rating its scenes as more aesthetically pleasing and
overall superior to those from Holodeck, I-Design, and Lay-
outVLM. For Q1-Q3, nearest-neighbor scenes were often
favored due to being human-curated; however, INTERIORA -
GENT still outperformed all other baselines. For Q5-Q6 and
absolute ratings (Table 2), INTERTORAGENT was judged to
adhere more closely to input prompts and, on Q4, to be the
best overall.

Nearest E.g. I-Design Holodeck LayoutVLM InteriorAgent

1.7 22 2.4 2.5 34

Table 2. Adherence of generated scenes to input prompts on a
5-point scale for different methods (7).

Categories OB 00 Vis. Cler. Acc. Conv.
w/o opt. 9% 22% 10% 27% 9% 7%
w/ opt. 1% 2% 2% 8% 0% 0%

Table 3. Impact of optimization on constraint satisfaction.

4.2. Ablations

Figure 10 shows that all components of INTERIORAGENT
are critical to achieving superior results. We quantitatively
evaluate the impact of gradient- and VLM-based optimiza-
tion by generating MIT Scenes prompts with and without
optimization, measuring constraint violations for out-of-
bounds (OB), object overlaps (OO), visibility (Vis.), clear-
ance (Cler.), accessibility (Acc.), and conversation (Conv.).
Gradient-based optimization primarily addresses OB, OO,
Vis., Cler., and Acc., while VLM-based optimization en-
forces Conv. Table 3 reports a substantial reduction in viola-
tions with feedback enabled, underscoring its effectiveness
in resolving these issues.

4.3. Applications

Scene editing. INTERIORAGENT ’s chat-like interface al-
lows users to generate and iteratively edit scenes, accom-
modating complex requirements beyond a single prompt.
Figure, in supplementary, shows a dining room scene refined
through prompts for object placement and aesthetic adjust-
ments. Unlike Holodeck, LayoutVLM and I-Design, which
generate scenes in a single feedforward pass, INTERTORA -
GENT allows user-specified customization with physical and
aesthetic coherence.

Tool Integration INTERIORAGENT leverages template-
specified context to integrate external tools. We demonstrate
this with (i) human model placement in standing/sleeping
poses, (ii) Stable Diffusion for paintings matching scene
style, and (iii) ASCIIGenerator () for object arrange-
ments forming words (Figure 1, top middle). Such extensi-
bility is uniquely enabled by INTERIORAGENT ’s program
synthesis, beyond prior methods. For figures and additional
tool integration, see supplementary.

5. Conclusion and Future Work

The LLM-based program synthesis approach of INTERIOR-
AGENT enables features such as tool usage, self-correction,
refinement and an expressive scene language, leading to re-
alistic, ergonomic, editable and extensible 3D indoor scene
generation. We envision broad use of INTERIORAGENT ’s

InteriorAgent (Ours) LayoutVLM Holodeck I-Design SceneCraft

Bakery

g |
[}
2
@
@
i)
O

Flower Shop

Figure 9. MIT Scenes: INTERIORAGENT generates scenes that closely follow input prompts. Kitchen: all baselines omit the island.
Classroom: SceneCraft places desks and chairs too sparsely, while LayoutVLM, Holodeck, and I-Design yield chaotic arrangements. Gym:
stationary bikes are not arranged in a grid. Bakery, Buffet, and Flower Shop: INTERIORAGENT produces more natural and coherent layouts.

Living Room

Music Room

Nearest in-context E.g.

InteriorAgent w/o Around and Grid groups w/o scene optimization w/o ergonomic constraints w/o RAG

Figure 10. Ablations : Without the placement mechanisms of Around (top) and Grid (bottom) groups, VLMs misplace assets due
to limited 3D spatial understanding. Disabling scene optimization (all gradient and VLM constraints off) reduces realism, producing
overlaps (red highlights). Removing ergonomic constraints (access, clearance, visibility, conversation) compromises functionality, leading
to accessibility issues. Providing all in-context examples to the LLM does not improve scene quality but increases token usage by 8x
compared to RAG with 5 examples. Despite differing from nearest neighbors, INTERIORAGENT generates diverse, high-quality 3D scenes

with superior prompt adherence.

capabilities through its intuitive editing and flexible tool in- material and lighting, in addition to 3D layouts and objects.
tegration for new tasks. Promising directions for future work
include extension to multi-room scenes and optimization of

References

(1]

(2]

(3]

[4]

(5]

(6]

(7]

(8]

(9]

(10]

(1]

[12]

[13]

Richard W Bukowski and Carlo H Séquin. Object associa-
tions: a simple and practical approach to virtual 3d manipula-
tion. In Proceedings of the 1995 symposium on Interactive
3D graphics, pages 131-ft, 1995. 2

Ata Celen, Guo Han, Konrad Schindler, Luc Van Gool, Iro
Armeni, Anton Obukhov, and Xi Wang. I-design: Personal-
ized llm interior designer. arXiv preprint arXiv:2404.02838,
2024. 2,6,7,1

Angel Chang, Manolis Savva, and Christopher D Manning.
Learning spatial knowledge for text to 3d scene generation.
In Proceedings of the 2014 conference on empirical methods
in natural language processing (EMNLP), pages 2028-2038,
2014. 2

Xinyun Chen, Maxwell Lin, Nathanael Schirli, and Denny
Zhou. Teaching large language models to self-debug. arXiv
preprint arXiv:2304.05128, 2023. 3

Bob Coyne and Richard Sproat. Wordseye: An automatic
text-to-scene conversion system. In Proceedings of the 28th
annual conference on Computer graphics and interactive
techniques, pages 487-496, 2001. 2

Weixi Feng, Wanrong Zhu, Tsu-jui Fu, Varun Jampani, Ar-
jun Akula, Xuehai He, Sugato Basu, Xin Eric Wang, and
William Yang Wang. Layoutgpt: Compositional visual plan-
ning and generation with large language models. arXiv
preprint arXiv:2305.15393,2023. 2, 6

Matthew Fisher, Daniel Ritchie, Manolis Savva, Thomas
Funkhouser, and Pat Hanrahan. Example-based synthesis
of 3d object arrangements. ACM Transactions on Graphics
(TOG), 31(6):1-11, 2012. 2

Rao Fu, Zehao Wen, Zichen Liu, and Srinath Sridhar. Any-
home: Open-vocabulary generation of structured and textured
3d homes. In European Conference on Computer Vision,
pages 52-70. Springer, 2025. 6

Tanmay Gupta and Aniruddha Kembhavi. Visual program-
ming: Compositional visual reasoning without training. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 14953-14962, 2023. 3
Jordan Hobbs. Why IKEA Uses 3D Renders vs.
Photography for Their Furniture Catalog. https:
/ /www .cadcrowd.com/blog/why-ikea—-uses—
3d - renders — vs — photography — for — their -
furniture—catalog/, 2024. Accessed: 2024-01-19.
2

Xueyu Hu, Kun Kuang, Jiankai Sun, Hongxia Yang, and Fei
Wau. Leveraging print debugging to improve code generation
in large language models. arXiv preprint arXiv:2401.05319,
2024. 3

Ziniu Hu, Ahmet Iscen, Aashi Jain, Thomas Kipf, Yisong
Yue, David A Ross, Cordelia Schmid, and Alireza Fathi.
Scenecraft: An 1lm agent for synthesizing 3d scene as blender
code. In ICLR 2024 Workshop on Large Language Model
(LLM) Agents, 2024. 2,6, 7

Kurt Leimer, Paul Guerrero, Tomer Weiss, and Przemyslaw
Musialski. Layoutenhancer: Generating good indoor layouts
from imperfect data. In SIGGRAPH Asia 2022 Conference
Papers, pages 1-8, 2022. 2

(14]

(15]

(16]

(17]

(18]

(19]

[20]

(21]

(22]

(23]

(24]

(25]

[26]

(27]

(28]

Manyi Li, Akshay Gadi Patil, Kai Xu, Siddhartha Chaud-
huri, Owais Khan, Ariel Shamir, Changhe Tu, Baoquan Chen,
Daniel Cohen-Or, and Hao Zhang. Grains: Generative recur-
sive autoencoders for indoor scenes. ACM Transactions on
Graphics (TOG), 38(2):1-16, 2019. 2

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian
Schrittwieser, Rémi Leblond, Tom Eccles, James Keeling,
Felix Gimeno, Agustin Dal Lago, et al. Competition-level
code generation with alphacode. Science, 378(6624):1092—
1097, 2022. 3

Gabrielle Littlefair, Niladri Shekhar Dutt, and Niloy J. Mitra.
Flairgpt: Repurposing llms for interior designs. Computer
Graphics Forum, 44(2):¢70036, 2025. 2, 1,4, 5

Jingyu Liu, Wenhan Xiong, Ian Jones, Yixin Nie, Anchit
Gupta, and Barlas Oguz. Clip-layout: Style-consistent indoor
scene synthesis with semantic furniture embedding. arXiv
preprint arXiv:2303.03565, 2023. 2

Pan Lu, Baolin Peng, Hao Cheng, Michel Galley, Kai-Wei
Chang, Ying Nian Wu, Song-Chun Zhu, and Jianfeng Gao.
Chameleon: Plug-and-play compositional reasoning with
large language models. Advances in Neural Information
Processing Systems, 36, 2024. 3

Rui Ma, Akshay Gadi Patil, Matthew Fisher, Manyi Li, Soren
Pirk, Binh-Son Hua, Sai-Kit Yeung, Xin Tong, Leonidas
Guibas, and Hao Zhang. Language-driven synthesis of 3d
scenes from scene databases. ACM Transactions on Graphics
(TOG), 37(6):1-16, 2018. 2

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hal-
linan, Luyu Gao, Sarah Wiegreffe, Uri Alon, Nouha Dziri,
Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: It-
erative refinement with self-feedback. Advances in Neural
Information Processing Systems, 36, 2024. 3

Paul Merrell, Eric Schkufza, Zeyang Li, Maneesh Agrawala,
and Vladlen Koltun. Interactive furniture layout using interior
design guidelines. ACM transactions on graphics (TOG), 30
(4):1-10, 2011. 2

Despoina Paschalidou, Amlan Kar, Maria Shugrina, Karsten
Kreis, Andreas Geiger, and Sanja Fidler. Atiss: Autoregres-
sive transformers for indoor scene synthesis. Advances in
Neural Information Processing Systems, 34:12013-12026,
2021. 2

Shishir G Patil, Tianjun Zhang, Xin Wang, and Joseph E
Gonzalez. Gorilla: Large language model connected with
massive apis. arXiv preprint arXiv:2305.15334,2023. 3
Planner5d. Planner5d: House Design Software. https:
//planner5d. com, 2024. Accessed: 2024-01-19. 2
Russell A Poldrack, Thomas Lu, and GaSper Begu§. Ai-
assisted coding: Experiments with gpt-4. arXiv preprint
arXiv:2304.13187,2023. 3

Ariadna Quattoni and Antonio Torralba. Recognizing indoor
scenes. In 2009 IEEE conference on computer vision and
pattern recognition, pages 413-420. IEEE, 2009. 7
RoomSketcher. Create Floor Plans and Home Designs Online.
http://www.roomsketcher.com, 2024. Accessed:
2024-01-19. 2

Sami Sarsa, Paul Denny, Arto Hellas, and Juho Leinonen.
Automatic generation of programming exercises and code

https://www.cadcrowd.com/blog/why-ikea-uses-3d-renders-vs-photography-for-their-furniture-catalog/
https://www.cadcrowd.com/blog/why-ikea-uses-3d-renders-vs-photography-for-their-furniture-catalog/
https://www.cadcrowd.com/blog/why-ikea-uses-3d-renders-vs-photography-for-their-furniture-catalog/
https://www.cadcrowd.com/blog/why-ikea-uses-3d-renders-vs-photography-for-their-furniture-catalog/
https://planner5d.com
https://planner5d.com
http://www.roomsketcher.com

[29]

(30]

(31]

(32]

(33]

[34]

(35]

[36]

[37]

(38]

[39]

[40]

explanations using large language models. In Proceedings
of the 2022 ACM Conference on International Computing
Education Research-Volume 1, pages 27-43,2022. 3

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta
Raileanu, Maria Lomeli, Eric Hambro, Luke Zettlemoyer,
Nicola Cancedda, and Thomas Scialom. Toolformer: Lan-
guage models can teach themselves to use tools. Advances in
Neural Information Processing Systems, 36, 2024. 3
Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weim-
ing Lu, and Yueting Zhuang. Hugginggpt: Solving ai tasks
with chatgpt and its friends in hugging face. Advances in
Neural Information Processing Systems, 36, 2024. 3

Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit Goyal,
Danfei Xu, Jonathan Tremblay, Dieter Fox, Jesse Thomason,
and Animesh Garg. Progprompt: program generation for
situated robot task planning using large language models.
Autonomous Robots, 47(8):999-1012, 2023. 3

Fan-Yun Sun, Weiyu Liu, Siyi Gu, Dylan Lim, Goutam
Bhat, Federico Tombari, Manling Li, Nick Haber, and Jiajun
Wau. Layoutvlm: Differentiable optimization of 3d layout via
vision-language models. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 29469-29478,
2025.2,3,4,7,1,5

Hou In Ivan Tam, Hou In Derek Pun, Austin T. Wang,
Angel X. Chang, and Manolis Savva. SceneMotifCoder:
Example-driven Visual Program Learning for Generating 3D
Object Arrangements. 2024. 2, 5, 8

Jiapeng Tang, Yinyu Nie, Lev Markhasin, Angela Dai, Jus-
tus Thies, and Matthias Nieiner. Diffuscene: Scene graph
denoising diffusion probabilistic model for generative indoor
scene synthesis. arXiv preprint arXiv:2303.14207,2023. 2
Target. Home planner. https://www.target.com/
room-planner/home, 2024. Accessed: 2024-01-19. 2
Kai Wang, Yu-An Lin, Ben Weissmann, Manolis Savva, An-
gel X Chang, and Daniel Ritchie. Planit: Planning and in-
stantiating indoor scenes with relation graph and spatial prior
networks. ACM Transactions on Graphics (TOG), 38(4):1-15,
2019. 2

Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang, Yun-
zhu Li, Hao Peng, and Heng Ji. Executable code actions elicit
better LLM agents. In Forty-first International Conference
on Machine Learning, 2024. 1

Qiuhong Anna Wei, Sijie Ding, Jeong Joon Park, Rahul
Sajnani, Adrien Poulenard, Srinath Sridhar, and Leonidas
Guibas. Lego-net: Learning regular rearrangements of ob-
jects in rooms. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 19037—
19047, 2023. 2

Dongming Wu, Wencheng Han, Tiancai Wang, Yingfei Liu,
Xiangyu Zhang, and Jianbing Shen. Language prompt for
autonomous driving. arXiv preprint arXiv:2309.04379, 2023.
3

Yandan Yang, Baoxiong Jia, Peiyuan Zhi, and Siyuan Huang.
Physcene: Physically interactable 3d scene synthesis for em-
bodied ai. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 16262—
16272,2024. 2

[41]

[42]

[43]

Yue Yang, Fan-Yun Sun, Luca Weihs, Eli VanderBilt, Al-
varo Herrasti, Winson Han, Jiajun Wu, Nick Haber, Ranjay
Krishna, Lingjie Liu, et al. Holodeck: Language guided gener-
ation of 3d embodied ai environments. In The IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR
2024), pages 20-25. IEEE/CVF, 2024. 2,6, 7, 1

Lap Fai Yu, Sai Kit Yeung, Chi Keung Tang, Demetri Ter-
zopoulos, Tony F Chan, and Stanley J Osher. Make it home:
automatic optimization of furniture arrangement. ACM Trans-
actions on Graphics (TOG)-Proceedings of ACM SIGGRAPH
2011, v. 30,(4), July 2011, article no. 86, 30(4), 2011. 2
Guangyao Zhai, Evin Pinar Ornek, Shun-Cheng Wu, Yan
Di, Federico Tombari, Nassir Navab, and Benjamin Busam.
Commonscenes: Generating commonsense 3d indoor scenes
with scene graphs. arXiv preprint arXiv:2305.16283, 2023. 2

https://www.target.com/room-planner/home
https://www.target.com/room-planner/home

INTERIORAGENT: LLM Agent for Interior Design-Aware 3D Layout Generation

Supplementary Material

6. Acknowledgments

This work was supported in part by NSF grant IIS 2402583,
a Qualcomm Innovation Fellowship, ONR grant N0O0014-
23-1-2526, gifts from Adobe, Rembrand, and the Ronald L.
Graham Chair.

7. Reproducibility

All code, data, prompts and experimental details will be
publicly released.

Please see the attached constraints.py file in the
folder for reference.

8. Full prompts for Visualizations

MIT Scenes

Bakery := “The bakery’s layout includes refrigerated display
cases along the left and back wall. In the center, a long
wooden table displays freshly baked loaves and pastries.
A few tables and chairs are placed in the front for customers.”

Kitchen := “The kitchen features a large island in the center
of the back wall with a marble countertop. Along one wall,
there is a row of cabinets and there is a coffee table with
two armchairs in the corner.”

Classroom := “The classroom features rows of individual
desks with attached chairs arranged in neat columns. A
large whiteboard spans the front wall, with a teacher’s desk
placed in one corner.”

Gym := “The center of the gym has several stationary bikes
arranged in a grid pattern with a TV mounted on their front
wall. Behind them, a row of treadmills are placed along the
wall.”

Buffet := “A buffet scene with a row of tables placed along
the left, each having a variety of food items placed on top.
In the center, four round tables are placed for seating”

Flower Shop := “The flower shop features a central display
table with flower bouquets on top, and floor lamps illuminat-
ing the arrangements. Along the walls, there are additional
tables with potted plants”

9. MIT Scenes Dataset

Comparison to LayoutVLM[32] and Holodeck[41]
Please see Figs. 11, 12 for more illustrations of scenes
generated via INTERIORAGENT , LayoutVLM[32] and

Holodeck[41]. We note the ability of INTERIORAGENT
to more accurately follow descriptive prompts while main-
taining better aesthetic quality. We observe that INTERIOR-
AGENT is able to utilize tools in its toolkit to generate a
diverse set of realistic scenes that are not only more visually
pleasing, but also respect human-centric factors for better in-
terior design. Further, we note that INTERIORAGENT is able
to effectively use both 3D-FRONT as well as other datasets
such as Objaverse to meet its asset requirements. This is a
key advantage over previous methods which do not have a
tool based approach and therefore, are not easily extensible
beyond a fixed dataset.

Comparison to FlairGPT[16] We compare INTERIORA -
GENT with FlairGPT [16], another state-of-the-art method
for indoor scene generation also inspired by interior design
principles. FlairGPT consists of three stages: a Language
Phase, where an LLM is prompted via chain-of-thought to
generate an initial layout by identifying zones, adding anchor
and secondary assets, and specifying constraints; a Transla-
tion Phase, which converts these natural-language layouts
and constraints into programs; and an Optimization Phase,
which executes the program to produce the final scene.

Despite these apparent similarities, INTERIORAGENT
differs in several key ways. First, it adopts a direct pro-
gram synthesis approach to specify layouts and constraints,
avoiding the limitations of natural language representations
used in FlairGPT, Holodeck [41], I-Design [2], and Layout-
GPT [32]. Prior work shows program synthesis provides
stronger planning capabilities through programming struc-
tures and external tools [37]. This is reflected in reliability:
FlairGPT fails to translate to an executable program roughly
25% of the time (tested on 20 MIT Scenes prompts, issue
also noted in official code release), whereas INTERIORA -
GENT , supported by code debuggers, achieves a near 99%
execution rate. Runtime also differs substantially: FlairGPT
requires 20 minutes per scene versus 3 minutes for INTERI-
ORAGENT .

Second, while both methods reference functional zones,
INTERIORAGENT formalizes them via dedicated group fem-
plates that support diverse zone types with isolated object
registration, placement, and optimization. This hierarchical
design more faithfully captures functional groupings than
FlairGPT’s chain-of-thought prompting.

Third, IDSDL equips INTERIORAGENT with a richer
suite of placement and optimization tools, including con-
straints unavailable in FlairGPT such as Clearance, Visibility,
and VLM-based constraints (ObjectProportions, RoomPro-
portion, Conversation, Balance). These contribute to more

InteriorAgent LayoutVLM Holodeck

“The art studio features an easel positioned near a large window, providing ample natural light. A table with
paintbrushes, palettes, and jars of paint is placed to the side, with a stool positioned in front of the easel.”

A spacious bar scene includes a large rectangular counter with seating on all sides. Above the counter,
hanging pendant lights provide a soft glow, while a large TV on the opposite wall streams live sports.”

"“The room includes a double bed with two small nightstands on either side, each featuring a decor item.
Across from the bed is a TV mounted on a low media console, and to one corner of the room lies an
armchair with a side table.”

“The bookstore features a row of tall wooden shelves filled with books along a wall with round tables
with seats placed in front of them. *

“The casino features rows of brightly lit slot machines arranged in long aisles, each with a small stool in
front. Colorful neon signs hang above.”

iR A

{11 H o AWER
“The children’s room includes a bunk bed. A small play area is set up with a table and chairs, and a
colorful rug covers the floor. There are several stuffed animals on the rug.”

Figure 11. Example renders of scenes generated with prompts from six MIT Scenes categories.

InteriorAgent LayoutVLM Holodeck

“The walk-in closet has an entire wall covered in mirror panels. The opposite wall features wardrobes. In the
center, there are two offomans and an armchair. It also has overhead lighting to illuminate the space.”

';(A 'r . s - \\ 2 L AR
“The computer room features a row of computer desks with desktop monitors along one wall. A large
whiteboard is mounted on the opposite wall, and a large table is placed in the center with stools
around it."”

“The corridor features a door each along the left and right walls. A runner rug lines the center of the
floor, several paintings are placed the front which are visible to couches placed in the back.”

I I

“The deli features several refrigerated units along the back wall, with a row of long glass display counter

filled with fresh sandwiches and salads, positioned at some distance in front of them. A row of bar stools
lines a counter along the wall with a huge window for casual seating.”

(3. - 7
T -

“The dental office features a reception desk, a waiting area with a few chairs in the middle. Along the

back wall, there are three dental chairs with a tray of instruments placed next to each. There are
plants, floor lamps placed near the reception desk.”

“The museum hall features a central exhibit showcasing a large dragon on a raised platform. Spotlights
from the ceiling illuminate the artifact, and benches are positioned along the walls for visitors.”

Figure 12. Example renders of scenes generated with prompts from six MIT Scenes categories.

InteriorAgent (Ours)

“The computer room features a row of computer desks with desktop monitors

LayoutVLM FlairGPT

along one wall. A large whiteboard is mounted on the opposite wall, and a large

table is placed in the center with stools around it.”

"“A spacious bar scene includes a large rectangular counter with seating on all
sides. Above the counter, hanging pendant lights provide a soft glow, while a large

TV on the opposite wall streams live sports.”

A

“The dental office features a reception desk, a waiting area with a few chairs - -
in the middle. Along the back wall, there are three dental chairs with a tray

of instruments placed next to each. There are plants, floor lamps placed near

the reception desk.”

Figure 13. Comparison to FlairGPT. MIT Scenes renders for INTERIORAGENT , LayoutVLM [32], and 2D Layouts from FlairGPT [16].
Computer room: FlairGPT fails to place desks in a row with monitors; LayoutVLM produces multiple desks but not aligned. Bar: FlairGPT
inserts a central table but only a single stool, missing seating on all sides. Dental office: FlairGPT adds just one dental chair instead of three,
and omits plants and lamps near the reception desk. In contrast, INTERIORAGENT generates scenes that are prompt-faithful, aesthetically

pleasing, and functionally coherent.

coherent and functional layouts (Figures 13, 14).

Finally, FlairGPT’s placement and optimization capabili-
ties are fixed, while INTERIORAGENT offers an extensible
framework, allowing designers to easily add new templates
for asset retrieval, placement, and optimization.

For comparison, we use the officially released FlairGPT
code. However, it only produces 2D layouts without object
orientations, preventing generation of 3D scenes and direct
rendering comparisons. We therefore conduct a qualitative
comparison on six MIT Scenes prompts (Figures 13, 14).

Across all cases, INTERIORAGENT consistently outperforms
FlairGPT [16] in object retrieval (FlairGPT often omits key
objects specified in the prompt), placement (it frequently
fails to capture explicit inter-object relations), and optimiza-
tion (its scenes are less functional).

10. Placement Groups

See Figure 18

InteriorAgent (Ours)

“The classroom features rows of individual desks with atfached chairs arranged in neat

LayoutVLM FlairGPT
[tr nnnnnnnnnnnnnnnnn Iihitebogrd
E\
[yt [

columns. A large whiteboard spans the front wall, with a teacher’s desk placed in one

corner.”

“The room includes a double bed with two small nightstands on either side, each
featuring a decor iftem. Across from the bed is a TV mounted on a low media console,

and to one corner of the room lies an armchair with a side table.”

“The corridor features a door each along the left and right walls. A runner rug lines the
center of the floor, several paintings are placed the front which are visible to couches

placed in the back.”

T

Ly

Figure 14. Comparison to FlairGPT. MIT Scenes renders for INTERIORAGENT , LayoutVLM [32], and 2D layouts from FlairGPT [16].
Classroom: FlairGPT places only a single desk—chair despite the prompt asking for a row of desks with attached chairs, and omits the
teacher’s desk—chair. Bedroom: Nightstands and a side table for the armchair are missing. Corridor: Entry—exit doors are misplaced, breaking
the layout’s intent of having seating in between. In contrast, INTERIORAGENT produces scenes that are prompt-faithful, aesthetically

coherent, and functionally sound.

11. Tool Usage

INTERIORAGENT is highly extensible and as such its ca-
pabilities can be easily enhanced by providing additional
tools. Here we show one example each for object retrieval,
placement and optimization.

Object retrieval SceneMotifCoder [33] generates 3D ob-
ject arrangements through visual program learning. A key
feature of SceneMotifCoder is its ability to create stacks
or grid-like arrangements of objects. Since objects like “a

stack of 7 books” aren’t readily available in popular datasets,
we enable this functionality in INTERIORAGENT by adding
SceneMotifCoder as one of our retrieval tools. To achieve
this we write a template as shown in Figure 19, that gives
relevant information to INTERIORAGENT about using this
tool. Additionally, we follow the official documentation
to correctly use SceneMotifCoder and use that to write the
__call__() function that implements the functionality. Fig-
ure 20 shows that with such a minimal input, INTERIORA -
GENT is able to easily leverage the SceneMotifCoder tool
to generate stacked objects for its larger scene synthesis

class InteriorAgentAssetRetriever:

1

2 def __init_ (self, scene):

3 self.name = "Some name like Front3DAssetRetriever"

4 self.description

5 yun

6 self.example

9

8 def build(self):

9

10

11

12 on of the asset,

13 including its type, material, and any notable feature an use this metadata: {metadata}""",
14 images=renders) for metadata, renders in self.all_models]

15 scales = [self.VLM(f"""What is the width of this asset? {desc}""", images=renders)
16 for desc, renders in zip(all_descriptions, self.all models.renders ())]
17 self.embd = [OpenAIEmbeddings () .embed_query (desc), scale

1: for desc, scale in zip(all_descriptions, scales)]

20 def _call (self, description: str) -> tuplelstr, float]:

21 ## Logic to retrieve an asset based on the description

22 embd = OpenAIEmbeddings () .embed_query (description)

23 similarity = self.embd.similarity_search (embd, k=1)

;2 path, scale = similarity[0].path, similarity

26

27 # 3D gene

28 return path,

Figure 15. Template for defining an asset retriever in IDSDL, with
an example 3DFront retriever implementation.

1 class InteriorAgentGroup:
2 def __init_ (self, scene, *args, **kwargs):

3 e name like RelativeGroup"
4 fic parameters

5 self.SIDE GAP = 0.1 # Gap between objects placed on the sides

6

7 @placemethod ## Decorator to define a placement method

8 def place on_left *kuargs) :

9 use case and parameters

10

11 Place an object on the left side of the anchor object

12 Inputs: - obj: The object to be placed on the left side of the anchor object.

13 Outputs: - Nome, the object is placed in the scene.

14w

15 # A few examples of this placement methods in use

16 self.example = ©

17 .Rel group:

18 4 Set sofa (initialized earlier) as the anchor object
19 end_table set ("A modern end table"

end table on the left side of the sofa

roup.place_on_left (end_table) ## places tI

21
22 ## Logic to compute the object £

23 ement, comp ardi ions, center point and dimensions of anchor object
24 dirs, center, dims = self.get_anchor_data()

25 width, height, depth = dims

26 front_dir, back dir, left dir, right dir = dirs

27

28 left = center + left dir * (width / 2 + obj.get_width() / 2 + self.SIDE_GAP)

29 X, vy, z, theta = left[0], obj.get height()/2, left[2], 0 # Place on floor

30 obj.set_location (x,v,2)

31 obj.set_rotation (theta)

32 self.add child(obj) ## Adds the object to the group

33

34 ## Optionally, control the placement and optimization flow of the group.

35 def compile(self):

36 for op in self.operations: ## All plac s are stored in self.operations

37 if self.operations[op] is not None:

28 self.operatior

39 self.grad_optimize()

40 self.vim optimize () #

Figure 16. Template for defining groups in IDSDL, with an example
place_on_left () method in RelativeGroup ().

objective. See Figure 15 for object registration template.

Object placement The teaser figure shows a large scale
scene consisting of a cherry blossom tree forest. Usually,
such scenes are extremely challenging for an LLM to cre-
ate given the limited 3D understanding capacity of LLMs.
However, when the task is subdivided at a word and later at
alphabet level, we note that LLMs can be reliably prompted
to achieve desired results. Therefore, we use a prompt engi-
neered LLM (GPT-40) to serve as a tool for creating their
own ascii art. Figure 21 shows the entire code used for
this implementation. See Figure 16 for object placement
template.

Object arrangement Another interesting use case can
be enabled by allowing rendering based losses to work in
tandem with gradient and VLM based losses which is made
possible because IDSDL seamlessly unifies all the various
constraint and types. We show an application where wall

1 class InteriorAgentConstraint:
2 def _init_ (self, scene, group, *args, **kwargs):

3 self.name = "Some name like OverlapConstraint®

4 self.description = £""" ## A brief description of its use case and parameters
5 Ensures that no two objects overlap with each other

6 No inputs or outputs, this is a constraint that is applied to the group.

7 wuw

8

self.example = f£"" ## A few examples of this constraint in use
9 with scene.<>Group() as group:
10 ..
11 group.OverlapConstraint () ## Applies the overlap constraint to the group
12 wow
13 self.type = 'GRADIENT'
14 radients (self):
15 e pseudo gradients
16 self.group.children
17 for i in range(len(objects)):
18 for j in range(i + 1, len(objects)):
19 objl, obj2 = objects[il, objects(j]
20 status, degree = objl.is_overlap (obj2)
21 if status:
22 vl, v2 = objl.get location(), obj2.get location()
23 gradl, grad2 = (vl - v2) * degree, (v2 - v1) * degree
24 objl.grad += gradl ## Add gradient to the total gradient of each object
25 obj2.grad += grad2
1 class InteriorAgentVLMConstraint:
2 def __init__(self, scene, group, *args, **kwargs):
3 self.name = "ObjectProportionsConstraint
4 self.description, self.example = ... ## Set description, example
5 self.type = 'VIM' # VLM-based constraints
6 self.system desc "
7 You are given an image showing front, right, back, and left views of a scene with several objects.
8 Check whether the objects’ proportions make sense; if any object is too big or too small,

9 respond only with a rescale instruction in the form rescale [object] by [factor],
10 where the factor is at between 0.1 and 0.9 (e rescale coffee table by 0.5).

11 If everything looks correct, respond with no rescal
12

) def compute gradients (self):

14 ## Compute VLM-based feedback

15 render = self.group.render ()

16 = self.group.get_descriptions ()
17 .

18 The scene has the following objects: {",".join(descriptions)}
19 Now reason about the relative proportions of the objects in the scene and to ensure that
20 they make sense in the context of the scene.

21
22 feedback = self.VLM(prompt, image_paths=[render])
23 self.scene.vim feedback += feedback

Figure 17. Template for defining constraints in IDSDL, with an ex-
ample gradient based OverlapConstraint () (top) and VLM
based ObjectProportionsConstraint () (bottom)

art needs to be arrangement by comparing them to a target
wall at arrangement specified by the user. Figure 22 shows
the constraint template being filled with relevant context for
LLM to use as well as a logic for computing pseudo gradients
to allow movement of the assets such that they match the
target as best as possible. Figure 23 shows the scene program
generated and the obtained results. See Figure 17 for object
arrangement optimization template.

12. Scene Editing Application

Figure 24 shows the visualization of scene editing appli-
cation discussed in the main paper. INTERIORAGENT ’s
chat-like interface allows users to generate and iteratively
edit scenes, accommodating complex requirements beyond
a single prompt.

13. Failure Cases

While INTERIORAGENT significantly outperforms prior
work with its program synthesis approach, challenges re-
main to be addressed in future works. Most importantly, we
note that INTERIORAGENT may suffer when the underlying
tool malfunctions or doesn’t show expected behavior. Figure
25 shows a few such examples. In the leftmost example,
the retrieval tool incorrectly retrieves a bundle of t-shirts
when asked to retrieve a ‘packing station’ to be placed in the
warehouse. In the middle two examples, while ergonomics
constraints account for visibility and clearance, it is possi-
ble that the LLM simply misses out on applying relevant

RoomGroup
GridGroup

Figure 18. Placement programs involving various group types demoed in method section. Note as few as 10 lines of code are sufficient
to represent a wide variety of scenes including living room, reception area (RelativeGroup), dining area, a art museum viewing area
(AroundGroup), gym, classroom (GridGroup), bedroom and floweriest shop. (RoomGroup)

constraints when it should, resulting in scenes not being op-
timized for those constraints. In the rightmost example, a
large number of objects coupled with their constraints pose
a significant optimization challenge, which can lead to is-
sues such as out of bound problems, as is the case for the
example of a densely packed warehouse. We believe that
these problems can be mitigated in the future by using more
advanced tools and by fine-tuning the LLM for improved
tool-awareness. Additionally, INTERIORAGENT ’s approach
to use task-specific tools for scene synthesis raises important
considerations on optimal and robust utilization of multiple
tools.

14. Ablation
14.1. Debugging Scene Programs

The Debugger performs a key role in program synthe-
sis which is to ensure that programs synthesized by PRO-
GRAMSYNTHESIZER are executable and free from syntax
issues. In order to achieve this, it leverages a combination
of CodeRefine and TraceRefine in an iterative loop.
Upon generating 100 scene programs using the PROGRAM-
SYNTHESIZER , we observe that CodeRefine was used
135 times while TraceRefine was called 35 times. Note
that CodeRefine is invoked every time post PROGRAM-
SYNTHESIZER to remove potential errors.

14.2. In-Context Examples

A few in context examples are visualized in Fig 26.

class SceneMotifCoderObject (SceneProgAssetRetrieverBase) :
def __init__ (self):
super () .__init__ ()
self .name = "SceneMotifCoderObject"
self.description = f"""

This tool returns 'stacked' objects based on an input description which can be used like any other objects in the scene program
wun

W0 U AW N R

self.examples = """

9 Following are a few examples of this tool in action:

10 Example 1:

11 scene.SceneMotifCoderObject ('A table with a chair in front of it!')

12 ## Adds a new object to the scene where a chair is placed in front of a table
13 Example 2:

14 scene.SceneMotifCoderObject ('A stack of 5 cups')

15 ## Adds a new object to the scene where 5 cups are stacked on top of each other
16 Example 3:

17 scene.SceneMotifCoderObject ('A grid of 5x5 chairs')

18 ## Adds a new object to the scene where 25 chairs are arranged in a 5x5 grid

ig ooo

20

21 def _ call_ (self, query):
22 code = fu»

23 #!/bin/bash

24 # Path to the Python executable

25 PYTHON_EXECUTABLE="/opt/miniconda3/envs/smc/bin/python"
26 # Path to the inference script

27 SCRIPT_PATH="/<path to smc>/smc/inference.py"

29 # Arguments for the script
30 DESC="{qguery}"
31 OUT_DIR="/<path to sceneprog>/sceneprog/tmp/"

33 cd /<path to smc>/smc
34 # Execute the Python script with the arguments
35 $PYTHON_EXECUTABLE $SCRIPT_PATH --desc "$DESC" --out_dir "$OUT_DIR"

37 # wWwait for the program to complete and check exit status
38 if [$? -eq 0]; then

39 echo "Inference completed successfully."

40 else

41 echo "Inference failed with exit code $?."

42 exit 1

43 fi

44 wnn

45 with open ("tmp/smc_run.sh", "w") as f:

46 f.write(code)

47 import os

48 os.system(f"bash tmp/smc_run.sh")

49 import trimesh

50 mesh = trimesh.load("tmp/stacked.glb", process=False, force='mesh')
51 scale = mesh.bounds[1,0] - mesh.bounds[0,0]
52 return "tmp/stacked.glb", scale

Figure 19. Adding SceneMotifCoder[33] to INTERIORAGENT amounts to filling out the tool template which requires a tool name,
description of its role, its input/output as well as a few examples of its demonstration. The core logic of tool is implemented under the
__call__() method which follows the official documentation on correctly using the tool.

1 with scene.RelativeGroup() as desk area:
2 desk = scene.AddAsset ("A large wooden desk with a wooden finish")
3 desk_area.set_anchor (desk)

4 chair = scene.AddAsset ("A comfortable ergonomic chair®)

5 desk_area.place_on back (chair)

6

H

g

table lamp = scene.AddAsset ("A stylish desk lamp with a modern glow")
Stacked booksl - scene.AddAsset (A stack OF 5 Dooks Of varying sizes and colors")

9 stacked books2 = scene.AddAsset ("A stack of 3 books of varying sizes and colors")

10 stacked books3 = scene.AddAsset ("A stack of 4 books of varying sizes and colors")

T Tndoor_plant = scene.AddAsset ("A small Indoor plantr]

12

13 desk_area.place_on_top ([indoor_plant, stacked booksl, stacked books2, stacked books3, table_lamp])
14 desk_area.place_rug("A cozy area rug in neutral color", size=0.3)

15 desk_area.add lighting("A modern chandilier", 0.0)

17 with scene.RoomGroup() as room:

18 room.place_walls ("floor_t = , ceiling_t ="plain", wall_t = 1ming blue")
19 room.place_window_standard("left_wall", position="middle", curtain=True)
20 room.place_door ("back_wall", position="right")
21
22 painting = scene.AddAsset ("A motivational poster")
23 room.place_on_wall_front_center (painting)
24
25 shelf = scene.AddAsset("A bookshelf filled with books and personal items")
26 room.place_on_right wall center (shelf)
27 room.place_on_center (desk_area)
Scene Program using SceneMotifCoder Generated 3D Scene

Figure 20. INTERIORAGENT can effectively use novel tools. Here, we show INTERIORAGENT writings programs using the SceneMo-
tifCoder tool for the caption “Create a study room scene with a desk with 3 heaps of stacked books” .

1 class AlphabetGenerator: | class SentenceASCIIGenerator (SceneProgobject) :
T et _init_tseln): H def __init_ (self, scene):
4 name="ASCITATtGroup", 3
s R Ao H self.name = "Sentencen:
6 You are a large language model base IT art representations for alphabets and nurbers 5 self.description = £00"
7 Return only python code in Markdown £ 2 s assets in an ASCII art representation of a sentence
8 on
5
9 3 An object to place in the scene.
1 sentence: The sentence to represent in ASCIT art
a0 oo 3
10
2 D B self.usage = £nn
S, 13 With scene.SentenceasCIIGenerator () as ascii_gen:
s :) 13 plant = scene.AddAsset ("A large potted plant')
16 I ascii_gen.place(plant, sentence="World\tPeace\n2045")
17 e
15
18 0 self.word_gen = WordGenerator ()
19 ¢
super () .__init__(scene)
5 17
2 18
z S def run(self, sentence):
2 20 points = []
20 pos.append ((x, v)) 21 @5
25 22 for line in sentence.split('\n'):
26 return np.array(pos), len(text(0])+1 2 =0
27 o tmp= (]
D ol o g 25 for word in line.split('\t'):
. after - text.split (" *'python" -
30 Teturn after.split(* %) [0] 26 t 1¢.word_gen. run (word)
2 P h = np.max(pt[:,1])+1
32 def run(self, query): 28 w = np.max(pt[:,01)+5
a3 prompt = 29 ptl:,1] += ch
Generate ASCII art for 'G' 30 ptl:,0) += cw
e: 31 tmp. append (pt) 1 with scene.SentenceASCIIGenerator() as ascii_gen:
g 32 e 2 sentence = "INTERIORAGENT\n3DV\t2026\nVANCOUVER"
. 33 ‘“‘P’"F-“tacz“‘“‘” 3 plant = scene.AddAsset ("A large cherry blossom tree")
1 class WordGenerator: 34 points appen) 4 ascii_gen.place(plant, sentence-sentence)
2 def __init_ (self): B -
3 self.alpha_gen - AlphabetGenerator () L SO prD
1 37
5 def run(self, word): L
G points = 01 39 1%, obj, sentence):
40
7 cw=5
& o D o a1 total_points = np.vstack (points) .shape[0]
9 pt,w = self.alpha_gen.run(letter) 2 CHp = o e
) o s 43 height = self.compute_obj_y(ob3)
i 44 count = 0
11
5 p°‘“§5f""e""‘p“ 45 from tqdm import tgdm
6 ine in points:
13 return np.vstack (points) e i
14 47 for pt in tqgdm(line):
18 objs [count] . set_location (pt [0], height, pt[1])
55 prompt += £1n 49 1£.add_child (objs [count])
Cenerate ASCIT art for '{queryl® e mpgdhidlobys feoun
50 count +=
: 51
1£.11n (prompt) 52 return points
se = self._sanitize output (response) 53
response = eval (response) 54 def compile(self):
62 return self.sanatize (response) 55 (¥ (R e s 0 £
¥ self.operation order - [key for key in self.operations.keys() if self.operations(key) is not None]
58 . .
o for key in self.operation order:
= if key in self.operations:
& if self.operations(keyl is not None:
& op = self.operations [key]
op.execute ()

Figure 21. INTERIORAGENT tool use example: Using the Group template (1-3), we implement an ASCII art generation tool driven by an
LLM prompt. The teaser illustration was produced from the caption “forest made to look like INTERIORAGENT 3DV 2026 VANCOUVER”.

(4) INTERIORAGENT enables such expressive scenes with minimal code.

class RenderingConstraint (ConstraintBase) :
def _ _init__ (self, group, wall, paintings, target_image_path):
from painting detector import PaintingDetector
self.name = 'RenderingConstraint’'
self.description = f"""
Helps in optimizing placement of paintings on the wall to match a given image target.
Inputs:
wall: The wall name (str)
paintings: List of painting objects (list)
target_image_path: Path to the target image (str)
wun
self.examples = fmnn
with scene.RoomGroup () as room:

painting = scene.AddAsset ("A Beautiful Landscape")
paintings = 3*paintings
room.place_on_wall_back_left (paintings[0])
room.place_on_wall_back_center (paintings([1])
room.place_on_wall_back_right (paintings([2])

room.RenderingConstraint ("back _wall", paintings, "path/to/target/image.jpg")

self.type = 'GRADIENT'
self.painting_detector = PaintingDetector ()
self.target_image_path = target_image_path

self.target_centroids, self.target_bbox = self.painting_detector(self.target_ image path, resize=(1920,1080))
self.wall = wall
self.paintings = paintings

super () .__init__ (self.name, group)

def compute_gradients(self):
Render the wall with paintings
current_image_path = self.group.render_wall (self.wall, self.paintings)
Detect centroids of each painting using Owlv2
centroids, tmp = self.painting_detector (current_image path, resize=(1920,1080))

Use hungarian method to derieve optimal 1-1 mapping between centroids.
perm = self.painting_detector.compute_mapping (centroids, self.target_centroids)
mapped_centroids = [self.target_centroids[i] for i in perm]

for i, painting in enumerate(self.paintings) :
grad = mapped_centroids[i] - centroids[i] ## pseudo gradient
img_grad[0] *= 1/1920
img_grad[1] *= 1/1080
painting.grad += np.array([img_grad[0], img _grad[1l], 0], dtype=np.float32)

Figure 22. INTERIORAGENT tool use example: Using the Constraints template, we implement an optimization routine for arranging

LIS CLITS

wall scenery to match a target image. Frames are detected with OWLv2 using prompts such as “painting”, “picture frame”, “wall art”, and
“poster”. The centers of bounding boxes from target and source renderings are extracted, matched via the Hungarian algorithm, and the
scenery is shifted toward their assigned centroids.

1
2
3
4
5
6
5
8

10 with scene.RoomGroup() as room:

with scene.RelativeGroup() as seating_area:

sofa = scene.AddAsset ("A comfortable sofa")

seating_area.set_anchor (sofa) -
coffee_table = scene.AddAsset("A stylish coffee table") .
seating area.place_on_front (coffee table)

floor_plant = scene.AddAsset("A large floor plant")
seating_area.place_on_right_further (floor_plant)

w/o rendering constraint

room.place walls ("wooden "plain white")
sofa = scene.AddAsset ")
room.place_on_back_wall_center (seating_area)

sof

paintingl = scene.AddAsset ("A painting on Christianity")
painting2 = scene.AddAsset ("A painting on Buddhism"
painting3 = scene.AddAsset("A paintin Hinduism")
paintings = [paintingl, painting2, painting3]
room.place_on_wall_back_left (paintings[0])
room.place_on_wall_back_center (paintings [1])

room.plac n_wall back right (paintings([2])

room. RenderingConstraint ("back wall", paintings, "target.jpg") |

Scene Program using RenderingConstraint Target for optimizing Generated 3D Scene
painting arrangements

Figure 23. Using Rendering constraint in code: INTERIORAGENT uses the available context to easily write a program for the caption
“Create a living room with the back wall having three paintings: symbolizing Christianity, Buddhism and Hinduism as per the following
arrangement (pass image path for target)”.

“Create a minimal dining “Switch one of the chairs
scene” with a yellow chair”

“Improve the aesthetics of the “Move dining area close to
scene” window and add a sideboard”

Figure 24. INTERIORAGENT allows user-driven scene customiza-
tion through a chat interface. Starting from a minimal scene, INTE-
RIORAGENT responds to user inputs to change colors, rearrange,
add furniture and improve decor, while maintaining the scene bal-
ance.

Wrong retrieval Missed visibility Missed clearance Optimization too difficult
Figure 25. Some failure cases of INTERIORAGENT .

Figure 26. A few in-context examples used in INTERIORAGENT .

	. Introduction
	. Related Works
	. Interior Design aware Scene Generation
	. Scene Description Language
	. Program Synthesizer

	. Experiments
	. Perceptual Study
	. Ablations
	. Applications

	. Conclusion and Future Work
	. Acknowledgments
	. Reproducibility
	. Full prompts for Visualizations
	. MIT Scenes Dataset
	. Placement Groups
	. Tool Usage
	. Scene Editing Application
	. Failure Cases
	. Ablation
	. Debugging Scene Programs
	. In-Context Examples

