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Abstract

Out-of-distribution (OOD) detection and uncertainty estimation (UE) are critical
components for building safe machine learning systems, especially in real-world
scenarios where unexpected inputs are inevitable. However the two problems have,
until recently, separately been addressed. In this work, we propose a novel frame-
work that combines network inversion with classifier training to simultaneously
address both OOD detection and uncertainty estimation. For a standard n-class
classification task, we extend the classifier to an (n+1)-class model by introducing
a "garbage" class, initially populated with random gaussian noise to represent
outlier inputs. After each training epoch, we use network inversion to reconstruct
input images corresponding to all output classes that initially appear as noisy and
incoherent and are therefore excluded to the garbage class for retraining the classi-
fier. This cycle of training, inversion, and exclusion continues iteratively till the
inverted samples begin to resemble the in-distribution data more closely, with a
significant drop in the uncertainty, suggesting that the classifier has learned to carve
out meaningful decision boundaries while sanitising the class manifolds by pushing
OOD content into the garbage class. During inference, this training scheme enables
the model to effectively detect and reject OOD samples by classifying them into the
garbage class. Furthermore, the confidence scores associated with each prediction
can be used to estimate uncertainty for both in-distribution and OOD inputs. Our
approach is scalable, interpretable, and does not require access to external OOD
datasets or post-hoc calibration techniques while providing a unified solution to
the dual challenges of OOD detection and uncertainty estimation.

1 Introduction

The increasing deployment of machine learning models in high-stakes, real-world applications—such
as autonomous driving, medical diagnosis, and financial decision-making—has underscored the
importance of model reliability and robustness. A key limitation of modern neural networks is
their tendency to produce overconfident predictions |Suhail and Sethi| [2025]] even on inputs that
lie far outside the training distribution. This makes it crucial to develop models capable of both
out-of-distribution (OOD) detection—the ability to identify inputs that fall outside the training
distribution—and uncertainty estimation (UE)—the ability to quantify confidence in predictions to
ensure safe decision-making under distributional shift.

Both capabilities are vital for trustworthiness in deployment scenarios where the data encountered
during inference may deviate from the training distribution in subtle or unexpected ways. Although
these two problems are inherently linked, most existing approaches treat them separately, often
relying on post-hoc calibration techniques or auxiliary OOD datasets, which may not always be
available.
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In this work, we propose a novel framework that leverages network inversionSuhail and Sethi| [2024],
not only to detect OOD inputs but also to estimate prediction uncertainty, unifying the two objectives
in a single training procedure. By extending a standard (n+1)-class model with an auxiliary garbage
class, and iteratively refining the model using inverted reconstructions, we encourage the network to
carve out clean decision boundaries while isolating ambiguous or anomalous regions. Unlike prior
approaches, our method requires no external OOD datasets or post-hoc calibration, offering a simple
and interpretable solution to ensure robustness in classification under distributional shift.

2 Prior Work

Inversion attempts to reconstruct inputs that elicit desired outputs or internal activations of a neural
network. Early studies on multilayer perceptrons applied gradient-based inversion to visualize deci-
sion rules, but these often yielded noisy or adversarial-like images |Kindermann and Linden|[[1990],
Jensen et al.|[[1999], Saad and Wunsch|[2007]]. Evolutionary search and constrained optimization were
explored as alternatives Wong| [2017]]. Later work introduced prior-based regularization, including
smoothness constraints and pretrained generative models, to improve realism and interpretability of
reconstructions Mahendran and Vedaldi| [2014]], Yosinski et al.|[2015]], Mordvintsev et al. [2015]],
Nguyen et al.|[2016}2017]]. The connection to adversarial examples has been emphasized, as uncon-
strained inversion can converge to adversarial artifacts |Szegedy et al.|[2014]], Goodfellow et al.|[2015].
In contrast, adversarially robust classifiers tend to produce more human-aligned features Tsipras et al.
[2019]], Engstrom et al.| [2019]], enabling more interpretable reconstructions Santurkar et al.| [2019].
Recent advances include learning surrogate loss landscapes to stabilize inversion |Liu et al.|[2022], and
generative methods that conditionally reconstruct inputs likely to produce a given output |Suhail and
Sethi [2024]. Alternative formulations recast inversion into logical reasoning frameworks, encoding
classifiers into CNF constraints for deterministic reconstruction |Suhail| [2024]).

Uncertainty quantification (UQ) has emerged as a cornerstone of reliable Al systems, particularly
in domains where overconfident false predictions can lead to critical failures. Post-hoc methods
are attractive because they can be retrofitted to pretrained deterministic classifiers without requiring
retraining. Monte Carlo Dropout (MC Dropout) |Gal and Ghahramani| [2016] introduces stochasticity
during inference to approximate Bayesian model averaging, while temperature scaling |Guo et al.
[2017] improves calibration with a single scalar parameter applied to logits. More recently, auxiliary
prediction heads or meta-models have been explored. Evidential Deep Learning Sensoy et al.|[2018]
reformulates classification into the prediction of Dirichlet parameters, providing both predictive
means and uncertainty. Direct Epistemic Uncertainty Prediction (DEUP) Jain et al.[[2022] learns a
secondary model to estimate generalization error from data embeddings. Later, |Shen et al.|[2023]]
proposes evidential meta-models that generate Dirichlet distributions from classifier logits.

Bayesian neural networks (BNNs) [Neal| [[1996] [Blundell et al.| [2015]] and related variational in-
ference techniques offer a more principled alternative by maintaining posterior distributions over
network weights. Ensemble learning remains one of the most empirically effective strategies for
UQ. Deep Ensembles [Lakshminarayanan et al.|[2017]] aggregate predictions from independently
trained networks and consistently achieve strong calibration and robustness under distributional
shift. Domain-specific strategies include test-time augmentation to approximate prediction variance,
uncertainty-aware segmentation masks to enhance interpretability |Jungo et al.|[2020], and Bayesian
approximations adapted to volumetric imaging [Kwon et al.| [2020]. [Shen et al.|[2023]] proposed
evidential meta-models trained on classifier embeddings to predict Dirichlet distributions, enabling
decomposition into epistemic and aleatoric uncertainty. Jain et al.|[2022]] generalized this idea with
DEUP to out-of-distribution and low-data regimes, while [Bala et al.| [2025]] introduced BAY-MED, a
Dirichlet meta-model for breast cancer classification that demonstrates robustness to OOD samples.

Recent work in|Ansari et al.| [2022] proposed Autoinverse, a framework for neural network inversion
that prioritizes solutions near reliable training samples, using embedded regularization and predictive
uncertainty minimization to improve robustness. Later|Lu et al.|[2023]] introduced a semantically
coherent OOD detection (SCOOD) approach by combining uncertainty-aware optimal transport
with dynamic cost modeling and inter-cluster enhancements. While|Chen et al.|[2024] developed a
Gaussian process-based model that operates solely on in-distribution data. Similarly,|Charpentier et al.
[2020] presents PostNet, which employs normalizing flows to model posterior distributions over pre-
dicted probabilities, allowing reliable uncertainty estimation and effective OOD discrimination—even
without OOD supervision.
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Figure 1: Inverted Samples across epochs for different classes, beginning to resemble the training
data as OODs are excluded into garbage class.

3 Methodology

Our unified training approach integrates out-of-distribution (OOD) detection and uncertainty esti-
mation (UE) into a single framework using network inversion and an auxilary garbage class. For
an n-class classification task, we extend the classifier to an (n+1)-class model by introducing an
additional "garbage" class designed to absorb anomalous inputs. This garbage class is initially
populated with random Gaussian noise, representing OOD samples.

Between successive training epochs, we perform network inversion as in Suhail and Sethi| [2024] to
reconstruct samples from the input space of the classifier for all output classes. Formally, we train a
conditional generator G, : Z x RX — X, parameterized by ¢, to invert the classifier’s behavior by
optimizing it to minimize a composite loss

Ly = - Lxp + B - Lcg + 77 - Lcosine

where, Lg; is the KL Divergence loss, Lcg is the Cross Entropy loss, and Lcogine 1S the Cosine
Similarity loss. The hyperparameters «, /3,y control the contribution of each individual loss term
defined as:

s
Ly = Z P(i)log QZ; Lcg = — Z yilog(9i), Lcosine = m ; cos(0;;)
% i Py

where Lk represents the KL Divergence between the input distribution P and the output distribution
@, y; is the set encoded label, g; is the predicted label from the classifier, and cos(@ij) is the cosine
similarity between the features of generated images ¢ and j in a batch of N.

Given the vastness of the input space, during early training stages, these reconstructions tend to be
visually incoherent and do not resemble real data, reflecting the model’s incomplete or uncertain
understanding of the class manifolds. These reconstructions are assigned to the garbage class and
added to the training set for the subsequent epochs. In subsequent epochs the classifier is trained
using a weighted cross-entropy loss to account for the class imbalance introduced by addition of
garbage samples.

By iteratively repeating this cycle of training, inversion, and exclusion, the model gradually learns
to refine the decision boundaries while pushing anomalous content into the garbage class. As the
training progresses, inverted samples in Fig [I] begin to look like training data, indicating that the
classifier has effectively carved out the in-distribution manifold while isolating outliers into the
garbage class.
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During inference, this training procedure equips the classifier to identify and reject out-of-distribution
(OOD) inputs by assigning them to the garbage class. Additionally, the softmax confidence scores
corresponding to class predictions can be used to assess the model’s uncertainty. Low softmax confi-
dence on in-distribution predictions indicates ambiguous or uncertain inputs, while high confidence
in the garbage class suggests a strong belief that the input is OOD. We quantify uncertainty using the
softmax confidence values across all n + 1 output classes by capturing how sharply peaked or spread
out the model’s predictive distribution is. The uncertainty estimate for a prediction p is given by:

2
Ul — 1 - S (m- k) 2 "
Z?:Jrll (51}10 - %H)

where k = argmax; p; and §; j, is the Kronecker delta. The resulting score ranges from O to 1,
providing an interpretable measure of confidence by computing the squared distance between the
predicted vector p and the uniform distribution, normalized by the maximum possible distance under
a one-hot prediction.

4 Quantitative Results

We evaluate the effectiveness of our approach to uncertainty-aware out-of-distribution detection
across four benchmark image classification datasets: MNIST [Dengl, 2012]], FashionMNIST [Xiao
et al.,[2017]], SVHN, and CIFAR-10 [Krizhevsky et al.[]. To assess OOD detection performance, we
follow a one-vs-rest evaluation strategy: the model is trained exclusively on one dataset and evaluated
on the remaining three as OOD sources.

Table 1: Accuracy for both in and out-of-distribution datasets.

Train\ Test MNIST FMNIST SVHN CIFAR-10

MNIST 99.1 89.5 99.1 99.4
FMNIST 85.2 92.6 96.3 95.7
SVHN 93.6 94.9 89.4 87.6
CIFAR-10 97.8 95.7 88.2 85.5

Table|l| presents the accuracy for uncertainty-aware OOD detection across all pairs of datasets. Each
row corresponds to a model trained on one of the datasets and diagonal entries represent the in-
distribution (ID) performance measured on the standard test set of the training dataset. Off-diagonal
entries indicate OOD detection performance, where the accuracy represents how well the model
distinguishes out-of-distribution samples by correctly classifying them into the garbage class. High
values across both diagonal and off-diagonal entries demonstrate that the model maintains strong
classification performance on ID data while reliably identifying OOD inputs.

We also observe that while the majority of OOD samples are correctly assigned to the garbage class,
a small percentage of the samples can still be misclassified into in-distribution classes. However, a
significant finding is that the least confidently classified in-distribution sample is still more confidently
classified compared to the most confidently misclassified out-of-distribution sample, suggesting the
existence of a clear threshold.

5 Conclusion

In conclusion, our unified framework seamlessly integrates out-of-distribution (OOD) detection and
uncertainty estimation (UE) by extending the classification model with a garbage class and leveraging
network inversion for inverted sample generation. Through iterative training and inversion cycles, the
model learns to delineate in-distribution data from anomalous inputs while progressively refining its
class boundaries. This approach enables robust OOD rejection and provides interpretable uncertainty
estimates based on softmax confidence distributions. Future work can also consider the use n garbage
classes—one for each of the in-distribution classes—for fine-grained separation of OOD samples
and weighted individual OOD sample contribution to the loss while retraining the classifier based on
uncertainty.
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