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Abstract

Out-of-distribution (OOD) detection and uncertainty estimation (UE) are critical1

components for building safe machine learning systems, especially in real-world2

scenarios where unexpected inputs are inevitable. However the two problems have,3

until recently, separately been addressed. In this work, we propose a novel frame-4

work that combines network inversion with classifier training to simultaneously5

address both OOD detection and uncertainty estimation. For a standard n-class6

classification task, we extend the classifier to an (n+1)-class model by introducing7

a "garbage" class, initially populated with random gaussian noise to represent8

outlier inputs. After each training epoch, we use network inversion to reconstruct9

input images corresponding to all output classes that initially appear as noisy and10

incoherent and are therefore excluded to the garbage class for retraining the classi-11

fier. This cycle of training, inversion, and exclusion continues iteratively till the12

inverted samples begin to resemble the in-distribution data more closely, with a13

significant drop in the uncertainty, suggesting that the classifier has learned to carve14

out meaningful decision boundaries while sanitising the class manifolds by pushing15

OOD content into the garbage class. During inference, this training scheme enables16

the model to effectively detect and reject OOD samples by classifying them into the17

garbage class. Furthermore, the confidence scores associated with each prediction18

can be used to estimate uncertainty for both in-distribution and OOD inputs. Our19

approach is scalable, interpretable, and does not require access to external OOD20

datasets or post-hoc calibration techniques while providing a unified solution to21

the dual challenges of OOD detection and uncertainty estimation.22

1 Introduction23

The increasing deployment of machine learning models in high-stakes, real-world applications—such24

as autonomous driving, medical diagnosis, and financial decision-making—has underscored the25

importance of model reliability and robustness. A key limitation of modern neural networks is26

their tendency to produce overconfident predictions Suhail and Sethi [2025] even on inputs that27

lie far outside the training distribution. This makes it crucial to develop models capable of both28

out-of-distribution (OOD) detection—the ability to identify inputs that fall outside the training29

distribution—and uncertainty estimation (UE)—the ability to quantify confidence in predictions to30

ensure safe decision-making under distributional shift.31

Both capabilities are vital for trustworthiness in deployment scenarios where the data encountered32

during inference may deviate from the training distribution in subtle or unexpected ways. Although33

these two problems are inherently linked, most existing approaches treat them separately, often34

relying on post-hoc calibration techniques or auxiliary OOD datasets, which may not always be35

available.36
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In this work, we propose a novel framework that leverages network inversionSuhail and Sethi [2024],37

not only to detect OOD inputs but also to estimate prediction uncertainty, unifying the two objectives38

in a single training procedure. By extending a standard (n+1)-class model with an auxiliary garbage39

class, and iteratively refining the model using inverted reconstructions, we encourage the network to40

carve out clean decision boundaries while isolating ambiguous or anomalous regions. Unlike prior41

approaches, our method requires no external OOD datasets or post-hoc calibration, offering a simple42

and interpretable solution to ensure robustness in classification under distributional shift.43

2 Prior Work44

Inversion attempts to reconstruct inputs that elicit desired outputs or internal activations of a neural45

network. Early studies on multilayer perceptrons applied gradient-based inversion to visualize deci-46

sion rules, but these often yielded noisy or adversarial-like images Kindermann and Linden [1990],47

Jensen et al. [1999], Saad and Wunsch [2007]. Evolutionary search and constrained optimization were48

explored as alternatives Wong [2017]. Later work introduced prior-based regularization, including49

smoothness constraints and pretrained generative models, to improve realism and interpretability of50

reconstructions Mahendran and Vedaldi [2014], Yosinski et al. [2015], Mordvintsev et al. [2015],51

Nguyen et al. [2016, 2017]. The connection to adversarial examples has been emphasized, as uncon-52

strained inversion can converge to adversarial artifacts Szegedy et al. [2014], Goodfellow et al. [2015].53

In contrast, adversarially robust classifiers tend to produce more human-aligned features Tsipras et al.54

[2019], Engstrom et al. [2019], enabling more interpretable reconstructions Santurkar et al. [2019].55

Recent advances include learning surrogate loss landscapes to stabilize inversion Liu et al. [2022], and56

generative methods that conditionally reconstruct inputs likely to produce a given output Suhail and57

Sethi [2024]. Alternative formulations recast inversion into logical reasoning frameworks, encoding58

classifiers into CNF constraints for deterministic reconstruction Suhail [2024].59

Uncertainty quantification (UQ) has emerged as a cornerstone of reliable AI systems, particularly60

in domains where overconfident false predictions can lead to critical failures. Post-hoc methods61

are attractive because they can be retrofitted to pretrained deterministic classifiers without requiring62

retraining. Monte Carlo Dropout (MC Dropout) Gal and Ghahramani [2016] introduces stochasticity63

during inference to approximate Bayesian model averaging, while temperature scaling Guo et al.64

[2017] improves calibration with a single scalar parameter applied to logits. More recently, auxiliary65

prediction heads or meta-models have been explored. Evidential Deep Learning Sensoy et al. [2018]66

reformulates classification into the prediction of Dirichlet parameters, providing both predictive67

means and uncertainty. Direct Epistemic Uncertainty Prediction (DEUP) Jain et al. [2022] learns a68

secondary model to estimate generalization error from data embeddings. Later, Shen et al. [2023]69

proposes evidential meta-models that generate Dirichlet distributions from classifier logits.70

Bayesian neural networks (BNNs) Neal [1996] Blundell et al. [2015] and related variational in-71

ference techniques offer a more principled alternative by maintaining posterior distributions over72

network weights. Ensemble learning remains one of the most empirically effective strategies for73

UQ. Deep Ensembles Lakshminarayanan et al. [2017] aggregate predictions from independently74

trained networks and consistently achieve strong calibration and robustness under distributional75

shift. Domain-specific strategies include test-time augmentation to approximate prediction variance,76

uncertainty-aware segmentation masks to enhance interpretability Jungo et al. [2020], and Bayesian77

approximations adapted to volumetric imaging Kwon et al. [2020]. Shen et al. [2023] proposed78

evidential meta-models trained on classifier embeddings to predict Dirichlet distributions, enabling79

decomposition into epistemic and aleatoric uncertainty. Jain et al. [2022] generalized this idea with80

DEUP to out-of-distribution and low-data regimes, while Bala et al. [2025] introduced BAY-MED, a81

Dirichlet meta-model for breast cancer classification that demonstrates robustness to OOD samples.82

Recent work in Ansari et al. [2022] proposed Autoinverse, a framework for neural network inversion83

that prioritizes solutions near reliable training samples, using embedded regularization and predictive84

uncertainty minimization to improve robustness. Later Lu et al. [2023] introduced a semantically85

coherent OOD detection (SCOOD) approach by combining uncertainty-aware optimal transport86

with dynamic cost modeling and inter-cluster enhancements. While Chen et al. [2024] developed a87

Gaussian process-based model that operates solely on in-distribution data. Similarly, Charpentier et al.88

[2020] presents PostNet, which employs normalizing flows to model posterior distributions over pre-89

dicted probabilities, allowing reliable uncertainty estimation and effective OOD discrimination—even90

without OOD supervision.91
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Figure 1: Inverted Samples across epochs for different classes, beginning to resemble the training
data as OODs are excluded into garbage class.

3 Methodology92

Our unified training approach integrates out-of-distribution (OOD) detection and uncertainty esti-93

mation (UE) into a single framework using network inversion and an auxilary garbage class. For94

an n-class classification task, we extend the classifier to an (n+1)-class model by introducing an95

additional "garbage" class designed to absorb anomalous inputs. This garbage class is initially96

populated with random Gaussian noise, representing OOD samples.97

Between successive training epochs, we perform network inversion as in Suhail and Sethi [2024] to98

reconstruct samples from the input space of the classifier for all output classes. Formally, we train a99

conditional generator Gϕ : Z × RK → X , parameterized by ϕ, to invert the classifier’s behavior by100

optimizing it to minimize a composite loss101

LInv = α · LKL + β · LCE + γ · LCosine

where, LKL is the KL Divergence loss, LCE is the Cross Entropy loss, and LCosine is the Cosine102

Similarity loss. The hyperparameters α, β, γ control the contribution of each individual loss term103

defined as:104

LKL =
∑
i

P (i) log
P (i)

Q(i)
, LCE = −

∑
i

yi log(ŷi), LCosine =
1

N(N − 1)

∑
i̸=j

cos(θij)

where LKL represents the KL Divergence between the input distribution P and the output distribution105

Q, yi is the set encoded label, ŷi is the predicted label from the classifier, and cos(θij) is the cosine106

similarity between the features of generated images i and j in a batch of N .107

Given the vastness of the input space, during early training stages, these reconstructions tend to be108

visually incoherent and do not resemble real data, reflecting the model’s incomplete or uncertain109

understanding of the class manifolds. These reconstructions are assigned to the garbage class and110

added to the training set for the subsequent epochs. In subsequent epochs the classifier is trained111

using a weighted cross-entropy loss to account for the class imbalance introduced by addition of112

garbage samples.113

By iteratively repeating this cycle of training, inversion, and exclusion, the model gradually learns114

to refine the decision boundaries while pushing anomalous content into the garbage class. As the115

training progresses, inverted samples in Fig 1 begin to look like training data, indicating that the116

classifier has effectively carved out the in-distribution manifold while isolating outliers into the117

garbage class.118
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During inference, this training procedure equips the classifier to identify and reject out-of-distribution119

(OOD) inputs by assigning them to the garbage class. Additionally, the softmax confidence scores120

corresponding to class predictions can be used to assess the model’s uncertainty. Low softmax confi-121

dence on in-distribution predictions indicates ambiguous or uncertain inputs, while high confidence122

in the garbage class suggests a strong belief that the input is OOD. We quantify uncertainty using the123

softmax confidence values across all n+ 1 output classes by capturing how sharply peaked or spread124

out the model’s predictive distribution is. The uncertainty estimate for a prediction p is given by:125

UE(p) = 1−

∑n+1
i=1

(
pi − 1

n+1

)2

∑n+1
i=1

(
δi,k − 1

n+1

)2 (1)

where k = argmaxi pi and δi,k is the Kronecker delta. The resulting score ranges from 0 to 1,126

providing an interpretable measure of confidence by computing the squared distance between the127

predicted vector p and the uniform distribution, normalized by the maximum possible distance under128

a one-hot prediction.129

4 Quantitative Results130

We evaluate the effectiveness of our approach to uncertainty-aware out-of-distribution detection131

across four benchmark image classification datasets: MNIST [Deng, 2012], FashionMNIST [Xiao132

et al., 2017], SVHN, and CIFAR-10 [Krizhevsky et al.]. To assess OOD detection performance, we133

follow a one-vs-rest evaluation strategy: the model is trained exclusively on one dataset and evaluated134

on the remaining three as OOD sources.135

Table 1: Accuracy for both in and out-of-distribution datasets.

Train \ Test MNIST FMNIST SVHN CIFAR-10
MNIST 99.1 89.5 99.1 99.4
FMNIST 85.2 92.6 96.3 95.7
SVHN 93.6 94.9 89.4 87.6
CIFAR-10 97.8 95.7 88.2 85.5

Table 1 presents the accuracy for uncertainty-aware OOD detection across all pairs of datasets. Each136

row corresponds to a model trained on one of the datasets and diagonal entries represent the in-137

distribution (ID) performance measured on the standard test set of the training dataset. Off-diagonal138

entries indicate OOD detection performance, where the accuracy represents how well the model139

distinguishes out-of-distribution samples by correctly classifying them into the garbage class. High140

values across both diagonal and off-diagonal entries demonstrate that the model maintains strong141

classification performance on ID data while reliably identifying OOD inputs.142

We also observe that while the majority of OOD samples are correctly assigned to the garbage class,143

a small percentage of the samples can still be misclassified into in-distribution classes. However, a144

significant finding is that the least confidently classified in-distribution sample is still more confidently145

classified compared to the most confidently misclassified out-of-distribution sample, suggesting the146

existence of a clear threshold.147

5 Conclusion148

In conclusion, our unified framework seamlessly integrates out-of-distribution (OOD) detection and149

uncertainty estimation (UE) by extending the classification model with a garbage class and leveraging150

network inversion for inverted sample generation. Through iterative training and inversion cycles, the151

model learns to delineate in-distribution data from anomalous inputs while progressively refining its152

class boundaries. This approach enables robust OOD rejection and provides interpretable uncertainty153

estimates based on softmax confidence distributions. Future work can also consider the use n garbage154

classes—one for each of the in-distribution classes—for fine-grained separation of OOD samples155

and weighted individual OOD sample contribution to the loss while retraining the classifier based on156

uncertainty.157
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