
INTERIORAGENT: LLM Agent for Interior Design-Aware 3D Layout Generation

Kunal Gupta1 Ishit Mehta1 Kun Wang1 Nicholas Chua1 Abhimanyu Krishna2 Yan Deng2

Ravi Ramamoorthi1 Manmohan Chandraker1

1University of California, San Diego 2Qualcomm

{k5gupta, mkchandraker}@ucsd.edu

Figure 1. (Left) shows 3D scenes generated by INTERIORAGENT with prompts “a dining room” (top) and “a beauty parlour” (bottom).
(Middle) shows scenes where INTERIORAGENT deploys new tools, namely, an ASCII generator with the prompt “forest made to look like
INTERIORAGENT 3DV 2026 VANCOUVER” (top) and human model placement with the prompt “a living room scene where friends have
gathered to watch TV” (bottom). (Right) shows an editing application with the prompt “add a larger window and additional decor items”.

Abstract

Creating interior layout designs has numerous applica-
tions, including virtual reality, architectural visualization
and real estate planning. Generating realistic and func-
tional indoor scenes requires a nuanced understanding of
spatial configurations and human-centered design princi-
ples. We propose INTERIORAGENT , an LLM-agent-driven
framework for text-to-3D indoor scene generation that pro-
duces scenes with visual quality and functional utility that
significantly surpass prior works. We achieve this through
several key advantages of INTERIORAGENT : (1) encoding
of interior design principles with a novel scene description
language, (2) aesthetics and functionality through synthesis
tools that satisfy design principles, (3) realism and prompt

adherence with optimization tools that ensure ergonomics
and iterative constraint satisfaction, (4) extensibility with a
framework that allows incorporating even mature, complex
tools like diffusion models, LLMs and 3D generation reposi-
tories. We evaluate INTERIORAGENT through a user study,
where participants strongly favor its generated scenes over
prior state-of-the-art methods. Additionally, we demonstrate
novel applications uniquely enabled by INTERIORAGENT ,
including language-based scene editing and seamless tool
integration for new tasks. Code and data will be publicly
released.

1. Introduction
Creating realistic and visually appealing 3D indoor envi-
ronments has long been a goal in computer vision. Today,

LayoutGPT Holodeck SceneCraft

Holodeck SceneCraft InteriorAgent

InteriorProg
(Ours)

Unoptimized
Input Scene

SceneCraft InteriorAgent

DSL

Prog. Syn.

Int. Design

Syn. Tools

Extensible

Opt. Tools

Extensible

VLM

(Hard coded)

Gradient Descent,

Interior Design, LLM

Pl
a
ce
m
en
t

O
p
tim

iza
tio
n

Figure 2. Toy example illustrating design-aware placement and
optimization : (Top) Comparison of asset placement across meth-
ods for a dining setup. Holodeck [41] and SceneCraft [12] rely
on coarse proximity constraints and struggle to arrange chairs con-
sistently around the table, whereas INTERIORAGENT leverages
interior design–aware synthesis tools to produce a coherent and
ergonomic layout. (Bottom) Given an initial scene with overlap-
ping furniture, SceneCraft’s VLM-based optimization fails to fully
resolve collisions. In contrast, INTERIORAGENT employs precise,
design-informed gradient-based optimization to produce a collision-
free and functionally valid arrangement.

design tools such as Planner5D, TargetHomePlanner, and
RoomSketcher [24, 27, 35] are widely used, including by
retailers like IKEA [10]. While prior approaches have lever-
aged LLMs to integrate natural language inputs into these
tools for 3D scene generation, they still fall short in terms of
visual quality and functional utility. We argue that an effec-
tive system is one that is systematically grounded in interior
design principles, ensuring superior scene quality in both aes-
thetics and functionality. Such a system not only enhances
realism but also makes interior design tasks more accessi-
ble, even for users without specialized expertise. Inspired
by established work in interior design [21, 42], we present
INTERIORAGENT , a framework for generating structured,
visually compelling 3D indoor scenes from natural language
prompts. INTERIORAGENT comprises three key compo-
nents: (1) a program synthesizer that translates prompts into
Python-like scene programs while integrating specialized
tools; (2) an Interior Design–aware Scene Description Lan-
guage (IDSDL) for authoring these programs; and (3) a suite
of design-informed tools that drive both synthesis and opti-
mization, improving ergonomics, realism, and aesthetics.

Scenes generated by INTERIORAGENT are both aesthet-
ically pleasing and functionally sound (Figure 1). Prior
LLM-based methods, including Holodeck [41], I-Design,
SceneCraft [12], and LayoutVLM [32], struggle to synthe-
size and optimize interior design layouts. Consider the toy
example in Figure 2 of placing six chairs around a rectan-
gular table (top): Holodeck and SceneCraft rely on simple
proximity rules, limiting their ability to capture interior de-
sign–oriented inter-object relations.

We empirically evaluate the scene generation quality
of INTERIORAGENT through a perceptual study, demon-
strating its superiority over existing text-to-3D baselines,
Holodeck [41], I-Design [2], LayoutVLM [32], and qualita-
tively against SceneCraft [12] across a range of user prompts.
Our analysis shows that INTERIORAGENT produces scenes
that adhere more closely to physical realism compared to a
state-of-the-art data-driven method, DiffuScene [34]. Fur-
ther, we highlight INTERIORAGENT ’s versatility by inte-
grating tools like Stable Diffusion and full 3D generation
repositories like SceneMotifCoder [33] to enhance visual
appeal and capability for interactive dialogue-driven iterative
scene refinement.

2. Related Works
Classical Methods Early systems like WALKEDIT [1]
utilize constraints based on object associations to ascertain
layouts. Several methods have leaned on principles of inte-
rior design to optimize scene layouts [3, 21, 42]. The INTE-
RIORAGENT SDL incorporates such design principles, but
allows intuitive language-based design, while avoiding the
hand-crafted constraints and stochastic optimization pitfalls
such as local minima faced by classical works [5].

Learning-Based Methods Recent works have used Gaus-
sian mixtures [7, 19], autoregressive transformers [13, 17,
22], recursive autoencoder [14], and graph convolution net-
works [36, 43] to learn indoor scene layouts, as well as
diffusion models [34, 38, 40] for indoor scene synthesis.
But data-driven methods face hurdles due to the scarcity of
high-quality 3D scene datasets with diverse layouts and an-
notations. Importantly, once trained, they are not extensible
to new assets or design features without expensive retraining.

LLMs for indoor scene synthesis LayoutGPT [6] gen-
erates layouts as CSS-style descriptions but struggles with
overlaps and poor arrangements due to direct pose regres-
sion. Holodeck [41] and I-Design [2] improve on this by
prompting GPT-4 to define spatial constraints, resolved with
an external optimizer. However, their JSON-like represen-
tations limit relations to simple proximity. FlairGPT [16]
further incorporates interior design heuristics by prompting
an LLM to reason about functional zones, anchor objects,
and stylistic intent, followed by translation into executable
programs. While effective at capturing high-level design
structure, FlairGPT adopts a language-centric planning and
translation pipeline, in contrast to approaches that synthe-
size executable scene programs directly and provide more
explicit control over geometry, ergonomics, and extensibility.
SceneCraft [12] and LayoutVLM [32] instead rely directly
on Vision-Language Models (VLMs), either for iterative op-
timization or to ascribe proximity-based constraints. Both

approaches lack the depth of interior design reasoning and
suffer from imprecise VLM-based 3D understanding. In
contrast, INTERIORAGENT introduces a dedicated scene
description language with design-informed synthesis and
optimization tools, achieving structured, ergonomic, and
high-quality layouts. While SceneCraft emphasizes tool
learning, INTERIORAGENT focuses on effective tool usage,
making their contributions complementary.

Program Synthesis with LLMs INTERIORAGENT lever-
ages tools usage in a program synthesis framework for 3D
scene generation. Several LLM-based code generators such
as Codex [28], GPT-4 [25], and AlphaCode [15] are used
as coding assistants in software development. Tool usage
to deploy models and APIs such as HuggingGPT [30] and
plug-and-play frameworks such as Chameleon [18] have en-
hanced LLM adaptability to visual reasoning. Works like
Toolformer [29] and Gorilla [23] have explored fine-tuning
to improve tool usage for LLMs. VisProg [9] leverages a
vision-based API to prompt LLMs to tackle compositional
visual tasks, which has been adapted to other domains, such
as autonomous driving [39] and robotics [31].

Self-Correcting LLMs Several approaches improve LLM
code accuracy: Self-Refine [20] iteratively refines outputs,
[11] debugs with print statements, and “rubber duck debug-
ging” [4] detects errors from execution results. Inspired by
these, INTERIORAGENT employs a self-correcting mecha-
nism that prompts an LLM to fix syntax errors, API misuse,
and scene violations using feedback from execution trace-
backs and scene constraints.

3. Interior Design aware Scene Generation

INTERIORAGENT generates 3D scenes from natural lan-
guage by synthesizing Python programs in a custom Inte-
rior Design–aware Scene Description Language (IDSDL).
IDSDL embeds design principles and integrates with AI
tools and expert modules via a structured I/O framework.
Unlike typical LLM-based 3D generation that relies on func-
tion calls or tool use, INTERIORAGENT emphasizes design
fidelity and extensibility through a robust tools and API stack.
As shown in Figure 3, given a prompt, PROGRAMSYNTHE-
SIZER generates a scene program, evaluates embedded VLM-
based constraints, and iteratively refines the program until
all constraints are satisfied.

3.1. Scene Description Language

A procedural language for indoor layout generation must
support core functions such as registering objects, position-
ing them within scene, and optimizing constraints to enhance
functionality and realism. IDSDL excels in all three areas,

achieving higher scene fidelity than state-of-the-art meth-
ods by strongly integrating interior design principles with
a structured framework that accommodates advanced tools,
including LLMs, diffusion models, and 3D generation repos-
itories. We now discuss each of these functions in detail.

Object Registration. IDSDL offers a unified API for ob-
ject retrieval from natural language descriptions, returning
appropriately scaled instances suited to indoor settings. Un-
like prior work, it supports diverse sourcing methods, includ-
ing retrieval from multiple 3D asset datasets (e.g., 3DFront,
HSSD, Objaverse), generation via text-to-3D models (e.g.,
Hunyuan3D), and domain-specific tools such as Stable Dif-
fusion (for paintings) and SceneMotifCoder (for stacked
objects). Figure 3 lists all retrievers currently implemented
in IDSDL with more details in supplementary.

Each retrieval tool integrates cleanly by implementing a
Python class (Figure 15), which must: (1) define a name,
usage description (e.g., 3DFront provides high-quality fur-
niture, Objaverse offers greater diversity), and examples;
and (2) implement call () to return an object path and
estimated width from a prompt. Beyond retrieving object
primitives, IDSDL provides rich functions for registered ob-
jects such as local coordinate frame, ray intersections, etc
(Figure 4), supporting layout generation and optimization.

Object Placement. Objects are typically placed by first
assigning approximate positions via a planner (e.g., a VLM)
to form an initial layout, then refining through constraint
optimization to satisfy spatial and functional requirements.
While the toy example in Figure 2 already shows improved
placement and optimization over prior work, a more power-
ful capability stems from functional groups, borrowed from
interior design, which cluster related objects to support spe-
cific activities (e.g., seating areas or workspaces).

For instance, the prompt “Place two tables, each with
two chairs, next to each other” requires both chair–table
and table–table constraints (Figure 5). LayoutVLM [32],
which enforces all constraints simultaneously (left), intro-
duces trade-offs between relations. For illustration, we adapt
LayoutVLM into a hierarchical variant that first arranges
chairs around each table, then places the two table–chair
groups side by side (middle), yielding a more coherent lay-
out and evidencing the value of group-level optimization.
IDSDL is designed around this principle: by registering,
placing, and optimizing within groups, it enables hierarchi-
cal reasoning that produces layouts faithful to functional
intent (right) while avoiding trade-offs inherent in global
placement.

While prior methods have acknowledged functional
groups or “zones,” they have largely treated them as chain-
of-thought prompts to guide layouts. They neither capture
the diversity of group types nor optimize them in isolation,

“Make me a nice
living room with a
pony toy!”

Scene Program

exec()

Program
Synthesizer

InteriorAgent

V
LM

 fe
ed

b
a

ck

“W
a

ll
cl

oc
k

ov
er

la
p

s w
ith

 d
oo

r!
M

ov
e

it
el

se
w

he
re

, s
uc

h
a

s
rig

ht
_w

a
ll_

rig
ht

,
b

a
ck

_w
a

ll_
le

ft,
 …

”

-+

Scene Program Procedural
Scene Generation

10

12

1

2

3

4

5

6

7

8

9

11

Scene Optimization

Object Retrieval

Object Placement
• RelativeGroup()

• AroundGroup()

• GridGroup()

• RoomGroup()

• CreateASCIIArt()

• ShelfFillMask2Former()

OverlapConstraint()*
OutOfBoundConstraint()

VisibilityConstraint()

ClearanceConstraint()

ConversationConstraint()

AccessConstraint()

BalanceConstraint()

• Retrieve3DFront()

• RetrieveHSSD()

• RetrieveObjaverse()

• GenerateHunyuan3D()

• RetrieveHumans()

• CreatePaintingStableDiffusion()

• CreateStacksSceneMotifCoder()

Gradient Based

RenderingConstraint()

∂ ∂𝑥

VLM Based

ObjectProportionConstraint() RoomProportionConstraint()

Tools available in IDSDL
*= gradient based for floor, but VLM based for walls

• OverlapConstraint()

• OutOfBoundConstraint()

• ClearanceConstraint()

• VisibilityConstraint()

• AccessConstraint()

• RenderingConstraint()

RenderingConstraint()

• ObjectProportionConstraint()

• RoomProportionConstraint()

• ConversationConstraint()

• BalanceConstraint()

Figure 3. INTERIORAGENT pipeline. From a (1) natural language prompt, (2) PROGRAMSYNTHESIZER generates an executable scene
program in IDSDL (3). The scene is constructed through functional groups: (4) a RelativeGroup defines a seating area anchored on the
sofa, enabling (5) placement of lounge chairs, a coffee table, and related assets. Objects are optimized at the group level (6), yielding layouts
that are physically plausible and functionally coherent. (7) A RoomGroup manages walls, windows, and other wall assets, while also
positioning functional groups at candidate locations (8). Room-level constraints (9) enforce non-overlap, adherence to room dimensions, and
functional requirements such as maintaining TV visibility from the seating area—for example, the unicorn is shifted to preserve sightlines
(red box). Execution of the program produces both the scene and (10) VLM feedback, which is passed back to PROGRAMSYNTHESIZER for
refinement. Program edits (11), such as relocating the wall clock to resolve its overlap with the door (red box), yield the final optimized
scene (12). The INTERIORAGENT framework is enriched by a broad set of IDSDL tools, including asset retrievers, interior design–inspired
placement and optimization routines, as well as AI-enabled modules such as LLMs, diffusion models, and 3D generation repositories.

X

Z

Y

“right”

“front”

“top”
chair.get_AABB()

chair.get_area()

chair.ray_intersect(ray)

chair.is_overlap(table)

chair.place_front(table)

chairs = 4 * chair

chair[0]
chair[1]

chair[2]

chair[3]chair.scale_depth()

chair.scale_width()
chair.scale_height()

Z

X

Y

θ

chair.set_pose(x,y,z,)
x,y,z, = chair.get_pose()
chair.face_towards(table)

θ
θ

chair.render()

chair.add_lighting()

(a) Local coordinate
system

(b) relative placement
via function passing

(c) Bounding Box and
floor area computation

(d) Ray intersection and
object overlap computation

(e) Adding lights

(f) Global coordinate
system and placement

(g) Scaling depth, width and height (h) Easy duplication
and batching

(i) Rendering from
cardinal directions

Figure 4. Functionalities available to both IDSDL objects and
groups for versatile scene generation.

LayoutVLM LayoutVLM + Groups IDSDL (Ours)

Figure 5. Toy Example (Functional Groups): Illustration of
hierarchical object placement via functional groups. (Left) Directly
placing four chairs around two tables is challenging for VLM-based
methods such as LayoutVLM [32], which struggle to satisfy all
table–chair relations simultaneously. (Middle) Decomposing the
task hierarchically—first arranging chairs relative to each table,
then placing the table–chair groups—improves results, highlighting
the value of group-level reasoning. (Right) INTERIORAGENT

natively supports functional groups through its scene description
language, enabling hierarchical placement that yields coherent and
functionally consistent layouts.

(a) RelativeGroup “A sofa with end tables on either side
and a coffee table in front, table lamps
are placed on the end tables.”

“A reception desk with a chair, a potted
plant beside it, and a display cabinet
further behind.”

back_further

front_left

front_right_further

back

front

back_right

rectilinear circular

arc

(b) AroundGroup “A rectangular dining table with
three chairs on each side”

“Four chairs are placed in an
arc to view a sculpture.”

“A row of 4 treadmills”

row

rectilinear
grid

arc

(c) GridGroup

“A 4x3 grid of table-chairs, each table has
exactly one chair on its side.”

(d) RoomGroup “A bed with two nightstands is
placed on the left side of back wall”

“Tables with flower pots in each
quadrant of room, large plant in
center.”

front_wall_left

center

front front_right

back_left_corner

Figure 6. Object placement. Groups provide an intuitive mechanism for arranging assets based on interior design patterns. Boxes indicate
candidate positions within a group, while arrows mark object orientations. Distances and orientations are fixed to support ergonomic factors
such as accessibility, visibility, conversation, and circulation. For each group, example scenes generated with IDSDL (left) better align with
the prompt (see supplementary for corresponding scene programs), whereas LayoutVLM (right) struggles due to limited placement capacity.
This underscores the value of interior design–aware placement in improving both visual quality and functional utility.

OverlapConstraint()
OutOfBoundConstraint()

VisibilityConstraint()

ClearanceConstraint()

ConversationConstraint()AccessConstraint() BalanceConstraint()

ObjectProportionConstraint() RoomProportionConstraint()

Gradient Based VLM Based

Figure 7. Visualization of constraints available in IDSDL.

thereby missing the advantages of hierarchical reasoning. In
contrast, IDSDL introduces a rich set of group APIs inspired
by interior design patterns (Figure 6). RelativeGroup()
arranges objects relative to an anchor object—a focal ele-
ment that sets the tone for the group—across 17 predefined
positions based on anchor’s local coordinate frame: eight
adjacent (three per side, plus front and back), eight at greater
distances, and one on top. Orientations are fixed to promote
ergonomic layouts, such as conversational seating, while
object-object distances, especially for adjacent placements,
are chosen to ensure functional access. AroundGroup()
places objects around an anchor in rectilinear, circular, or
arc configurations, while GridGroup() supports repeti-
tive patterns in rows, grids, or arcs. At the highest level,
RoomGroup() organizes all groups and manages global
elements such as windows, doors, and wall-mounted objects.

Each group is implemented as a Python class (Figure 16)
that specifies: (1) a group name; (2) a placement routine,
decorated with @placemethod, which includes a descrip-
tion, example usage, and pose-computation logic; and (3) an
optional compile() method for fine-grained control over
placement and optimization order. Groups can then be in-
voked directly by INTERIORAGENT using their descriptions
and examples.

Scene Optimization. Our framework supports joint use
of gradient-based optimization—effective for continuous
constraints such as overlap minimization—and VLM-based
optimization—suited to qualitative constraints like aesthet-
ics—yielding superior visual appeal and functionality. See
Figure 7 for visualization of various constraints. Gradient-
based constraints Overlap() and OutOfBound() pre-

vent object–object intersections and placement outside the
room bounds. Clearance() reserves necessary space for
accessibility (e.g., beside beds, in front of cabinets), while
Access() ensures key items such as coffee tables remain
within reach from seating. Visible() maintains clear
sightlines, for example between a TV and seating.

Each constraint provides a pseudo-gradient for its ob-
jects, guiding updates that minimize violations. IDSDL
accumulates these gradients and optimizes at the end of
placement. To balance constraint satisfaction with minimal
displacement, updates are applied selectively, sampled from
a distribution that considers object size and surrounding free
space, thus preserving group structure.

Consider a group G, with ∂o denoting the total gradient
from all constraints on each object o ∈ G. Let FreeSpace :
G × D → R measure the available space around o along
directions D = [x̂+, x̂−, ẑ+, ẑ−], defined as the distance
to the nearest object or wall. At optimization step s, the
unnormalized action density Γs

|G|×4 = [τsi] is

τsi,j = max

(
j · ∂osi
Ω(osi)

· FreeSpace(osi , j), 0
)

(1)

favoring objects with smaller footprint Ω(osi) and directions
j aligned with ∂osi that have greater free space, thereby
reducing collision risk. A small subset of updates Us =
{(i, j) | (i, j) ∼ SoftMax(Γs)} with |Us| ≪ |G| is then
sampled, and each selected object oi moves along j:

os+1
i,j ← osi,j + η · ∂osi,j , (2)

where η is the learning rate. The process runs for S steps per
group, yielding one optimization pass per execution.

VLM-based constraints use group renderings and nu-
merical context to suggest edits to the scene program.
ObjectProportion() enforces realistic relative ob-
ject sizes within a group; RoomProportion() en-
sures room dimensions accommodate placed furniture;
Conversation() orients seating to support interaction;
and Balance() promotes even spatial distribution of ob-
jects.

Prompt

“Living room”

Programmer

Retriever

Dataset

exec()

xCodeRefine

traceback

TraceRefine

Debugger

Scene
Program

β Scene
Program

Θ

Edit

“Remove
sideboard ”

𝑥

𝐶

𝑒 ⋅ 𝑒!
𝑒 ⋅ 𝑒"

𝑒 ⋅ 𝑒#
⋯

𝑒 {𝑠$}

Φ%&'(Φ&, 𝜕Φ&

Φ&'(

Figure 8. PROGRAMSYNTHESIZER takes an input prompt (or an
optional edit prompt) and generates a valid scene program that,
when executed, produces a 3D scene. This is done by prompt-
ing Programmer with the input descriptions and relevant in-
context examples provided by the Retriever for reference. The
Programmer outputs an initial β scene program, which may
contain syntax errors; these are resolved by Debugger , result-
ing in an executable scene program. Debugger performs this
refinement through an iterative loop between CodeRefine and
TraceRefine , optimizing based on the scene program and any
traceback information from its execution.

When executed, IDSDL consolidates VLM feedback and
passes it to PROGRAMSYNTHESIZER to refine the scene
program. At iteration t, the program Φt and feedback ∂Φt

yield an updated program:

Φt+1 ← PROGRAMSYNTHESIZER (x|Φt, ∂Φt) (3)

where x is the input prompt. Constraints are implemented
as Python classes (Figure 17) specifying metadata (name,
usage, examples, type, and optional VLM prompt) and
a compute gradients() method for pseudo-gradients
computation and generating response from VLM.

3.2. Program Synthesizer

Given an input prompt and optional edit instructions,
Programmer produces an initial β scene program, which
may contain syntax errors. To improve accuracy, the
Retriever provides relevant in-context examples that
serve as references for Programmer . Any remaining
errors in β are resolved by the Debugger , yielding
the refined scene program (Figure 8). All LLM-based
modules (Programmer , Retriever, CodeRefine ,
TraceRefine) use the same backbone VLM (GPT-4o),
differing only in system prompts.

Programming. The Programmer is an LLM prompted
to write scene programs. It is provided with IDSDL doc-
umentation along with up to K in-context examples Θ re-
lated to the input query. Additionally, Programmer can be
used in “edit” mode by providing a previous scene program
Φt and ∂Φt, containing edit instructions, as an additional

prompt. Given a prompt composed from these inputs, the
Programmer VLM outputs a scene program Φt+1

β

Φt+1
β = Programmer (x,Θ|Φt, ∂Φt) (4)

We refer to this scene program as a β scene program due to its
tendency to have syntax errors. This program is subsequently
debugged by the Debugger . A program based scene rep-
resentation provides fine-grained control over object place-
ment and relationships, enables iterative scene refinement
through program modifications, and extends functionality
via modern programming constructs and external libraries.
In contrast, prior methods [2, 6, 8, 41] rely on less expressive
scene representations like JSON and lists. Moreover, our
ability to apply language-domain edits to a scene program
enables language-based scene editing capabilities as shown
in Section 4.

In-Context Examples. We curate a dataset of N instruc-
tive scene programs, each demonstrating how to use the
IDSDL for a variety of scene layouts (a few examples are
shown in supplementary). Each example comprises a brief
layout description in plain English, λl, 0 ≤ l ≤ N , and
the corresponding scene program Φl. For each example, a
1D vector encoding el = E(λl) is generated using a text
embedding model E . Similar embedding is computed for
a user’s input e = E(x). We then calculate the cosine sim-
ilarities between e and each embedding el in the database,
yielding the similarity set C(λ) = {e · e1, e · e2, · · · , e · eN}.
The set of relevant in-context examples Θ = {sk}, k ∈
arg topK(C) is thus passed to the Programmer which sig-
nificantly enhanced the correctness of generated scene pro-
grams. In-context examples enhance VLM-driven scene gen-
eration by incorporating expert knowledge through Retrieval-
Augmented Generation (RAG), unlike previous VLM-based
3D scene generation methods that rely solely on the VLM,
often producing weaker results.

Debugging. The initial scene program, Φt+1
β , is reviewed

by the CodeRefine tool, a VLM prompted to catch syntax
errors and basic issues, producing an error-free version. Any
remaining errors are identified by executing the program
and capturing tracebacks, which are then refined by the
TraceRefine tool, another VLM prompted to addresses
errors indicated in the traceback. Through a few iterations,
this process yields a functional scene program, Φt+1:

Φt+1 = Debugger(Φt+1
β) (5)

Using CodeRefine upfront for syntax fixes speeds up
debugging, reducing execution cycles. We note Debugger
is crucial for INTERIORAGENT to write accurate code given
its complex tool-based IDSDL. Notably, prior program-
synthesis-based 3D generation methods, such as [12], lack
this functionality.

Q1 Q2 Q3 Q4 Q5 Q6
Nearest E.g. 41% 42% 43% 65% 77% 76%
I-Design 65% 70% 79% 72% 71% 70%
Holodeck 71% 69% 70% 70% 67% 67%
LayoutVLM 70% 75% 73% 69% 63% 63%

Table 1. User preference for INTERIORAGENT -generated scenes
over Nearest Example, I-Design, Holodeck, and LayoutVLM across
Q1–Q6 (prompt adherence, ↑).

4. Experiments
We evaluate INTERIORAGENT by generating scenes from
various inputs and comparing them to four state-of-the-art
methods: Holodeck [41], I-Design [2], SceneCraft [12], and
LayoutVLM [32]. For Holodeck, I-Design, and LayoutVLM,
we use publicly available code and conduct a perceptual
study. Since SceneCraft’s code was unavailable at submis-
sion, we re-implemented it based on the original paper and
report only qualitative results, incorporating its spatial skill
library without retraining. Ablations are evaluated both qual-
itatively and quantitatively. Implementation details and addi-
tional experiments are provided in the supplementary.

Evaluation Dataset. We construct the MIT Scenes dataset
to evaluate different models, derived from [26]. It covers 53
diverse indoor categories, each with three detailed prompts,
for a total of 159 prompts.

4.1. Perceptual Study

We conduct a perceptual study comparing INTERIORAGENT
with Holodeck, I-Design, and LayoutVLM, involving 50
undergraduate and graduate participants. Each completed a
two-alternative forced-choice test across 50 top-down images
and 360◦ videos of generated scenes. Participants answered:
Q1: “In which scene are the room and objects sized more ap-
propriately?”, Q2: “In which scene are the objects arranged
more naturally?”, Q3: “Overall, which scene is more aes-
thetically pleasing?”, Q4: “Overall, which scene is better?”,
Q5: “In which scene are the objects arranged more in accor-
dance with the caption/prompt?”, and Q6: “In which scene
are the object–object relations more in accordance with the
caption?”. Participants also provided absolute ratings (Ta-
ble 2). Quantitative results are summarized in Table 1, and
qualitative comparisons across scene categories are shown in
Figure 9. Users strongly preferred INTERIORAGENT , con-
sistently rating its scenes as more aesthetically pleasing and
overall superior to those from Holodeck, I-Design, and Lay-
outVLM. For Q1–Q3, nearest-neighbor scenes were often
favored due to being human-curated; however, INTERIORA-
GENT still outperformed all other baselines. For Q5–Q6 and
absolute ratings (Table 2), INTERIORAGENT was judged to
adhere more closely to input prompts and, on Q4, to be the
best overall.

Nearest E.g. I-Design Holodeck LayoutVLM InteriorAgent
1.7 2.2 2.4 2.5 3.4

Table 2. Adherence of generated scenes to input prompts on a
5-point scale for different methods (↑).

Categories OB OO Vis. Cler. Acc. Conv.
w/o opt. 9% 22% 10% 27% 9% 7%
w/ opt. 1% 2% 2% 8% 0% 0%

Table 3. Impact of optimization on constraint satisfaction.

4.2. Ablations

Figure 10 shows that all components of INTERIORAGENT
are critical to achieving superior results. We quantitatively
evaluate the impact of gradient- and VLM-based optimiza-
tion by generating MIT Scenes prompts with and without
optimization, measuring constraint violations for out-of-
bounds (OB), object overlaps (OO), visibility (Vis.), clear-
ance (Cler.), accessibility (Acc.), and conversation (Conv.).
Gradient-based optimization primarily addresses OB, OO,
Vis., Cler., and Acc., while VLM-based optimization en-
forces Conv. Table 3 reports a substantial reduction in viola-
tions with feedback enabled, underscoring its effectiveness
in resolving these issues.

4.3. Applications

Scene editing. INTERIORAGENT ’s chat-like interface al-
lows users to generate and iteratively edit scenes, accom-
modating complex requirements beyond a single prompt.
Figure, in supplementary, shows a dining room scene refined
through prompts for object placement and aesthetic adjust-
ments. Unlike Holodeck, LayoutVLM and I-Design, which
generate scenes in a single feedforward pass, INTERIORA-
GENT allows user-specified customization with physical and
aesthetic coherence.

Tool Integration INTERIORAGENT leverages template-
specified context to integrate external tools. We demonstrate
this with (i) human model placement in standing/sleeping
poses, (ii) Stable Diffusion for paintings matching scene
style, and (iii) ASCIIGenerator() for object arrange-
ments forming words (Figure 1, top middle). Such extensi-
bility is uniquely enabled by INTERIORAGENT ’s program
synthesis, beyond prior methods. For figures and additional
tool integration, see supplementary.

5. Conclusion and Future Work
The LLM-based program synthesis approach of INTERIOR-
AGENT enables features such as tool usage, self-correction,
refinement and an expressive scene language, leading to re-
alistic, ergonomic, editable and extensible 3D indoor scene
generation. We envision broad use of INTERIORAGENT ’s

“The	casino	features	rows	of	brightly	lit	slot	machines	arranged	in	long	aisles,	each	with	a	small	stool	in	front.	Colorful	
neon	signs	hang	above.

“The	classroom	features	rows	of	individual	desks	with	attached	chairs	arranged	in	neat	columns.	A	large	whiteboard	
spans	the	front	wall,	with	a	teacher’s	desk	placed	in	one	corner..”

“The	computer	room	features	a	row	of	computer	desks	with	desktop	monitors	along	one	wall.	A	large	whiteboard	is	
mounted	on	the	opposite	wall,	and	a	large	table	is	placed	in	the	center	with	stools	around	it..”

“The	children’s	room	includes	a	bunk	bed.	A	small	play	area	is	set	up	with	a	table	and	chairs,	and	a	colorful	rug	covers	
the	floor.	There	are	several	stuffed	animals	on	the	rug..”

“The	walk-in	closet	has	an	entire	wall	covered	in	mirror	panels.	The	opposite	wall	features	wardrobes.	In	the	center,	there	
are	two	ottomans	and	an	armchair.	It	also	has	overhead	lighting	to	illuminate	the	space.”

“The	corridor	features	a	door	each	along	the	left	and	right	walls.	A	runner	rug	lines	the	center	of	the	floor,	several	
paintings	are	placed	the	front	which	are	visible	to	couches	placed	in	the	back.

SceneProg Holodeck SceneProg Holodeck

InteriorAgent	(Ours)

“The	art	studio	features	an	easel	positioned	near	a	large	window,	providing	ample	natural	light.	A	table	with	
paintbrushes,	palettes,	and	jars	of	paint	is	placed	to	the	side,	with	a	stool	positioned	in	front	of	the	easel.”

“A	spacious	bar	scene	includes	a	large	rectangular	counter	with	seating	on	all	sides.	Above	the	counter,	hanging	pendant	
lights	provide	a	soft	glow,	while	a	large	TV	on	the	opposite	wall	streams	live	sports.”

“The	bookstore	features	a	row	of	tall	wooden	shelves	filled	with	books	along	a	wall	with	round	tables	with	seats	placed	in	
front	of	them.”

“The	bakery’s	layout	includes	refrigerated	display	cases	along	the	left	and	back	wall.	In	the	center,	a	long	wooden	table	
displays	freshly	baked	loaves	and	pastries.	A	few	tables	and	chairs	are	placed	in	the	front	for	customers.”

“The	room	includes	a	double	bed	with	two	small	nightstands	on	either	side,	each	featuring	a	decor	item.	Across	from	the	
bed	is	a	TV	mounted	on	a	low	media	console,	and	to	one	corner	of	the	room	lies	an	armchair	with	a	side	table.”

“A	buffet	scene	with	a	row	of	tables	placed	along	the	left,	each	having	a	variety	of	food	items	placed	on	top.	In	the	center,	
four	round	tables	are	placed	for	seating.”

SceneProg Holodeck SceneProg Holodeck

“The	art	studio	features	an	easel	positioned	near	a	large	window,	providing	ample	natural	light.	A	table	with	
paintbrushes,	palettes,	and	jars	of	paint	is	placed	to	the	side,	with	a	stool	positioned	in	front	of	the	easel.”

“A	spacious	bar	scene	includes	a	large	rectangular	counter	with	seating	on	all	sides.	Above	the	counter,	hanging	pendant	
lights	provide	a	soft	glow,	while	a	large	TV	on	the	opposite	wall	streams	live	sports.”

“The	bookstore	features	a	row	of	tall	wooden	shelves	filled	with	books	along	a	wall	with	round	tables	with	seats	placed	in	
front	of	them.”

“The	bakery’s	layout	includes	refrigerated	display	cases	along	the	left	and	back	wall.	In	the	center,	a	long	wooden	table	
displays	freshly	baked	loaves	and	pastries.	A	few	tables	and	chairs	are	placed	in	the	front	for	customers.”

“The	room	includes	a	double	bed	with	two	small	nightstands	on	either	side,	each	featuring	a	decor	item.	Across	from	the	
bed	is	a	TV	mounted	on	a	low	media	console,	and	to	one	corner	of	the	room	lies	an	armchair	with	a	side	table.”

“A	buffet	scene	with	a	row	of	tables	placed	along	the	left,	each	having	a	variety	of	food	items	placed	on	top.	In	the	center,	
four	round	tables	are	placed	for	seating.”

SceneProg Holodeck SceneProg Holodeck

“The	casino	features	rows	of	brightly	lit	slot	machines	arranged	in	long	aisles,	each	with	a	small	stool	in	front.	Colorful	
neon	signs	hang	above.

“The	classroom	features	rows	of	individual	desks	with	attached	chairs	arranged	in	neat	columns.	A	large	whiteboard	
spans	the	front	wall,	with	a	teacher’s	desk	placed	in	one	corner..”

“The	computer	room	features	a	row	of	computer	desks	with	desktop	monitors	along	one	wall.	A	large	whiteboard	is	
mounted	on	the	opposite	wall,	and	a	large	table	is	placed	in	the	center	with	stools	around	it..”

“The	children’s	room	includes	a	bunk	bed.	A	small	play	area	is	set	up	with	a	table	and	chairs,	and	a	colorful	rug	covers	
the	floor.	There	are	several	stuffed	animals	on	the	rug..”

“The	walk-in	closet	has	an	entire	wall	covered	in	mirror	panels.	The	opposite	wall	features	wardrobes.	In	the	center,	there	
are	two	ottomans	and	an	armchair.	It	also	has	overhead	lighting	to	illuminate	the	space.”

“The	corridor	features	a	door	each	along	the	left	and	right	walls.	A	runner	rug	lines	the	center	of	the	floor,	several	
paintings	are	placed	the	front	which	are	visible	to	couches	placed	in	the	back.

SceneProg Holodeck SceneProg Holodeck

Holodeck

“The	art	studio	features	an	easel	positioned	near	a	large	window,	providing	ample	natural	light.	A	table	with	
paintbrushes,	palettes,	and	jars	of	paint	is	placed	to	the	side,	with	a	stool	positioned	in	front	of	the	easel.”

“A	spacious	bar	scene	includes	a	large	rectangular	counter	with	seating	on	all	sides.	Above	the	counter,	hanging	pendant	
lights	provide	a	soft	glow,	while	a	large	TV	on	the	opposite	wall	streams	live	sports.”

“The	bookstore	features	a	row	of	tall	wooden	shelves	filled	with	books	along	a	wall	with	round	tables	with	seats	placed	in	
front	of	them.”

“The	bakery’s	layout	includes	refrigerated	display	cases	along	the	left	and	back	wall.	In	the	center,	a	long	wooden	table	
displays	freshly	baked	loaves	and	pastries.	A	few	tables	and	chairs	are	placed	in	the	front	for	customers.”

“The	room	includes	a	double	bed	with	two	small	nightstands	on	either	side,	each	featuring	a	decor	item.	Across	from	the	
bed	is	a	TV	mounted	on	a	low	media	console,	and	to	one	corner	of	the	room	lies	an	armchair	with	a	side	table.”

“A	buffet	scene	with	a	row	of	tables	placed	along	the	left,	each	having	a	variety	of	food	items	placed	on	top.	In	the	center,	
four	round	tables	are	placed	for	seating.”

SceneProg Holodeck SceneProg Holodeck

“The	art	studio	features	an	easel	positioned	near	a	large	window,	providing	ample	natural	light.	A	table	with	
paintbrushes,	palettes,	and	jars	of	paint	is	placed	to	the	side,	with	a	stool	positioned	in	front	of	the	easel.”

“A	spacious	bar	scene	includes	a	large	rectangular	counter	with	seating	on	all	sides.	Above	the	counter,	hanging	pendant	
lights	provide	a	soft	glow,	while	a	large	TV	on	the	opposite	wall	streams	live	sports.”

“The	bookstore	features	a	row	of	tall	wooden	shelves	filled	with	books	along	a	wall	with	round	tables	with	seats	placed	in	
front	of	them.”

“The	bakery’s	layout	includes	refrigerated	display	cases	along	the	left	and	back	wall.	In	the	center,	a	long	wooden	table	
displays	freshly	baked	loaves	and	pastries.	A	few	tables	and	chairs	are	placed	in	the	front	for	customers.”

“The	room	includes	a	double	bed	with	two	small	nightstands	on	either	side,	each	featuring	a	decor	item.	Across	from	the	
bed	is	a	TV	mounted	on	a	low	media	console,	and	to	one	corner	of	the	room	lies	an	armchair	with	a	side	table.”

“A	buffet	scene	with	a	row	of	tables	placed	along	the	left,	each	having	a	variety	of	food	items	placed	on	top.	In	the	center,	
four	round	tables	are	placed	for	seating.”

SceneProg Holodeck SceneProg Holodeck

“The	deli	features	several	refrigerated	units	along	the	back	wall,	with	a	row	of	long	glass	display	counter	filled	with	fresh	
sandwiches	and	salads,	positioned	at	some	distance	in	front	of	them.	A	row	of	bar	stools	lines	a	counter	along	the	wall	
with	a	huge	window	for	casual	seating.”.

“The	flower	shop	features	a	central	display	table	with	flower	bouquets	on	top,	and	floor	lamps	illuminating	the	
arrangements.	Along	the	walls,	there	are	additional	tables	with	potted	plants”

“The	center	of	the	gym	has	several	stationary	bikes	arranged	in	a	grid	pattern	with	a	TV	mounted	on	their	front	wall.	
Behind	them,	a	row	of	treadmills	are	placed	along	the	wall.

“The	dental	office	features	a	reception	desk,	a	waiting	area	with	a	few	chairs	in	the	middle.	Along	the	back	wall,	there	
are	three	dental	chairs	with	a	tray	of	instruments	placed	next	to	each.	There	are	plants,	floor	lamps	placed	near	the	
reception	desk."

“The	kitchen	features	a	large	island	in	the	center	of	the	back	wall	with	a	marble	countertop.	Along	one	wall,	there	is	a	row	
of	cabinets	and	there	is	a	coffee	table	with	two	armchairs	in	the	corner.”

“The	corridor	features	a	door	each	along	the	left	and	right	walls.	A	runner	rug	lines	the	center	of	the	floor,	several	
paintings	are	placed	the	front	which	are	visible	to	couches	placed	in	the	back.

SceneProg Holodeck SceneProg Holodeck

“The	deli	features	several	refrigerated	units	along	the	back	wall,	with	a	row	of	long	glass	display	counter	filled	with	fresh	
sandwiches	and	salads,	positioned	at	some	distance	in	front	of	them.	A	row	of	bar	stools	lines	a	counter	along	the	wall	
with	a	huge	window	for	casual	seating.”.

“The	flower	shop	features	a	central	display	table	with	flower	bouquets	on	top,	and	floor	lamps	illuminating	the	
arrangements.	Along	the	walls,	there	are	additional	tables	with	potted	plants”

“The	center	of	the	gym	has	several	stationary	bikes	arranged	in	a	grid	pattern	with	a	TV	mounted	on	their	front	wall.	
Behind	them,	a	row	of	treadmills	are	placed	along	the	wall.

“The	dental	office	features	a	reception	desk,	a	waiting	area	with	a	few	chairs	in	the	middle.	Along	the	back	wall,	there	
are	three	dental	chairs	with	a	tray	of	instruments	placed	next	to	each.	There	are	plants,	floor	lamps	placed	near	the	
reception	desk."

“The	kitchen	features	a	large	island	in	the	center	of	the	back	wall	with	a	marble	countertop.	Along	one	wall,	there	is	a	row	
of	cabinets	and	there	is	a	coffee	table	with	two	armchairs	in	the	corner.”

“The	corridor	features	a	door	each	along	the	left	and	right	walls.	A	runner	rug	lines	the	center	of	the	floor,	several	
paintings	are	placed	the	front	which	are	visible	to	couches	placed	in	the	back.

SceneProg Holodeck SceneProg Holodeck

“The	deli	features	several	refrigerated	units	along	the	back	wall,	with	a	row	of	long	glass	display	counter	filled	with	fresh	
sandwiches	and	salads,	positioned	at	some	distance	in	front	of	them.	A	row	of	bar	stools	lines	a	counter	along	the	wall	
with	a	huge	window	for	casual	seating.”.

“The	flower	shop	features	a	central	display	table	with	flower	bouquets	on	top,	and	floor	lamps	illuminating	the	
arrangements.	Along	the	walls,	there	are	additional	tables	with	potted	plants”

“The	center	of	the	gym	has	several	stationary	bikes	arranged	in	a	grid	pattern	with	a	TV	mounted	on	their	front	wall.	
Behind	them,	a	row	of	treadmills	are	placed	along	the	wall.

“The	dental	office	features	a	reception	desk,	a	waiting	area	with	a	few	chairs	in	the	middle.	Along	the	back	wall,	there	
are	three	dental	chairs	with	a	tray	of	instruments	placed	next	to	each.	There	are	plants,	floor	lamps	placed	near	the	
reception	desk."

“The	kitchen	features	a	large	island	in	the	center	of	the	back	wall	with	a	marble	countertop.	Along	one	wall,	there	is	a	row	
of	cabinets	and	there	is	a	coffee	table	with	two	armchairs	in	the	corner.”

“The	corridor	features	a	door	each	along	the	left	and	right	walls.	A	runner	rug	lines	the	center	of	the	floor,	several	
paintings	are	placed	the	front	which	are	visible	to	couches	placed	in	the	back.

SceneProg Holodeck SceneProg Holodeck

“The	deli	features	several	refrigerated	units	along	the	back	wall,	with	a	row	of	long	glass	display	counter	filled	with	fresh	
sandwiches	and	salads,	positioned	at	some	distance	in	front	of	them.	A	row	of	bar	stools	lines	a	counter	along	the	wall	
with	a	huge	window	for	casual	seating.”.

“The	flower	shop	features	a	central	display	table	with	flower	bouquets	on	top,	and	floor	lamps	illuminating	the	
arrangements.	Along	the	walls,	there	are	additional	tables	with	potted	plants”

“The	center	of	the	gym	has	several	stationary	bikes	arranged	in	a	grid	pattern	with	a	TV	mounted	on	their	front	wall.	
Behind	them,	a	row	of	treadmills	are	placed	along	the	wall.

“The	dental	office	features	a	reception	desk,	a	waiting	area	with	a	few	chairs	in	the	middle.	Along	the	back	wall,	there	
are	three	dental	chairs	with	a	tray	of	instruments	placed	next	to	each.	There	are	plants,	floor	lamps	placed	near	the	
reception	desk."

“The	kitchen	features	a	large	island	in	the	center	of	the	back	wall	with	a	marble	countertop.	Along	one	wall,	there	is	a	row	
of	cabinets	and	there	is	a	coffee	table	with	two	armchairs	in	the	corner.”

“The	corridor	features	a	door	each	along	the	left	and	right	walls.	A	runner	rug	lines	the	center	of	the	floor,	several	
paintings	are	placed	the	front	which	are	visible	to	couches	placed	in	the	back.

SceneProg Holodeck SceneProg Holodeck

“The	deli	features	several	refrigerated	units	along	the	back	wall,	with	a	row	of	long	glass	display	counter	filled	with	fresh	
sandwiches	and	salads,	positioned	at	some	distance	in	front	of	them.	A	row	of	bar	stools	lines	a	counter	along	the	wall	
with	a	huge	window	for	casual	seating.”.

“The	flower	shop	features	a	central	display	table	with	flower	bouquets	on	top,	and	floor	lamps	illuminating	the	
arrangements.	Along	the	walls,	there	are	additional	tables	with	potted	plants”

“The	center	of	the	gym	has	several	stationary	bikes	arranged	in	a	grid	pattern	with	a	TV	mounted	on	their	front	wall.	
Behind	them,	a	row	of	treadmills	are	placed	along	the	wall.

“The	dental	office	features	a	reception	desk,	a	waiting	area	with	a	few	chairs	in	the	middle.	Along	the	back	wall,	there	
are	three	dental	chairs	with	a	tray	of	instruments	placed	next	to	each.	There	are	plants,	floor	lamps	placed	near	the	
reception	desk."

“The	kitchen	features	a	large	island	in	the	center	of	the	back	wall	with	a	marble	countertop.	Along	one	wall,	there	is	a	row	
of	cabinets	and	there	is	a	coffee	table	with	two	armchairs	in	the	corner.”

“The	corridor	features	a	door	each	along	the	left	and	right	walls.	A	runner	rug	lines	the	center	of	the	floor,	several	
paintings	are	placed	the	front	which	are	visible	to	couches	placed	in	the	back.

SceneProg Holodeck SceneProg Holodeck

“The	deli	features	several	refrigerated	units	along	the	back	wall,	with	a	row	of	long	glass	display	counter	filled	with	fresh	
sandwiches	and	salads,	positioned	at	some	distance	in	front	of	them.	A	row	of	bar	stools	lines	a	counter	along	the	wall	
with	a	huge	window	for	casual	seating.”.

“The	flower	shop	features	a	central	display	table	with	flower	bouquets	on	top,	and	floor	lamps	illuminating	the	
arrangements.	Along	the	walls,	there	are	additional	tables	with	potted	plants”

“The	center	of	the	gym	has	several	stationary	bikes	arranged	in	a	grid	pattern	with	a	TV	mounted	on	their	front	wall.	
Behind	them,	a	row	of	treadmills	are	placed	along	the	wall.

“The	dental	office	features	a	reception	desk,	a	waiting	area	with	a	few	chairs	in	the	middle.	Along	the	back	wall,	there	
are	three	dental	chairs	with	a	tray	of	instruments	placed	next	to	each.	There	are	plants,	floor	lamps	placed	near	the	
reception	desk."

“The	kitchen	features	a	large	island	in	the	center	of	the	back	wall	with	a	marble	countertop.	Along	one	wall,	there	is	a	row	
of	cabinets	and	there	is	a	coffee	table	with	two	armchairs	in	the	corner.”

“The	corridor	features	a	door	each	along	the	left	and	right	walls.	A	runner	rug	lines	the	center	of	the	floor,	several	
paintings	are	placed	the	front	which	are	visible	to	couches	placed	in	the	back.

SceneProg Holodeck SceneProg Holodeck

SceneCraftI-Design

Ba
ke
ry

Cl
as
sr
oo

m
Bu

ffe
t

Ki
tc
he

n
G
ym

Fl
ow

er
	S
ho

p

LayoutVLM

Figure 9. MIT Scenes: INTERIORAGENT generates scenes that closely follow input prompts. Kitchen: all baselines omit the island.
Classroom: SceneCraft places desks and chairs too sparsely, while LayoutVLM, Holodeck, and I-Design yield chaotic arrangements. Gym:
stationary bikes are not arranged in a grid. Bakery, Buffet, and Flower Shop: INTERIORAGENT produces more natural and coherent layouts.

InteriorAgent w/o	Around	and	Grid	groups w/o	scene	optimization w/o	ergonomic	constraints Nearest	in-context	E.g.w/o	RAG

M
us
ic
	R
oo

m
Li
vi
ng

	R
oo

m

User	Study	on	MIT	Scenes

Table 1 User preference for
SceneProg -generated scenes

over Nearest Example and Holodeck
based on prompt adherence (→).

Q5 Q6
Nearest Example 77% 76%
Holodeck 67% 67%

Table 2 Adherence of generated
scenes to input prompts on a 5-point

scale for di!erent methods (→).
Nearest E.g. Holodeck SceneProg

1.7 2.4 3.4

Figure 1: Comparison of question responses and SceneProg
vs. Holodeck scores.

test

Kunal Gupta

January 2025

1 Introduction

1

w/o	Around	and	Grid	groups
(only	using	Relative	and	Room)

w/o	scene	optimization
(all	gradient	and	VLM	

constraints	off)

w/o	ergonomic	constraints
(only	access,	clearance,	

conversation,	visibility	off)

Figure 10. Ablations : Without the placement mechanisms of Around (top) and Grid (bottom) groups, VLMs misplace assets due
to limited 3D spatial understanding. Disabling scene optimization (all gradient and VLM constraints off) reduces realism, producing
overlaps (red highlights). Removing ergonomic constraints (access, clearance, visibility, conversation) compromises functionality, leading
to accessibility issues. Providing all in-context examples to the LLM does not improve scene quality but increases token usage by 8×
compared to RAG with 5 examples. Despite differing from nearest neighbors, INTERIORAGENT generates diverse, high-quality 3D scenes
with superior prompt adherence.

capabilities through its intuitive editing and flexible tool in-
tegration for new tasks. Promising directions for future work
include extension to multi-room scenes and optimization of

material and lighting, in addition to 3D layouts and objects.

References
[1] Richard W Bukowski and Carlo H Séquin. Object associa-

tions: a simple and practical approach to virtual 3d manipula-
tion. In Proceedings of the 1995 symposium on Interactive
3D graphics, pages 131–ff, 1995. 2

[2] Ata Çelen, Guo Han, Konrad Schindler, Luc Van Gool, Iro
Armeni, Anton Obukhov, and Xi Wang. I-design: Personal-
ized llm interior designer. arXiv preprint arXiv:2404.02838,
2024. 2, 6, 7, 1

[3] Angel Chang, Manolis Savva, and Christopher D Manning.
Learning spatial knowledge for text to 3d scene generation.
In Proceedings of the 2014 conference on empirical methods
in natural language processing (EMNLP), pages 2028–2038,
2014. 2

[4] Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny
Zhou. Teaching large language models to self-debug. arXiv
preprint arXiv:2304.05128, 2023. 3

[5] Bob Coyne and Richard Sproat. Wordseye: An automatic
text-to-scene conversion system. In Proceedings of the 28th
annual conference on Computer graphics and interactive
techniques, pages 487–496, 2001. 2

[6] Weixi Feng, Wanrong Zhu, Tsu-jui Fu, Varun Jampani, Ar-
jun Akula, Xuehai He, Sugato Basu, Xin Eric Wang, and
William Yang Wang. Layoutgpt: Compositional visual plan-
ning and generation with large language models. arXiv
preprint arXiv:2305.15393, 2023. 2, 6

[7] Matthew Fisher, Daniel Ritchie, Manolis Savva, Thomas
Funkhouser, and Pat Hanrahan. Example-based synthesis
of 3d object arrangements. ACM Transactions on Graphics
(TOG), 31(6):1–11, 2012. 2

[8] Rao Fu, Zehao Wen, Zichen Liu, and Srinath Sridhar. Any-
home: Open-vocabulary generation of structured and textured
3d homes. In European Conference on Computer Vision,
pages 52–70. Springer, 2025. 6

[9] Tanmay Gupta and Aniruddha Kembhavi. Visual program-
ming: Compositional visual reasoning without training. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 14953–14962, 2023. 3

[10] Jordan Hobbs. Why IKEA Uses 3D Renders vs.
Photography for Their Furniture Catalog. https :
//www.cadcrowd.com/blog/why-ikea-uses-
3d - renders - vs - photography - for - their -
furniture-catalog/, 2024. Accessed: 2024-01-19.
2

[11] Xueyu Hu, Kun Kuang, Jiankai Sun, Hongxia Yang, and Fei
Wu. Leveraging print debugging to improve code generation
in large language models. arXiv preprint arXiv:2401.05319,
2024. 3

[12] Ziniu Hu, Ahmet Iscen, Aashi Jain, Thomas Kipf, Yisong
Yue, David A Ross, Cordelia Schmid, and Alireza Fathi.
Scenecraft: An llm agent for synthesizing 3d scene as blender
code. In ICLR 2024 Workshop on Large Language Model
(LLM) Agents, 2024. 2, 6, 7

[13] Kurt Leimer, Paul Guerrero, Tomer Weiss, and Przemyslaw
Musialski. Layoutenhancer: Generating good indoor layouts
from imperfect data. In SIGGRAPH Asia 2022 Conference
Papers, pages 1–8, 2022. 2

[14] Manyi Li, Akshay Gadi Patil, Kai Xu, Siddhartha Chaud-
huri, Owais Khan, Ariel Shamir, Changhe Tu, Baoquan Chen,
Daniel Cohen-Or, and Hao Zhang. Grains: Generative recur-
sive autoencoders for indoor scenes. ACM Transactions on
Graphics (TOG), 38(2):1–16, 2019. 2

[15] Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian
Schrittwieser, Rémi Leblond, Tom Eccles, James Keeling,
Felix Gimeno, Agustin Dal Lago, et al. Competition-level
code generation with alphacode. Science, 378(6624):1092–
1097, 2022. 3

[16] Gabrielle Littlefair, Niladri Shekhar Dutt, and Niloy J. Mitra.
Flairgpt: Repurposing llms for interior designs. Computer
Graphics Forum, 44(2):e70036, 2025. 2, 1, 4, 5

[17] Jingyu Liu, Wenhan Xiong, Ian Jones, Yixin Nie, Anchit
Gupta, and Barlas Oğuz. Clip-layout: Style-consistent indoor
scene synthesis with semantic furniture embedding. arXiv
preprint arXiv:2303.03565, 2023. 2

[18] Pan Lu, Baolin Peng, Hao Cheng, Michel Galley, Kai-Wei
Chang, Ying Nian Wu, Song-Chun Zhu, and Jianfeng Gao.
Chameleon: Plug-and-play compositional reasoning with
large language models. Advances in Neural Information
Processing Systems, 36, 2024. 3

[19] Rui Ma, Akshay Gadi Patil, Matthew Fisher, Manyi Li, Sören
Pirk, Binh-Son Hua, Sai-Kit Yeung, Xin Tong, Leonidas
Guibas, and Hao Zhang. Language-driven synthesis of 3d
scenes from scene databases. ACM Transactions on Graphics
(TOG), 37(6):1–16, 2018. 2

[20] Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hal-
linan, Luyu Gao, Sarah Wiegreffe, Uri Alon, Nouha Dziri,
Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: It-
erative refinement with self-feedback. Advances in Neural
Information Processing Systems, 36, 2024. 3

[21] Paul Merrell, Eric Schkufza, Zeyang Li, Maneesh Agrawala,
and Vladlen Koltun. Interactive furniture layout using interior
design guidelines. ACM transactions on graphics (TOG), 30
(4):1–10, 2011. 2

[22] Despoina Paschalidou, Amlan Kar, Maria Shugrina, Karsten
Kreis, Andreas Geiger, and Sanja Fidler. Atiss: Autoregres-
sive transformers for indoor scene synthesis. Advances in
Neural Information Processing Systems, 34:12013–12026,
2021. 2

[23] Shishir G Patil, Tianjun Zhang, Xin Wang, and Joseph E
Gonzalez. Gorilla: Large language model connected with
massive apis. arXiv preprint arXiv:2305.15334, 2023. 3

[24] Planner5d. Planner5d: House Design Software. https:
//planner5d.com, 2024. Accessed: 2024-01-19. 2

[25] Russell A Poldrack, Thomas Lu, and Gašper Beguš. Ai-
assisted coding: Experiments with gpt-4. arXiv preprint
arXiv:2304.13187, 2023. 3

[26] Ariadna Quattoni and Antonio Torralba. Recognizing indoor
scenes. In 2009 IEEE conference on computer vision and
pattern recognition, pages 413–420. IEEE, 2009. 7

[27] RoomSketcher. Create Floor Plans and Home Designs Online.
http://www.roomsketcher.com, 2024. Accessed:
2024-01-19. 2

[28] Sami Sarsa, Paul Denny, Arto Hellas, and Juho Leinonen.
Automatic generation of programming exercises and code

https://www.cadcrowd.com/blog/why-ikea-uses-3d-renders-vs-photography-for-their-furniture-catalog/
https://www.cadcrowd.com/blog/why-ikea-uses-3d-renders-vs-photography-for-their-furniture-catalog/
https://www.cadcrowd.com/blog/why-ikea-uses-3d-renders-vs-photography-for-their-furniture-catalog/
https://www.cadcrowd.com/blog/why-ikea-uses-3d-renders-vs-photography-for-their-furniture-catalog/
https://planner5d.com
https://planner5d.com
http://www.roomsketcher.com

explanations using large language models. In Proceedings
of the 2022 ACM Conference on International Computing
Education Research-Volume 1, pages 27–43, 2022. 3

[29] Timo Schick, Jane Dwivedi-Yu, Roberto Dessı̀, Roberta
Raileanu, Maria Lomeli, Eric Hambro, Luke Zettlemoyer,
Nicola Cancedda, and Thomas Scialom. Toolformer: Lan-
guage models can teach themselves to use tools. Advances in
Neural Information Processing Systems, 36, 2024. 3

[30] Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weim-
ing Lu, and Yueting Zhuang. Hugginggpt: Solving ai tasks
with chatgpt and its friends in hugging face. Advances in
Neural Information Processing Systems, 36, 2024. 3

[31] Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit Goyal,
Danfei Xu, Jonathan Tremblay, Dieter Fox, Jesse Thomason,
and Animesh Garg. Progprompt: program generation for
situated robot task planning using large language models.
Autonomous Robots, 47(8):999–1012, 2023. 3

[32] Fan-Yun Sun, Weiyu Liu, Siyi Gu, Dylan Lim, Goutam
Bhat, Federico Tombari, Manling Li, Nick Haber, and Jiajun
Wu. Layoutvlm: Differentiable optimization of 3d layout via
vision-language models. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 29469–29478,
2025. 2, 3, 4, 7, 1, 5

[33] Hou In Ivan Tam, Hou In Derek Pun, Austin T. Wang,
Angel X. Chang, and Manolis Savva. SceneMotifCoder:
Example-driven Visual Program Learning for Generating 3D
Object Arrangements. 2024. 2, 5, 8

[34] Jiapeng Tang, Yinyu Nie, Lev Markhasin, Angela Dai, Jus-
tus Thies, and Matthias Nießner. Diffuscene: Scene graph
denoising diffusion probabilistic model for generative indoor
scene synthesis. arXiv preprint arXiv:2303.14207, 2023. 2

[35] Target. Home planner. https://www.target.com/
room-planner/home, 2024. Accessed: 2024-01-19. 2

[36] Kai Wang, Yu-An Lin, Ben Weissmann, Manolis Savva, An-
gel X Chang, and Daniel Ritchie. Planit: Planning and in-
stantiating indoor scenes with relation graph and spatial prior
networks. ACM Transactions on Graphics (TOG), 38(4):1–15,
2019. 2

[37] Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang, Yun-
zhu Li, Hao Peng, and Heng Ji. Executable code actions elicit
better LLM agents. In Forty-first International Conference
on Machine Learning, 2024. 1

[38] Qiuhong Anna Wei, Sijie Ding, Jeong Joon Park, Rahul
Sajnani, Adrien Poulenard, Srinath Sridhar, and Leonidas
Guibas. Lego-net: Learning regular rearrangements of ob-
jects in rooms. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 19037–
19047, 2023. 2

[39] Dongming Wu, Wencheng Han, Tiancai Wang, Yingfei Liu,
Xiangyu Zhang, and Jianbing Shen. Language prompt for
autonomous driving. arXiv preprint arXiv:2309.04379, 2023.
3

[40] Yandan Yang, Baoxiong Jia, Peiyuan Zhi, and Siyuan Huang.
Physcene: Physically interactable 3d scene synthesis for em-
bodied ai. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 16262–
16272, 2024. 2

[41] Yue Yang, Fan-Yun Sun, Luca Weihs, Eli VanderBilt, Al-
varo Herrasti, Winson Han, Jiajun Wu, Nick Haber, Ranjay
Krishna, Lingjie Liu, et al. Holodeck: Language guided gener-
ation of 3d embodied ai environments. In The IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR
2024), pages 20–25. IEEE/CVF, 2024. 2, 6, 7, 1

[42] Lap Fai Yu, Sai Kit Yeung, Chi Keung Tang, Demetri Ter-
zopoulos, Tony F Chan, and Stanley J Osher. Make it home:
automatic optimization of furniture arrangement. ACM Trans-
actions on Graphics (TOG)-Proceedings of ACM SIGGRAPH
2011, v. 30,(4), July 2011, article no. 86, 30(4), 2011. 2

[43] Guangyao Zhai, Evin Pinar Örnek, Shun-Cheng Wu, Yan
Di, Federico Tombari, Nassir Navab, and Benjamin Busam.
Commonscenes: Generating commonsense 3d indoor scenes
with scene graphs. arXiv preprint arXiv:2305.16283, 2023. 2

https://www.target.com/room-planner/home
https://www.target.com/room-planner/home

INTERIORAGENT: LLM Agent for Interior Design-Aware 3D Layout Generation

Supplementary Material

6. Acknowledgments
This work was supported in part by NSF grant IIS 2402583,
a Qualcomm Innovation Fellowship, ONR grant N00014-
23-1-2526, gifts from Adobe, Rembrand, and the Ronald L.
Graham Chair.

7. Reproducibility
All code, data, prompts and experimental details will be
publicly released.

Please see the attached constraints.py file in the
folder for reference.

8. Full prompts for Visualizations
MIT Scenes
Bakery := “The bakery’s layout includes refrigerated display
cases along the left and back wall. In the center, a long
wooden table displays freshly baked loaves and pastries.
A few tables and chairs are placed in the front for customers.”

Kitchen := “The kitchen features a large island in the center
of the back wall with a marble countertop. Along one wall,
there is a row of cabinets and there is a coffee table with
two armchairs in the corner.”

Classroom := “The classroom features rows of individual
desks with attached chairs arranged in neat columns. A
large whiteboard spans the front wall, with a teacher’s desk
placed in one corner.”

Gym := “The center of the gym has several stationary bikes
arranged in a grid pattern with a TV mounted on their front
wall. Behind them, a row of treadmills are placed along the
wall.”

Buffet := “A buffet scene with a row of tables placed along
the left, each having a variety of food items placed on top.
In the center, four round tables are placed for seating”

Flower Shop := “The flower shop features a central display
table with flower bouquets on top, and floor lamps illuminat-
ing the arrangements. Along the walls, there are additional
tables with potted plants”

9. MIT Scenes Dataset
Comparison to LayoutVLM[32] and Holodeck[41]
Please see Figs. 11, 12 for more illustrations of scenes
generated via INTERIORAGENT , LayoutVLM[32] and

Holodeck[41]. We note the ability of INTERIORAGENT
to more accurately follow descriptive prompts while main-
taining better aesthetic quality. We observe that INTERIOR-
AGENT is able to utilize tools in its toolkit to generate a
diverse set of realistic scenes that are not only more visually
pleasing, but also respect human-centric factors for better in-
terior design. Further, we note that INTERIORAGENT is able
to effectively use both 3D-FRONT as well as other datasets
such as Objaverse to meet its asset requirements. This is a
key advantage over previous methods which do not have a
tool based approach and therefore, are not easily extensible
beyond a fixed dataset.

Comparison to FlairGPT[16] We compare INTERIORA-
GENT with FlairGPT [16], another state-of-the-art method
for indoor scene generation also inspired by interior design
principles. FlairGPT consists of three stages: a Language
Phase, where an LLM is prompted via chain-of-thought to
generate an initial layout by identifying zones, adding anchor
and secondary assets, and specifying constraints; a Transla-
tion Phase, which converts these natural-language layouts
and constraints into programs; and an Optimization Phase,
which executes the program to produce the final scene.

Despite these apparent similarities, INTERIORAGENT
differs in several key ways. First, it adopts a direct pro-
gram synthesis approach to specify layouts and constraints,
avoiding the limitations of natural language representations
used in FlairGPT, Holodeck [41], I-Design [2], and Layout-
GPT [32]. Prior work shows program synthesis provides
stronger planning capabilities through programming struc-
tures and external tools [37]. This is reflected in reliability:
FlairGPT fails to translate to an executable program roughly
25% of the time (tested on 20 MIT Scenes prompts, issue
also noted in official code release), whereas INTERIORA-
GENT , supported by code debuggers, achieves a near 99%
execution rate. Runtime also differs substantially: FlairGPT
requires 20 minutes per scene versus 3 minutes for INTERI-
ORAGENT .

Second, while both methods reference functional zones,
INTERIORAGENT formalizes them via dedicated group tem-
plates that support diverse zone types with isolated object
registration, placement, and optimization. This hierarchical
design more faithfully captures functional groupings than
FlairGPT’s chain-of-thought prompting.

Third, IDSDL equips INTERIORAGENT with a richer
suite of placement and optimization tools, including con-
straints unavailable in FlairGPT such as Clearance, Visibility,
and VLM-based constraints (ObjectProportions, RoomPro-
portion, Conversation, Balance). These contribute to more

InteriorAgent	
(Ours)

HolodeckLayoutVLM

“The art studio features an easel positioned near a large window, providing ample natural light. A table with
paintbrushes, palettes, and jars of paint is placed to the side, with a stool positioned in front of the easel.”

“The casino features rows of brightly lit slot machines arranged in long aisles, each with a small stool in
front. Colorful neon signs hang above.”

“The bookstore features a row of tall wooden shelves filled with books along a wall with round tables
with seats placed in front of them. “

“The room includes a double bed with two small nightstands on either side, each featuring a decor item.
Across from the bed is a TV mounted on a low media console, and to one corner of the room lies an
armchair with a side table.”

“A spacious bar scene includes a large rectangular counter with seating on all sides. Above the counter,
hanging pendant lights provide a soft glow, while a large TV on the opposite wall streams live sports.”

“The children’s room includes a bunk bed. A small play area is set up with a table and chairs, and a
colorful rug covers the floor. There are several stuffed animals on the rug.”

Figure 11. Example renders of scenes generated with prompts from six MIT Scenes categories.

InteriorAgent	
(Ours)

HolodeckLayoutVLM

“The walk-in closet has an entire wall covered in mirror panels. The opposite wall features wardrobes. In the
center, there are two ottomans and an armchair. It also has overhead lighting to illuminate the space.”

“The computer room features a row of computer desks with desktop monitors along one wall. A large
whiteboard is mounted on the opposite wall, and a large table is placed in the center with stools
around it.”

“The corridor features a door each along the left and right walls. A runner rug lines the center of the
floor, several paintings are placed the front which are visible to couches placed in the back.”

“The deli features several refrigerated units along the back wall, with a row of long glass display counter
filled with fresh sandwiches and salads, positioned at some distance in front of them. A row of bar stools
lines a counter along the wall with a huge window for casual seating.”

“The dental office features a reception desk, a waiting area with a few chairs in the middle. Along the
back wall, there are three dental chairs with a tray of instruments placed next to each. There are
plants, floor lamps placed near the reception desk.”

“The museum hall features a central exhibit showcasing a large dragon on a raised platform. Spotlights
from the ceiling illuminate the artifact, and benches are positioned along the walls for visitors.”

Figure 12. Example renders of scenes generated with prompts from six MIT Scenes categories.

“The computer room features a row of computer desks with desktop monitors
along one wall. A large whiteboard is mounted on the opposite wall, and a large
table is placed in the center with stools around it.”

“A spacious bar scene includes a large rectangular counter with seating on all
sides. Above the counter, hanging pendant lights provide a soft glow, while a large
TV on the opposite wall streams live sports.”

“The dental office features a reception desk, a waiting area with a few chairs
in the middle. Along the back wall, there are three dental chairs with a tray
of instruments placed next to each. There are plants, floor lamps placed near
the reception desk.”

InteriorAgent	(Ours) FlairGPTLayoutVLM

Figure 13. Comparison to FlairGPT. MIT Scenes renders for INTERIORAGENT , LayoutVLM [32], and 2D Layouts from FlairGPT [16].
Computer room: FlairGPT fails to place desks in a row with monitors; LayoutVLM produces multiple desks but not aligned. Bar: FlairGPT
inserts a central table but only a single stool, missing seating on all sides. Dental office: FlairGPT adds just one dental chair instead of three,
and omits plants and lamps near the reception desk. In contrast, INTERIORAGENT generates scenes that are prompt-faithful, aesthetically
pleasing, and functionally coherent.

coherent and functional layouts (Figures 13, 14).

Finally, FlairGPT’s placement and optimization capabili-
ties are fixed, while INTERIORAGENT offers an extensible
framework, allowing designers to easily add new templates
for asset retrieval, placement, and optimization.

For comparison, we use the officially released FlairGPT
code. However, it only produces 2D layouts without object
orientations, preventing generation of 3D scenes and direct
rendering comparisons. We therefore conduct a qualitative
comparison on six MIT Scenes prompts (Figures 13, 14).

Across all cases, INTERIORAGENT consistently outperforms
FlairGPT [16] in object retrieval (FlairGPT often omits key
objects specified in the prompt), placement (it frequently
fails to capture explicit inter-object relations), and optimiza-
tion (its scenes are less functional).

10. Placement Groups

See Figure 18

“The	casino	features	rows	of	brightly	lit	slot	machines	arranged	in	long	aisles,	each	with	a	small	stool	in	front.	Colorful	
neon	signs	hang	above.

“The	classroom	features	rows	of	individual	desks	with	attached	chairs	arranged	in	neat	columns.	A	large	whiteboard	
spans	the	front	wall,	with	a	teacher’s	desk	placed	in	one	corner..”

“The	computer	room	features	a	row	of	computer	desks	with	desktop	monitors	along	one	wall.	A	large	whiteboard	is	
mounted	on	the	opposite	wall,	and	a	large	table	is	placed	in	the	center	with	stools	around	it..”

“The	children’s	room	includes	a	bunk	bed.	A	small	play	area	is	set	up	with	a	table	and	chairs,	and	a	colorful	rug	covers	
the	floor.	There	are	several	stuffed	animals	on	the	rug..”

“The	walk-in	closet	has	an	entire	wall	covered	in	mirror	panels.	The	opposite	wall	features	wardrobes.	In	the	center,	there	
are	two	ottomans	and	an	armchair.	It	also	has	overhead	lighting	to	illuminate	the	space.”

“The	corridor	features	a	door	each	along	the	left	and	right	walls.	A	runner	rug	lines	the	center	of	the	floor,	several	
paintings	are	placed	the	front	which	are	visible	to	couches	placed	in	the	back.

SceneProg Holodeck SceneProg Holodeck

“The classroom features rows of individual desks with attached chairs arranged in neat
columns. A large whiteboard spans the front wall, with a teacher’s desk placed in one
corner.”

“The corridor features a door each along the left and right walls. A runner rug lines the
center of the floor, several paintings are placed the front which are visible to couches
placed in the back.”

“The room includes a double bed with two small nightstands on either side, each
featuring a decor item. Across from the bed is a TV mounted on a low media console,
and to one corner of the room lies an armchair with a side table.”

InteriorAgent	(Ours) FlairGPTLayoutVLM

Figure 14. Comparison to FlairGPT. MIT Scenes renders for INTERIORAGENT , LayoutVLM [32], and 2D layouts from FlairGPT [16].
Classroom: FlairGPT places only a single desk–chair despite the prompt asking for a row of desks with attached chairs, and omits the
teacher’s desk–chair. Bedroom: Nightstands and a side table for the armchair are missing. Corridor: Entry–exit doors are misplaced, breaking
the layout’s intent of having seating in between. In contrast, INTERIORAGENT produces scenes that are prompt-faithful, aesthetically
coherent, and functionally sound.

11. Tool Usage

INTERIORAGENT is highly extensible and as such its ca-
pabilities can be easily enhanced by providing additional
tools. Here we show one example each for object retrieval,
placement and optimization.

Object retrieval SceneMotifCoder [33] generates 3D ob-
ject arrangements through visual program learning. A key
feature of SceneMotifCoder is its ability to create stacks
or grid-like arrangements of objects. Since objects like “a

stack of 7 books” aren’t readily available in popular datasets,
we enable this functionality in INTERIORAGENT by adding
SceneMotifCoder as one of our retrieval tools. To achieve
this we write a template as shown in Figure 19, that gives
relevant information to INTERIORAGENT about using this
tool. Additionally, we follow the official documentation
to correctly use SceneMotifCoder and use that to write the
call () function that implements the functionality. Fig-

ure 20 shows that with such a minimal input, INTERIORA-
GENT is able to easily leverage the SceneMotifCoder tool
to generate stacked objects for its larger scene synthesis

Figure 15. Template for defining an asset retriever in IDSDL, with
an example 3DFront retriever implementation.

Figure 16. Template for defining groups in IDSDL, with an example
place on left() method in RelativeGroup().

objective. See Figure 15 for object registration template.

Object placement The teaser figure shows a large scale
scene consisting of a cherry blossom tree forest. Usually,
such scenes are extremely challenging for an LLM to cre-
ate given the limited 3D understanding capacity of LLMs.
However, when the task is subdivided at a word and later at
alphabet level, we note that LLMs can be reliably prompted
to achieve desired results. Therefore, we use a prompt engi-
neered LLM (GPT-4o) to serve as a tool for creating their
own ascii art. Figure 21 shows the entire code used for
this implementation. See Figure 16 for object placement
template.

Object arrangement Another interesting use case can
be enabled by allowing rendering based losses to work in
tandem with gradient and VLM based losses which is made
possible because IDSDL seamlessly unifies all the various
constraint and types. We show an application where wall

Figure 17. Template for defining constraints in IDSDL, with an ex-
ample gradient based OverlapConstraint() (top) and VLM
based ObjectProportionsConstraint() (bottom)

art needs to be arrangement by comparing them to a target
wall at arrangement specified by the user. Figure 22 shows
the constraint template being filled with relevant context for
LLM to use as well as a logic for computing pseudo gradients
to allow movement of the assets such that they match the
target as best as possible. Figure 23 shows the scene program
generated and the obtained results. See Figure 17 for object
arrangement optimization template.

12. Scene Editing Application
Figure 24 shows the visualization of scene editing appli-
cation discussed in the main paper. INTERIORAGENT ’s
chat-like interface allows users to generate and iteratively
edit scenes, accommodating complex requirements beyond
a single prompt.

13. Failure Cases
While INTERIORAGENT significantly outperforms prior
work with its program synthesis approach, challenges re-
main to be addressed in future works. Most importantly, we
note that INTERIORAGENT may suffer when the underlying
tool malfunctions or doesn’t show expected behavior. Figure
25 shows a few such examples. In the leftmost example,
the retrieval tool incorrectly retrieves a bundle of t-shirts
when asked to retrieve a ‘packing station’ to be placed in the
warehouse. In the middle two examples, while ergonomics
constraints account for visibility and clearance, it is possi-
ble that the LLM simply misses out on applying relevant

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

with scene.RelativeGroup() as seating_area:

 sofa = scene.AddAsset("A comfortable sofa")

 seating_area.set_anchor(sofa)

 with scene.RelativeGroup() as end_table_unit:

 end_table = scene.AddAsset("A stylish end table")

 end_table_unit.set_anchor(end_table)

 table_lamp = scene.AddAsset("A decorative table lamp")

 end_table_unit.place_on_top(table_lamp)

 end_tables = 2*end_table_unit

 seating_area.place_on_back_left(end_tables[0])

 seating_area.place_on_back_right(end_tables[1])

 table = scene.AddAsset("A coffee table")

 seating_area.place_on_front(table)

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

with scene.RelativeGroup() as reception_area:

 desk = scene.AddAsset("A reception desk")

 reception_area.set_anchor(desk)

 chair = scene.AddAsset("An office chair")

 reception_area.place_on_back(chair)

 plant = scene.AddAsset("A large potted plant")

 reception_area.place_on_front_left(plant)

 display_cabinet = scene.AddAsset("A large display cabinet")

 reception_area.place_on_back_further(display_cabinet)

1

2

3

4

5

6

7

8

with scene.AroundGroup() as dining_area:

 dining_table = scene.AddAsset("A rectangular dining table")

 dining_area.set_anchor(dining_table)

 chair = scene.AddAsset("A wooden chair")

 dining_area.place_rectilinear(

 longer_side1=3*chair,

 longer_side2=3*chair,

)

1

2

3

4

5

with scene.AroundGroup(sparsity=0.5) as sculpture_area:

 sculpture = scene.AddAsset("A modern sculpture")

 sculpture_area.set_anchor(sculpture)

 chair = scene.AddAsset("A stylish chair")

 sculpture_area.place_arc(objects=4*chair, dist=2.0)

1

2

3

with scene.GridGroup(sparsity=0.5, randomness=0.2) as gym_area:

 treadmills = scene.AddAsset("A treadmill")

 gym_area.place_row(4*treadmills)

1

2

3

4

5

6

7

with scene.GridGroup(sparsity=0.5) as classroom_area:

 with scene.RelativeGroup() as table_area:

 table = scene.AddAsset("A wooden table")

 table_area.set_anchor(table)

 chair = scene.AddAsset("A wooden chair")

 table_area.place_on_back(chair)

 classroom_area.place_grid(12*table_area, cols=4)

1

2

3

4

5

6

7

8

with scene.RoomGroup() as room:

 with scene.RelativeGroup() as sleeping_area:

 bed = scene.AddAsset("A modern bed")

 sleeping_area.set_anchor(bed)

 nightstand = scene.AddAsset("A wooden nightstand")

 sleeping_area.place_on_back_left(1*nightstand)

 sleeping_area.place_on_back_right(1*nightstand)

 room.place_on_back_wall_left(sleeping_area)

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

with scene.RoomGroup() as room:

 with scene.RelativeGroup() as table_area:

 table = scene.AddAsset("A wooden table")

 table_area.set_anchor(table)

 potted_plant = scene.AddAsset("A small decorative potted plant")

 table_area.place_on_top(3*potted_plant)

 tables = 4*table_area

 room.place_on_front_right(tables[0])

 room.place_on_front_left(tables[1])

 room.place_on_back_right(tables[2])

 room.place_on_back_left(tables[3])

 plant = scene.AddAsset("A large indoor plant")

 room.place_on_center(1*plant)

RelativeGroup

AroundGroup

GridGroup
RoomGroup

Figure 18. Placement programs involving various group types demoed in method section. Note as few as 10 lines of code are sufficient
to represent a wide variety of scenes including living room, reception area (RelativeGroup), dining area, a art museum viewing area
(AroundGroup), gym, classroom (GridGroup), bedroom and floweriest shop. (RoomGroup)

constraints when it should, resulting in scenes not being op-
timized for those constraints. In the rightmost example, a
large number of objects coupled with their constraints pose
a significant optimization challenge, which can lead to is-
sues such as out of bound problems, as is the case for the
example of a densely packed warehouse. We believe that
these problems can be mitigated in the future by using more
advanced tools and by fine-tuning the LLM for improved
tool-awareness. Additionally, INTERIORAGENT ’s approach
to use task-specific tools for scene synthesis raises important
considerations on optimal and robust utilization of multiple
tools.

14. Ablation
14.1. Debugging Scene Programs

The Debugger performs a key role in program synthe-
sis which is to ensure that programs synthesized by PRO-
GRAMSYNTHESIZER are executable and free from syntax
issues. In order to achieve this, it leverages a combination
of CodeRefine and TraceRefine in an iterative loop.
Upon generating 100 scene programs using the PROGRAM-
SYNTHESIZER , we observe that CodeRefine was used
135 times while TraceRefine was called 35 times. Note
that CodeRefine is invoked every time post PROGRAM-
SYNTHESIZER to remove potential errors.

14.2. In-Context Examples

A few in context examples are visualized in Fig 26.

Tool	Template

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

class SceneMotifCoderObject(SceneProgAssetRetrieverBase):

 def __init__(self):

 super().__init__()

 self.name = "SceneMotifCoderObject"

 self.description = f"""

This tool returns 'stacked' objects based on an input description which can be used like any other objects in the scene program

"""

 self.examples = """

Following are a few examples of this tool in action:

Example 1:

scene.SceneMotifCoderObject('A table with a chair in front of it')

Adds a new object to the scene where a chair is placed in front of a table

Example 2:

scene.SceneMotifCoderObject('A stack of 5 cups')

Adds a new object to the scene where 5 cups are stacked on top of each other

Example 3:

scene.SceneMotifCoderObject('A grid of 5x5 chairs')

Adds a new object to the scene where 25 chairs are arranged in a 5x5 grid

"""

 def __call__(self, query):

 code = f"""

#!/bin/bash

Path to the Python executable

PYTHON_EXECUTABLE="/opt/miniconda3/envs/smc/bin/python"

Path to the inference script

SCRIPT_PATH="/<path to smc>/smc/inference.py"

Arguments for the script

DESC="{query}"

OUT_DIR="/<path to sceneprog>/sceneprog/tmp/"

cd /<path to smc>/smc

Execute the Python script with the arguments

$PYTHON_EXECUTABLE $SCRIPT_PATH --desc "$DESC" --out_dir "$OUT_DIR"

Wait for the program to complete and check exit status

if [$? -eq 0]; then

 echo "Inference completed successfully."

else

 echo "Inference failed with exit code $?."

 exit 1

fi

"""

 with open("tmp/smc_run.sh", "w") as f:

 f.write(code)

 import os

 os.system(f"bash tmp/smc_run.sh")

 import trimesh

 mesh = trimesh.load("tmp/stacked.glb", process=False, force='mesh')

 scale = mesh.bounds[1,0] - mesh.bounds[0,0]

 return "tmp/stacked.glb", scale

Figure 19. Adding SceneMotifCoder[33] to INTERIORAGENT amounts to filling out the tool template which requires a tool name,
description of its role, its input/output as well as a few examples of its demonstration. The core logic of tool is implemented under the
call () method which follows the official documentation on correctly using the tool.

Scene	Program	using	SceneMotifCoder Generated	3D	Scene

Initialize scene with dimensions suitable for a study room

scene = Scene(dims=(5, 5, 3)) # Width, Depth, Height in meters

Add walls with a calming blue shade

scene.add_walls(wall_color='calming blue', floor_texture='wooden', ceiling_texture='plain')

Add windows and doors

scene.place_window(name='window1', wall='left_wall', type='standard', position='middle', place_curtain=True)

scene.place_door(name='door1', wall='back_wall', position='right')

Add furniture

scene.add(name='desk', desc='A large wooden desk with a smooth finish')

scene.add(name='chair', desc='A comfortable ergonomic chair')

Place the desk centrally in the room

scene.desk.place_global(x='center', y='floor', z='center', face_towards='front_wall')

Place the chair in front of the desk

scene.PlaceSeatsAroundTable(scene.desk, [scene.chair], desc="Place the chair in front of the desk")

Add lighting

scene.add(name='desk_lamp', desc='A stylish desk lamp with a warm glow')

scene.PlaceObjectsOnTop([scene.desk_lamp], scene.desk)

scene.add(name='chandelier', desc='A modern chandelier')

scene.chandelier.place_global(x='center', y='ceiling', z='center')

Add decor and books

scene.SceneMotifCoderObject(name='stacked_books1', description='A stack of 5 books of varying sizes and colors')

scene.SceneMotifCoderObject(name='stacked_books2', description='A stack of 3 books of varying sizes and colors')

scene.SceneMotifCoderObject(name='stacked_books3', description='A stack of 4 books of varying sizes and colors')

scene.PlaceObjectsOnTop([scene.get_object('stacked_books1'), scene.get_object('stacked_books2'), scene.get_object('stacked_books3')], scene.desk)

scene.add(name='plant', desc='A small indoor plant')

scene.PlaceObjectsOnTop([scene.plant], scene.desk)

scene.add(name='painting1', desc='A motivational poster')

scene.painting1.place_on_wall(wall='front_wall', horizontal_position='middle', vertical_position='top')

scene.add(name='shelf', desc='A bookshelf filled with more books and personal items')

scene.shelf.place_global(x='right_wall', y='floor', z='center', face_towards='left_wall')

scene.add(name='rug', desc='A cozy area rug in a neutral color')

scene.rug.place_global(x='center', y='floor', z='center')

Scene	Program	using	SceneMotifCoder Scene	Generated	by	executing	the	program

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

with scene.RelativeGroup() as desk_area:

 desk = scene.AddAsset("A large wooden desk with a wooden finish")

 desk_area.set_anchor(desk)

 chair = scene.AddAsset("A comfortable ergonomic chair")

 desk_area.place_on_back(chair)

 table_lamp = scene.AddAsset("A stylish desk lamp with a modern glow")

 stacked_books1 = scene.AddAsset("A stack of 5 books of varying sizes and colors")

 stacked_books2 = scene.AddAsset("A stack of 3 books of varying sizes and colors")

 stacked_books3 = scene.AddAsset("A stack of 4 books of varying sizes and colors")

 indoor_plant = scene.AddAsset("A small indoor plant")

 desk_area.place_on_top([indoor_plant, stacked_books1, stacked_books2, stacked_books3, table_lamp])

 desk_area.place_rug("A cozy area rug in neutral color", size=0.3)

 desk_area.add_lighting("A modern chandilier", 0.0)

with scene.RoomGroup() as room:

 room.place_walls("floor_texture=wooden", ceiling_texture="plain", wall_texture="calming blue")

 room.place_window_standard("left_wall", position="middle", curtain=True)

 room.place_door("back_wall", position="right")

 painting = scene.AddAsset("A motivational poster")

 room.place_on_wall_front_center(painting)

 shelf = scene.AddAsset("A bookshelf filled with books and personal items")

 room.place_on_right_wall_center(shelf)

 room.place_on_center(desk_area)

Figure 20. INTERIORAGENT can effectively use novel tools. Here, we show INTERIORAGENT writings programs using the SceneMo-
tifCoder tool for the caption “Create a study room scene with a desk with 3 heaps of stacked books”.

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

class SentenceASCIIGenerator(SceneProgObject):

 def __init__(self, scene):

 self.name = "SentenceASCIIGenerator"

 self.description = f"""

Places assets in an ASCII art representation of a sentence.

Inputs:

- obj: An object to place in the scene.

- sentence: The sentence to represent in ASCII art.

"""

 self.usage = f"""

with scene.SentenceASCIIGenerator() as ascii_gen:

 plant = scene.AddAsset("A large potted plant")

 ascii_gen.place(plant, sentence="World\tPeace\n2045")

"""

 self.word_gen = WordGenerator()

 super().__init__(scene)

 def run(self, sentence):

 points = []

 ch=5

 for line in sentence.split('\n'):

 cw=0

 tmp=[]

 for word in line.split('\t'):

 pt = self.word_gen.run(word)

 h = np.max(pt[:,1])+1

 w = np.max(pt[:,0])+5

 pt[:,1] += ch

 pt[:,0] += cw

 tmp.append(pt)

 cw+=w

 tmp=np.vstack(tmp)

 points.append(tmp)

 ch += h

 return points

 @placemethod

 def place(self, obj, sentence):

 points = self.run(sentence)

 total_points = np.vstack(points).shape[0]

 objs = total_points*obj

 height = self.compute_obj_y(obj)

 count = 0

 from tqdm import tqdm

 for line in points:

 for pt in tqdm(line):

 objs[count].set_location(pt[0], height, pt[1])

 self.add_child(objs[count])

 count += 1

 return points

 def compile(self):

 if self.operation_order is None:

 self.operation_order = [key for key in self.operations.keys() if self.operations[key] is not None]

 for key in self.operation_order:

 if key in self.operations:

 if self.operations[key] is not None:

 op = self.operations[key]

 op.execute()

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

class AlphabetGenerator:

 def __init__(self):

 self.llm = LLM(

 name="ASCIIArtGroup",

 system_desc=f"""

You are a large language model based assistant, expert at generating ASCII art representations for alphabets and numbers.

Return only python code in Markdown format, e.g.:

```python

....

```

"""

)

 def sanatize(self, text):

 H = len(text)

 W = len(text[0])

 pos = []

 # Loop through each row of the ASCII representation

 for y, row in enumerate(text):

 # Loop through each character of the row

 for x, char in enumerate(row):

 # If the character is 'G', add the coordinates to the list

 if char == '*':

 pos.append((x, y))

 return np.array(pos), len(text[0])+1

 def _sanitize_output(self, text: str):

 _, after = text.split("```python")

 return after.split("```")[0]

 def run(self, query):

 prompt = """

User Input: Generate ASCII art for 'G'

Your Response:

```python   [       "  ****  ",

                    " *      ",

                    "*       ",

                    "*   **  ",

                    "*     * ",

                    " *    * ",

                    "  ****  "

]```    

User Input: Generate ASCII art for 'S'

Your Response:

```python  [    " ****  ",

 "* ",

 "* ",

 " **** ",

 " * ",

 " * ",

 " **** "

]```

 """

 prompt += f"""

User Input: Generate ASCII art for '{query}'

Your Response:

"""

 response = self.llm(prompt)

 response = self._sanitize_output(response)

 response = eval(response)

 return self.sanatize(response)

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

class WordGenerator:

 def __init__(self):

 self.alpha_gen = AlphabetGenerator()

 def run(self, word):

 points = []

 cw=5

 for letter in word:

 pt,w = self.alpha_gen.run(letter)

 pt[:,0] += cw

 points.append(pt)

 cw += w

 return np.vstack(points)

1

2

3

4

with scene.SentenceASCIIGenerator() as ascii_gen:

 sentence = "INTERIORAGENT\n3DV\t2026\nVANCOUVER"

 plant = scene.AddAsset("A large cherry blossom tree")

 ascii_gen.place(plant, sentence=sentence)

1

2

3

4

Figure 21. INTERIORAGENT tool use example: Using the Group template (1–3), we implement an ASCII art generation tool driven by an
LLM prompt. The teaser illustration was produced from the caption “forest made to look like INTERIORAGENT 3DV 2026 VANCOUVER”.
(4) INTERIORAGENT enables such expressive scenes with minimal code.

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

class RenderingConstraint(ConstraintBase):

 def __init__(self, group, wall, paintings, target_image_path):

 from painting_detector import PaintingDetector

 self.name = 'RenderingConstraint'

 self.description = f"""

Helps in optimizing placement of paintings on the wall to match a given image target.

Inputs:

- wall: The wall name (str)

- paintings: List of painting objects (list)

- target_image_path: Path to the target image (str)

"""

 self.examples = f"""

with scene.RoomGroup() as room:

 ...

 painting = scene.AddAsset("A Beautiful Landscape")

 paintings = 3*paintings

 room.place_on_wall_back_left(paintings[0])

 room.place_on_wall_back_center(paintings[1])

 room.place_on_wall_back_right(paintings[2])

 room.RenderingConstraint("back_wall", paintings, "path/to/target/image.jpg")

"""

 self.type = 'GRADIENT'

 self.painting_detector = PaintingDetector()

 self.target_image_path = target_image_path

 self.target_centroids, self.target_bbox = self.painting_detector(self.target_image_path, resize=(1920,1080))

 self.wall = wall

 self.paintings = paintings

 super().__init__(self.name, group)

 def compute_gradients(self):

 ## Render the wall with paintings

 current_image_path = self.group.render_wall(self.wall, self.paintings)

 ## Detect centroids of each painting using Owlv2

 centroids, tmp = self.painting_detector(current_image_path, resize=(1920,1080))

 ## Use hungarian method to derieve optimal 1-1 mapping between centroids.

 perm = self.painting_detector.compute_mapping(centroids, self.target_centroids)

 mapped_centroids = [self.target_centroids[i] for i in perm]

 for i, painting in enumerate(self.paintings):

 grad = mapped_centroids[i] - centroids[i] ## pseudo gradient

 img_grad[0] *= 1/1920

 img_grad[1] *= 1/1080

 painting.grad += np.array([img_grad[0], img_grad[1], 0], dtype=np.float32)

Figure 22. INTERIORAGENT tool use example: Using the Constraints template, we implement an optimization routine for arranging
wall scenery to match a target image. Frames are detected with OWLv2 using prompts such as “painting”, “picture frame”, “wall art”, and
“poster”. The centers of bounding boxes from target and source renderings are extracted, matched via the Hungarian algorithm, and the
scenery is shifted toward their assigned centroids.

Scene	Program	using	RenderingConstraint Generated	3D	Scene

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

with scene.RelativeGroup() as seating_area:

 sofa = scene.AddAsset("A comfortable sofa")

 seating_area.set_anchor(sofa)

 coffee_table = scene.AddAsset("A stylish coffee table")

 seating_area.place_on_front(coffee_table)

 floor_plant = scene.AddAsset("A large floor plant")

 seating_area.place_on_right_further(floor_plant)

with scene.RoomGroup() as room:

 room.place_walls("wooden", "plain_white", "plain_white")

 sofa = scene.AddAsset("A comfortable sofa")

 room.place_on_back_wall_center(seating_area)

 painting1 = scene.AddAsset("A painting on Christianity")

 painting2 = scene.AddAsset("A painting on Buddhism")

 painting3 = scene.AddAsset("A painting on Hinduism")

 paintings = [painting1, painting2, painting3]

 room.place_on_wall_back_left(paintings[0])

 room.place_on_wall_back_center(paintings[1])

 room.place_on_wall_back_right(paintings[2])

 room.RenderingConstraint("back_wall", paintings, "target.jpg")

Target	for	optimizing	
painting	arrangements

w/o	rendering	constraint

Figure 23. Using Rendering constraint in code: INTERIORAGENT uses the available context to easily write a program for the caption
“Create a living room with the back wall having three paintings: symbolizing Christianity, Buddhism and Hinduism as per the following
arrangement (pass image path for target)”.

“Create	a	minimal	dining	
scene”

“Switch	one	of	the	chairs	
with	a	yellow	chair”

“Move	dining	area	close	to	
window	and	add	a	sideboard”

“Improve	the	aesthetics	of	the	
scene”

Figure 24. INTERIORAGENT allows user-driven scene customiza-
tion through a chat interface. Starting from a minimal scene, INTE-
RIORAGENT responds to user inputs to change colors, rearrange,
add furniture and improve decor, while maintaining the scene bal-
ance.

Wrong	retrieval Missed	visibility Missed	clearance Optimization	too	difficult
Figure 25. Some failure cases of INTERIORAGENT .

Figure 26. A few in-context examples used in INTERIORAGENT .

	. Introduction
	. Related Works
	. Interior Design aware Scene Generation
	. Scene Description Language
	. Program Synthesizer

	. Experiments
	. Perceptual Study
	. Ablations
	. Applications

	. Conclusion and Future Work
	. Acknowledgments
	. Reproducibility
	. Full prompts for Visualizations
	. MIT Scenes Dataset
	. Placement Groups
	. Tool Usage
	. Scene Editing Application
	. Failure Cases
	. Ablation
	. Debugging Scene Programs
	. In-Context Examples

